
16 DMFT for f -Electron Systems

Bernard Amadon
CEA, DAM, DIF,
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In these notes, after a brief introduction to strong correlations and f -orbitals in solid state
physics, I will introduce Dynamical Mean-Field Theory (DMFT) and the combination of Den-
sity Functional Theory (DFT) and DMFT (See also references [1], [2], and [3]). Then I will
discuss some applications of DFT+DMFT on some metals and oxides.

1 Introduction to strong correlation: localized (f ) orbitals

1.1 Atomic orbitals

We first focus on the spatial localization of orbitals as a function of their principal quantum
numbers: 1s, 2p, 3d and 4f orbitals are orthogonal to lower orbitals only through the angu-
lar part because for their value of l, they are the orbitals with the lowest principal quantum
number [3]. As a consequence, the radial part of the wavefunction is not constrained by orthog-
onality, and can lower its Coulomb interaction with the nucleus by being more localized. Thus,
these orbitals are more localized than others. Fig. 1 illustrates the localization of 3d and 4f

with respect to 4d, 5d and 5f orbitals. Indeed, lanthanides are notorious examples of systems
exhibiting very strong correlation effects.
Concerning the angular part, it has more and more nodal planes as l increases, thus in particular,
d and f orbitals are fairly localized in space. As a consequence, 4d, 5d and 5f orbitals exhibit
also important correlation effects.
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Fig. 1: Radial part of valence wavefunctions of some atoms (computed in DFT/LDA).
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1.2 Localization/delocalization of electrons

Two main consequences arise from the localization of orbitals:

• When a solid is formed from atoms, the overlap of localized orbitals is weaker than for
delocalized orbitals and thus the bandwidth W is smaller (see e.g [4]).

• The more localized the orbitals, the stronger the local interactions “U” between electrons,
because electrons are closer to each other.

The simplest example to illustrate these two effects is the formation of the H2 molecule. In this
case, the competition between chemical bonding and interaction leads to a change of the ground
state as the interatomic distance increases. At large distances, the electrons are localized each
on its atom to avoid the Coulomb interaction with the other electrons (here U > W ). At small
distance, the two electrons delocalize in a bonding molecular orbital.
We see another consequence of this for solids on Fig. 2. It represents the evolution of the volume
of pure elements as a function of the number of electrons, for 4d, 4f and 5f elements. We now
discuss each curve:

• 4d orbitals are fairly delocalized, and form bands. Thus, as Z increases, electrons fill the
4d band. First the bonding states are filled and then antibonding states. As a consequence,
the volume decreases and then increases along the line. This experimental observation is
thus coherent with the delocalization of 4d electrons.

• For lanthanides, the 4f electrons are localized, thus there is a negligible overlap between
4f orbitals. As a consequence, adding electrons inside the f -bands has no effect on the
cohesion of the crystal. The decrease of the volume is called lanthanide contraction and
is due to the poor shielding of nuclear charge by 4f orbitals. Eu and Yp have especially
large volumes because one bonding electron is transferred to the non-bonding f -shell in
order to reach a half-filled or a full f -shell.

• For actinides, the localization appears at the middle of the 5f line. One way to understand
this is that as Z increases, the 5f orbitals are more and more localized because of the
attraction with the nucleus. Starting from americium, the system localizes electrons to
lower the energy.

This graph suggests that 4f electron systems will be closer to the atomic limit. We now discuss
the equation of states of the lanthanides as a function of pressure. Refs. [5, 6] show that at
ambient pressure and even for moderate pressure, the lanthanides exhibit compact structures.
Under pressure, their structure changes becoming more complex and distorted [5, 6]. This
suggests that under pressure, f -electrons participate in the bonding as in, e.g., uranium and
neptunium (which also have low symmetry equilibrium structures).
We now discuss cerium, which is a model system for lanthanides (see phase diagram in Fig. 3).
The α-γ transition in cerium is a first-order isostructural volume collapse transition. The tran-
sition line ends at a critical point (CP) around 1.5 GPa and 480 K [7] (see Fig. 3). The (larger
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Fig. 2: Evolution of volume (in Å3 per atom) of pure elements are a function of the number of
electrons for some rows of the periodic table (see also [5]).

volume) γ-phase exhibits a Curie-Weiss behavior for the magnetic susceptibility while it is
Pauli-like in the (smaller volume) α-phase (see Fig. 17). This is interpreted as 4f electrons,
being localized in the γ-phase, giving rise to local moments and contributing weakly to the
electronic bonding, whereas in the α-phase, the 4f electrons participate in both bonding [8]
and formation of quasi-particles as shown in photoemission spectra [9, 10]. The α 
 γ-phase
transition of Ce is hence a model system for a volume collapse phase transitions due to the
delocalization of localized electrons under an increase of pressure or decrease of temperature
(see Fig. 3 for other examples in the lanthanides). This is a difference between cerium and
other systems, such as praseodymium and plutonium [4], in which the volume collapse occurs
directly from the compact structure to lower symmetry structures.

1.3 The Hubbard model

In this section, we will study the Hubbard model, which is appropriate to model the localiza-
tion/delocalization competition. Using second quantization, one can write the Hamiltonian as

H =
∑
i

〈i|h|j〉 c†icj +
∑
i,j,k,l

〈ij|v|kl〉 c†ic†jckcl (1)

In this equation, i, j, k, l belong to a complete one particle basis. If the sums in this equation are
restricted to only one orbital per atoms, and if only on site interactions are kept, one recovers
the Hubbard model

H =
∑
i 6=j

tijc
†
icj +

∑
i

ε0(ni↑+ni↑) +
∑
i

Uni↑ni↓ (2)

In this equation, as we have only one orbital per site, i, j refers to atomic sites. We will now try
to understand two limits of this Hamiltonian.
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Fig. 3: Left: Phases of the lanthanides as a function of pressure (From [6]). Right: Phase
diagram of cerium.

1.3.1 Delocalization limit: U/t � 1

In this limit, we neglect the interaction term.

