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1 Entangled superexchange: SU(2) ⊗ SU(2) model

1.1 Spin-orbital Hilbert space in a Mott insulator

At large on-site Coulomb repulsion U, electrons in a transition metal oxide localize and have no
kinetic energy. The new state of electronic matter which emerges under strong Coulomb repul-
sion is a Mott insulator. Then the electron state is given by the spin component and the orbital
occupied by this electron. It was one of the great achievements of Kugel and Khomskii [1] to
realize that in the case of two orbitals available at each site i, the Hilbert space of a Mott insula-
tor is spanned by spin-orbital states, i.e., it suffices to specify a spin and a pseudospin (orbital)
component of each electron to define its quantum state at site i. Such localized electrons in the
absence of kinetic energy interact by superexchange [2, 3].
To illustrate these concepts, we begin with a study of a one-dimensional (1D) spin-orbital su-
perexchange modelHSE defined in a Mott insulator with on-site repulsion U by the spin-orbital
Hilbert space spanned by the eigenstates {|↑〉 , |↓〉}, of spin S = 1/2, and orbital (pseudospin)
operator T = 1/2, with the eigenstates {|+〉 , |−〉}. Such states at two neighboring sites i and
i+1 are coupled by 1D spin-orbital (‘Kugel-Khomskii’) superexchange [4–6],

HSE = J
∑
i

[
(Si · Si+1 + α) (Ti · Ti+1 + β)− αβ + εz

∑
i

τ
(c)
i

]
, (1)

where τ (c)
i = T

(c)
i = σzi /2, and we take the orbital splitting Jεz = Ez = 0. Here a constant term

αβ is eliminated and the HamiltonianHSE includes only operator terms. The 1D kinetic energy
is given by the orbital-flavor (α=+,−) conserving hopping ∝ t, and the interaction energy
is given by either Uniα↑niα↓ or Uniασniασ̄, which both cost the Coulomb repulsion energy U.
Of particular interest is the strongly correlated regime U � t, where electrons localize and
interact by antiferromagnetic (AF) superexchange [2],

J =
4t2

U
. (2)

For two degenerate orbitals one needs to introduce a doubly-degenerate Hubbard model [7].
One finds then again the same exchange constant J (2) as in the derivation of the t-J model
from the Hubbard model in the limit U � t [8].
It was a great achievement to realize that spin and orbital states are entangled and are parts
of the same Hilbert space [9, 10]. Thus the superexchange HSE in Eq. (1) is not just a scalar
product of two involved subspaces, spin and orbital, but describes joint quantum fluctuations of
these two operators [9–12]. The superexchange model (1) depends on two parameters {α, β},
and they decide about the type of order. It describes a competition between four spin-orbital
phases, where the order in each sector can be either ferro- or antiferro-. The phases where
quantum fluctuations exist in the ground state only in at most one sector (spin or orbital) are
disentangled, as the phases I-III, see the phase diagram in Fig. 1. Otherwise, we recognize
one entangled phase IV-VI which has three different regimes. Here spin-orbital entanglement
increases when the quantum critical point (QCP) (−1/4,−1/4) is approached along the diagonal
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Fig. 1: Spin-orbital entanglement in the 1D SU(2)⊗ SU(2) model (1) at Ez = 0. Left—The von
Neumann entropy per site SvN/L (3) for the ground state at L = 8 as a function of x and y. The
phase boundaries (solid and dashed lines) are drawn to guide the eye. Right—Phase diagram of
a coupled 1D spin-orbital chain. The diamond point is located at (3/4, 3/4). Quantum phases are
distinguished by entanglement: I, II, and III are disentangled, IV is weakly, and V& VI stronger
entangled. The parameters (x, y) are the same as (α, β) in Fig. 2. Images after Ref. [6].

line x = y. At the QCP itself, spin-orbital entanglement is maximal within the phase V, changes
to a plateau in IV, and next drops towards zero in IV beyond the QCP (α = β < −1/4).
A standard measure of entanglement between two subsystems A and B in the ground state
|GS〉 of a system of size L is the von Neumann entropy [13]: SvN = −TrA{ρA ln ρA}/L, see
Fig. 1. Here our two subsystems are spins and orbitals and the entanglement concerns the
entire system (in other applications the system would frequently be separated into A and B by
cutting one bond). The von Neumann entropy is obtained by integrating the density matrix,
ρA = TrB|GS〉〈GS| over subsystem B. Consequently, we use here the following definition of
the von Neumann spin-orbital entanglement entropy:

SvN = − 1

L
TrS{ρS ln ρS}, (3)

where
ρS = TrT |GS〉〈GS| (4)

is the reduced spin-only density matrix (4), with the orbital {T} degrees of freedom being
integrated out.

1.2 Modifications due to finite spin-orbit coupling λ

Spin and orbital operators may also couple directly on-site via the spin-orbit interaction [14].
It is in general quantum but we present the Ising coupling here for more clarity. Then the 1D
model Hamiltonian consists of two qualitatively distinct terms [15],

H = HSE +HSOC, (5)



6.4 Andrzej M. Oleś

Fig. 2: The von Neumann spin-orbital entanglement entropy, SvN (3), calculated using ED on
an L=12-site periodic chain for the spin-orbital model Eq. (5) and for the increasing value of
the spin-orbit coupling λ [15]: (a) λ/J = 0, (b) λ/J = 0.1, and (c) λ/J →∞.
Image by courtesy of Dorota Gotfryd.

and includes next to the superexchangeHSE (1), the spin-orbit Ising interaction∝ λ. The model
Hamiltonian (5) depends then on three parameters {α, β, λ}. Altogether, our choice means
that the spin-orbital exchange interaction has the simplest possible form that can, nevertheless,
simulate a realistic situation found in the transition metal oxides. We note that the spin-orbital
exchange (1) would have in general a more complex form. For instance, this would be the case
if, e.g. three instead of two active orbitals were taken into account, and the corrections from
finite Hund’s exchange were included (as relevant for the 5d iridates).
The second term in Eq. (5) stands for the on-site spin-orbit coupling (SOC) and reads,

HSOC = 2λ
∑
i

Szi T
z
i . (6)

Here the parameter λ measures the strength of the on-site spin-orbit coupling (of relativistic
origin). The above Ising form of the spin-orbit coupling was chosen as the simplest possible
and yet nontrivial term. Moreover, exactly such a form of the spin-orbit coupling is typically
realized in systems with two active orbitals. This is the case, for instance, of the active t2g
doublets in YVO3 [16, 17] and Sr2VO4 [18], or in optical lattices [19]. In fact, such a highly
anisotropic form of spin-orbit coupling is valid for any system with an active orbital doublet,
either two directional p (px and py) or two planar t2g (xz and yz) orbitals.
The line β=−α plays a special role in the phase diagram of Fig. 1. In order to better understand
the physical consequences of increasing λ, we display the onset of the spin-orbital entanglement
once β=−α. As shown in Fig. 2 for increasing λ, the region of finite spin-orbital entanglement
increases dramatically and includes both previously disentangled phases, II and III [15]. In fact,
the largest entanglement is found in the vicinity of the line β=−α, when α+β > −1/4. At
α+β = −1/4 the spin-orbital entanglement entropy jumps from SvN = 0 to a maximal value
and that happens at the QCP. Thus, the qualitative result of Fig. 1 breaks down. We conclude
that finite spin-orbit coupling transfers on-site entanglement to on-bond entanglement in the
phases antiferromagnetic/ferro-orbital (AF/FO, phase II) and ferromagnetic/alternating-orbital
(FM/AO, phase III) which are initially disentangled (at λ=0, see Fig. 3.)
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Fig. 3: Schematic quantum phase diagram of Hamiltonian (1) in the (α, β) plane, see Fig. 1.
The colorful vertical plane shows how spin-orbital entanglement extends to the highly entangled
state, with on-bond entanglement in two disentangled phases: FM⊗AO and AF⊗FO, see Fig. 2.
Increasing spin-orbit coupling λ generates on-bond entangled states (the green region marks
entangled states; note that the vertical scale is logarithmic). Image reproduced from Ref. [15].

2 Orbital physics for partly filled eg orbitals

It is important to realize that modeling of transition-metal oxides [3] can be performed on differ-
ent levels of sophistication. We shall present here some effective orbital-only and spin-orbital
superexchange models for correlated 3d orbitals. In a perovskite lattice they are coupled by
hopping t between nearest neighbor ions, while the hopping to more distant neighbors and for
other lattices may be generated using the general rules formulated by Slater and Koster [20].
The orbitals have particular shapes and belong to two irreducible representations of the Oh cu-
bic point group:
(i) a two-dimensional (2D) representation of eg-orbitals {|3z2−r2〉/

√
6, |x2−y2〉/

√
2}, and

(ii) a three-dimensional (3D) representation of t2g-orbitals {|xy〉, |yz〉, |zx〉}.
In the absence of any tetragonal distortion or crystal-field (CF) due to surrounding oxygens,
the 3d-orbitals are degenerate within each irreducible representation of the Oh point group and
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have typically a large splitting ∝ 10Dqh 2.0 eV between them. When some of such degenerate
orbitals are partly filled, electrons (or holes) have both spin and orbital degree of freedom. The
kinetic energy Ht in a perovskite follows from the hybridization between 3d- and 2p-orbitals.
In an effective d-orbital model, the oxygen 2p-orbitals are not included explicitly and we de-
fine the largest hopping element t obtained between two orbitals of the same type, which both
belong to the nearest neighbor 3d ions in a lattice.
We begin with conceptually simpler t2g orbitals where finite hopping t results from the d-p
hybridization along π-bonds and each element couples a pair of identical orbitals active along
a given bond. Each t2g orbital is active along two cubic axes, while the hopping is forbidden
along the axis perpendicular to the plane of this orbital, e.g. the hopping between two xy-
orbitals vanishes along the c axis (due to the cancellations caused by orbital phases). It is
therefore convenient to introduce the following short-hand notation for the orbital degree of
freedom [12],

|a〉 ≡ |yz〉, |b〉 ≡ |zx〉, |c〉 ≡ |xy〉. (7)

