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2.2 Arnout Ceulemans

1 The Jahn-Teller theorem

In 1937 Jahn and Teller wrote:

Theorem 1. All non-linear nuclear configurations for an orbitally degenerate electronic state
are unstable.

This statement was the beginning of a fruitful line of research both in physics and chemistry.
Over the years, it has provided deep theoretical insights as well as important practical applica-
tions, in spectroscopy, magnetism, superconductivity and chemical reactivity. First and fore-
most, the theorem is a particular example of the more general physical principle of symmetry
breaking. As Pierre Curie once enounced: c’est la dissymmétrie qui crée le phénomène (it is the
lack of symmetry that creates the phenomenon). The world appears where the initial symmetry
is broken, and the phenomena start to abound. This is accompanied by a decrease of tempera-
ture, which suggest that the high symmetry state is also highly energetic, and the spontaneous
breaking of symmetry is driven by a decrease in energy. In this presentation, the focus will be
on the theoretical aspects of the theorem, in particular group theory and topology.1

1.1 The distorted rutile structure

At the molecular level degeneracies are usually linked to the presence of symmetry, described
by the molecular point groups. A textbook case from structural inorganic chemistry concerns
the crystal structures of divalent transition-metal difluorides from CrF2 to ZnF2 [2]. These
difluorides crystallize according to the rutile structure. Rutile is the mineral of TiO2. In this
structure the metal ions are surrounded by a regular octahedron of six ligands, at equal distances
from the central atom. Cr(II) and Cu(II) ions are notable exceptions in the series. For these two
metal ions the rutile lattice is distorted, forming a tetragonal coordination, with four equatorial
ligands at short distance and two axial ones at longer distances, as indicated in Fig. 1. The figure
also shows the crystal field configuration of the d-electrons, with one electron in the eg shell for
Cr(II) and one hole for Cu(II).
The mean value of these distances agrees with the expected trends for the d-metal contraction,
but clearly some force is distorting the ligand sphere around the ion. What distinguishes these
ions form the rest? These are the only two ions in the series for which the ground state con-
figuration is characterized by an odd number of electrons in the eg shell. The resulting ground
states are 2Eg multiplets, hence states that are orbitally twofold degenerate. They thus would
exemplify the Jahn-Teller (JT) theorem, which states that such ground states are unstable, and
will spontaneously distort to lower symmetries. The distortion will lift the degeneracy, and
thus remove the cause of instability. Indeed symmetry breaking from Oh to D4h will split the
multiplets as follows

2Eg → 2A1g +
2B1g. (1)

Further interesting additional observations can also be made:

1The presentation, including several figures and formulas, is based on the recent monograph [1].
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Fig. 1: Jahn-Teller distortions in CrF2 and CuF2

• The origin of the JT effect is clearly attributed to a local on-site orbital characteristic,
which apparently is strong enough to distort the lattice structure. This inscribes the JT
theorem in the broad theme of the lecture course.

• It could be argued that similar considerations would apply to the Fe(II) and Co(II) ions
which have open t2g shells giving rise to threefold degenerate ground states. These ions
are indeed also exemplifying JT instabilities, but the instability is much smaller than in
the case of the instabilities caused by the eg shells. A further distinction is thus in order:
the JT force can give rise to molecular structures which are frozen in a particular distorted
geometry, or can be weaker and give rise to a vibronic ground state, with dynamic fluctu-
ations. Such fluctuations show up as large anisotropic thermal structure factors in X-ray
analysis. We will identify these two regimes as the static versus the dynamic JT effect. In
reality however, systems will adopt all sorts of intermediate stages.

• Finally, the symmetry breaking itself is not complete, but rather tries to conserve as much
symmetry as possible. Indeed the tetragonal subgroup is the maximal subgroup of Oh,
for which dz2 and dx2−y2 are no longer degenerate. It removes the threefold axes that
cause the degeneracy, but keeps all other symmetry elements. This economic principle is
known as the epikernel principle.

1.2 Origin of orbital instability

Why is symmetry breaking a spontaneous process in degenerate states? The standard answer
to this is that in these states there is always an imbalance between the symmetry of the nuclear
charge distribution and the symmetry of the electron density. So electron densities of the indi-
vidual eg orbitals have only tetragonal symmetry, while the nuclear distribution is octahedral.
The result is a force which acts on the nuclei and displaces them to a new equilibrium position
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with D4h symmetry. This argument is based on the fact that for non-degenerate states the elec-
tron density always adopts the symmetry of the nuclear frame. For a non-degenerate state |Ψ〉,
a distortion force along a nuclear coordinate Q, is given by

F =
∂

∂Q
〈Ψ |H|Ψ〉|Q=0 =

〈
Ψ
∣∣ ∂H
∂Q

∣∣Ψ〉∣∣∣
Q=0

. (2)

If Ψ is non-degenerate, the density Ψ ∗Ψ , is totally symmetric and the force matrix element
can only differ from zero if the Hamiltonian part is likewise totally symmetric, i.e., if the Q-
coordinate conserves the symmetry. When extending this argument to degenerate states, it is
argued that the average density still is totally symmetric, but that this is no longer true for
the density associated with individual components. The sum of the densities of the dz2 and
dx2−y2 states is indeed equal along the three coordinate axes of an octahedron, but the separate
densities of the two components is not: it is axial for the dz2 orbital and equatorial for the
dx2−y2 counterpart. In this argument the assumption is made that the electron densities for
individual components of degenerate states cannot possibly have the symmetry of the nuclear
frame. In fact this is not true. For the twofold degenerate component it suffices to rewrite
the components in complex conjugate form, to obtain for both an electron cloud with perfect
octahedral symmetry.

|Ψ±〉 =
1√
2
(dz2 ± idx2−y2) (3)

Indeed the densities of both these components are equal to the average density of dz2 and dx−y2 ,
and thus totally symmetric. The real difference between degenerate and non-degenerate states
is that in the case of degenerate states, the calculation of the distortion force requires to set up
and diagonalize a matrix equation, operating in the degeneracy basis of the state manifold. If for
instance we use the {Ψ+, Ψ−} basis, the JT force will entirely be ‘demoted’ to the off-diagonal
entries of the Hamiltonian matrix.