H =
∑
j 6=i

tijc
†
icj + ε0(ni↑+ni↓) (3)

One can easily solve this non-interacting Hamiltonian either by direct diagonalization or by
using Bloch states: We can define Bloch states |k〉 as

|k〉 = 1√
N

∑
i

|Ti〉 eikTi (4)

where |Ti〉 are atomic orbitals: 〈r|Ti〉 = ϕ(r−Ti) on site i. We also have

|Ti〉 =
1√
N

∑
k

|k〉e−ikTi (5)
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and the change of basis for creation and annihilation operators

c†i =
1√
N

∑
k

c†ke
−ikTi ci =

1√
N

∑
k

cke
ikTi . (6)

As a consequence, one can show that

H =
∑
k

εkc
†
kck with εk =

1

N

∑
ij

tije
−ik(Ti−Tj). (7)

In a simple case (one dimension and if tij is non-zero only for neighboring atoms), we have
(note that t is negative) the following dispersion relation which gives the energy of levels as a
function of the value of k.

εk = ε0 + 2tcos(ka) (8)

According to the Bloch theorem, k must belong to the first Brillouin Zone [−π
a
, π
a
], where a is

the distance between the atoms. We now suppose that we have one electron per atom, whereas
there are two states per atoms. As a consequence, the band is half filled. The system is thus
metallic and the Fermi levels is at ε0.

1.3.2 Localization limit: U/t � 1

H =
∑
i

Uni↑ni↑ +
∑
i

ε0(ni↑+ni↓) (9)

In this case, the Hamiltonian is a sum of Hamiltonians for independent atoms! We thus have
to solve the atomic problem. The size of the Hilbert space for this system is four (22) and the
states for each number of electrons per atom are

• 0 electron: |0〉 :E = 0

• 1 electron: |↑ 〉 and |↓ 〉: E = ε0

• 2 electrons: |↑↓〉: E = 2ε0 + U

Let us now suppose that the system has one electron per atom. From the above energies, one
can compute the cost associated to the hopping of one electron from one atom to another atom
(see Fig. 4). The cost is U. The order of magnitude of U in a real system is a few eV. As a
consequence, at room temperature, electrons will be localized and the system is called a Mott
insulator. The insulating character comes from interactions and not from a band structure effect.
One can also compute the photoemission spectra, i.e., the energy to add (E(| ↑↓〉)−E(| ↑ 〉) =
ε0+U ) or remove (E(| ↑ 〉)−E(|0〉) = ε0) an electron. We see that the photoemission spectra
(or spectral function) will have two peaks located at ε0 and ε0+U. The two peaks are separated
by U, which is thus the photoemission gap. These peaks correspond to the Hubbard bands.

1.3.3 The Mott transition

From these two limits, one can deduce that as U/t will increase, the systems will change from
a metal to a Mott insulator. This is the phenomenon of the Mott transition. But we need an
approximation to find the solution for intermediate U/t. This is one of the purposes of DMFT.
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Fig. 5: In DMFT, the Hubbard model is simplified by an Anderson model. On the left, the
Hubbard model is represented schematically. On the right, one atom in red is interacting with
the effective field of the others.

2 Introduction to DMFT and DFT+DMFT

2.1 Dynamical Mean-Field Theory
2.1.1 The Anderson model

We would like to describe correctly the on-site Coulomb interactions which are essential to
describe the atomic limit. The first idea of DMFT is to mimic the Hubbard model by a correlated
atom with the exact Coulomb interaction, embedded in a bath of uncorrelated orbitals (see
Fig. 5). The effect of all the other atoms are gathered in the bath. This is an Anderson model [11]
whose Hamiltonian writes

W

H0a

ϵ0

ϵ0 + U

H0b

Vk

H1

HAnderson =
∑

ωk a
†
k,σakσ︸ ︷︷ ︸

H0a

+
∑
k,σ

Vk
(
a†k,σcσ + c†σak,σ︸ ︷︷ ︸

H1

)
+ ε0(n↑+n↓) + Un↑n↓︸ ︷︷ ︸

H0b

(10)
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The use of the Anderson model is a mean-field idea that goes beyond static mean field. Indeed,
we do not have only one electron in an effective field as in usual static mean-field theory, but
a whole many-body atom whose interactions are taken into account exactly. Moreover the
Anderson model will be defined self-consistently, but we will discuss this in the next section.
In this section we just focus on the physics of the Anderson model. Once again, we are going
to investigate several limiting cases for this Hamiltonian

The isolated atom limit: Vk = 0. This case is identical to the limit U/t� 1 of the Hubbard
model: the correlated atom is insulating.

The U = 0 limit. The hamiltonian writes

HAnderson =
∑

ωk a
†
k,σakσ +

∑
k,σ

Vk
(
a†k,σcσ + c†σak,σ

)
+ ε0(n↑+n↓).

This is again a non-interacting system which can be solved easily: The atomic level will hy-
bridize with the levels at ωk, and will acquire a width.
Let us compute the Green function of this system. We can use the equation of motion of the
(non-interacting) Green function, we thus have(

ωI−H
)
G = I. (11)

The dimension of these matrices is equal to N+1. It contains the N uncorrelated orbitals ωk
and the correlated orbital ε0. The diagonal elements of H are the energies ωk and ε0. The only
off diagonal terms are the coupling elements of the level at ε0 to the levels at ωk.

H =



ε0 V1 · · · Vk · · · VN
V1 ω1 0 0 0 0
... 0

. . . 0 0 0

Vk 0 0 ωk 0 0
... 0 0 0

. . . 0

VN 0 0 0 0 ωN


We can easily invert this matrix and compute the Green function of the correlated orbital (Using
A−1 = Com(A)T/detA to invert ωI−H). We obtain

G(ω) =
1

ω − ε0 −∆(ω)
with ∆(ω) =

∑
k

V 2
k

ω−ωk
(12)

Where ∆(ω) is called the hybridization function.
We can now compute the spectral function of this system by computing:

A(ω) = − 1

π
ImGR(ω + iδ) (13)
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Fig. 6: Two electrons levels with V=0 and V small.