The labels γ = a, b, c refer here to the cubic axes where the hopping is absent between two
orbitals of a given type,

Ht(t2g) = −t
∑
α

∑
〈ij〉‖γ 6=α

a†iασajασ, (8)

Here a†iασ is an electron creation operator in a t2g-orbital α ∈ {yz, zx, xy} with spin σ =↑, ↓ at
site i, and the local electron density operator for a spin-orbital state is niασ = a†iασaiασ. For t2g
electrons not only spin but also orbital flavor is conserved in each hopping process ∝ t.
The hopping Hamiltonian for eg electrons concerns σ-bands and couples here two directional
eg-orbitals {|iζγ〉, |iζγ〉} along a bond 〈ij〉 ‖γ (we use again the same notation t) [21],

Ht(eg) = −t
∑
α

∑
〈ij〉‖α,σ

a†iζασajζασ. (9)

Indeed, a hopping with amplitude −t between two sites i and j occurs only when an electron
with spin σ transfers between the two directional orbitals |ζγ〉 oriented along the bond 〈ij〉
direction, i.e., |ζγ〉 ∝ |3x2−r2〉, |3y2−r2〉, or |3z2−r2〉, along the cubic axis γ = {a, b, c}.
We will similarly denote by |ξγ〉 an orthogonal orbital to |ζγ〉. It is perpendicular to the bond
〈ij〉 direction, i.e., |ξγ〉 ∝ |y2−z2〉, |z2−x2〉, and |x2−y2〉 along the cubic axis γ ∈ {a, b, c},
and 〈ξγ|ζγ〉 = 0. For the moment we consider only electrons with one spin component, σ =↑,
to focus on the orbital problem. While such a choice of an over-complete basis {ζa, ζb, ζc} is
convenient, for writing down the kinetic energy a particular orthogonal basis is needed.
The usual choice is to take

|z〉 ≡ 1√
6
|3z2−r2〉, |z̄〉 ≡ 1√

2
|x2−y2〉, (10)

i.e., the basis of real eg orbitals [21]. However, this basis is the natural one only for the bonds
parallel to the c-axis but not for those within the (a, b) plane, and for ↑-spin electrons the hop-
ping reads (here for clarity we omit spin index σ),

H↑t (eg) = −1

4
t
∑
〈mn〉‖ab

[
3a†iz̄ajz̄ + a†izajz ∓

√
3
(
a†iz̄ajz + a†izajz̄

)]
− t

∑
〈ij〉‖c

a†izajz. (11)
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Fig. 4: Schematic representation of 3d orbitals: Top—eg orbital basis {|3z2−r2〉 , |x2−y2〉}.
Bottom—three t2g orbital states {|zx〉 , |yz〉 , |xy〉} ≡ {|b〉 , |a〉 , |c〉}. These representations
are split in a regular octahedron [3]. Image by courtesy of Yoshinori Tokura.

Although this expression is of course cubic invariant, it does not manifest this symmetry but
takes a very different appearance depending on the bond direction.
However, the symmetry is better visible using the basis of complex eg orbitals at each site i [21],

|i+〉 = 1√
2

(
|iz〉 − i |iz̄〉

)
, |i−〉 = 1√

2

(
|iz〉+ i |iz̄〉

)
, (12)

standing for “up” and“down” pseudospin flavors, with the local pseudospin operators being
defined as follows,

τ+
i ≡ c†i+ci−, τ−i ≡ c†i−ci+, τ zi ≡ 1

2
(c†i+ci+− c

†
i−ci−) = 1

2
(ni+−ni−). (13)

The three directional {|iζγ〉} and three planar {|iξγ〉} orbitals at site i, associated with the three
cubic axes (γ ∈ {a, b, c}), are the real orbitals,

|iζγ〉 = 1√
2

[
e−iϑα/2|i+〉+ e+iϑα/2|i−〉

]
= cos(ϑα/2)|iz〉 − sin(ϑα/2)|iz̄〉, (14)

|iξγ〉 = 1√
2

[
e−iϑα/2|i+〉 − e+iϑα/2|i−〉

]
= sin(ϑα/2)|iz〉+ cos(ϑα/2)|iz̄〉, (15)

with the phase factors ϑia = −4π/3, ϑib = +4π/3, and ϑic = 0, and thus correspond to the
pseudospin lying in the equatorial plane and pointing in one of the three equilateral “cubic”
directions defined by the angles {ϑiα}.
Using the above complex-orbital representation (12), we can write the orbital Hubbard model
for eg electrons with only one spin flavor σ =↑ in a form similar to the spin Hubbard model,

H↑eg = − t
2

∑
γ

∑
〈ij〉‖γ

[(
a†i+aj++a†i−aj−

)
+γ
(
e−iχγa†i+aj−+e+iχγa†i−aj+

)]
+ Ū

∑
m

ni+ni−, (16)
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Fig. 5: Virtual charge excitations leading to the eg-orbital superexchange model for a strongly
correlated system with |z〉 and |x〉 ≡ |z̄〉 real eg orbitals (10) in the subspace of ↑-spin states:
(a) for a bond along the c axis 〈ij〉 ‖ c; (b) for a bond in the ab plane 〈ij〉 ‖ ab. In a FM plane
of KCuF3 (LaMnO3) the superexchange favors AO state of |AO±〉 orbitals (not shown).
(c) The transition from FOr to OL found at d =∞ at finite U, and at U =∞ (dashed line).
Images (a-b) are reproduced from Ref. [22]; image (c) is reproduced from Ref. [23].

with χa = +2π/3, χb = −2π/3, and χc = 0, and where the parameter γ, explained below, takes
for eg orbitals the value γ = 1. The appearance of the phase factors e±iχγ is characteristic of
the orbital problem—these factors occur because the orbitals have an actual shape in real space
so that each hopping process depends on the bond direction and may change the orbital flavor.
The inter-orbital Coulomb interaction ∝ Ū [22] is then the only Coulomb term which couples
the electron densities in two basis orbitals niµ = a†iµaiµ, with µ ∈ {+,−}; its form in invariant
under any local basis transformation to a pair of orthogonal orbitals, i.e., it gives energy Ū for a
double occupancy, either when two real orbitals are simultaneously occupied Ūnizniz̄, or when
two complex orbitals are both occupied, Ū

∑
i ni+ni−.

A charge excitation between two transition metal ions with partly filled eg-orbitals will arise by
a hopping process between two active orbitals, |iζγ〉 and |jζγ〉. To capture such processes we
introduce two projection operators on the orbital states for each bond,

P(γ)
〈ij〉 ≡

(
1

2
+ τ

(γ)
i

)(
1

2
− τ (γ)

j

)
+

(
1

2
− τ (γ)

i

)(
1

2
+ τ

(γ)
j

)
, (17)

Q(γ)
〈ij〉 ≡ 2

(
1

2
− τ (γ)

i

)(
1

2
− τ (γ)

j

)
. (18)

Recently a generalization of the eg-orbital Hubbard model (16) was proposed to d = ∞ di-
mension [23]. Since the work of Metzner and Vollhardt [24] appeared, it is well known that the
limit of d =∞ is simpler for the correlation problems than any finite dimension as the diagrams
addressing the correlations collapse to a single point and the Gutzwiller approximation to the
variational ground state wave function [25] becomes exact [26]. The eg orbital Hubbard model
describes spinless fermions which propagate on a lattice and have two degenerate orbitals. Any
double occupancy costs the same energy Ū , exactly as in Eq. (16). A crucial observation is now
that any orbital polarized state has no double occupancies, while the orbital liquid (OL) state
has double occupancies and has to be renormalized.
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The orbital Hubbard model (16) suggests that additional kinetic energy arises from the flavor-
nonconserving hopping ∝ γt. Indeed, the only stable phase in the 3D eg-orbital model is the
orbital liquid (OL) phase [21]. In contrast, for the eg-orbital model in d =∞ dimensions [23],
the OL dominates for most but not for all electron fillings. Indeed, close to half-filling n = 1,
a FO phase is more stable. This phase has real eg orbitals and is labeled as FOr in Fig. 5(c).
Qualitatively this result is similar to the Nagaoka’s theorem [27] for the spin Hubbard model,
where a FM state is found close to half-filling. However, the mechanism is qualitatively different
as the orbital-nonconserving hopping contributes and destabilizes the OL.
The resulting phase diagram of the eg-orbital Hubbard model in the (n, Ū) plane obtained in the
Gutzwiller approximation contains mostly the OL phase, see Fig. 5(c). Here the FOr phase is
more stable than the OL phase for Ū > Uc(n) if n > nc. One finds the critical value nc = 0.8746

of the electron density at which the energies of the OL and FOr are equal at Ū =∞, and below
which the OL phase is therefore always stable.