1.3 The Jahn-Teller Hamiltonian

The potential energy surface in the neighborhood of a JT instability is described by a Taylor
series expansion of the Hamiltonian in the coordinate space of active nuclear distortions. The
very first and essential terms of the expansion are the first-order force term and the harmonic
second-order restoring potential

H = H0 +
∑
Λλ

(
∂H

∂QΛλ

)
0

QΛλ +
1

2

∑
Λλ

KΛQ
2
Λλ. (4)

Here the distortion Q-coordinates are labeled by an irreducible representation Λ of the high-
symmetry molecular point group, and its component or subrepresentation, λ. H0 is the elec-
tronic Hamiltonian in the high-symmetry origin of the coordinate system, relaxed with respect
to symmetry-preserving totally symmetric coordinates. Its eigenfunctions are the states of the
degenerate manifold. The second-order term is the standard harmonic restoring force, with KΛ

being the harmonic force constant. This term holds the molecular frame together and attracts
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the nuclei towards the coordinate origin. The force constant can be obtained from the IR and
Raman spectra. The essential term is the linear term, which describes the interaction between
the electronic states and the nuclear distortion modes. This linear interaction is the force which
pulls the nuclei away from their original symmetry positions. The derivative in this term rep-
resents the slope of the energy as a function of the coordinate displacement, evaluated at the
high-symmetry point. As a derivative of the Hamiltonian with respect to nuclear positions, this
term affects the electron-nuclei Coulomb attraction term, and as a result it is a one-electron
operator. This is an important property, which ultimately explains why the JT phenomenon is
so tightly linked to orbital properties.
At this point a proper definition of the symmetry properties is in order. The coordinates have
already been labeled as QΛλ. Likewise the degenerate manifold will be labeled by the degener-
ate irreducible representation Γ , and its components accordingly by a subrepresentation label γ
as |ΨΓγ 〉. The symmetry labels incorporate the entire action of a symmetry element of the point
group, R̂ ∈ G, on these quantities:

R̂QΛλ =
∑
λ′

DΛ
λ′λ(R)QΛλ′ and R̂|ΨΓγ 〉 =

∑
γ′

DΓ
γ′γ(R) |ΨΓγ′〉. (5)

Here the D-matrix elements refer to the irreducible representation (irrep) matrices D(R) which
describe the transformation of the basis functions under all the elements of the symmetry group.
What makes the JT Hamiltonian tractable, and in fact extremely attractive, is that instead of
working in the entire Hilbert space, it operates in an extremely confined space, comprising
at first only the degenerate manifold. Matrix elements of the linear interaction term in this
manifold may be factorized according to the Wigner-Eckart theorem as a reduced force element,
denoted by the constant FΛ, and a Clebsch-Gordan coupling coefficient, which contains the
entire group-theoretical knowledge of the interaction

〈
ΨΓγa

∣∣∣∣( ∂H

∂QΛλ

)
0

∣∣∣∣ΨΓγb〉 = FΛ 〈Γγa|ΛλΓγb〉. (6)

In the second-quantization formalism, we now introduce creation and annihilation operators for
the electronic states. Since these are fermionic in nature we label them respectively as f † and f .
A normalized N -electron determinant is obtained as a sequence of particles being created from
the vacuum state

f †αf
†
β...f

†
ν |0〉 ≡ |αβ...ν| . (7)

The adjoint of this expression is then

〈0| fν ...fβfα = |αβ...ν|. (8)

Since the linear part of the Hamiltonian involves a one-electron operator, we can express the
coupling in operator form as(

∂H

∂QΛλ

)
0

=
∑
γaγb

f †γa
〈
ΨΓγa

∣∣∣∣( ∂H

∂QΛλ

)
0

∣∣∣∣ΨΓγb〉fγb . (9)
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An alternative view point of the interaction involves a recoupling, where the fermion parts
are first coupled to an excitation operator with symmetry Λ. This recoupling is carried out
by transferring the Γbγb irrep of the ket part to the bra, and corresponds to a basic symmetry
property of the coupling coefficients [1]. One has, apart from an overall Λ-dependent phase
factor which can be incorporated into the force-parameter,

〈Γγa|ΛλΓγb〉 =
(
dimΓ

dimΛ

)1/2

〈ΓγaΓγb|Λλ〉. (10)

Note that the symmetry properties of the annihilation operator, Γγb, appear in the coupling
operator as the complex conjugate component, in view of the transfer from ket to bra. Then,
these results are inserted into the operator expression, yielding(

∂H

∂QΛλ

)
0

= kΛ
∑
γaγb

f †γa〈ΓγaΓγb|Λλ〉fγb , (11)

where kΛ takes over the role of the FΛ force elements, by incorporating the dimensional factor

kΛ =

(
dimΓ

dimΛ

)1/2

FΛ (12)

Vice-versa, since this is a summation over all components, one could as well remove the com-
plex conjugate bar from the coupling coefficient and replace the annihilation operator, fγb by
its time reversed form, which is denoted by the tilde operator as f̃γb . The tilde indicates that
the annihilation operator f̃γb transform in exactly the same way as the corresponding creation
operator f †γb , and as the time reversed of the annihilation operator fγb . The operator expression
then finally becomes

H = kΛ
∑
γaγb

〈ΓγaΓγb|Λλ〉f †γa f̃γb = kΛ
(
f †f
)Λ
λ
. (13)

The bracket in the final line of this equation symbolizes the coupling of the fermion creation
and annihilation operators to the symmetry of the boson. In this formalism the slope parameter
is usually represented as kΛ. In second quantization we now also add the vibrational mode,
expressed in boson creation and annihilation operators

QΛλ =
1√
2

(
b†Λλ + b̃Λλ

)
. (14)

Again note the tilde over the annihilation operator. Indeed, both creation and annihilation parts
must share the Λλ symmetry properties of QΛλ. In order to combine the fermionic and bosonic
parts it must be taken into account that this involves a scalar product over the Λ tensor, as a
fermionic variable and an associated bosonic derivative. Since derivatives and variables trans-
form in conjugate ways, one must write∑

Λλ

(
∂H

∂QΛλ

)
0

QΛλ =
∑
Λ

κΛ
(
f †f
)Λ � (b†+b

)
Λ
. (15)
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Fig. 2: Diagram of coupling schemes for the JT matrix elements in the E × e case (vide infra);
f †x and f †y create an electron in resp. dz2 and dx2−y2 orbitals.

