Exchange Mechanisms
Erik Koch
German Research School for Simulation Sciences, Jülich

Magnetism is Quantum Mechanical

QUANTUM MECHANICS
 THE KEY TO UNDERSTANDING MAGNETISM

Nobel Lecture, 8 December, 1977
J.H. VAN VLECK

Harvard University, Cambridge, Massachusetts, USA

Bohr - van Leeuwen theorem

 in a classical system in thermal equilibrium a magnetic field will not induce a magnetic momentLorentz force perpendicular to velocity \Rightarrow does not change kinetic energy
Boltzmann statistics occupies states according to energy

magnetic moments

complex wave function: current density

$$
\vec{j}(\vec{r})=-\frac{e \hbar}{2 i m_{e}}(\overline{\psi(\vec{r})} \nabla \psi(\vec{r})-\psi(\vec{r}) \nabla \overline{\psi(\vec{r})})
$$

orbital magnetic moment
$\vec{\mu}=\frac{1}{2} \int \vec{r} \times \vec{j} d^{3}=-\frac{e \hbar}{2 m_{e}}\langle\vec{L}\rangle=-\mu_{B}\langle\vec{L}\rangle$
electron spin

$$
\vec{\mu}_{S}=-g_{e} \mu_{B}\langle\vec{S}\rangle, \quad g_{e} \approx 2.0023 \ldots
$$

atomic moments of the order of μ_{B}

magnetic interaction

dipole-dipole interaction

$$
\Delta E=\frac{\vec{\mu}_{1} \cdot \vec{\mu}_{2}-3\left(\hat{R} \cdot \vec{\mu}_{1}\right)\left(\hat{R} \cdot \overrightarrow{\mu_{2}}\right)}{4 \pi \varepsilon_{0} c^{2} R^{3}}
$$

interaction energy of two dipoles μ_{B} two Bohr radii a_{0} apart:

$$
\Delta E=-\frac{2 \mu_{B}^{2}}{4 \pi \varepsilon_{0} c^{2}\left(2 a_{0}\right)^{3}}=-\frac{1 / 2}{137^{2} 8} \text { Hartree } \approx 0.09 \mathrm{meV}
$$

expect magnetic ordering below temperatures of about 1 K
what about magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ with $\mathrm{T}_{\mathrm{c}} \approx 840 \mathrm{~K}$?

exchange mechanisms

coupling of magnetic moments results from the interplay of the Pauli principle with Coulomb repulsion and electron hopping

\longrightarrow
not a fundamental but an effective interaction: model/mechanism

Models and Mechanisms

The art of model-building is the exclusion of real but irrelevant parts of the problem, and entails hazards for the builder and the reader. The builder may leave out something genuinely relevant; the reader, armed with too sophisticated an experimental probe or too accurate a computation, may take literally a schematized model whose main aim is to be a demonstration of possibility.
P.W. Anderson

Local Moments and Localized States Nobel Lecture 1977

Coulomb Exchange

Coulomb repulsion between electrons

$$
H_{U}=\sum_{i<j} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

consider two electrons in orthogonal orbitals φ_{a} and φ_{b} Slater determinant of spin-orbitals:

$$
\begin{aligned}
& \Psi_{a, \sigma ; b \sigma^{\prime}}\left(\vec{r}_{1}, s_{1} ; \vec{r}_{2}, s_{2}\right)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{a}\left(\overrightarrow{r_{1}}\right) \sigma\left(s_{1}\right) & \phi_{a}\left(\vec{r}_{2}\right) \sigma\left(s_{2}\right) \\
\phi_{b}\left(\vec{r}_{1}\right) \sigma^{\prime}\left(s_{1}\right) & \phi_{b}\left(\vec{r}_{2}\right) \sigma^{\prime}\left(s_{2}\right)
\end{array}\right| \\
& \quad=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right) \sigma\left(s_{1}\right) \sigma^{\prime}\left(s_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right) \sigma^{\prime}\left(s_{1}\right) \sigma\left(s_{2}\right)\right)
\end{aligned}
$$

Coulomb exchange: same spin

when electrons have same spin: $\sigma=\sigma^{\prime}$

$$
\psi_{a, \sigma ; b \sigma}=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right) \sigma\left(s_{1}\right) \sigma\left(s_{2}\right)
$$

Coulomb matrix-element
$\left\langle\psi_{a, \sigma ; b, \sigma}\right| \frac{1}{\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|}\left|\psi_{a, \sigma ; b, \sigma}\right\rangle=\frac{1}{2}\left(U_{a b}-J_{a b}-J_{b a}+U_{b a}\right)=U_{a b}-J_{a b}$