3 Coulomb interactions in spin-orbital Hilbert space

3.1 Kanamori parameters: Coulomb U and Hund’s exchange J

The full spin-orbital problem involves both degrees of freedom, as in Sec. 1. But in contrast
to the simplified case of only one excitation energy U, one has to distinguish between different
possible excitations, high-spin (HS) and low-spin (LS). Next to the Coulomb on-site repulsionU
known from the Hubbard model, the degenerate Hubbard Hamiltonian [7] includes Hund’s
exchange J . In general, on-site Coulomb interactions between two electrons in 3d orbitals
depend both on spin and orbital indices. Note that the electron interaction parameters in this
model are effective ones, i.e., the 2p-orbital parameters of O (or F) ions renormalize on-site
Coulomb interactions between two electrons in 3d orbitals. A general form which includes
only two-orbital interactions and the anisotropy of Coulomb and exchange elements is [28, 29]

Hint = U
∑
iα

niα↑niα↓ +
∑
i,α<β

(
U ′αβ −

1

2
Jαβ

)
niαniβ − 2

∑
i,α<β

Jαβ ~Siα · ~Siβ

+
∑
i,α<β

Jαβ

(
a†iα↑a

†
iα↓aiβ↓aiβ↑ + a†iβ↑a

†
iβ↓aiα↓aiα↑

)
. (19)

Here a†iασ is an electron creation operator in any 3d orbital, α∈{xy, yz, zx, 3z2−r2, x2−y2},
with spin states σ =↑, ↓ at site i, and we shall use σ̄ ≡ −σ. The parameters {U,U ′αβ, Jαβ}
depend in general on the three Racah parameters {A,B,C} [30], which may be derived from
somewhat screened atomic values. While the intra-orbital Coulomb element is identical for all
3d orbitals,

U ≡ A+ 4B + 3C, (20)

the inter-orbital Coulomb U ′αβ and exchange Jαβ elements are anisotropic and depend on the in-
volved pair of orbitals {α, β}; the values of Jαβ are given in Table 1. The inter-orbital Coulomb
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Table 1: On-site inter-orbital exchange elements Jαβ for 3d orbitals as functions of the Racah
parameters B and C (for more details see Ref. [30]).

3d orbital xy yz zx x2−y2 3z2−r2

xy 0 3B + C 3B + C C 4B + C
yz 3B + C 0 3B + C 3B + C B + C
zx 3B + C 3B + C 0 3B + C B + C

x2−y2 C 3B + C 3B + C 0 4B + C
3z2−r2 4B + C B + C B + C 4B + C 0

U ′αβ and Hund’s exchange Jαβ elements satisfy a relation with intra-orbital element U which
guarantees the rotational invariance of interactions in the orbital space,

U = U ′αβ + 2Jαβ. (21)

In all situations where only the orbitals belonging to a single irreducible representation of the
cubic group (eg or t2g) are partly filled, e.g. in the titanates, vanadates, nickelates, or copper
fluorides, the filled (empty) orbitals do not contribute to the dynamics, and the relevant exchange
elements Jαβ are all the same (see Table 1), i.e., either a pair of t2g or for eg orbitals,

J tH ≡ 3B + C, (22)

JeH ≡ 4B + C. (23)

Then one may use a simplified degenerate Hubbard model [7] with isotropic on-site interactions
(for a given subset of 3d orbitals),

H
(0)
int = U

∑
iα

niα↑niα↓ +

(
U − 5

2
JH

) ∑
i,α<β

niαniβ − 2JH
∑
i ,α<β

~Siα · ~Siβ

+JH
∑
i,α<β

(
a†iα↑a

†
iα↓aiβ↓aiβ↑ + a†iβ↑a

†
iβ↓aiα↓aiα↑

)
. (24)

Eq. (24) has two Kanamori parameters: the Coulomb intra-orbital element U (20) and Hund’s
exchange JH , and we parametrize the interactions by

η = JH/U (25)

which stands either for J tH (22) or for JeH (23), depending on the electronic filling of 3d orbitals
at site i. Here we also obtain the celebrated element Ū ≡ U−3JeH , used before in Eq. (16) when
only HS states occur. We emphasize that in a general case when both types of orbitals are partly
filled, as in the colossal magnetoresistance (CMR) manganites [31], and both thus participate
in charge excitations of Fig. 6, the above Hamiltonian with a single Hund’s exchange element
JeH is insufficient and the full anisotropy given in Eq. (24) has to be used instead to generate the
correct charge excitation spectra for a given transition metal ion [30].
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Fig. 6: Energies of charge excitations εn (26) for selected cubic transition metal oxides, for:
(a) eg excitations to Cu3+ (d8) and Mn2+ (d5) ions; (b) t2g excitations to Ti2+ (d2) and V2+

(d3) ions. The splittings between different states are due to Hund’s exchange element JH which
refers to a pair of eg and t2g electrons in (a) and (b). Image reproduced from Ref. [28].

In a strongly correlated regime t�U, we consider the case of partly filled degenerate 3d orbitals
and large Hund’s exchange JH . This guarantees that electrons localize in high-spin ionic states,
and effective low-energy superexchange interactions consist of all the contributions which orig-
inate from possible virtual charge excitations, dpmd

p
n 
 dp+1

m dp−1
n —they take the form of a

spin-orbital model. The charge excitation n costs the energy

εn = En(dp+1) + E0(dp−1)− 2E0(dp), (26)

where the dp ions are in the initial high-spin ground states with spins S = p
2

and have the
Coulomb interaction energy E0(dp) =

(
p
2

)
(U − 3JeH) each if p < 5 (otherwise if p > 5 one has

to consider p holes instead). The case of p = 5 electrons is special and will not be considered
here as in the t32ge

2
g configuration the orbital degree of freedom is quenched.

The same formula for the ground state energy applies as well to Mn3+ ions in d4 configuration
with S = 2 spin HS ground state, see Sec. 2. By construction, also the ion with less electrons
(holes) for p < 5 (p > 5) is in the HS state and E0(dp−1) =

(
p−1

2

)
(U − 3JH). The excitation

energies (26) are thus defined by the multiplet structure of an ion with more electrons (holes)
in the configuration dp+1, see Fig. 6. The lowest energy excitation is always given by U−3JH
—it is obtained from the HS state of the 3dp+1 ion with total spin S = S+1/2 and energy
E1(dp+1) =

(
p+1

2

)
(U − 3JH), with JH being Hund’s exchange element for the electron (hole)

involved in the charge excitation, either eg or t2g. Indeed, one recovers the lowest excitation
energy in the HS subspace, ε1. We emphasize that this lowest excitation energy ε1 is universal
and is found both in t2g and eg subspaces, i.e., it does not depend on the electron valence p,
see Fig. 6. In contrast, the remaining energies {εn} for n>1 are all for LS excitations and
are specific to a given valence p of the considered insulator with dp ions. They have to be
determined from the full local Coulomb interaction Hamiltonian (19), in general including also
the anisotropy of the {Uαβ} and {Jαβ} elements.
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Effective interactions in a Mott (or charge transfer) insulator with orbital degeneracy take the
form of spin-orbital superexchange [1,12]. Its general structure is given by the sum over all the
nearest neighboring bonds 〈ij〉‖γ connecting two transition metal ions and over the excitations
n possible for each of them as,

H = −
∑
n

t2

εn

∑
〈ij〉‖γ

P〈ij〉(S)Oγ〈ij〉, (27)

where P〈ij〉(S) is the projection on the total spin S = S± 1/2 andOγ〈ij〉 is the projection operator
on the orbital state at the sites i and j of a given bond. Following this general procedure,
one finds a spin-orbital model with Heisenberg spin interactions for spins S = p/2 of SU(2)
symmetry coupled to the orbital operators which have much lower cubic symmetry, with the
general structure of spin-orbital superexchange ∝ J (2) [28],

HJ = J
∑
γ

∑
〈ij〉‖γ

{
K̂(γ)
ij

(
~Si · ~Sj + S2

)
+ N̂ (γ)

ij

}
. (28)

It connects ions at sites i and j along the bond 〈ij〉 ‖ γ and involves orbital operators, K̂(γ)
ij and

N̂ (γ)
ij , which depend on the bond direction γ = a, b, c for the three a priori equivalent directions

in a cubic crystal. The spin scalar product, ~Si · ~Sj , is coupled to orbital operators K̂(γ)
ij which

together with the other “decoupled” orbital operators, N̂ (γ)
ij , determine the orbital state in a Mott

insulator. The form of these operators depends on the type of orbital degrees of freedom in
a given model. They involve active orbitals on each bond 〈ij〉 ‖ γ along direction γ. Thus the
orbital interactions are directional and have only the cubic symmetry of a (perovskite) lattice
provided the symmetry in the orbital sector is not broken by other interactions, for instance by
CF or Jahn-Teller (JT) terms.
The magnetic superexchange constants along each cubic axis Jab and Jc in the effective spin
model,

H = Jab
∑
〈ij〉‖ab

~Si · ~Sj + Jc
∑
〈ij〉‖c

~Si · ~Sj, (29)

are obtained from the spin-orbital model (28) by decoupling spin and orbital operators and next
averaging the orbital operators over an underlying orbital (ordered or disordered) state. It gives
effective magnetic exchange interactions: Jc for a bond along the c axis, and Jab for bonds
within the ab plane. The latter ones Jab, could in principle still be different between the a and
b axes in case of finite lattice distortions due to the JT effect or octahedra tilting, but we limit
ourselves to idealized structures, with Jab being the same for both planar directions. We show
below that the spin-spin correlations along the c axis and within the ab planes,

sc =
〈
~Si · ~Sj

〉
c
, sab =

〈
~Si · ~Sj

〉
ab
, (30)

next to the orbital correlations, play an important role in the intensity distribution in optical
spectroscopy.
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In correlated insulators with partly occupied degenerate orbitals, not only the structure of the
superexchange (28) is complex, but also the optical spectra exhibit strong anisotropy and tem-
perature dependence near the magnetic transitions, as found, e.g., in LaMnO3 [32, 33] or in
the cubic vanadates, LaVO3 and YVO3 [28]. In such systems several excitations contribute
to the excitation spectra, so one may ask how the spectral weight redistributes between indi-
vidual subbands originating from these excitations. The spectral weight distribution is in gen-
eral anisotropic already when orbital order (OO) [34] sets in and breaks the cubic symmetry,
but even more so when A-type or C-type AF spin order occurs below the Néel temperature TN.
At orbital degeneracy the superexchange consists of the terms ∝ H