We need1

∆(ω + iδ) =
∑
k

V 2
k

ω−ωk
− iπ

∑
k

|Vk|2 δ(ω−ωk) (14)

If ∆ = 0, then the spectral function has a peak at ε0. Using the last two equations, the peak
at ε0 in the spectral function will be shifted by the real part of ∆ and will be broadened by
the imaginary part of ∆. Interestingly, the imaginary part of ∆ recovers the Fermi golden rule
(width of the level coupled to the continuum is π

∑
k |Vk|2 δ(ω−ωk)).

The Anderson Molecule. We now simplify the bath by replacing it by a single level. We
reproduce here the example detailed in Ref. [12, 13].
We suppose thatU is infinite, so a double occupation of the localized level is impossible. Finally
we limit our study to the states with 2 electrons. With these constraints, we have 5 possible states
in the Hilbert space: the first is the double occupation of the bath level (this is a state with S=0)
and there are four states with one electron in the bath level and one electron in the localized
level. Among these four states, there are one triplet (S=1) and one singlet (S=0). If V=0, then
the four levels are degenerate. In Fig. 6, the singlet states are in red.
If the hybridization V is non-zero, then the two states with S=0 couple (see Fig. 6). As a conse-
quence we have a possible transition between the singlet and the triplet state at very low energy.
This phenomenon has the same physical origin as the Kondo effect. It shows that a resonance
exists even in a very strongly correlated system (U large) and this resonance will be at the Fermi
level. We can define a temperature T ∗ corresponding to the difference of energy between the
singlet and triplet state. Below this temperature, the system will exhibit the resonance, which
will fade as temperature increases. Moreover, below this temperature, the magnetic moment of
the localized level is completely cancelled by the formation of the singlet state.

2.1.2 The self consistency condition and the DMFT loop

Following the definition of the Green function in the local orbital basis (i and j)

Gij(t) = −i〈N |T (c†i (t)cj(0)|N〉 (15)

1We use limδ→0
1
π

δ
x2+δ2 = δ(x).
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one can compute the Bloch Green function

Gk(t) =
1

N

∑
ij

eik(Ti−Tj)Gij(t) (16)

thus, in frequency

Gk(ω) =
1

N

∑
ij

eik(Ti−Tj)Gij(ω) (17)

Using the equation of Motion of the Green function (ω−H−Σ)G = 1, the lattice Green func-
tion for the Hubbard model is written

Gk(ω) =
1

ω − εk −Σk(ω)
, (18)

where the self-energy is unknown. The local Green function of the lattice is

Gii(ω) =
1

N

∑
k

eik(Ti−Ti)Gk(ω) =
1

N

∑
k

Gk(ω). (19)

Besides, the Green function for the Anderson impurity model is

GAnderson(ω) =
1

ω − ε0 −∆(ω)−Σ(ω)
. (20)

The DMFT idea [1] is to identify the local Green function of the Hubbard model with the Green
function of Anderson model and the self-energy of the Hubbard model to be equal to the self-
energy of the Anderson model:2 it is the self-consistency relation of DMFT. This implies in
particular that the local one particle excitations of the Hubbard model will be the same as the
one particle excitations of the Anderson model. This writes

1

N

∑
k

1

ω − εk −Σ(ω)
=

1

ω − ε0 −∆(ω)−Σ(ω)
. (25)

2Thus we have expressed also the self-energy in the Bloch basis. We start from the expression of the self-energy
as a sum of local self-energies on different sites

Σ =
∑
Ti

|Ti〉Σ(ω)〈Ti| (21)

We use then
|Ti〉 =

1√
N

∑
k

|k〉e−ikTi (22)

Thus by replacing the last equation in Eq. (21), we have

Σ =
∑
k

|k〉Σ(ω)〈k′| (23)

Thus
〈k|Σ|k〉 = Σ(ω) (24)

Thus for a local self-energy, the self-energy in the basis of Bloch states is equal to the local self-energy.
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This equation enables us to find ∆(ω) as a function of the self-energy: ∆ = ∆[Σ] and also
ε0 =

1
N

∑
k εk.3 Besides, the solution of the Anderson model enables us to have the self energy

from the value of ε0 and ∆.4 So this creates a system of two equations that can be solved self-
consistently. These two equations constitute the DMFT self-consistent loop that can be solved
by iteration.

2.1.3 The Hubbard model in DMFT

The main results for the Hubbard model phase diagram in DMFT (in infinite dimension, without
magnetism and for one electron per atom) are summed up on Figs. 7 and 8. First, the metal
insulator transition is a first-order phase transition. Moreover, the paramagnetic insulating phase
with a degeneracy of two can be described in contrary to the static mean-field approximation
which breaks the symmetry and creates magnetism.
We now describe the evolution of the spectral function. At large value of U, the Hubbard bands
are present but still broadened by hybridization. Then, a resonance peak appears at the Fermi
level and grows, as U/t decreases. Importantly thus, the metallic phase appears whereas the
Hubbard band are still present in the photoemission spectra. Such feature is also not described
by the static mean-field approximation. Let us finally outline that in DMFT, both the atomic
limit (U/t� 1) and the delocalization limit (U/t� 1) are exact.
We compare on Figs. 7 and 8 the physics of the Hubbard model to the physics of an f electron
system, namely pure cerium. As was discussed above, pure cerium exhibits two phases, one
with delocalized f -electrons and one with localized electrons and the transition between these
two phases can be controlled with pressure or temperature. It can be rationalized in comparison
to Hubbard model: applying pressure is equivalent to reducing t. Besides, phases of cerium
both exhibit Hubbard bands. The α-phase, exhibits less intense Hubbard band and larger quasi-
particle peak, as expected for more delocalized electrons. In the next section, we will discuss
DFT+DMFT in order to apply DMFT ideas to a real system such as cerium.