Coulomb integral $\quad U_{a b}=\int d^{3} r_{1} \int d^{3} r_{2} \frac{\left|\phi_{a}\left(\vec{r}_{1}\right)\right|^{2}\left|\phi_{b}\left(\vec{r}_{2}\right)\right|^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}$
exchange integral $\quad J_{a b}=\int d^{3} r_{1} \int d^{3} r_{2} \frac{\overline{\phi_{a}\left(\vec{r}_{1}\right)} \phi_{b}\left(\vec{r}_{1}\right) \overline{\phi_{b}\left(\vec{r}_{2}\right)} \phi_{a}\left(\vec{r}_{2}\right)}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}$

Coulomb exchange: opposite spin

when electrons have opposite spin: $\sigma=-\sigma^{\prime}$

$$
\begin{aligned}
& \psi_{a, \uparrow ; b \downarrow}\left(\vec{r}_{1}, s_{1} ; \vec{r}_{2}, s_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right) \uparrow\left(s_{1}\right) \downarrow\left(s_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right) \downarrow\left(s_{1}\right) \uparrow\left(s_{2}\right)\right) \\
& \psi_{a, \downarrow ; b \uparrow}\left(\vec{r}_{1}, s_{1} ; \vec{r}_{2}, s_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right) \downarrow\left(s_{1}\right) \uparrow\left(s_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right) \uparrow\left(s_{1}\right) \downarrow\left(s_{2}\right)\right)
\end{aligned}
$$

diagonal matrix-elements $\quad\left\langle\psi_{a, \sigma ; b,-\sigma}\right| \frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}\left|\psi_{a, \sigma ; b,-\sigma}\right\rangle=U_{a b}$ off-diagonal matrix-elements $\quad\left\langle\psi_{a \uparrow ; b \downarrow}\right| \frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}\left|\psi_{a \downarrow ; b \uparrow}\right\rangle \quad=-J_{a b}$

Coulomb matrix

$$
\left(\begin{array}{rr}
U_{a b} & -J_{a b} \\
-J_{a b} & U_{a b}
\end{array}\right)
$$

Coulomb exchange

$$
H_{U}=\left(\begin{array}{cccc}
U_{a b}-J_{a b} & 0 & 0 & 0 \\
0 & U_{a b} & -J_{a b} & 0 \\
0 & -J_{a b} & U_{a b} & 0 \\
0 & 0 & 0 & U_{a b}-J_{a b}
\end{array}\right) \begin{aligned}
& \uparrow \uparrow \\
& \uparrow \downarrow \\
& \downarrow \uparrow \\
& \downarrow \downarrow \\
& \text { eigenstates }
\end{aligned}
$$

triplet: $\Delta \varepsilon_{\text {triplet }}=U_{a b}-J_{a b}$

$$
\psi_{\uparrow \uparrow} \quad=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right)
$$

$$
\frac{1}{\sqrt{2}}\left(\psi_{\uparrow \downarrow}+\psi_{\downarrow \uparrow}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right) \frac{1}{\sqrt{2}}(|\downarrow \uparrow\rangle+|\uparrow \downarrow\rangle)
$$

$$
\psi_{\downarrow \downarrow} \quad=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)-\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right)
$$

singlet: $\quad \Delta \varepsilon_{\text {singlet }}=U_{a b}+J_{a b}$

$$
\frac{1}{\sqrt{2}}\left(\psi_{\uparrow \downarrow}-\psi_{\downarrow \uparrow}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\vec{r}_{1}\right) \phi_{b}\left(\vec{r}_{2}\right)+\phi_{b}\left(\vec{r}_{1}\right) \phi_{a}\left(\vec{r}_{2}\right)\right) \frac{1}{\sqrt{2}}(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle)
$$

Coulomb exchange

orthogonal orbitals φ_{a} and φ_{b} : $\quad J_{a b}>0$
singlet
triplet

first of Hund's rules: ground-state has maximum spin

more electrons more complicated Coulomb matrix

Robert Eder: Multiplets in Transition Metal Ions

kinetic exchange

Coulomb exchange: Coulomb matrix for anti-symmetric wave functions kinetic exchange: only diagonal \boldsymbol{U}, interplay of Pauli principle and hopping
toy model - two sites with a single orbital hopping between orbitals: t two electrons in same orbital: U

one electron Hamiltonian (tight-binding)

$$
H=\left(\begin{array}{rr}
0 & -t \\
-t & 0
\end{array}\right) \quad|\uparrow, \cdot\rangle
$$

eigenstates

$$
\phi_{ \pm}=\frac{1}{\sqrt{2}}\left(\phi_{1} \pm \phi_{2}\right) \quad \varepsilon_{ \pm}=\mp t
$$

direct exchange: same spin

two electrons of same spin: basis states $\quad|\uparrow, \uparrow\rangle,|\downarrow, \downarrow\rangle$