The dot refers to the scalar product of boson and fermion part which guarantees the total symme-
try of the Hamiltonian, due to compensating symmetries in both ingredients. When components
follow the spherical (l,m) quantization, the dot product is defined as(

f †f
)l � (b†+b

)
l
=
∑
m

(−1)m
(
f †f
)l
m

(
b†l,−m+b̃l,−m

)
. (16)

The concise second-quantization formalism in Eq. (15) says it all! The fermion creation-
annihilation double operator is exactly an excitation operator which requires a field of sym-
metry Λλ. This is symbolized for the E-case in Fig. 1.3.
The difference with a proper excitation is that instead of a photon the excitation is brought
about by a vibration. To this interaction element one finally adds the harmonic part of the active
vibrations. This complements the potential energy of the JT surface with the kinetic energy of
the nuclei. The harmonic potential is now replaced by the harmonic oscillator∑

Λλ

~ωΛ
(
b†ΛλbΛλ +

1

2

)
. (17)

The result is a genuine vibronic operator where bosons and fermions meet

H =
∑
Λ

κΛ
(
f †f
)Λ � (b†+b

)
Λ
+
∑
Λλ

~ωΛ
(
b†ΛλbΛλ +

1

2

)
. (18)

1.4 The pseudo-Jahn-Teller effect

When two electronic states are not strictly degenerate but close together in energy, it should be
very surprising that the symmetry breaking mechanism would suddenly be completely quenched.
Instead a non-totally symmetric matrix element between both states is symmetry allowed and
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Fig. 3: Structural comparison between Si and Ge POSS (left), and, HOMO and LUMO for the
Ge cluster (right).

may perfectly well induce a distortion, providing the relaxation term outweighs the harmonic
force constant. This is the so-called pseudo-JT effect. Following the formalism of Bersuker [3],
let two states be separated by a splitting 2∆ and with an off-diagonal force element FQ, where
Q is a non-totally symmetric distortion coordinate. Assume further that the two states share the
same force constant K0. In that case matrix diagonalization leads to the roots

E± =
1

2
K0Q

2 ±
(
∆2+F 2Q2

)1/2
=

1

2

(
K0±

F 2

∆

)
Q2 ±∆∓

(
F 4

∆3

)
Q4 ± ... (19)

If |∆| < F 2/K0, then the curvature of the lower energy root becomes negative, and the system
will be unstable with respect to Q. An exceptional illustration of this effect is seen in the Oh →
Th symmetry breaking in the polyhedral oligomeric sesquioxane (POSS), Ge8H8O12. While the
Silicon isomer has cubic symmetry Oh, it is found by DFT calculations that the Germanium
isomer is distorted to the rare tetrahedral symmetry group Th [4]. In Fig. 3 we display both
structures, as well as the HOMO (1a2g) and LUMO (11a1g) of the Germanium isomer. The off-
diagonal matrix element between both orbitals transforms as the direct product: a1g×a2g = a2g.
The pseudo-JT effect thus promotes a distortion along the a2g mode. This corresponds precisely
to a rotation of the oxygen bridges in between the Germanium atoms. Neighboring vertices on
the cube will thereby rotate in opposite directions lowering the symmetry to Th.
An important caveat is in order here. In principle, for any symmetry breaking it will always be
possible to find a pair of interacting states with the right combination of irreducible represen-
tations. So the predictive power of the effect is rather limited. A detailed examination of the
composition of the relevant orbitals, and a demonstration of the overlap of their off-diagonal
density and an observed distortion is required.
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Fig. 4: Trigonal Na3 cluster, with doublet ground level; orbitals and distortion modes.

2 The doublet E×e Paradigm

The icon of the JT theorem is the Mexican hat potential, corresponding to a twofold degenerate
E state, coupled to a twofold degenerate e vibration. This occurs both in cubic and in trigonal
or pentagonal symmetry groups. We examine in some detail the standard case of a triangular
instability.

2.1 The potential energy surface

The system considered is a tri-atomic molecule in an E state, with components Ex and Ey. The
symmetry at the origin is D3h, but since three atoms are coplanar, we could as well work in C3v

symmetry. The components are represented schematically in Fig. 4. Their symmetry behavior
under the generators of C3v (with right-handed threefold axis) are given by

Ĉ3

(
|Ex〉 |Ey〉

)
=

(
|Ex〉 |Ey〉

)( −1/2 −√3/2√
3/2 −1/2

)

σ̂x

(
|Ex〉 |Ey〉

)
=

(
|Ex〉 |Ey〉

)( 1 0

0 −1

)
. (20)

Here an active view of symmetry operations is adopted: they displace the functions itself, be it
orbitals or distortions, while leaving the nuclei in place.
The direct product of the orbital state reads

E × E =
[
a1+e

]
+ a2. (21)

According to the JT selection rule the activity resides in the non-totally symmetric part of the
symmetrized product, [a1+e], being the e-vibration. The components of this vibration are also
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shown in the figure. They are labeled as Qx and Qy. Using local (x, y) coordinates for the
individual atoms, the expressions for these vibrations are given by:

Qx =
1√
3

[
Qx
A +

(
−
√
3

2
Qy
B −

1

2
Qx
B

)
+

( √
3

2
Qy
C −

1

2
Qx
C

)]

Qy =
1√
3

[
Qy
A +

(
−1

2
Qy
B +

√
3

2
Qx
B

)
+

(
−1

2
Qy
C −
√
3

2
Qx
C

)]
. (22)

The action of the group generators on these functions is given by

Ĉ3

(
Qx Qy

)
=

(
Qx Qy

)( −1/2
√
3/2

−
√
3/2 −1/2

)

σ̂x

(
Qx Qy

)
=

(
Qx Qy

)( 1 0

0 −1

)
. (23)

Note the sign change here as compared to Eq. (20). This is based on the convention that these
modes were chosen to mimic the behavior of central quadrupolar harmonics x2−y2 and xy, as
opposed to the fermion states which follow the dipolar harmonics x and y. With Ke the force
constant of the boson mode, and Fe the linear force element, in a fermion basis {|x〉|y〉} the
Hamiltonian reads

H =
K

2

(
Q2
x +Q2

y

)
+
Fe√
2

(
Qx Qy

Qy −Qx

)
. (24)