3Equivalently, one can say that the non-interacting Green function G−10 = ω− ε0−∆(ω) can be obtained from
the self-energy.

4Equivalently, one can obtain the Green function and the self energy of the Anderson model as a function of
the non-interacting Green function
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Fig. 8: Evolution of the spectral function in the Hubbard model (from Ref [1]) compared to
photoemission spectra in cerium (From Ref. [9, 10])

2.2 DFT+DMFT

The rough idea of DFT+DMFT is to use the DFT/LDA Hamiltonian to define the one body term
of the Hubbard model and then supplement it by an exact Coulomb interaction for the corre-
lated orbital subset. However, to apply DMFT ideas to a real system, one need first to define
correlated orbitals [14–16] and a corresponding value of the effective interaction U [17]. This
is important and is discussed in the next subsection. I just outline here that there is no unique
way to define correlated orbitals. So several choices have been made in the literature. They
include atomic orbitals, or Wannier orbitals. When the choice of correlated orbitals is done, the
effective interaction for these orbitals has to be computed. One formalism is the constrained
Random Phase Approximation (cRPA) method [17] which considers that the effective inter-
action between correlated electrons is the bare interaction screened by all the non-correlated
electrons. It thus requires the calculation of a non-interacting polarizability and the inverse
dielectric function. It is described in the second subsection.

Then, using correlated orbitals and related values ofU, a DFT+DMFT calculation can be carried
out. The scheme will be presented in the third subsection. Lastly, I will briefly discuss solvers
for the Anderson model in the fourth subsection.

2.2.1 Correlated orbitals: how to define them?

In this section, we briefly discuss Wannier functions, which are a flexible tool to define corre-
lated orbitals.
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Fig. 9: Simple molecular orbital diagram for an diatomic molecule containing an electropos-
itive atom (V) and an electronegative atom (O). It can be viewed as a simple model for SrVO3

or UO2 or Ce2O3. In the text, we use this model with 3 electrons: the ε2 level is thus half-filled.

Projected Local Orbitals Wannier functions and Maximally Localized Wannier functions.
Projected Wannier functions are defined in Refs. [14,16]. We first introduce the auxiliary wave-
functions |χ̃R

km〉 as

|χ̃R
km〉 ≡

∑
ν∈W
|Ψσkν〉〈Ψσkν |χR

km〉. (26)

For a given atomic site R, we call |χR
km〉 the Bloch transform of isolated atomic orbitals with

projected angular momentum m. |Ψσkν〉 are the Kohn-Sham orbitals for k-point k, band index
ν and spin σ. |χ̃R

km〉 is thus a weighted sum of Kohn-Sham orbitals. This sum extends over a
given number of Kohn-Sham orbitals that can be defined by an index range or alternatively by
an energy window W . For a finite W , the orthonormalization of |χ̃R

km〉 leads to well defined
Wannier functions |wR

km〉, unitarily related to |Ψσkν〉 by5

|wR
km〉 =

∑
ν∈W
|Ψσkν〉〈Ψσkν |wR

km〉. (27)

It is important to notice that the localization of |wR
km〉 will decrease ifW decreases. Maximally

localized Wannier functions are Wannier functions whose extension is minimized [18]. They
have the advantage over projected local orbital Wannier functions that they are uniquely defined.

Wannier functions: a pedagogical simplified molecular model In order to illustrate the
localization of Wannier functions, we consider a simple diatomic molecule containing an elec-
tropositive atom (V) and an electronegative atom (O). In this model molecule, we consider only
one orbital per atom, and for simplification, we assume it is of s symmetry. It can be viewed as
a very simple model for SrVO3 or UO2. The bonding state at ε1 is the analogue of the O-p like
band, whereas the antibonding state at ε2 is the analogue of the V-d like bands.
We now suppose that the system contains 3 electrons. The V-like band is thus half filled. We
use Eq. (26) with χ = φV to compute Wannier functions for two energy windows:

5In the limit of a infinite number of Kohn-Sham bands, the projection in Eq. (26) becomes complete and the
Wannier functions |wR

km〉 become equivalent to atomic orbitals |χR
km〉.
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Eigenstates included in the energy windowW {ε2} {ε1, ε2}
Corresponding Wannier function wV |Ψ2〉 |φV 〉
Corresponding number of electrons nV 1 2β2+α2

Table 1: Wannier function on vanadium and corresponding numbers of electron in a simple
diatomic molecule for two different choices of the energy window.

• IfW = {ε2}, then Eq. (26) contains only one term: |χ̃〉 = |Ψ2〉〈Ψ2|φV 〉 = α|Ψ2〉. After
renormalizing χ̃, we find that the Wannier function is a molecular orbital |wV 〉 = |Ψ2〉
that contains an oxygen contribution. The number of electrons in this orbital is 1.

• If W = {ε1, ε2}, then Eq. (26) contains two terms. One shows easily that the Wannier
function is a localized atomic orbital |wV 〉 = |φV 〉 and is thus much more localized than
in the previous case. The number of electrons in 2β2+α2 6= 1.

So this simple example illustrates how the localization of the Wannier functions is modified by
the choice of the energy windows of Kohn-Sham bands. A similar illustration in the case of
SrVO3 can be seen in [15]. We will now discuss the calculation of effective interactions for
these orbitals.

2.2.2 How to compute the effective coulomb interaction?

There are several ways to compute effective interactions [19, 20, 17]. Here, we will briefly
present the constrained random phase approximation method [17, 21] (cRPA) which is particu-
larly adapted to DFT+DMFT.
The cRPA method depends on the definition of a many-body model [21]. The many-body
model is defined by a set of local orbitals together with the interactions among them. A cRPA
calculation of a model would require first the definition of a set of local orbitals, and second a
consistently calculated screened interaction: it considers that the effective interaction between
correlated electrons is the bare interaction screened by all the non-correlated electrons. Impor-
tantly, thus the value of effective interactions depends on the definition of correlated orbitals
discussed above.