(γ)
n (ij) as a superposition of

individual contributions on each bond 〈ij〉 due to charge excitation n (26) [35],

H = J
∑
n

∑
〈ij〉‖γ

H(γ)
n (ij), (31)

with the energy unit for each individual H(γ)
n (ij) term given by the superexchange constant J,

see Eq. (2). It follows from d-d charge excitations with an effective hopping element t between
neighboring transition metal ions and is the same as that obtained in a Mott insulator with
nondegenerate orbitals in the regime of U � t. The spectral weight in optical spectroscopy is
determined by the kinetic energy, and reflects the onset of spin order (SO) and/or OO [35]. In
a correlated insulator, electrons are almost localized and the only kinetic energy which is left
is associated with the same virtual charge excitations that contribute also to the superexchange.
Therefore, the individual kinetic energy terms K(γ)

n may be directly determined from the super-
exchange (31) using the Hellmann-Feynman theorem,

K(γ)
n = −2J

〈
H(γ)
n (ij)

〉
. (32)

For convenience, we define here the K(γ)
n as positive quantities. Each term K

(γ)
n (32) originates

from a given charge excitation n along a bond direction 〈ij〉 ‖ γ. These terms are straightfor-
wardly related to the partial optical sum rule for individual Hubbard subbands, which reads [35]

a0~2

e2

∫ ∞
0

σ(γ)
n (ω) dω =

π

2
K(γ)
n , (33)

where σ(γ)
n (ω) is the contribution of excitation n to the optical conductivity for polarization

along the γ axis, a0 is the distance between transition metal ions, and the tight-binding model
with nearest neighbor hopping is implied. Using Eq. (32) one finds that the intensity of each
band is indeed determined by the underlying OO together with the spin-spin correlation along
the direction corresponding to the polarization.
One has to distinguish the above partial sum rule (33) from the full sum rule for the total spectral
weight in the optical spectroscopy for polarization along a cubic direction γ, involving

K(γ) = −2J
∑
n

〈
H(γ)
n (ij)

〉
, (34)

which stands for the total intensity in the optical d-d excitations. This quantity is usually of
less interest as it does not allow for a direct insight into the nature of the electronic structure
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being a sum over several excitations εn (26) and has a much weaker temperature dependence.
In addition, it might also be more difficult to deduce the quantity from experiment.

3.2 Goodenough-Kanamori rules

While a rather advanced treatment of the quantum many-body physics is required in general
for spin-orbital models, we want to present here certain principles which help to understand the
heart of the problem and to give simple guidelines for interpreting experiments and for finding
relevant physical parameters of the spin-orbital models of undoped cubic insulators. We will
argue that such an approach based upon classical OO is well justified in many known cases,
as quantum phenomena are often quenched by the JT coupling between orbitals and by lattice
distortions, which are present below structural phase transitions and induce OO, either in spin-
disordered, in spin-ordered phases, or in spin-liquid.
From the derivation of the Kugel-Khomskii (KK) model in Sec. 4.1, we observe that pairs of
directional orbitals {|iζγ〉, |jζγ〉} on neighboring ions favor AF SO, while pairs of orthogonal
orbitals such as {|iζγ〉, |jξγ〉} favor FM SO. This is known as classical Goodenough-Kanamori
rules (GKR) [36] predicting that the state with AF SO has simultaneously FO order, while FM
SO is accompanied by AO order, see Figs. 7(a) and 7(b). Indeed, these rules emphasizing the
complementarity of spin-orbital correlations are frequently employed to explain the observed
spin-orbital order in several systems, particularly in those where spins are large, like in CMR
manganites [31]. They agree with the general structure of spin-orbital superexchange in the KK
model, where it is sufficient to consider the flavor-conserving hopping between pairs of direc-
tional orbitals {|iζγ〉, |jζγ〉} [29, 37]. The excited states are then doubly occupied in one of the
directional orbitals, while no effective interaction arises for two parallel spins (in triplet states),
so the superexchange is AF. In contrast, for a pair of orthogonal orbitals, e.g. {|iζγ〉, |jξγ〉},
two different orbitals are singly occupied and the FM term is stronger than the AF one as the
excitation energy is lower. Therefore, configurations with AO order support FM SO.
The above complementarity of spin-orbital order is frustrated by inter-orbital hopping, or may
be modified by spin-orbital entanglement [11], see below. In such cases the order in both
channels could be the same, either FM/FO, see Fig. 7(c), or AF/AO, see Fig. 7(d). Again, when
different orbitals are occupied in the excited state, the spin superexchange is weakly FM and
when the same orbital is doubly occupied, the spin superexchange is stronger and AF. The
latter AF exchange coupling dominates because antiferromagnetism, which is due to the Pauli
principle, does not have to compete here with ferromagnetism. On the contrary, FM exchange is
caused by the energy difference∝ η between triplet and singlet excited states, with two different
orbitals occupied.
This modification of the GKR is of importance in alkaliRO2 hyperoxides (R = K, Rb, Cs) [38].
The JT effect is crucial for this generalization of the GKR—without it large inter-orbital hopping
orders the T x-orbital-mixing pseudospin component instead of the T z component in a single
plane. Altogether, such generalized GKR can arise whenever the OO on a bond is not solely
stabilized by the same spin-orbital superexchange interaction that determines the spin exchange.
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Fig. 7: Artist’s view of the GKR [36] for: (a) FOz and AF spin order and (b) AOz and FM spin
order in a system with orbital flavor conserving hopping as alkaliRO2 hyperoxides (R = K, Rb,
Cs) [38]. The charge excitations generated by inter-orbital hopping fully violate the GKR and
support the states with the same spin-orbital order: (c) FOz and FM spin order and (d) AOz
and AF spin order. Image reproduced from Ref. [38].

On a geometrically frustrated lattice, for instance, another route to this behavior can occur when
the ordered orbital component preferred by superexchange depends on the direction and the
relative strengths fulfill certain criteria.

(c)

(b)

(a)

Fig. 8: Schematic representation of the orbital motion and the spin-orbital separation in a 1D
spin-orbital model. The first hop of the excited state (a)→(b) creates a spinon (wavy line) that
moves via spin exchange ∝ J . The next hop (b)→(c) gives an “orbiton” freely propagating as
a “holon” with an effective hopping t ∼ J/2. Image reproduced from Ref. [39].



6.16 Andrzej M. Oleś

While a hole doped to the FM chain propagates freely, it creates a spinon and a holon in an AF
background described by the t-J model. A similar situation occurs for an orbital excitation in
an AF/FO spin-orbital chain [39]. An orbital excitation may propagate through the system only
after creating a spinon in the first step, see Figs. 8(a) and 8(b). The spinon itself moves via spin
flips ∝ J > t, faster than the orbiton, and the two excitations get well separated, see Fig. 8(c).
The orbital-wave picture of Sec. 2, on the other hand, would require the orbital excitation to
move without creating the spinon in the first step. Note that this would be only possible for
imperfect Néel AF SO. Thus, one concludes that the symmetry between spin and orbital sector
is broken also for this reason and orbitals are so strongly coupled to spin excitations in realistic
spin-orbital models with AF/FO order. In conclusion the mean field picture separating these
two sectors of the Hilbert space breaks down.

4 Kugel-Khomskii model for Mott insulators

4.1 Kugel-Khomskii model: 3D for KCuF3 and 2D for K2CuF4

The simplest and seminal spin-orbital model is obtained when a fermion has two flavors, spin
and orbital, and both have two components, i.e., spin and pseudospin are S = T = 1/2. The
physical realization is found in cuprates with degenerate eg orbitals, such as KCuF3 or K2CuF4

[1], where Cu2+ ions are in the d9 electronic configuration, so charge excitations d9
i d

9
j 
 d10

i d
8
j

are made by holes. By considering the degenerate Hubbard model for two eg orbitals one finds
that d8 ions have an equidistant multiplet structure, with three excitation energies which differ
by 2JH [here JH stands for the JeH given by Eq. (23)], see Table 2. We emphasize that the correct
spectrum has a doubly degenerate energy U−JH , and the highest non-degenerate energy is
U+JH , see Fig. 6(a). Note that this result follows from the diagonalization of the local Coulomb
interactions in the relevant subspaces—it reflects the fact that a double occupancy

(
|z↑z↓〉 or

|z̄↑z̄↓〉
)

in either orbital state (|z〉 or |z̄〉) is not an eigenstate of the degenerate Hubbard model
in the atomic limit (24), so the excitation energy U is absent in the spectrum, see Table 2.
The total spin state on the bond 〈ij〉 corresponds to S=1 or 0, so the spin projection operators
P〈ij〉(1) and P〈ij〉(0) are easily deduced, see Table 2. The orbital configuration on a bond 〈ij〉
is given by one of the orbital operators in Sec. 2, either P(γ)

〈ij〉 for the doubly occupied states

involving different orbitals, orQ(γ)
〈ij〉 for a double occupancy in a directional orbital at site i or j.