Diagonalization of this Hamiltonian then yields the familiar Mexican hat surface, consisting of
two parabolic sheets, with rotational symmetry along the threefold axis:

E± =
K

2

(
Q2
x +Q2

y

)
± Fe√

2

√
Q2
x +Q2

y . (25)

The central C3v point of the diagram is unstable, and the energy gain by distortion into the
trough is the so-called JT energy, given by

EJT = −1

2

F 2
e

K
. (26)

If the system rotates around in the trough the nuclei perform circular motions around the trig-
onal equilibrium positions. This motion is an internal rotation or libration as shown in Fig. 5.
Additional higher-order terms to the Hamiltonian will essentially maintain the shape of the sur-
face, but introduce warping. As an example, the second-order terms in QxQy and Q2

x−Q2
y will

warp the potential energy surface, giving rise to local hill tops, alternating with local minima.
The stationary points correspond to isosceles triangles. Detailed calculations by Cocchini et
al. [5] for the sodium trimer yield a JT stabilization energy in the order of 670 cm−1, and a
rotational barrier of 130 cm−1.



Jahn-Teller 2.11

QyQx

Fig. 5: Internal rotation along the trough of the Mexican hat; a 90◦ anti-clockwise rotation
takes the Qx distortion to Qy.

2.2 The dynamic system

A fascinating aspect of the Mexican hat potential is certainly its obvious rotational symmetry.
This symmetry ultimately goes back to the unitary symmetry of the diabolical degeneracy point
at the origin. For a full grasp of this symmetry, we now rewrite the Hamiltonian in its dynamic
form, including the nuclear kinetic energy term. According to the standard boson-fermion
formalism, the ket functions are generated by the f †x, f

†
y operators, and the boson modes are

created by b†x, b
†
y, with coordinate and momentum operators as

Qx =
1√
2

(
b†x + bx

)
and Px =

i√
2

(
b†x − bx

)
. (27)

A unit of length is defined as
√
~/mω and the oscillator quantum ~ω is taken as the unit of

energy. This rescaling absorbs all fundamental constants:

H =

(
b†xbx + b†yby + 1 + κ

(
b†x+bx

)
κ
(
b†y+by

)
κ
(
b†y+by

)
b†xby + b†yby + 1− κ

(
b†x+bx

) ) . (28)

Here, κ is the linear coupling parameter, and 1 is the zero-point energy. Subsequently this is
taken out as the zero of the energy scale. The angular momentum associated with a rotation in
(Qx, Qy) is given by

L̂z = QxPy −QyPx =
i

2

((
b†x+bx

)(
b†y−by

)
−
(
b†y+by

)(
b†x−bx

))
= i
(
b†ybx − b†xby

)
. (29)

To find out the rotational symmetry of the Hamiltonian we calculate the commutator with Lz

[
L̂z,H

]
= i

(
κ
(
b†y+by

)
−κ
(
b†x+bx

)
−κ
(
b†x+bx

)
−κ
(
b†y+by

) ) . (30)

Unexpectedly perhaps, the two operators do not commute! However we should be aware that
the Hamiltonian describes a coupled situation where both boson and fermion fields are affected.
To this aim, we introduce an angular coordinate φ in distortion space, with Qx = Q cosφ
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and Qy = Q sinφ. The ground state wavefunction (with κ< 0) of the static Hamiltonian as a
function of φ is given by

|ψ−〉 = cos
φ

2
|x〉+ sin

φ

2
|y〉. (31)

This shows the rotation of the wavefunction along the trough, but at half speed as compared to
the coordinate change. The wavefunction provides a connection between a base space, provid-
ing the real distortions of the system, and a function space, which for every point in the base
space, gives a fermion vector. As the boson vector is a direct product of the fermion vector
(remember e ∈ [E×E]), we can qualify the fermion space as a fundamental spin space, and
the boson space on top of that as a coupled vector space. The geometry of this connection will
be examined in the next section. Here it suffices to define a rotation operator for the fermion
states in analogy with the pseudo-spin operator Sz

Ŝz =
i

2

(
f †yfx − f †xfy

)
. (32)

Pursuing this analogy with spin-orbit coupling further, we can define the total momentum oper-
ator as Ĵz by

Ĵz = L̂z + Ŝz . (33)

This sum operator commutes with the Hamiltonian, as the sum of the commutator of Ŝz and the
commutator with the boson part cancels out: [Sz,H] = −[Lz,H]. In order to take advantage
of the conservation of angular momentum, we now impose symmetry adapted combinations of
bosons and fermions. One has

b†± =
1√
2

(
b†x ± ib†y

)
and b± =

1√
2

(
bx ∓ iby

)
. (34)

These operators are eigenoperators of L̂z with opposite eigenvalues[
L̂z, b†±

]
= ±b†± and

[
L̂z, b±

]
= ∓b± . (35)

Analogous symmetry adaptation of the fermion operators yields

|↑ 〉 = 1√
2

(
|x〉+ i|y〉

)
and |↓ 〉 = 1√

2

(
|x〉 − i|y〉

)
. (36)

As eigenfunctions of the Ŝz operator, these combinations are like α and β spins

Ŝz|↑ 〉 = +
1

2
|↑ 〉 and Ŝz|↓ 〉 = −

1

2
|↓ 〉. (37)

The total symmetry-adapted Hamiltonian is now expressed in the transformed fermion basis(
|↑ 〉
|↓ 〉

)
: H =

(
b†+b+ + b†−b− κ

√
2
(
b†−+b+

)
κ
√
2
(
b†++b−

)
b†+b+ + b†−b−

)
. (38)

To solve this Hamiltonian equation it is of paramount importance to define an Ansatz. An
Ansatz is a general expression of the form of the solution, which holds the symmetry of the
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system, and expresses the coupling scheme between the boson and fermion degrees of freedom.
The Ansatz reads

|Ψ〉l+1/2 =
(
b†+
)l
Φ1(ξ) |↑ 〉+

(
b†+
)l+1

Φ2(ξ) |↓ 〉. (39)

Here the variable ξ is defined as

ξ = b†+b
†
−. (40)