The cRPA method We call here χ0 the non-interacting (Kohn-Sham) polarizability of the
system. Let’s now separate the correlated states (They could be f -states but the method is more
general and correlated orbitals could gather several orbitals from, e.g., different atoms) from the
rest (r). We thus have [17]

χ0 = χcorrel
0 + χr0. (28)

Thus, we can rewrite the inverse dielectric matrix as

ε−1 =
1

1− v(χcorrel
0 +χr0)

. (29)
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0

(From [22]).

We now define the dielectric functions due to non-correlated electrons and the corresponding
screened interaction

ε−1r =̂
1

1− vχr0
and Wr = ε−1r v =

v

1− vχr0
. (30)

The dielectric function due to correlated electrons acting on Wr is thus

ε−1correl=̂
1

1−Wrχ
correl
0

. (31)

With these definitions, one shows that

ε−1correlε
−1
r = ... =

1

1− vχr0 − vχcorrel
0

= ε−1 and thus W =̂ε−1v = ε−1correlε
−1
r v. (32)

The fully screened RPA interaction is the combination of two screening processes. First, the
bare interaction is screened by non-correlated electrons (r), giving rise to a screened interac-
tion Wr. Secondly, the screening of this interaction by correlated electrons recovers the fully
screened interaction [17].
The main idea of cRPA is to use this separation of screening processes. The screened interaction
Wr can be computed explicitly, using the equation written above, which is valid for electrons
interacting only with the Hartree potential. Removing the screening by correlated electrons is
easy in cases where the correlated orbitals are unitarily related to an isolated set of bands (see
Fig. 10). In other cases, several schemes have been proposed.
Then the interaction in the basis of correlated orbitals is computed with

U1234(w) = 〈w1w2|Wr(w)|w3w4〉. (33)

Finally, the screening by correlated electrons is explicitly taken into account by solving exactly
the correlations with the interaction U1234 by a dedicated method (e.g. DMFT).
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Fig. 11: Band structure of UO2 in DFT/LDA [23]. Between –8 eV and –3 eV, bands are mainly
O-p like. Then, there are 14 bands of 5f character that are at the Fermi level. If Wannier
correlated orbitals are constructed only with f -like bands, then, the cRPA interactions can be
computed by removing transitions inside the 14 isolated f -bands.

Many-body models We now briefly consider different kinds of models as discussed in Ref. [21,
25] in the case of UO2. UO2 is a paramagnetic insulator above the Néel temperature of 30 K
with the fluorine structure.

• f -f model: The model is built from the U-f like bands only: Wannier functions are built
from U-f like bands and transitions among the U-f like bands define χcorrel.

• fp-fpmodel: The model is built from the U-f like and O-p like bands. Wannier functions
are build from U-f like bands and O-p like bands and transitions among these bands
define χcorrel. In this case, effective interactions Uff , Ufp and Upp can be computed and
used in a calculation using explicitly all these interactions.

We now first discuss the value of the interactions. We can first compare the bare interactions for
SrVO3 (19.1 eV), cerium (24 eV) and UO2 (16.1 eV) [23]. It highlights the large localization
of orbitals in lanthanides and the fact that interactions in actinides are lower.
We now discuss effective interactions U. The value of U depends largely on the model [23].
It is larger in the fp mode. This comes from the fact that the orbitals are more localized in
the fp model and also that screening is lower. Ref [24] discusses the appropriate choice of U
in uranium. However, it is expected to be between 4 and 6 eV in UO2 to reproduce spectral
properties [26]. In lanthanides, the values of U required to describe experiments are larger.

model v U
f -f 16.0 3.4
fp-fp 17.1 6.2

Table 2: Bare (v), and cRPA (U ) Coulomb interactions for UO2 computed for different models.
Results are from [23] (see also [24])
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2.2.3 The DFT+DMFT scheme

We now suppose that correlated orbitals and effective interactions are defined. We now discuss
the DFT+DMFT scheme. In a first step, we are going to write the expression of the lattice
Green function for the solid with a local self-energy. The self-energy will later be the DMFT
self-energy.

The lattice Green function In comparison to the case of the one-band Hubbard model,

• the number of correlated orbitals is larger (14 for f -elements),

• the number of bands in the system is large, and larger than the number of correlated
orbitals because some orbitals are not correlated. For example, in cerium, the 4f orbitals
are correlated but the 6s are not. However, 6s and 4f states are strongly mixed in the
DFT/LDA density of states.

We are going to express all quantities (G,Σ) in the Kohn-Sham wavefunctions basis because
the DFT Hamiltonian has a simple expression in this basis

HLDA =
∑
nk

|Ψkn〉 εnk 〈Ψkn| . (34)

The self-energy in DMFT is local and is computed in the local basis (of correlated orbitals),
thus the self energy operator is a sum of identical self-energies on each correlated site (m and
m′ are the quantum numbers of the projection of the angular momentum)

Σ =
∑
mm′Ti

|χTim〉Σm,m′(ω) 〈χTim′| . (35)

We can define the Bloch transform of the localized functions χTim as before as

|χTim〉 =
1√
N

∑
k

|χkm〉 e−ikTi . (36)

Thus by replacing the last equation in Eq. (35), we have

Σ =
∑
mm′k

|χkm〉Σm,m′(ω) 〈χkm′| . (37)

It can be expressed in the Kohn-Sham basis directly using the fact that 〈Ψkn|χk′m〉 is zero if k
and k′ are different,

Σnn′(k, ω) =
∑
m,m′

〈Ψkn|χkm〉Σmm′(ω) 〈χkm′|Ψkn′〉. (38)

In order to avoid a double-counting of the correlation for correlated orbitals, the self-energy has
to contain a so called “double-counting term” which should cancel the DFT/LDA Hartree and
exchange-correlation potential for the correlated electrons

Σ = ΣDMFT −ΣDC. (39)
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The Green function will obey the usual equation of motion:(
ωI−H−Σ

)
G = I. (40)

Thus the Green function is

Gnn′(k, ω) =
(
ωI−H(k)−Σ(k, ω)

)−1∣∣∣
nn′
, (41)

where H(k) is a diagonal matrix containing the Kohn-Sham eigenvalues and Σ(k, ω) is non-
diagonal (see above). The local Green function is simply

Gloc
mm′(ω) =

∑
k

〈χkm|Ψkn〉Gnn′(k, ω) 〈Ψkn′ |χkm′〉. (42)

This equation is the generalization of Eq. (19).