This gives the rather transparent structure of one HS and three LS excitations in Table 2. The
3D KK model then follows from Eq. (27) [9, 40]:

H(d9) =
∑
γ

∑
〈ij〉‖γ

{
− t2

U−3JH

(
~Si · ~Sj +

3

4

)
P(γ)
〈ij〉 +

t2

U−JH

(
~Si · ~Sj −

1

4

)
P(γ)
〈ij〉

+

(
t2

U−JH
+

t2

U+JH

)(
~Si · ~Sj −

1

4

)
Q(γ)
〈ij〉

}
+ Ez

∑
i

τ
(c)
i . (35)

The last term ∝ Ez is the CF which splits off the degenerate eg orbitals when a JT lattice
distortion occurs, and is together with Hund’s exchange η, a second parameter to construct
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Table 2: Elements needed for the construction of the KK model from charge excitations on the
bond 〈ij〉: excitation n, its type (HS or LS) and energy εn, total spin state (triplet or singlet)
and the spin projection operator P〈ij〉(S), and the orbital state and the corresponding orbital
projection operator.

charge excitation spin state orbital state orbital
n type εn S P〈ij〉 on a bond 〈ij〉 ‖ γ projection

1 HS U−3JH 1
(
~Si · ~Sj + 3

4

)
|iζγ〉 |jξγ〉 (|iξγ〉 |jζγ〉) P(γ)

〈ij〉

2 LS U − JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jξγ〉 (|iξγ〉 |jζγ〉) P(γ)

〈ij〉

3 LS U − JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jζγ〉 Q(γ)

〈ij〉

4 LS U + JH 0 −
(
~Si · ~Sj − 1

4

)
|iζγ〉 |jζγ〉 Q(γ)

〈ij〉

phase diagrams, see below. Here it refers to holes, i.e., large Ez > 0 favors hole occupation in
|z̄〉 ≡ |x2−y2〉/

√
2 orbitals, as in La2CuO4. On the other hand, while Ez ' 0, both orbitals

have almost equal hole (electron) density.
Another form of the Hamiltonian (35) is obtained by introducing the coefficients,

r1 =
1

1−3η
, r2 = r3 =

1

1−η
, r4 =

1

1+η
, (36)

and defining the superexchange constant J in the same way as in the t-J model Eq. (2). With
the explicit representation of the orbital operators P(γ)

〈ij〉 and Q(γ)
〈ij〉 in terms of

{
τ

(γ)
i

}
one finds,

H(d9) =
1

2
J
∑
γ

∑
〈ij〉‖γ

{[
−r1

(
~Si · ~Sj +

3

4

)
+ r2

(
~Si · ~Sj −

1

4

)](
1

4
− τ (γ)

i τ
(γ)
j

)

+ (r3+r4)

(
~Si · ~Sj −

1

4

)(
τ

(γ)
i +

1

2

)(
τ

(γ)
j +

1

2

)}
+ Ez

∑
i

τ
(c)
i . (37)

In the FM state spins are integrated out and one finds from the first term just the superexchange
in the eg orbital model analyzed above in Sec. 2.
The magnetic superexchange constants Jab and Jc employed in the effective spin-orbital model
(37) are obtained by decoupling spin and orbital operators and next averaging the orbital opera-
tors

〈
K̂(γ)
ij

〉
over the classical state |Φ0〉 as given by Eq. (12). The relevant averages are given in

Table 3, and they lead to the following expressions for the superexchange constants in Eq. (29),

Jc =
1

8
J
{
− r1 sin2 θ + (r2+r3)(1 + cos θ) + r4(1 + cos θ)2

}
, (38)

Jab =
1

8
J

{
−r1

(
3

4
+ sin2 θ

)
+ (r2+r3)

(
1− 1

2
cos θ

)
+ r4

(
1

2
− cos θ

)2
}
, (39)

which depend on two parameters: J from Eq. (2) and η as in Eq. (25), as well as on the OO
of |±〉 orbitals specified by the orbital angle θ. It is clear that the FM term ∝ r1 competes
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a

b
c

Fig. 9: Spin-orbital entanglement in the KK model includes orbitals and spins: Left—schematic
view of the four simplest eg-orbital configurations on a representative cube of the 3D lattice:
(a) alternating orbital (AO) order with 〈τ (a,b)

i 〉= ±1/2 changing from site to site, and 〈τ ci 〉= 1/4,
obtained for Ez < 0, (b) AO order with 〈τ (a,b)

i 〉= −1/2, alternating between sites and 〈τ (c)
i 〉=

−1/4, obtained for Ez> 0, (c) FO order with occupied z orbitals and 〈τ ci 〉 = 1/2 (cigar-shaped
orbitals), and (d) FO order with occupied z̄ orbitals and 〈τ ci 〉 = −1/2 (clover-shaped orbitals).
Right—schematic view of four spin configurations (arrows for up or down spins; {a, b, c} are
crystallographic directions) in phases with SO: (i) A-AF, (ii) C-AF, (iii) FM, and (iv) G-AF.
Image by courtesy of Wojciech Brzezicki.

with all the other AF LS terms. Nevertheless, in the ab planes, where the occupied hole eg
orbitals alternate, the larger FM contribution dominates and makes the magnetic superexchange
Jab weakly FM (Jab . 0 when sin2 θ ' 1), while the stronger AF superexchange along the c
axis (Jc � |Jab|) favors quasi one-dimensional (1D) spin fluctuations. Thus KCuF3 exhibits
spinon excitations for T > TN.

Table 3: Averages of the orbital projection operators standing in the spin-orbital interactions
in the KK model (37) and determine the spin interactions in Hs (29) for the C-type OO of
occupied eg orbitals which alternate in the ab planes, as given by Eqs. (14). Nonequivalent
cubic directions along the 〈ij〉 bonds are labeled by γ = ab, c.

operator average ab c

Q(γ)
〈ij〉 2

〈(
1
2
−τ (γ)

i

)(
1
2
−τ (γ)

j

)〉
1
2

(
1
2
− cos θ

)2 1
2

(
1 + cos θ

)2

P(γ)
〈ij〉

〈
1
4
− τ (γ)

i τ
(γ)
j

〉
1
4

(
3
4

+ sin2 θ
)

1
4

sin2 θ

R(γ)
〈ij〉 2

〈(
1
2
+τ

(γ)
i

)(
1
2
+τ

(γ)
j

)〉
1
2

(
1
2

+ cos θ
)2 1

2

(
1− cos θ

)2
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(a) (b)

(c)

Fig. 10: Spin-orbital phase diagram and entanglement in the 2D KK model: (a) phase diagram
in the plaquette mean field (solid lines) and ERA (dashed lines) variational approximation,
with insets showing representative spin and orbital configurations on a 2×2 plaquette—z̄-like(
tc=−

〈
τ

(c)
i

〉
=1

2

)
and z-like

(
ta,c=−

〈
τ

(c,a)
i

〉
=−1

2

)
orbitals are accompanied either by AF long

range spin order (arrows) or by spin singlets on bonds in the PVB phase (ovals); (b) view of
an exotic four-sublattice ortho-AF phase near the onset of FM (or FMz) phase; (c) artist’s
view of the ortho-AF phase—spin singlets (ovals) are entangled with either one or two orbital
excitations |z〉 → |z̄〉 (clovers). Images reproduced from Ref. [41].

Consider first the 2D KK model on a square lattice, with γ = a, b in Eq. (37), as in K2CuF4.
In the absence of Hund’s exchange, interactions between S = 1/2 spins are AF. However, they
are quite different depending on which of the two eg orbitals are occupied by holes: Jzab = 1

16
J

for |z〉 and J z̄ab = 9
16
J for |z̄〉 hole orbitals. As a result, the AF phases with SO in Fig. 9(iv) and

the FO order shown in Figs. 9(c) and 9(d) are degenerate at finite CF Ez = −1
2
J . This defines

a quantum critical point (QCP) Q2D = (−1/2, 0) in the (Ez/J, η) plane [while Q3D = (0, 0)].
Actually, at this point also one more phase has the same energy—the FM spin phase of Fig. 9(i)
with AO order of |±〉 orbitals, shown in Figs. 5(a&b) [40].

To capture the corrections due to quantum fluctuations, one may construct a plaquette mean
field approximation or entanglement renormalization ansatz (ERA) [41]. One finds important
corrections to the mean field phase diagram near the QCP Q2D, and a plaquette valence bond
(PVB) state is stable in between the above three phases accompanied by spin-orbital long range
order, with spin singlets on the bonds ‖ a (‖b) and stabilized by the directional orbitals |ζa〉
(|ζb〉). A novel ortho-AF phase appears as well when the magnetic interactions change from
AF to FM ones due to increasing Hund’s exchange η, and for Ez/J < −1.5, see Fig. 10(a).
Since the nearest neighbor magnetic interactions are very weak, exotic four-sublattice ortho-AF
SO emerges due to second and third nearest neighbor interactions, shown in Fig. 10(b). Such
further neighbor interactions follow from spin-orbital excitations shown in Fig. 10(c). Note
that both approximate methods employed in Ref. [41] (plaquette mean field approximation and
ERA) give very similar range of stability of the ortho-AF phase.



6.20 Andrzej M. Oleś

4.2 Entanglement in the ferromagnetic excitations of K2CuF4

To investigate magnons (spin waves), we create a spin excitation at site i = 0 by decreasing the
value of the order parameter 〈Sz0〉 from S to S−1. In the simplest approach we disentangle [29]
spin-orbital superexchange both in the ground and excited state, and use the same frozen AO
order as in the initial state to determine spin exchange J♦. A spin excitation (a magnon) itself
is best described by the transformation to Holstein-Primakoff (HP) bosons. In linear spin-wave
theory, the magnon energy consists of two contributions and we introduce:

(i) Ising energy for a localized HP boson I(0) ≡ 4J♦S, and

(ii) the propagating term P (0)(~k) ≡ −4J♦Sγ~k.