This variable thus corresponds to a two-photon boson excitation, combing two excitations with
opposite angular momentum. The total angular momentum of this variable is thus equal to zero,
and it can be considered as a double purely radial excitation. The Ansatz shows that in order to
obtain a vibronic state with angular momentum l+1/2, on top of an arbitrary number of radial
excitations we can either excite l quanta of b†+ and couple this to a spin-up fermion state, or
excite l+1 quanta of b†+ and couple this with a spin-down fermion. These are the only two
channels to arrive at a state with the desired momentum. This state will always be degenerate
with a time-reversed counterpart, which is given by

|Ψ〉−l−1/2 =
(
b†−
)l
Φ1(ξ) |↓ 〉+

(
b†−
)l+1

Φ2(ξ) |↑ 〉. (41)

The Ansatz clearly shows that the vibronic wavefunction cannot be factorized as a product
of a fermion and a boson part: we have definitely taken leave from the Born-Oppenheimer
approximation. In summary the JT equations to be solved read in matrix form

H|Ψ〉 = E|Ψ〉 =(
b†xbx + b†yby + κ

(
b†x+bx

)
κ
(
b†y+by

)
κ
(
b†y+by

)
b†xby + b†yby − κ

(
b†x+bx

) )( (
b†+
)l

Φ1(ξ)(
b†+
)l+1

Φ2(ξ)

)
.

(42)

We refer to [1] for a detailed discussion of the solution of these equations. Interestingly the
equations can ultimately be turned into a form of Heun’s differential equation. Closed solutions
of this equation do not seem to exist, except for some special values of κ. Eigenvalues are
characterized by half integral values of j and are plotted as a function of the coupling parameter,
in close-up in Fig. 6.

At the left of the diagram, for κ = 0, are found the oscillator levels of the e-vibration. When
the coupling sets in, the trough develops, and ultimately – in the strong coupling limit – the
spectrum reduces to a rotational spectrum with a regular sequence of half-integral j-values,
superimposed on a transversal oscillator. Looking in detail at the lowest vibronic levels, in the
limit of zero coupling strength the ground level with j = 1/2 reduces to the product of the
electronic degeneracy and the totally-symmetric zero phonon state. The excited oscillator state
at E = 1 corresponds to the vector addition of an l = 1 vibrational level to the fermion spin,
yielding j = 1/2, 3/2. As the coupling is turned on, the j = 1/2 excited state is raised due
to its interaction with the equisymmetric ground state, while the j = 3/2 level is expected to
descent in energy, as seen in the figure.
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Fig. 6: E× e JT Hamiltonian: solutions of the dynamic equation as a function of κ2; indi-
vidual lines are characterized by angular momentum j; ascending dotted lines represent extra
mathematical solutions that are unphysical.

If quadratic warping terms are introduced, the rotational symmetry is broken to C3v. Accord-
ingly, the j states subduce trigonal levels as indicated below

j = 1/2 → E

j = 3/2 → A1 + A2 . (43)

In a strong coupling regime with extensive trigonal warping, the vibronic regime in essence
reduces to local oscillations in three localized wells. Depending on the signs of the warping
parameters, the minima are either at φ = 0◦, 120◦, 240◦ with saddle points in between, or vice-
versa. Small vibrational overlap between these wells opens the possibility of tunneling.The
lowest tunneling states are obtained by setting up a 3× 3 hopping matrix between the wells.
The matrix element between the wells essentially is a Huang-Rhys overlap factor, with a positive
sign. The result is a two state diagram, with anE ground state, and anA excited state, which are
separated by a tunneling splitting. Here the lower E state correlates with the ground j = 1/2

level of the diagram. The upper A state correlates likewise with the j = 3/2 parentage. As
Eq. (43) shows, it can be either A1 or A2. For wells located at turning points 0◦, 120◦, 240◦, the
A level is identified as an A1 level. When the surface is turned upside down, with minima now
at 60◦, 180◦, 300◦, the A level hasA2 symmetry. These results follow from the electronic part of
the wavefunction in Eq. (31), as the vibrational overlap is symmetric with respect to reflections
in C3v [6].
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2.3 Berry phase

We already drew attention to the sign change of the wavefunction after revolving around the
conical intersection. The acquired phase is a geometric phase, which is generally known as
a Berry phase, following the seminal work of Michael Berry [7]. Berry’s phase was identi-
fied with the concept of holonomy in geometry. To present this concept, two ingredients are
required: the base space, and the fiber. In the JT case the base space is the coordinate space
{Qx, Qy} formed by the two distortion modes. With each point in the base space a wavefunction
can be associated. The phase of this wavefunction may vary over a range 0, 2π. The phase vari-
able forms a so-called fiber, associated with a particular point on the base space. The collection
of all these fibers over the entire base space forms a fiber bundle. Now the holonomy is what we
observe in the fiber bundle when a closed loop is performed in the base space. Clearly, in order
to be meaningful, a connection must exist which controls the change of the phase in consecutive
fibers, corresponding to adjacent points on the base space. Berry showed how this connection
is provided by the time-dependent Schrödinger equation, under adiabatic constraints. This is
fulfilled in the case of a circuit driven by slowly moving nuclei along the trough of the potential,
with instantaneous adaptation of the wavefunction, not involving excitations. Ideally we may
think of a slow rotation which is hindered by the surface warping along the circuit. The treat-
ment proceeds as follows: let |n(R)〉 represent the non-degenerate quantum state of a system,
dependent on external parameters R, which corresponds to a particular nuclear configuration
along the low-energy trough. The eigenvalue is given by

H(R)|n(R)〉 = En(R)|n(R)〉. (44)

The wavefunction |n(R)〉 must be single valued in the relevant parameter domain, and be dif-
ferentiable. The wavefunction which solves the time-dependent Schrödinger equation in the
adiabatic regime is then given by

|Ψ〉 = exp

(
−iEn

~
t

)
|n(R)〉. (45)

Here a time-dependent phase factor, the so-called dynamical phase, is added. This factor mea-
sures the passage of time. In the JT application we consider a closed circuit, C, in a space
defined by nuclear displacements, R(t), where the distortion varies smoothly and slowly in
time, as the nuclei evolve on a minimal energy path. Since the adiabatic state depends on the
coordinates, it will change accordingly, but continuously, i.e., the Hamiltonian does not change
rapidly enough to allow excitations to other states with energy Em(R). Nonetheless, by slowly
driving the state around in the distortion space, an extra time dependence will appear, as is ev-
ident from the notation |n(R(t))〉. In order to keep satisfying the time dependent equation, we
must include a further compensatory phase factor. Eq. (45) is thus rewritten as

|Ψ〉 = exp

(
−iEn

~
t

)
exp

(
iγn(t)