The Self-Consistency Condition The DMFT self-consistency relation equals the local Green
function and the Green function of the Anderson model:

Gloc
mm′(ω) = GAnderson

mm′ (ω) (43)

where
GAnderson
mm′ (ω) =

(
ωI−E0−∆(ω)−Σ(ω)

)−1∣∣∣
mm′

. (44)

E0 is a diagonal matrix with the levels of correlated orbitals in the (multiorbital) Anderson
model, Σ and ∆ are the self-energy and hybridization matrices in the correlated orbital basis.
E0 and ∆ are obtained from the self-consistency condition.

The Anderson impurity model E0, ∆ and U, J define the Anderson model. The solution
of the Anderson model gives the local self-energy, which is used again to compute the lattice
Green function, Eq. (41).

The DFT loop The density can be obtained from the full Green function using:

n(r) = −i
∑
n,k

Ψkn(r)Gnn′(k, t−t′=0−)Ψkn′(r) (45)

and is used to reconstruct the Kohn-Sham Hamiltonian (a functional of the density) and thus the
eigenvalues. The scheme is summarized in Fig. 12.

2.2.4 Solvers for the Anderson impurity model

The resolution of the Anderson impurity model, Eq. (10), can be done by several methods.
Simplifications can be done in some cases. In some localized systems (e.g. lanthanide oxides),
one can neglect the bath in the resolution of the Anderson model. In this case, the hybridization
and crystal field play a role only through the renormalization of the atomic levels. This is the
basis of the Hubbard I method.
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DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define orbitals and use ϵk

Compute lattice Green’s function

Compute local Green’s function
Compute Weiss field G−1

0 = Σ −Gloc

Impurity Solver (CTQMC)Compute Green’s function
Compute Self-energy

New electronic density

Fig. 12: Scheme of the DFT+DMFT loops. G0 is the non-interacting Green function of the An-
derson model and is linked to the hybridization by G−10 = ωI−E0−∆(ω). The Dyson Equation
is G−10 −G−1 = Σ.

A more drastic solution is the static mean-field solution, which is equivalent to the DFT+U
method [19]. To briefly present this approach, we suppose that density matrix of correlated
orbitals is diagonal and J =0. In this case, the self-energy for orbital i is simply U(ni−1/2).
It has the effect of opening a gap in Mott insulators by shifting occupied states downwards and
empty states upward (see also [27]). However, even the atomic physics is not recovered and e.g
paramagnetic insulators cannot be described with this approach. Some approximations can also
be made if the system is on the metallic side (e.g. the Gutzwiller approximation).

In the general case, the solution can be provided by quantum Monte Carlo methods. The main
idea is that the atomic problem can be solved exactly and the bath problem can be solved exactly.
Most continuous-time quantum Monte Carlo codes, but not all, use an expansion as a function
of H1 in Eq. (10) and sample all relevant terms in the expansion.

2.2.5 Conclusion on DFT+DMFT

In this section, I have first reminded that the Hubbard model describes localization/delocalization
transitions. Then I have presented the mapping to the Anderson model, and the DMFT equa-
tions. For real systems, I underlined that correlated orbitals and effective interactions have to be
defined. Lastly, I detailed the DFT+DMFT scheme. The next section is devoted to applications
to f -electron systems.
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Fig. 13: Theoretical spectral functions of cerium compared to photoemission spectra [9, 10].
Both the LDA and LDA+U spectra [28] are unable to differentiate the two phases of cerium.
LDA+DMFT [29] describes qualitatively the appearance of the noticeable quasiparticle peak
in the α-phase.

3 f -electron systems: pure metals

3.1 Lanthanides

As discussed in the first section, f -electrons in lanthanides are localized and do not participate
to the bonding at ambient pressure. So indeed, as DFT+DMFT correctly describes the atomic
limit and the metal insulator transition, it should be adopted to describe these systems and their
behavior under pressure. We will review in this section, photoemission, optical properties,
magnetic and structural properties as described by DFT+DMFT on lanthanides.

3.1.1 Photoemission spectra

In this section, we discuss photoemission spectra of two lanthanides: cerium and terbium. For
cerium, direct and inverse photoemission spectra were measured for both phases [9, 10] and
are reproduced in Fig. 13. Importantly, both phases exhibit high-energy structures that can
be interpreted as Hubbard bands. Only the α-phase has a sizable peak at the Fermi level,
which suggests that the 4f electron is partly delocalized. We now compare to spectral functions
obtained in DFT, DFT+U, and DFT+DMFT. We see that only DFT+DMFT is able to describe
the important differences between the spectra of the α- and γ-phases, in contrast to LDA+U
and LDA. LDA only describes the quasiparticle peak whereas LDA+U only opens a gap in the
f -bands and thus describes only Hubbard bands.
We now discuss terbium spectra. Locht et al. [30] have computed photoemission spectra of all
lanthanides using DFT+DMFT. At ambient pressure as discussed above, electrons are localized
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Fig. 14: Comparison between experimental spectra (red dots) and the spectra calculated with
DFT+DMFT (left) and with DFT+U (right). The green line is the calculated total spectral
function. The blue line is the calculated 4f contribution to the spectral function [30].

so the authors used the Hubbard I approximation. Fig. 14 shows theoretical spectra computed
in DFT+DMFT and DFT+U compared to experimental spectra in the example of terbium. The
direct photoemission spectrum contains peaks corresponding to the f 7 multiplets whereas in-
verse photoemission corresponds to f 9 states. These atomic features are correctly described by
DMFT, provided that effective interactions and double-counting is correctly adjusted. In com-
parison, static mean-field LDA+U describes the system with only one Slater determinant and
cannot reproduce the experimental data.
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Fig. 16: LDA and LDA+DMFT hybridizations and LDA+DMFT spectral function for three
volumes of fcc cerium, including the α- and γ-phases [32].