The latter originates from quantum fluctuations∝ −1
2
J♦
(
Ŝ+
i Ŝ
−
j +Ŝ−i Ŝ

+
j

)
, where γ~k = 1

4

∑
~δ e

i~k·~δ

determines the dispersion and depends on the 2D momentum ~k = (ka, kb) with kα ∈ [−π, π).
Here ~δ stands for one of four nearest neighbors of the central site i = 0 shown in Fig. 11(a).
The above two terms determine the magnon dispersion in a 2D ferromagnet,

ω
(0)
~k

= I(0) + P (0)(~k) = 4J♦S (1−γ~k), (40)

which serves as a reference below. The breaking of SU(2) symmetry is reflected by a Goldstone
mode (at ~k = 0), and ω~k = J♦Sk

2 for ~k → 0 —we find that this result is insensitive to spin-
orbital coupling. It is crucial that the above dispersion (40) is improved and the variational
approximation (VA) is performed for each value of momentum ~k independently. One might
expect that this reduces spin exchange, J♦ → J�, and the magnon dispersion would soften.
In this way we obtain the renormalized magnon dispersion which replaces Eq. (40),

ω~k({θiL}) = I({θiL};~k) + P ({θiL};~k). (41)

Note that the angles {θiL} are real and L = A,B refers to the sublattice. If in addition it
is assumed that orbital optimization for both sublattices is equivalent, we use the constraint
θi ≡ θiA = θiB (i = 1, 2, 3) which defines the Simplified Variational Approximation (SVA). Fi-
nally, we have verified the predictions of the VA by exact diagonalization employing a Numer-
ical Ansatz (NA) with six states per sublattice: a spin defect with or without orbital excitation,
and four spin-orbital states with spin excitation at the central site together with an orbital excita-
tion at one of the nearest neighbors. The state with excitations within a shaded cluster depicted
in Fig. 11(b) may be thus expressed in terms of these six states.
Taking as an example the K2CuF4 state at Ez = −0.8 J shown in Fig. 11(b), one finds that
the orbital renormalization is appreciable—at the central site with spin excitation it is largely
modified to ∼ (x2−y2), and the orbitals at the four neighboring sites are also changed. The
latter orbitals found within the VA are only weakly changed as these latter sites have three
neighbors belonging to the neighbors with undisturbed AO order in Fig. 11(a), but the one at
the site of spin excitation itself is radically different. For this reason, we introduce a cutoff and
assume that the orbitals at further neighbors of the excited spin are unchanged. One expects then
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Fig. 11: Artist’s view of a spin excitation (inverted red arrow at the central site) in the FM plane
of K2CuF4 (green arrows) and AO order of the orbitals occupied by holes at Ez = −0.8J , with:
(a) frozen orbitals; (b) optimized orbitals at the central site and at four its neighboring sites in
the square lattice, forming a quasiparticle (dressed magnon). The above value of Ez leads to
the expected AO order in K2CuF4, with θopt ' 71◦ in Eqs. (14). When the VA is used, case (a)
is still realized at ~k ' 0, while case (b) represents a dressed magnon with ~k 'M where orbital
states in the shaded cluster are radically different from those shown for frozen orbitals in (a).
Image reproduced from Ref. [42].

a large dressing of the magnon, with the corresponding reduction of the effective FM interaction
to J�, particularly in the neighborhood of the M point. This is confirmed by the results shown
in Fig. 12(a)—the magnon energy ωM is reduced by ∼ 27% from ω

(0)
M . Internal consistency

of the theory is confirmed by this reduction being nearly the same in all three methods used to
treat spin-orbital coupling: VA, SVA, and NA.

At the X point we recognize the importance of independent optimization of orbitals on the two
sublattices—the energy ωX is reduced by ∼ 25% from ω

(0)
X in the VA, while it stays almost

unrenormalized in the SVA, see Fig. 12(a). The NA agrees very well with the results of the VA
except for the points close to theM point along theM -Γ path. While the VA may underestimate
somewhat the magnon dressing effect, altogether we find a comparison of the VA with the NA
very encouraging indeed. The renormalization of the magnon energy increases fast when the
orbital splitting |Ez| is reduced, and one finds that the magnon energy reduction is large for
Ez = −0.3 J , e.g. by ∼ 60% at the M point, see Fig. 12(b). The agreement between the
VA and the NA is somewhat worse here, but still one may say that both methods qualitatively
agree. Altogether, we suggest that the magnon softening may be very large for spin-orbital
systems with low spin S = 1/2 as in K2CuF4. Note that similar softening is expected in the FM
planes of LaMnO3 and would represent an interesting future research topic.
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Fig. 12: The magnon energy ω~k/J obtained for the FM state of K2CuF4 at JH/U = 0.2 and:
(a) Ez = −0.80J and (b) Ez = −0.30J . Results are presented for four approximations: frozen
orbitals (black line and grey background), the VA (green line), the SVA (red line), and the 12-
state NA (purple dots). The high symmetry points are: Γ = (0, 0), X = (π, 0), M = (π, π).
Image reproduced from Ref. [42].

4.3 Weak spin-orbital entanglement for large spins S=2 in LaMnO3

Electronic structure calculations predict A-AF SO, in agreement with experiment [32]. It fol-
lows from the spin-orbital superexchange between large spins S = 2 in LaMnO3, due to the
excitations involving eg electrons. The energies of the five possible excited states [30] shown
in Fig. 6(a) are: (i) the HS (S = 5

2
) 6A1 state, and (ii) the LS (S = 3

2
) states: 4A1, 4E (4Eε,

4Eθ), and 4A2. They are parameterized again by the intra-orbital Coulomb element U and by
Hund’s exchange JeH between a pair of eg electrons at a Mn2+ (d5) ion. The Racah parameters
B = 0.107 eV and C = 0.477 eV justify an approximate relation C ' 4B, and we find the LS
excitation spectrum: ε(4A1) = U + 3

4
JH , ε(4E) = U + 5

4
JH (twice), and ε(4A2) = U + 13

4
JH .

Using the spin algebra (Clebsch-Gordan coefficients) and considering again two possible eg or-
bital configurations on the bonds, see Eqs. (17) and (18), and charge excitations by t2g electrons,
one finds a compact expression [43],

He =
1

16

∑
γ

∑
〈ij〉‖γ

{
−8

5

t2

ε(6A1)

(
~Si · ~Sj + 6

)
P(γ)
〈ij〉 +

[
t2

ε(4E)
+

3

5

t2

ε(4A1)

](
~Si · ~Sj − 4

)
P(γ)
〈ij〉

+

[
t2

ε(4E)
+

t2

ε(4A2)

](
~Si · ~Sj − 4

)
Q(γ)
〈ij〉

}
+ Ez

∑
i

τ
(c)
i . (42)

In addition, t2g electrons also contribute with Ht = 1
8
Jβrt

(
~Si ·~Sj − 4

)
. Here β = (tπ/t)

2

follows from the difference between the effective d-d hopping elements along the σ and π
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(A) (B)

Fig. 13: Kinetic energies per bond K(γ)
n Eq. (32) for increasing temperature T obtained from

the respective spin-orbital models for FM (top) and AF (bottom) bonds along the axis γ: (A)
LaMnO3 (with J = 150 meV, η ' 0.18 [28], and experimental points [33]); (B) LaVO3 with
η=0.13 [35] and experimental points [44]. The kinetic energies in HS states (n = 1, red lines)
are compared with the experiment (filled circles). Vertical dotted lines indicate values of TN.
Images reproduced from Ref. [28].

bonds, i.e., β ' 1
9
, while the coefficient rt stands for a superposition of all t2g excitations

involved in the t2g superexchange [28]. Note that spin-projection operators for high (low) total
spin S = 2 (S = 1) cannot be used, but again the HS term stands for a FM contribution
which dominates over the LS terms when

〈
P(γ)
〈ij〉
〉
' 1. Charge excitations by t2g electrons give

double occupancies in active t2g orbitals, so Ht is AF but this term is small—as a result FM
interactions may dominate but again only along two spatial directions. Indeed, this happens for
the realistic parameters of LaMnO3 for the ab planes where SO is FM and coexists with AO
order, while along the c axis SO is AF accompanied by FO order, in agreement with GKR, i.e.,
spin-orbital order is A-AF/C-AO. Indeed, this type of order is found both from the theory for
realistic parameters and from electronic structure calculations [45]. The JT orbital interactions
are responsible for the enhanced value of the orbital transition temperature [46].

Spin- and orbital-energy scale separately here, and the OO is mainly triggered by JT distortions
[45]. The optical spectral weight due to HS states in LaMnO3 may be easily derived from
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the present model (42), following the general theory, see Eq. (32). One finds a very satisfactory
agreement between the present theory and the experimental results [33], as shown in Fig. 13(A).
We emphasize, that no fit is made here, i.e., the kinetic energies (32) are calculated using the
same parameters as those used elsewhere for the magnetic exchange constants [28]. Therefore,
such a good agreement with experiment suggests that indeed the spin-orbital superexchange
may be disentangled for large S = 2 spins. Summarizing, we have found that spin-orbital
entanglement is weak in this case [46]. A posteriori, this conclusion could be also drawn from
a good agreement of spin excitations predicted by the theory with experimental data [47].

5 Spin-orbital entanglement in t2g electron models

5.1 Entangled phases of LaVO3 and YVO3

In this case one uses the degenerate Hubbard model for three t2g orbitals with J tH (22) [48].
Spin-orbital entanglement is stronger for t2g than for eg systems [29]. Due to large Coulomb in-
teraction, the spin-orbital entangled state in RVO3 (R = La,. . . ,Lu) satisfies in a Mott insulator
the local constraint at V3+ site i,

nia + nib + nic = 2, (43)

and G-type OO competes with the spin-orbital entangled state. Rare earth site disorder favors
the spin-orbital entanglement rather than a cooperative JT distortion [49]. The entanglement
is best seen in the coupling between the spin and orbital phase transition [50]. Due to Hund’s
exchange JH , one has here coupled S = 1 spins and τ = 1/2 orbitals for three (n = 1, 2, 3)
charge excitations εn arising from the transitions to [see Fig. 6(b)]:

(i) a high-spin state 4A2 at energy U−3JH ,

(ii) two degenerate low-spin states 2T1 and 2E at U, and

(iii) a 2T2 low-spin state at U+2JH [16].