)
|n(R(t))〉. (46)
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Here the second exponential represents the geometric phase that is at the core of Berry’s treat-
ment. Applying the time dependent equation yields

i~
d

dt
|Ψ〉 = En|Ψ〉 − ~

dγn
dt
|Ψ〉+ i~ exp

(
−iEn

~
t

)
exp

(
iγn(t)

)
d

dt
|n(R(t))〉. (47)

In order to satisfy the Schrödinger equation, one must require that the sum of the second and
third terms cancel

− dγn
dt
|Ψ〉+ i exp

(
−iEn

~
t

)
exp

(
iγn(t)

)
d

dt
|n(R(t))〉 = 0 . (48)

This can be rewritten as

dγn = i〈n(R)|dn(R)〉 = i〈n(R)|∇R|n(R)〉 · dR (49)

When completing a closed loop, the total build-up of the phase is measured by the line integral
along the path

γn(C) =

∮
C

dγn = i

∮
〈n|dn〉, (50)

with |dn〉 = ∇R|n〉 · dR. Furthermore since the ket function is normalized, one has

d〈n|n〉 = 〈dn|n〉+ 〈n|dn〉 = 〈n|dn〉+ 〈n|dn〉 = 0 . (51)

This implies that the matrix element 〈n|dn〉 is purely imaginary, and thus that γn(C) will be
real. This integral is the famous Berry phase. If the path is defined on a curved surface this
phase will be non-trivial. In order to apply this treatment to the JT system, it is first of all noted
that the electronic wavefunction |ψ−〉 given in Eq. (31) is not single-valued, since

|ψ−(2π)〉 = exp(iπ)|ψ−(0)〉. (52)

So |ψ−〉 does not correspond to |n(R)〉. However, by gradually removing the phase of π during
the circuit, we obtain the required single-valued function

|n(R)〉 = exp

(
−iφ

2

)
|ψ−(φ)〉 = exp

(
−iφ

2

)(
cosφ/2|Ex〉+ sinφ/2|Ey〉

)
. (53)

And thus

d|n(R)〉 = exp

(
−iφ

2

)(
−idφ

2
|ψ−(φ)〉+ d|ψ−(φ)〉

)
〈n(R)|dn(R)〉 = −i dφ

2
. (54)

Here we made use of the fact that |ψ−〉 is real, and hence

d〈ψ|ψ〉 = 2〈ψ|dψ〉 = 0 . (55)

Inserting the result in Eq. (50) yields

γn(C) =

∮
C

dγn = i

∮
〈n|dn〉 = i

∮ (
− i
2

)
dφ = π . (56)
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As Berry writes, one might say that the dynamical phase factors in Eq. (45) and γn in Eq. (46)
give the system’s best answers to two questions about its adiabatic circuit. For the dynamical
phase the question is: how long did your journey take? For γn(C) it is: where did you go to?
Here we open a brief parenthesis: as the integral 〈ψ|dψ〉 is zero, the function |ψ〉 is said to
follow the law of parallel transport. It means that the change of the function is orthogonal to
the function itself. This implies that the function accumulates during its path the torsion that
is forced upon the system by the path, and as a result its end state after a full circuit will end
up with a net phase difference. Following a function under parallel transport and detecting the
phase change after a full circuit is thus a direct way to obtain the Berry phase.
Now what are the implications of the Berry phase for the JT treatment? In Eq. (49) it is noted
that the gradient element adds an extra phase to the wavefunction, exactly as the vector poten-
tial A does to a charged particle in magnetism. In view of this analogy, we may introduce a
vector field terminology, and write

A = i〈n(R)|∇R|n(R)〉 (57)

and

γn(C) =

∮
C

A · dR . (58)

A lives in parameter space, and emanates from the topology of this space. As it is dependent on
the phase of the basis vectors, it is not unique, and when applying the formula in Eq. (57), one
must make sure that the basis vector is locally single-valued. In the JT case working out these
expressions yields

Aφ = i
〈
n
∣∣ δ
δφ

∣∣n〉 = 1

2
. (59)

The form of this vector potential is analogous to the field created by a Dirac monopole of
strength 1/2. The source of this monopole is nothing else than the conical intersection itself.
The question thus arises if the dynamic calculations which we performed indeed include the
vector potential associated with the conical intersection, or if an additional field term in the
Hamiltonian is required. The short answer is that the dynamic treatment, which we have pre-
sented, does indeed contain the Berry phase from the start, so there was no need to invoke
it afterwards. This being said, the literature hardly offers explicit demonstrations of this cor-
respondence. An exception is the treatment by Johnsson and Stedman [8]. To spell out the
angular momentum of the nuclear motion in the presence of a vector field, we must include the
term −qA in the vector product R ∧P

R ∧ (P−qA) = L − q1
2
= Jz , (60)

where q = ±1 is the charge of the particle. The fact that we recover the angular momentum
operator of the dynamic JT treatment indicates that this treatment indeed fully incorporates the
Berry phase. The angular momentum thus truly reflects the dual boson-fermion characteristic
of the JT Hamiltonian.
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3 The triplet T × (e+ t2) Jahn-Teller system

Triple degeneracies occur in cubic and icosahedral symmetries. The symmetries of the JT
modes are generated as

Oh : [T × T ]− A1g = eg + t2g

Ih : [T × T ]− Ag = hg (61)

T -terms have a frequent occurrence in coordination compounds and metal clusters, often with
important implications for magnetism. The strength of the coupling is usually less pronounced
than for E-terms, giving rise to all sorts of dynamic properties. A notable example of an icosa-
hedral T -system is the ground state of the fulleride anion, C−60, due to the occupation of the t1u
LUMO of Buckminsterfullerene by a single electron.