3.1.2 Optical conductivity

In Fig. 15, the experimental optical conductivity spectra of α- and γ-cerium are compared to
DFT+DMFT calculations [31]. The DFT+DMFT calculations successfully reproduce the larger
Drude peak in the γ-phase and the 1 eV peak in the α-phase spectra. The right panel of Fig. 15
provides insight into these spectra and the origin of these features. Indeed, at low temperature,
when the quasiparticle f -peak at the Fermi level is large, the hybridization between f - and
d-electrons creates a pseudo-gap in the d density of states, explaining the 1 eV peak in the
α-phase. The large Drude peak at the Fermi level originates from the unhybridized d spectral
function. This peak is visible mainly in the γ-phase where there is no pseudo-gap and thus an
important d-weight at the Fermi level.
Two simplified models exist to describe the α-γ phase transition in cerium. They differ by
the orbitals involved in the delocalization of f -electrons under pressure. The Mott transition
assumes the f -f hoppings variation is most important, whereas in the Kondo Volume Collapse,
it is the f -c hoppings that are dominant (c stands for s, p or d orbitals). The above analysis
suggests that the main hybridization that drives the delocalization of f -electrons under pressure
is the f -d hybridization. This is compatible with the qualitative view of strongly localized
f -orbitals that have weak overlap.

3.1.3 Electronic model for the transition

To complement the above analysis, it is possible to simulate photoemission spectra with or
without f -f hoppings to check the importance of this term. Fig. 16 shows the evolution of the
4f hybridization computed in LDA (top row), and LDA+DMFT (middle row), and the spec-
tral functions computed in LDA+DMFT (bottom row) as a function of volume (in black). In
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Fig. 17: Magnetic susceptibility computed in DFT+DMFT [34] as a function of temperature
for α- and γ-phases of cerium. We can analyze these data with the help of the phase diagram
of Ce (Fig. 3). The magnetic susceptibility is constant as a function of temperature in the α-
phase (below 500 K), whereas it has a Curie-Weiss behavior in the γ-phase (above 150 K). The
γ-phase has thus a local moment. This is in qualitative agreement with experiment [33].

red the same quantity is plotted without f -f hoppings [32]. The comparison of the hybridiza-
tions shows that f -c hybridization is clearly dominant at all volumes. Nevertheless, for lower
volumes, the f -f hoppings play an increasing role in the amplitude of the hybridization. The
amplitude of the quasiparticle peak is also impacted by the f -f hopping. This highlights that
both hybridizations have to be taken into account and thus the need to go beyond models for a
quantitative description of cerium.

3.1.4 Magnetism

Fig. 17 reproduces the magnetic susceptibility of cerium calculated within DFT+DMFT [34].
It exhibits a Curie-Weiss susceptibility at high temperature and low pressure in the γ-phase.
This is in agreement with the spectral functions, that show mainly Hubbard bands and no quasi-
particle peak, and suggest that this system is localized. In the α-phase, the quasiparticle peak
is present, and a Pauli-like behavior in the α-phase (at low temperature) is observed. This is in
qualitative agreement with experiments from Ref. [33].

3.1.5 Equation of states

Regarding cerium, numerous studies have extensively investigated the thermodynamics of its
transition, highlighting the profound interplay between thermodynamic and electronic proper-
ties within the framework of density functional theory combined with dynamical mean-field
theory (DFT+DMFT). Notably, these investigations have clearly demonstrated that the pres-
ence of a quasiparticle peak in the α-phases contributes to the stabilization of the phase at low
temperatures. The inclusion of entropy and spin-orbit coupling has been found crucial for accu-
rately describing the equation of states. In Fig. 18, the internal energy, entropy, and free energy
at the transition are depicted, both with and without consideration of spin-orbit coupling. Let us
start by discussing the internal energy. In both sets of calculations conducted within the volume
range of the transition, we observe a softening of the energy’s second derivative, indicating a
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Fig. 18: Internal, free energy, entropy, and pressure as a function of volume compared to ex-
periment with spin-orbit coupling [35] and without spin-orbit coupling [29].

decrease in the bulk modulus. However, it is crucial to consider the contribution of entropy, as
its magnitude plays a significant role. It is worth noting that this magnitude is influenced by
the degeneracy of the f -levels, which in turn depends on the inclusion of spin-orbit coupling.
Finally, the resulting free energy exhibits a negative curvature, which is an indication of the
presence of a phase transition. Notably, this distinctive feature is observed solely in the calcu-
lation that incorporates spin-orbit coupling. In this particular case, one can deduce the equation
of state, which demonstrates a good agreement with the experimental equation of state.

3.2 Actinides

3.2.1 Structural properties

As discussed above, the volumes of actinides show a jump along the line. Uranium and neptu-
nium have a low volume and a low symmetry structure whereas americium and curium have a
large volume and compact phases. So plutonium is at the transition between two types of be-
havior. Depending on the temperature, it can exhibits low symmetry phase with low volume (α)
or compact phase with high volume (δ). Concerning magnetism, all phases are non-magnetic,
and there is no local moment except for curium.
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computed in non-magnetic GGA and DFT+DMFT [36].

We now discuss theoretical results [36] reproduced on Fig. 19. GGA fails to recover the vol-
ume jump in actinides, unless an artificial magnetism is taken into account [36]. On contrary,
DFT+DMFT is able to describe this transition. Interestingly spin-orbit coupling and Hund’s
exchange play a key role in this transition. In particular it is noticeable that the volume jump
happens near the complete filling of the J =5/2 shell. This can be interpreted as an enhance-
ment of correlation near the filling of this shell.