Hamiltonian: no hopping, no Coulomb matrix element (Pauli principle)

$$
\begin{gathered}
H=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \begin{array}{l}
|\uparrow, \uparrow\rangle \\
|\downarrow, \downarrow\rangle \\
\varepsilon_{\text {triplet }}=0
\end{array}
\end{gathered}
$$

direct exchange: opposite spin

two electrons of opposite spin: basis states
$|\uparrow, \downarrow\rangle,|\downarrow, \uparrow\rangle \quad$ (covalent states) $\quad|\uparrow \downarrow, \cdot\rangle,|\cdot, \uparrow \downarrow\rangle$ (ionic states)

Hamiltonian

$$
H=\left(\begin{array}{rrrr}
0 & 0 & -t & -t \\
0 & 0 & +t & +t \\
-t & +t & U & 0 \\
-t & +t & 0 & U
\end{array}\right) \quad \begin{aligned}
& |\uparrow, \downarrow\rangle \\
& |\downarrow, \uparrow\rangle \\
& |\uparrow \downarrow, \cdot\rangle \\
& |\cdot, \uparrow \downarrow\rangle
\end{aligned}
$$

hopping -t: keep track of Fermi sign!

$$
|\uparrow, \downarrow\rangle \xrightarrow{-t}|\uparrow \downarrow, \cdot\rangle \quad \stackrel{\sim \downarrow, \uparrow\rangle}{\xrightarrow{-(-t)}|\uparrow \downarrow, \cdot\rangle}
$$

direct exchange: opposite spin

eigenstates

$$
\begin{array}{ll}
\varepsilon_{ \pm}=\frac{U}{2} \pm \frac{\sqrt{U^{2}+16 t^{2}}}{2}, & \psi_{ \pm}=\frac{\left.\left(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle-\frac{\varepsilon_{ \pm}}{2 t}[|\uparrow \downarrow, \cdot\rangle+|\cdot, \uparrow\rangle\rangle\right]\right)}{\sqrt{2+\varepsilon_{ \pm}^{2} /\left(2 t^{2}\right)}} \\
\varepsilon_{\text {cov }}=0 & , \quad \psi_{\text {cove }}=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle) \quad\left(\varepsilon_{\text {triplet }}\right) \\
\varepsilon_{\text {ion }}=U & , \quad \psi_{\text {ion }}=\frac{1}{\sqrt{2}}(|\uparrow \downarrow, \cdot\rangle-|\cdot, \uparrow\rangle)
\end{array}
$$

limit $U \rightarrow \infty$ (or $t \rightarrow 0$):

$$
\begin{array}{rlr}
\varepsilon_{-} & \rightarrow U+4 t^{2} / U \\
\varepsilon_{+} & \rightarrow & -4 t^{2} / U
\end{array}
$$

downfolding

partition Hilbert space

$$
H=\left(\begin{array}{ll}
H_{00} & T_{01} \\
T_{10} & H_{11}
\end{array}\right)
$$

resolvent

$$
G(\varepsilon)=(\varepsilon-H)^{-1}=\left(\begin{array}{cc}
\varepsilon-H_{00} & -T_{01} \\
-T_{10} & \varepsilon-H_{11}
\end{array}\right)^{-1}
$$

inverse of 2×2 block-matrix

$$
G_{00}(\varepsilon)=\left(\varepsilon-\left[H_{00}+T_{01}\left(\varepsilon-H_{11}\right)^{-1} T_{10}\right]\right)^{-1}
$$

downfolded Hamiltonian

$$
H_{\text {eff }} \approx H_{00}+T_{01}\left(\varepsilon_{0}-H_{11}\right)^{-1} T_{10}
$$

good approximation: narrow energy range and/or small coupling

inversion by partitioning

$$
\begin{array}{ll}
2 \times 2 \text { matrix } \\
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
\end{array}
$$

invert block- 2×2 matrix

$$
\begin{aligned}
& M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \quad M^{-1}=\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right) \quad\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& A \tilde{A}+B \tilde{C}=1 \\
& C \tilde{A}+D \tilde{C}=0 \rightsquigarrow \tilde{C}=-D^{-1} C \tilde{A}
\end{aligned}
$$