3.1 The Hamiltonian

As before two spaces are to be considered: the fermion basis defines a three-dimensional sphere,
with unit vectors |Tx〉, |Ty〉, |Tz〉, and the boson space, forming a five-dimensional Euclidean
space, with unit vectors Qθ, Qε for the eg-modes and Qξ, Qη, Qζ for the t2g-modes.
In the linear coupling regime, the Hamiltonian is given by

H =
1

2
KE

(
Q2
θ +Q2

ε

)
+

1

2
KT2

(
Q2
ξ +Q2

η +Q2
ζ

)
+H′ (62)

with

H′ = FE

−1
2
Qθ+

√
3
2
Qε 0 0

0 −1
2
Qθ−

√
3
2
Qε 0

0 0 Qθ

+
FT2√
2

 0 −Qζ −Qη

−Qζ 0 −Qξ

−Qη −Qξ 0

 . (63)

The potential energy surface is defined in 5D coordinate space. However a concise view of the
topography of the surface can be achieved by projection in 3D fermion space. The procedure is
as follows: consider an electronic eigenvector (x, y, z), normalized to unity

|T (r)〉 = x|Tx〉+ y|Ty〉+ z|Tz〉. (64)

Antipodal points (x, y, z) and (−x,−y,−z) describe the same solution, hence the electronic
space is restricted to a hemisphere. This surface has the topology of a projective plane. Now
minimize the energy for every direction on this sphere

δ

δQΛλ

(
r†Hr

)
= r†

δH
δQΛλ

r = 0 ∀ QΛλ ∈ [Γ ]2−Γ0 . (65)

This yields a set of equations from which we may determine the stationary coordinates, denoted
as ‖QΛλ‖r. Reinserting these coordinates in the energy expressions yields the function ‖E‖r.
This function does not represent eigenenergies, except in the stationary points where it is indeed
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Fig. 7: Jahn-Teller distortions for a cubic triplet, projected on a hemisphere; the z-axis is the
upright axis.

a root of the matrix equation! Hence this function is isostationary, i.e., it coincides with the
hypersurface in the stationary points. As an example, for the cubic T -terms, the isostationary
function is given by

〈‖E‖〉r =
1

5

(
2EJT

E +3EJT
T2

)
+

6

5

(
EJT
E −EJT

T2

)
f4 (66)

with

EJT
E = −1

2

F 2
E

KE

EJT
T2

= −1

3

F 2
T2

KT2

f4 =
1

2

(
x4+y4+z4 − 3

(
x2y2+x2z2+y2z2

))
. (67)

The f4 polynomial, which controls the topography, is recognized here as the cubic invariant of
the fourth-order spherical harmonics, which also provides the crystal field potential in octahe-
dral symmetry. The term preceding f4 involves the difference of the JT stabilization energies. If
the stabilization along e-modes is more pronounced, the surface is characterized by tetragonal
minima, with orthorhombic saddle points in between. The trigonal extrema in this case are hill
tops on the surface. In contrast if the t2-modes prevail, the surface will be turned upside down,
as shown in Fig. 7. Additional second-order terms in the Hamiltonian will produce a further
warping of the surface. As an example, when both e and t2 modes are active, and there is a
strong second-order interaction term between them, the next cubic invariant of rank 6 will take
over control, and produce a surface with six orthorhombic D2h minima and twelve C2h saddle
points in between.
In the icosahedral case the linear JT Hamiltonian is isotropic and the hypersurface corresponds
to a 3D sphere. However upon introduction of second-order warping terms minima and maxima
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a

Fig. 8: Jahn-Teller distortions for an isosahedral triplet, in a projective plane, consisting of six
vertices and ten triangular faces: the vertices correspond to D5d points, and the faces to D3d

points; left is shown the crystal structure of TDAE+C−60 (taken from [9]).

appear. These are governed by an icosahedral invariant of rank 6. Again two regimes are
possible: either ten trigonal minima, and six pentagonal hill tops, or vice-versa. The pentagonal
points are all equidistant and form the complete graph of six nodes. The nine neighbors of
each trigonal point split into two orbits of orders three and six. A case in point is the anion of
C60. Fulleride ions may be formed by reduction with alkali metals, or electron donors such as
tetrakis(dimethylamino)ethylene [9] TDAE, see Fig. 8.

3.2 Dynamics

For an understanding of the dynamics we turn to the high-symmetry case, where the Hamilto-
nian is limited to the linear force elements, and with – in case of cubic symmetry – degenerate
coupling between e and t2 modes: EJT

e = EJT
t2

. As the isostationary function demonstrates, the
potential energy minimum in this case forms a continuum. This corresponds to a 3D spherical
trough in the 5D coordinate space. In analogy to the circular motion of atoms in the JT-trough
for a triangle shown before in Fig. 5, in the present case of a spherical trough the loci of dis-
placements of individual atoms form a sphere, centered at their high-symmetry positions. Judd
has provided a detailed analysis of this internal rotation in the case of a T -type JT surface in
an octahedron [10]. The motions of equivalent atoms are locked and concerted so that the to-
tal degree of freedom corresponds to the symmetry group of a 3D sphere, which is the special
orthogonal group in 3D: SO(3).
The Hamiltonian for the highly symmetric limit, also known as the P×dHamiltonian, describes
the coupling between a dipolar fermion part and its symmetrized square which corresponds to
a quadrupolar tensor. It consists of a harmonic part, H0, and the standard linear coupling term,
H′, which is the scalar product of the fermion tensor and the coordinate tensor

H′ = k
∑
q

(−1)q(f †f)2qQ−q . (68)

Here k is the coupling parameter. The coordinates are written in their complex format, defined
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as
Q0 = Qθ , Q±1 = ∓

1√
2
Qη −

i√
2
Qξ and Q±2 =

1√
2
Qε ±

i√
2
Qζ . (69)

In matrix form, acting in the space of the fermions, ordered as |+1〉, | 0 〉, |−1〉, the coupling
Hamiltonian reads

H′ = k


1√
6
Q0

1√
2
Q−1 Q−2

− 1√
2
Q+1 − 2√

6
Q0 − 1√

2
Q−1

Q+2
1√
2
Q+1

1√
6
Q0

 . (70)

As this is a scalar product of spherical tensors, the coupling Hamiltonian will be SO(3) invari-
ant. The secular equation ofH′ reduces to

E3 − E

2
Q2 +

1

3
√
6
I33 = 0 (71)

where

Q2 =Q2
0−2Q+1Q−1+2Q+2Q−2

I3 =Q0

(
Q2

0−6Q+2Q−2−3Q+1Q−1
)
+

3
√
3√
2

(
Q+2Q

2
−1+Q−2Q

2
+1

)
.