3.2.2 Branching ratio and importance of spin-orbit coupling

X-ray absorption spectroscopy (XAS) is especially useful to study f -electron systems because,
as we will see below, it gives indication on the strength of the spin-orbit coupling (SOC). We
focus here on the 4d to 5f transition. Spin-orbit coupling is very important for core states.
So 4d orbitals are largely split in 4d5/2 and 4d3/2. 5f orbitals are less split by SOC. The
absorption intensities I5/2 and I3/2, which correspond to 4d5/2 → 5f5/2,7/2 and 4d3/2 → 5f5/2
transitions, enable to define the branching ratio as B = I5/2/(I5/2 + I3/2). One can show
that it is directly linked to the average of the spin-orbit operator. We can thus compare the
experimental values of this operator to exact limits computed in the Russel-Saunders coupling
scheme or the jj coupling scheme, and to ab-initio calculations. In the LS (Russel-Saunders)
picture (see Fig. 20), we have in particular a cancellation of the spin-orbit coupling when L=0

for nf=7. Whereas in jj coupling, the value increases until the j=5/2 shell is filled, after
which it decreases.
Experimentally, the value is rather close to the jj case, except near nf=7 where the stabilization
of the half filled shell decreases the value of the spin-orbit operator. In Fig. 20, we compare
the experimental value to LDA and LDA+DMFT calculations [37]. LDA overestimates the
bandwidth, so the value of the spin-orbit coupling is underestimated. LDA+DMFT improves
the agreement with experiment. This emphasizes the fact that LDA+DMFT correctly captures
atomic physics.
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4 f -electron systems: oxides

Most f -electron oxides are Mott insulators, and thus DFT+DMFT is the method of choice to
describe them. DFT+U does describe also very well the structural and spectral properties, but
not the magnetic properties. We will illustrate this with two examples of Mott insulators.

4.1 Electronic structure of Ce2O3

Ce2O3 is a Mott antiferromagnetic insulator with an optical band gap of 2.4 eV [61] and a Néel
temperature of 9 K. We discuss in the following first the density of states and experiments, and
secondly, the ground state density.

4.1.1 Density of states

Ce2O3 contains only one f -electron, resulting in the absence of multiplets in this system. Both
DFT+U and DFT+DMFT methodologies successfully reproduce the energy gap of this com-
pound. Fig. 21 shows the spectral function in DFT+DMFT. The DFT+U spectrum is very
similar. These methods accurately capture the magnitude of the band gap which is between the
two Hubbard bands. However, as we will discuss below, beneath these apparent similarities lie
profound differences between the two approaches.

4.1.2 Electronic Density

To illustrate the differences between the LDA+DMFT and LDA+U electronic densities, we
have plotted in Fig. 22 the isosurfaces of the differences between the LDA+DMFT and LDA
electronic densities (on the left) and between LDA+U and LDA electronic densities (on the
right). We see that the difference between LDA+DMFT and LDA is weaker than the difference
between LDA+U and LDA. This suggests that the occupation matrices of the correlated orbitals
are different in LDA+U and LDA+DMFT.
We now explain the origin of this difference. In DFT, local interaction is not taken into account,
so the f -electron is delocalized over several f -orbitals. In DFT+U, because of the localization,
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Fig. 21: DFT+DMFT spectral function of Ce2O3 [38]

Fig. 22: Difference between the electron densities computed using LDA+U (right) and
LDA+DMFT (left) approximations and in the LDA approximation. The density of the filled
orbital is clearly visible on the right. The blue (respectively green-red) area corresponds to a
positive (respectively negative) value of the difference. [38]

numerous low-energy one-electron nearly-degenerate states are present in these systems. Each
of these states can be calculated using a single Slater determinant method like DFT+U [39]
and corresponds to the localization of the f -electron in one f -orbital. As a consequence, the
average occupation of one orbital is either close to 0 or 1 (to reduce the Coulomb interaction).
This explains the large difference of the electron densities between DFT+U and DFT as seen in
the right plot of Fig. 22.
However, to accurately describe a paramagnetic insulator without introducing unwanted or-
bital anisotropy and magnetism, a method capable of handling multiple determinants, such as
DFT+DMFT, is required. In DFT+DMFT, the instantaneous occupation of orbitals is 0 or 1.
But the average occupations of f -orbitals are lower and closer to the DFT/LDA values. The left
plot of Fig. 22 highlights the similarity of the DFT/LDA and DFT+DMFT densities, even if it
comes from completely different physical effects.
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4.2 Magnetic ordering in UO2

As f -orbitals are particularly localized, they are less sensitive to crystal-field effects. As a
consequence, the orbital angular momentum is not quenched and plays an important role in
magnetism. In particular, multipolar degrees of freedom can play a role: their interactions can
lead to ordering of their arrangement.
This has been studied in UO2 to resolve the long standing question of the 3k magnetic order in
the antiferromagnetic phase, below 30 K. This peculiar ordering involves 4 different orienta-
tions of magnetic moments. Pourovkii et al. [40] proposed to compute nearest-neighbor inter-
actions between the states belonging to the Γ5 ground state using DFT+DMFT. DFT+DMFT
describes well the band structure and paramagnetism in UO2 [26]. Using the Hubbard I ap-
proximation, they were able to compute superexchange parameters for dipolar and quadrupolar
interactions. Using these interactions, they were able to stabilize the experimental magnetic or-
dering and the phase transition to paramagnetism at a temperature close to experiment. Another
recent work used a flavor of DFT+U to show the role of quadrupolar-quadrupolar interactions
in the formation of 3k magnetic order.

5 Conclusion

f -electron systems exhibit significant orbital localization for lanthanides and comparatively
lesser localization for actinides. As a consequence electrons are sensitive to electronic interac-
tion and somewhat less to crystal fields in comparison to the d-elements. Spin-orbit coupling
is also important for these heavy elements. These features require a good description of atomic
physics and hybridization, which is provided by DFT+DMFT.
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