Using η (25), we parametrize this multiplet structure by r1, Eq. (36), and the top multiplet state,

r5 =
1

1+2η
. (44)

The cubic symmetry is broken and the CF induces orbital splitting in RVO3, hence 〈nic〉 = 1

and the orbital degrees of freedom are given by the doublet {a, b}, with nia + nib = 1, which
defines the pseudospin operators ~τi at site i. One derives a HS contribution H(c)

1 (ij) for a bond
〈ij〉 along the c axis, and H(ab)

1 (ij) for a bond in the ab plane:

H
(c)
1 (ij) = −1

3
Jr1

(
~Si ·~Sj + 2

)(
1
4
− ~τi ·~τj

)
, (45)

H
(ab)
1 (ij) = −1

6
Jr1

(
~Si ·~Sj + 2

)(
1
4
− τ zi τ zj

)
. (46)

In Eq. (45) pseudospin operators ~τi describe the low-energy dynamics of (initially degenerate)
{xz, yz} orbital doublet at site i; this dynamics is quenched in the plane, see H(ab)

1 Eq. (46).
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Here 1
3
(~Si · ~Sj+2) is the projection operator on the HS state for S = 1 spins. The termsH(c)

n (ij)

for LS excitations (n = 2, 3) contain instead the spin operator (1 − ~Si · ~Sj) (which guarantees
that these terms cannot contribute for fully polarized spins 〈~Si ·~Sj〉 = 1):

H
(c)
2 (ij) = − 1

12
J
(
1− ~Si ·~Sj

)(
7
4
− τ zi τ zj − τxi τxj + 5τ yi τ

y
j

)
,

H
(c)
3 (ij) = −1

4
Jr5

(
1− ~Si ·~Sj

)(
1
4

+ τ zi τ
z
j + τxi τ

x
j − τ

y
i τ

y
j

)
. (47)

Again the terms H(ab)
n (ij) differ from H

(c)
n (ij) only by the orbital operators,

H
(ab)
2 (ij) = −1

8
J
(
1− ~Si ·~Sj

)(
19
12
∓ 1

2
τ zi ∓ 1

2
τ zj − 1

3
τ zi τ

z
j

)
,

H
(ab)
3 (ij) = −1

8
Jr5

(
1− ~Si ·~Sj

)(
5
4
∓ 1

2
τ zi ∓ 1

2
τ zj + τ zi τ

z
j

)
, (48)

where upper (lower) sign corresponds to bonds along the a (b) axis.
First, we present a mean field approximation for the spin and orbital bond correlations which
are determined self-consistently after decoupling them from each other in HJ (28). Spin inter-
actions in Eq. (29) are given by two exchange constants:

Jc = 1
2
J
{
ηr1 − (r1 − ηr1 − ηr5)(1

4
+ 〈~τi ·~τj〉)− 2ηr5〈τ yi τ

y
j 〉
}
,

Jab = 1
4
J
{

1− ηr1 − ηr5 + (r1 − ηr1 − ηr5)(1
4

+ 〈τ zi τ zj 〉)
}
, (49)

determined by orbital correlations 〈~τi·~τj〉 and 〈ταi ταj 〉. By evaluating them one finds Jc < 0 and
Jab > 0 and the C-AF SO is supported.
In the orbital sector one finds at the same time,

Hτ =
∑
〈ij〉c

[
Jτc ~τi · ~τj − J(1− sc)ηr5τ

y
i τ

y
j

]
+ Jτab

∑
〈ij〉ab

τ zi τ
z
j , (50)

Jτc = 1
2
J [(1 + sc )r1 + (1− sc )η(r1+r5)] , (51)

Jτab = 1
4
J [(1− sab)r1 + (1 + sab)η(r1+r5)] , (52)

depending on spin correlations: sc = 〈~Si · ~Sj〉c and sab = −〈~Si · ~Sj〉ab. In a classical C-AF
state (sc = sab = 1) this mean field procedure becomes exact, and the orbital problem maps to
Heisenberg pseudospin chains along the c axis, weakly coupled (as η � 1) along a and b bonds,

H(0)
τ = Jr1

∑
〈ij〉c

~τi · ~τj +
1

2
η

(
1 +

r5

r1

) ∑
〈ij〉ab

τ zi τ
z
j

 , (53)

releasing large zero-point energy. Thus, spin C-AF and G-AO order with quasi-1D orbital
quantum fluctuations support each other in RVO3. Orbital fluctuations play here a prominent
role and amplify the FM exchange Jc, making it even stronger than the AF exchange Jab [16].
Having the individual terms H(γ)

n of the spin-orbital model, one may derive the spectral weights
of optical spectra, see Eq. (32). The HS excitations have remarkable temperature dependence
and the spectral weight decreases in the vicinity of the magnetic transition at TN, see Fig. 13(B).
The observed behavior is reproduced in the theory only when spin-orbital interactions are
treated in a cluster approach, i.e., they cannot be disentangled.
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Fig. 14: Phase transitions in the vanadium perovskites RVO3: (a) phase diagram with the
orbital TOO and Néel TN1 transition temperatures obtained from the theory with and with-
out orbital-lattice coupling (solid and dashed lines) [50], and from experiment (circles) [51];
(b) spin 〈Szi 〉 (solid) and G-type orbital 〈τ zi 〉G (dashed) order parameters, vanishing at TN1 and
TOO, respectively, and the transverse orbital polarization 〈τxi 〉 (dashed-dotted lines) for LaVO3

and SmVO3 (thin and heavy lines). Images reproduced from Ref. [50].

Unlike in LaMnO3 where the spin and orbital phase transitions are well separated [46], in the
RVO3 (R = Lu, Yb,. . . ,La) the two above transitions are close to each other [51]. It is not easy
to reproduce the observed dependence of the transition temperatures TOO and the Néel TN1 on
the ionic radius rR (in the RVO3 compounds with small rR there is also another magnetic tran-
sition at TN2 [52] which is not discussed here). The spin-orbital model was extended by the cou-
pling to the lattice to unravel a nontrivial interplay between superexchange, the orbital-lattice
coupling due to the GdFeO3-like rotations of the VO6 octahedra, and orthorhombic lattice dis-
tortions [50]. One finds that the lattice strain affects the onset of the magnetic and orbital order
by partial suppression of orbital fluctuations, and the dependence of TOO is non-monotonous,
while TN1 is reduced, see Fig. 14(a). Thereby the orbital polarization ∝ 〈τx〉 increases with
decreasing ionic radius rR, see Fig. 14(b). The theoretical approach [50] demonstrates that
orbital-lattice coupling is very important and reduces both TOO and Néel TN1 for small ionic
radii. Simultaneously, TN1 decreases to the left due to spin-orbital entanglement.

It has also been shown that the t2g perovskite LaVO3 is a unique case where the KK phase
transition drives orbital order, in contrast to the usual case where the OO is controlled by the
CF splitting enhanced by Coulomb interaction and both OO and SO transition are well sepa-
rated [53]. As a consequence, the magnetic transition is close to (and even above) the superex-
change driven OO order transition, and TN > TKK ∼ TOO, whereas typically magnetism arises
at much lower temperatures than orbital ordering. In contrast, in YVO3 the CF is sufficiently
large to suppress the KK phase transition and spin-orbital interactions disentangle.
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5.2 Spin-orbital entanglement on a triangular lattice

Finally, we wish to discuss here two rather interesting examples going also beyond the per-
ovskite lattice, involving d1 configurations. Two operators are entangled if their states at tem-
perature T = 0 cannot be factorized into parts belonging to different subspaces. This happens
precisely in some spin-orbital models and is the source of spin-orbital entanglement [29]. To
verify whether entanglement occurs or not, it suffices to compute and analyze the spin, orbital
and spin-orbital (four-operator) correlation functions for a bond 〈ij〉 along γ axis, given by

Sij ≡ 1
d

∑
n

〈
n
∣∣~Si · ~Sj∣∣n〉 , (54)

Tij ≡ 1
d

∑
n

〈
n
∣∣(~Ti · ~Tj)(γ)

∣∣n〉 , (55)

Cij ≡ 1
d

∑
n

〈
n
∣∣(~Si · ~Sj − Sij) (~Ti · ~Tj − Tij)(γ)

∣∣n〉 (56)

= 1
d

∑
n

〈
n
∣∣(~Si · ~Sj)(~Ti · ~Tj)(γ)

∣∣n〉−(1
d

∑
n

〈
n
∣∣~Si ·~Sj∣∣n〉)(1

d

∑
m

〈
m
∣∣(~Ti · ~Tj)(γ)

∣∣m〉),
where d is the ground state degeneracy, and the pseudospin scalar product in Eqs. (55) and (56)
is relevant for a model with active t2g orbital degrees of freedom. As a representative example
we evaluate here such correlations for a 2D spin-orbital model derived for a NaTiO2 plane [54];
other situations with spin-orbital entanglement are discussed in Ref. [29].
To explain the physical origin of the spin-orbital model for NaTiO2 [54], we consider a rep-
resentative bond along the c axis shown in Fig. 15. For the realistic parameters of NaTiO2

the t2g electrons are almost localized in d1 configurations of Ti3+ ions, hence their interactions
with neighboring sites can be described by the effective superexchange and kinetic exchange
processes. Virtual charge excitations between the neighboring sites, d1

i d
1
j 
 d2

i d
0
j , generate

magnetic interactions which arise from two different hopping processes for active t2g orbitals:
(i) the effective hopping t = t2pd/∆ which occurs via oxygen 2pz orbitals with the charge trans-
fer excitation energy ∆, in the present case along the 90◦ bonds, and (ii) direct hopping t′

which couples the t2g orbitals along the bond and gives a kinetic exchange interaction, as in the
Hubbard model (2). Note that the latter processes couple orbitals with the same flavor, while
the former ones couple different orbitals (for this geometry) so the occupied orbitals may be
interchanged as a result of a virtual charge excitation—these processes are shown in Fig. 15.
The effective spin-orbital model considered here for NaTiO2 reads [54],

H = J
(

(1−α) Hs +
√

(1−α)α Hm + α Hd

)
. (57)

The parameter α in Eq. (57) is given by the hopping elements as follows,

α = (t′)2/
[
t2 + (t′)2

]
, (58)

and interpolates between the superexchangeHs (α = 0) and kinetic exchangeHd (α = 1), while
in between these two exchange elements and mixed exchange Hm contributes simultaneously;
these terms are explained in Ref. [54]. This model is considered here in the absence of Hund’s
exchange η (25), i.e., at η = 0. One finds that all the orbitals contribute equally in the entire
range of α, and each orbital state is occupied at two out of six sites in the entire regime of
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Fig. 15: Left — (a) Hopping processes between t2g orbitals along a bond parallel to the c axis
in NaTiO2: (i) tpd between Ti(t2g) and O(2pz) orbitals—two tpd transitions define an effective
hopping t, and (ii) direct d-d hopping t′. The t2g orbitals (7) are shown by different color. The
bottom part gives the hopping processes along the γ = a, b, c axes that contribute to Eq. (57):
(b) superexchange and (c) direct exchange. Right — Ground state for a free hexagon as a func-
tion of α: (a) bond correlations—spin Sij Eq. (54) (circles), orbital Tij Eq. (55) (squares), and
spin–orbital Cij Eq. (56) (triangles); (b) orbital electron densities n1γ at a representative site
i = 1 (left-most site): n1a (circles), n1b (squares), n1c (triangles). The insets indicate the orbital
configurations favored by the superexchange (α = 0), by mixed interactions 0.44 < α < 0.63,
and by the direct exchange (α = 1). The vertical lines indicate an exact range of configurations
due to the degeneracy. Images reproduced from Ref. [55].