direct exchange: effective Hamiltonian

systematic treatment of limit $U \rightarrow \infty$ (or $t \rightarrow 0$): downfolding

$$
H=\left(\begin{array}{rr|rr}
0 & 0 & -t & -t \\
0 & 0 & +t & +t \\
\hline-t & +t & U & 0 \\
-t & +t & 0 & U
\end{array}\right)
$$

downfolding eliminates ionic states (actually change of basis)

$$
H_{\mathrm{eff}}(\varepsilon)=\binom{-t-t}{+t+t}\left(\begin{array}{cc}
\varepsilon-U & 0 \\
0 & \varepsilon-U
\end{array}\right)^{-1}\binom{-t+t}{-t+t} \approx-\frac{2 t^{2}}{U}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

diagonalize $H_{\text {eff }}$

$$
\begin{array}{lll}
\varepsilon_{t}=0 & \psi_{t}=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle) & \text { triplet } \\
\varepsilon_{s}=-\frac{4 t^{2}}{U} & \psi_{s}=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle) & \text { singlet }
\end{array}
$$

direct exchange: effective spin-coupling

$$
J_{\text {direct }}=\varepsilon_{\text {triplet }}-\varepsilon_{\text {singlet }}=4 t^{2} / U \quad J>0 \quad \mathbf{A F} \text { coupling }
$$

triplet
singlet

effective spin-Hamiltonian
$H_{\text {eff }}=-\frac{2 t^{2}}{U}\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right) \quad \begin{aligned} & |\uparrow, \downarrow\rangle \\ & |\downarrow, \uparrow\rangle\end{aligned}$
$=+\frac{2 t^{2}}{U}\left(2 S_{1}^{z} S_{2}^{z}-\frac{1}{2}+\left(S_{1}^{+} S_{2}^{-}+S_{1}^{-} S_{2}^{+}\right)\right)=\frac{4 t^{2}}{U}\left(\vec{S}_{1} \cdot \vec{S}_{2}-\frac{1}{4}\right)$

Heisenberg J

book-keeping: second quantization

introduce operators $c_{i \sigma}^{\dagger}$ that put electron of $\operatorname{spin} \sigma$ in orbital φ_{i} :
no electron:

$$
|\cdot, \cdot\rangle=|0\rangle
$$

single electron:

$$
\begin{aligned}
|\uparrow, \cdot\rangle & =c_{1 \uparrow}^{\dagger}|0\rangle \\
|\cdot, \uparrow\rangle & =c_{2 \uparrow}^{\dagger}|0\rangle
\end{aligned}
$$

two electrons:

$$
\begin{aligned}
|\uparrow, \downarrow\rangle & =c_{2 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle \\
|\downarrow, \uparrow\rangle & =c_{2 \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger}|0\rangle \\
|\uparrow \downarrow, \cdot\rangle & =c_{1 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle \\
|\cdot, \uparrow \downarrow\rangle & =c_{2 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger}|0\rangle
\end{aligned}
$$

second quantization: operators

adjoin: $\quad\left(c_{i \sigma}^{\dagger}|0\rangle\right)^{\dagger}=\langle 0| c_{i \sigma}$

$$
\left\{c_{i \sigma}, c_{j \sigma^{\prime}}\right\}=0=\left\{c_{i \sigma}^{\dagger}, c_{j \sigma^{\prime}}^{\dagger}\right\}
$$

annihilation operator:
removes electron
of spin σ from orbital φ_{i}
in particular $\quad c_{i \sigma}|0\rangle=0$

$$
\begin{array}{ccc}
c_{i \sigma} c_{j \sigma^{\prime}}^{\dagger}|0\rangle & =\delta_{i, j} \delta_{\sigma, \sigma^{\prime}}|0\rangle \\
c_{i \sigma}^{\dagger} c_{j \sigma^{\prime}}|0\rangle & =0 \tag{0}
\end{array}
$$

$$
n_{i \sigma}=c_{i \sigma}^{\dagger} c_{i \sigma}
$$

second quantization: examples

two-site model with one electron

$$
H=-t\left(c_{1 \uparrow}^{\dagger} c_{2 \uparrow}+c_{2 \uparrow}^{\dagger} c_{1 \uparrow}+c_{1 \downarrow}^{\dagger} c_{2 \downarrow}+c_{2 \downarrow}^{\dagger} c_{1 \downarrow}\right)=-t \sum_{i, j, \sigma} c_{j \sigma}^{\dagger} c_{i \sigma}
$$