(72)

The interesting aspect of this secular equation is that it contains two SO(3) invariants: Q is the
squared norm of the distortion space and thus measures the extent of the distortion, while I3 is
a third-order invariant, proportional to the determinant of the JT Hamiltonian. The roots of the
eigenvalue equation can be expressed using the angle representation. Rewrite I3 as:

I3 = Q3 cos 3γ . (73)

The equation can then easily be solved by the trigonometric expressions for the three roots

Ek = −kQ
2√
6
cos

(
γ−2nπ

3

)
n = 0, 1, 2. (74)

What is the meaning of the angle γ which appears when solving the secular equation? The
answer to this question takes us to the 5D oscillator formed by the quadrupolar Qml

JT modes.
The parent symmetry of the 5D oscillator is the special unitary group SU(5) which allows for
all possible unitary transformations of the five quadrupolar modes. This group can conveniently
be restricted to its subgroup of orthogonal transformations, SO(5). However, when considering
the JT Hamiltonian, symmetry is restricted to an even lower subgroup, corresponding to the
sphere in 3D, with symmetry group SO(3). A clear understanding of the embedding of SO(3)
in SO(5) is offered by the surface oscillations of a vibrating sphere, which have been studied
extensively in nuclear physics as a model for the vibrating nucleus. Low-energy nuclear vi-
brations indeed match the five quadrupolar modes (and likewise for the tidal waves on earth),
dipoles being removed as they correspond to spurious translations. On the other hand the totally
symmetric scalar mode, which corresponds to a breathing mode, is way higher in energy, since
it stretches the surface everywhere. Besides, in the JT context it is inactive as it doesn’t break
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the symmetry. The model of the vibrating hollow sphere thus provides a complete description
of the quadrupolar modes. Since the quadrupolar modes have the smallest allowed L value, they
can only introduce a minimal symmetry breaking: they distort a sphere into an ellipsoid. An el-
lipsoid is a surface characterized by three orthogonal axes of different length. The sum of these
lengths must be constant in time, in order to avoid any admixture of the radial breathing mode.
Hence proper ellipsoidal distortions have only two degrees of freedom. These correspond to
the tetragonal Qθ mode and the orthorhombic Qε mode. The tetragonal mode leads to a prolate
(Qθ > 0) or oblate (Qθ < 0) ellipse, which still has cylindrical symmetry along the z-axis. The
radius of this ellipse is thus described as

d(θ, φ) = R
(
1 + c(3 cos2 θ − 1)

)
, (75)

where R is the radius of the sphere, and c is scaling constant which oscillates in time with the
vibration. The orthorhombic mode will further break this axial symmetry, by repartitioning the
distortion between the x- and y- directions. A general ellipsoidal distortion with principal axes
along the Cartesian directions is thus described by a vector in the space formed by these two
coordinates. This is a bimodal distortion [11]. Turning to polar coordinates, the parametric
description of this distortion reads 

Qθ

Qε

Qξ

Qη

Qζ

 = Q


cos γ

sin γ

0

0

0

 . (76)

The angle which appears here refers to the balance between tetragonal and orthorhombic modes,
and this is precisely the angle γ which appeared in the secular equation. The ellipsoid which is
obtained by this bimodal distortion is still aligned with the Cartesian reference frame. Spherical
symmetry of course requires that the ellipsoid is free to rotate in 3D space. This is where
the three remaining quadrupolar modes come in. The general orientation of the ellipsoidal
distortion can be performed by the Euler rotation matrix in the full space of the five L=2 modes.
In summary a symmetry adaptation has been performed of the five degrees of freedom: three
angles describe the orientation in 3D space and present the spherical SO(3) symmetry of the
vibrating sphere. A radius and an extra angle γ define the ellipsoidal distortion. As this extra
angular degree of freedom appears in the secular equation, the total Hamiltonian has only SO(3)
symmetry, and does not form a spherical surface in 5D. The T -term JT problem is thus at its core
a symmetry breaking chain SU(5) ↓ SO(5) ↓ SO(3). The relevant irreducible representations
(irreps) for each of these groups are as follows:

• Excitations of n oscillator quanta in SU(5) correspond to irrep [n].

• Relevant irreps in SO(5) are denoted as (ν, 0). Here ν is a whole number, which is known
as the Racah seniority number.

• Irreps in SO(3) are characterized by the angular momentum quantum number L.
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Fig. 9: 3D assignments of the surface vibrations of a sphere; the vertical axis represents the
oscillator states of a 5D oscillator; the horizontal axis decomposes these states in SO(5) senior-
ities; spherical components are indicated by S,D,F,. . . angular momentum; note the repetition
of the SDD pattern, with a period of three.

The branching scheme along the symmetry lowering chain is shown in Fig. 9. It represents
the energy of the boson spectrum at zero JT coupling. As the coupling sets in, the L levels are
coupled with the P fermion level, according to the usual vector addition rules. As an example, in
order to realize a vibronic state with P symmetry, only S and D levels are involved: S×P = P

and D×P = P+D+F . Interestingly the diagram shows that the initial SDD pattern shows a
perfect repetition with a period of three. This observation allows to construct an Ansatz, with
spherical symmetry and the two extra-spherical degrees of freedom which appear in the secular
equation: the radius Q which measures the vertical radial excitations in the diagram, and the
angle γ which takes us through the horizontal seniority period in the diagram. We conclude by
providing the Ansatz

Ψ0 =


( √

3b†−1F1 +(b†b†)2−1F2

)
f †+1(

F0−2b†0 F1 −2(b†b†)20 F2

)
f †0( √

3b†+1F1+
√
6(b†b†)2+1F2

)
f †−1

 and

Ψ+1=


(
F0 +b†0 F1 +(b†b†)20 F2

)
f †+1(

−
√
3b†+1F1−

√
3(b†b†)2+1F2

)
f †0( √

6b†+2F1+
√
6(b†b†)2+2F2

)
f †−1

 , Ψ−1=


( √

6b†−2F1+
√
6(b†b†)2−2F2

)
f †+1(

−
√
3b†−1F1−

√
3(b†b†)2−1F2

)
f †0(

F0 +b†0 F1 +(b†b†)20 F2

)
f †−1

.
Here the F functions depend only on the SO(5) constants Q and γ. F0 provides the coupling
with the S states with seniority (3ν, 0),F1 takes care of coupling with theD states with seniority
(3ν+1, 0), and F2 runs over the D states with seniority (3ν+2, 0).
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