α, see Fig. 15. The orbital state changes under increasing α and one finds as a result four
distinct regimes, with abrupt transitions between them. In the superexchange model (α = 0)
there is precisely one orbital at each site which contributes, e.g. n1c = 1 as the c orbital is
active along both bonds. Having a frozen orbital configuration, the orbitals decouple from spins
and the ground state is disentangled, with Cij = 0, and one finds that the spin correlations
Sij = −0.4671, as for the AF Heisenberg ring of L = 6 sites. Orbital fluctuations increase
gradually with increasing α and this results in finite spin-orbital entanglement Cij ' −0.12 for
0.10 < α < 0.44; simultaneously spin correlations weaken to Sij ' −0.27.

In agreement with intuition, when α = 0.5 and all inter-orbital transitions shown in Fig. 15
have equal amplitude, there is large orbital mixing which is the most prominent feature in the
intermediate regime of 0.44 < α < 0.63. Although spins are coupled by AF exchange, the
orbitals fluctuate here strongly and reduce further spin correlations to Sij ' −0.21. The orbital
correlations are negative, Tij < 0, the spin-orbital entanglement is finite, Cij ' −0.13, and the
ground state is unique (d = 1). Here all the orbitals contribute equally and n1γ = 1/3 which
may be seen as a precursor of the spin-orbital liquid state which dominates the behavior of the
triangular lattice. The regime of larger values of α > 0.63 is dominated by the kinetic exchange
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Fig. 16: Phase diagram of the Kitaev-Heisenberg model Eq. (59) with parametrization
(J,K) = (cosα, sinα) as obtained from exact diagonalization data. Solid lines show the map-
ping between two Klein-dual points. Red lines mark the location of the four SU(2)—symmetric
points. Yellow diamonds mark the two Kitaev points. Image reproduced from Ref. [56].

in Eq. (57), and the ground state is degenerate with d = 2 [55], with strong scattering of possible
electron densities {biγ}, see Fig. 15. Weak entanglement is found for α > 0.63, where Cij ' 0.
Summarizing, except for the regimes of α < 0.09 and α > 0.63, the ground state of a single
hexagon is strongly entangled, i.e., Cij < −0.10, see Fig. 15.

As the last example we would like to highlight briefly the Heisenberg-Kitaev (HK) Hamiltonian
on the triangular lattice [56]. Here spin-orbital entanglement is triggered by formation of ef-
fective j = 1/2 spins in a Mott insulator observed for the recently synthesized Ba2IrTi2O9. The
model is frustrated, both by its interactions and by geometry, see Fig. 16. The description of the
microscopic physics is given here by a superposition of Heisenberg and Kitaev interaction,

HHK = J
∑
〈ij〉

(
~Si · ~Sj

)
+K

∑
γ‖〈ij〉

Sγi S
γ
j , (59)

where ~Si is a spin operator located on site i of the triangular lattice spanned by the lattice vectors
~ax = (1, 0)T, ~ay = (−1/2,

√
3/2)T, and ~az = −~ax − ~ay, for the lattice constant a = 1. The first

term is the Heisenberg coupling∝ J , while the Kitaev term∝ K explicitly breaks spin-rotation
invariance and acts only between the same spin components Sγi S

γ
j at nearest neighbor sites.

First, we observe that an infinitesimal Kitaev exchange removes the 120◦ order of the quantum
Heisenberg model [56]. Second, the phase diagram of Fig. 16 is very rich and instead of 120◦

order, an extended Z2-vortex crystal phase arises which could be identified experimentally.
Third, the phase diagram exhibits a duality, similar to the HK model on the honeycomb lattice
[57]. This duality relates a pair of interactions on the right-hand side of the circle to a pair of
interactions on the left-hand side, i.e., J → −J and K → 2J+K. The corresponding dual
states are related by a four-sublattice basis transformation. For more explanation see Ref. [56].
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6 Experimental consequences of spin-orbital entanglement

The field of spin-orbital physics is recently growing and becoming richer due to new exper-
iments. Understanding them is possible within simple models, mainly developed in low di-
mension. Also there entanglement is the strongest as quantum phenomena domininate in low
dimension. We shall concentrate on them here as they uncover important principles of treating
spin-orbital entanglement, both in the ground and in excited states. Spin-orbital entangled states
occur in several quantum materials and the proper understanding of them becomes crucial for
the quantitative analysis of the observed thermodynamic phase transitions.

Let us summarize briefly entanglement properties which could modify the experiment. First, I
would like to recall the 1D chain, where each of the fractional quasiparticles carries both spin
and orbital quantum numbers, and the two variables (spin and orbital) are always entangled in
the collective excitations [58]. The spin-orbital chain with two orbital flavors has been carefully
studied, both without the orbital spitting [e.g. in the SU(4) case] and for large splitting Ez.

Second, the 1D cuprate CaCu2O3 is a good example for the spin-orbital fractionalization along
the chain direction, while at the same time no fractionalization is observed for the xy orbital
which extends in both leg and rung direction [59]. Thus different degrees of dimensionality may
be selected by orbitals and thus the entanglement depends on particular orbitals involved in the
hopping. In a realistic 1D model for CaCu2O3 the splitting between the LS and HS terms occurs
for finite Hund’s exchange JH . In fact, any spin-orbital model requires to include a finite, but
realistic Hund’s exchange to explain the experimental data [60].

Third, another important competitor to the spin-orbital physics and on-bond entanglement is the
strong JT effect which is found as well in KCuF3 [61]. It drives the orbital order and does change
d-d excitations which become highly localized. At the same time, the low-energy excitations
present clear dispersion. They match extremely well with the two-spinon continuum. So, we
suggest that spin-orbital entanglement is a subtle property which is easily destroyed by some
stronger local interaction, and the entanglement depends then strongly on the possible coupling
to the lattice.

Fourth, spin-orbital coupling may lead to the disappearance of magnetic properties if it is suf-
ficiently strong, removes the orbital degrees of freedom, and generates local singlets [62]. It is
then challenging to study exchange interactions between these local singlets. In perovskites one
finds a conventional Bose condensation of excitons into a magnetic state, while an unexpected
1D behavior supporting spin-liquid states emerges in honeycomb lattices. When spin and or-
bital channels are decoupled and orbital frustration induces then frustration in the spin channel,
opening up the possibility of spin-orbital liquids with both spin and orbital entanglement [63].

Finally, the physics will change completely when spin-orbit interaction dominates over the su-
perexchange. Then local singlets form and are only weakly coupled by inter-site terms [64].
As we have shown on the example of a 1D spin-orbital chain, entanglement is then strong but
preferably limited to a single site, while the inter-site spin-orbital entanglement (which involves
superexchange bonds) might be still induced as shown in Sec. 1.
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7 Summary

Here we have focused on the interplay of spin and orbital degrees of freedom in realistic Mott
insulators and have shown that even when the entanglement is absent, these two types of degrees
of freedom (spin and orbital) decide about rather complex behavior, with competing tendencies
to localize due to strong correlations and to delocalize to gain more kinetic energy. Quantum
fluctuations are particularly well developed in the t2g systems where they partly even destroy
OO. As a result, a second order phase transition from the spin-orbital entangled state to a
C-OO/G-AF ground state is induced in LaVO3, where the long-range OO suppresses the spin-
orbital entanglement [49]. On the other hand, entanglement may be easily removed by phase
transitions, as a more fragile property of Mott insulators. It is near a phase transition that spin-
orbital entanglement is quenched locally [41]. The detailed energy balance depends as well on
the distribution of charge defects which also destroy spin-orbital entanglement locally.
Spin-orbital entanglement in the excited states is almost unexplored and awaits careful future
studies. It may be responsible for the modified dispersion of spin (and orbital) excitations
when either the spin or the orbital background is modified [42]. Yet, such modifications do not
require that the local degrees of freedom factorize, but it suffices that their coupling is modified
and causes measurable yet still unexplored properties.
Summarizing, spin-orbital entanglement is an important yet subtle property of Mott insulators.
It is fragile and helps to understand how spins and orbitals complement each other and behave in
the opposite way in ordered 3D materials. Perhaps the best example is the orbital liquid where
orbital disorder coexists with FM order of spins in the ground state of CMR manganites. Then
the spin-orbital entanglement is removed and the coherent spin FM order decouples from the
orbitals [21]. Many properties of correlated insulators are still unexplored and hopefully will
be investigated in the future. This concerns in particular the spin and orbital excitations. We
should be prepared that this field has still some hidden surprises to discover and that some of
them will be revealed gradually in the future.
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