two-site model with two electrons

$$
\begin{aligned}
H & =-t\left(c_{1 \uparrow}^{\dagger} c_{2 \uparrow}+c_{2 \uparrow}^{\dagger} c_{1 \uparrow}+c_{1 \downarrow}^{\dagger} c_{2 \downarrow}+c_{2 \downarrow}^{\dagger} c_{1 \downarrow}\right)+U\left(n_{1 \uparrow} n_{1 \downarrow}+n_{2 \uparrow} n_{2 \downarrow}\right) \\
& =-t \sum_{i, j, \sigma} c_{j \sigma}^{\dagger} c_{i \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
\end{aligned}
$$

also works for single electron

- easy to write down many-body Hamiltonian
- easy to handle Slater determinants

Hartree-Fock

ansatz: Slater determinant

$$
\left|\psi\left(\theta_{\uparrow}, \theta_{\downarrow}\right)\right\rangle=\left(\sin \left(\theta_{\downarrow}\right) c_{1 \downarrow}^{\dagger}+\cos \left(\theta_{\downarrow}\right) c_{2 \downarrow}^{\dagger}\right)\left(\sin \left(\theta_{\uparrow}\right) c_{1 \uparrow}^{\dagger}+\cos \left(\theta_{\uparrow}\right) c_{2 \uparrow}^{\dagger}\right)|0\rangle
$$

energy expectation value

$$
E\left(\theta_{\uparrow}, \theta_{\downarrow}\right)=-2 t\left(\sin \theta_{\uparrow} \sin \theta_{\downarrow}+\cos \theta_{\uparrow} \cos \theta_{\downarrow}\right)\left(\cos \theta_{\uparrow} \sin \theta_{\downarrow}+\sin \theta_{\uparrow} \cos \theta_{\downarrow}\right)
$$

$$
+U\left(\sin ^{2} \theta_{\uparrow} \sin ^{2} \theta_{\downarrow}+\cos ^{2} \theta_{\uparrow} \cos ^{2} \theta_{\downarrow}\right)
$$

minimize wrt θ_{\uparrow} and θ_{\downarrow}
HF orbitals respect symmetry of model: restricted Hartree-Fock (RHF) here: $\theta_{\uparrow}=\theta_{\downarrow}=\pi / 4$

HF allowed to break symmetry: unrestricted Hartree-Fock (UHF)
here: $\theta_{\downarrow}=\pi / 2-\theta_{\uparrow}$

Hartree-Fock

energy expectation value for $\theta_{\downarrow}=\pi / 2-\theta_{\uparrow}$

Hartree-Fock

direct kinetic exchange

singlet

$\underline{\longrightarrow}$

U
triplet

direct exchange
virtual hopping $-t^{2} / \mathrm{U} \times 2$

superexchange

symmetry:
only one oxygen-p involved in hopping

TMOs: negligible direct hopping between d-orbitals instead hopping via oxygen

U_{d}

ε_{d}
ε_{p}

$$
H=\sum_{\sigma}\left(\varepsilon_{d} \sum_{i} n_{i \sigma}+\varepsilon_{p} n_{p \sigma}-t_{p d} \sum_{i}\left(c_{i \sigma}^{\dagger} c_{p \sigma}+c_{p \sigma}^{\dagger} c_{i \sigma}\right)\right)+U_{d} \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

superexchange: same spin

$$
H=\sum_{\sigma}\left(\varepsilon_{d} \sum_{i} n_{i \sigma}+\varepsilon_{p} n_{p \sigma}-t_{p d} \sum_{i}\left(c_{i \sigma}^{\dagger} c_{p \sigma}+c_{p \sigma}^{\dagger} c_{i \sigma}\right)\right)+U_{d} \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

oxygen-p full, two d-electrons of same spin

$$
H=\left(\begin{array}{c|cc}
0 & t_{p d} & t_{p d} \\
\hline t_{p d} & U_{d}+\Delta_{p d} & 0 \\
t_{p d} & 0 & U_{d}+\Delta_{p d}
\end{array}\right) \begin{aligned}
& c_{2 \uparrow}^{\dagger} c_{p \downarrow}^{\dagger} c_{p \uparrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle \\
& c_{2}^{\dagger} \uparrow \uparrow_{p \uparrow}^{\dagger} c_{1 \downarrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle \\
& c_{2 \downarrow}^{\dagger} c_{2 \uparrow}^{\dagger} c_{p \uparrow}^{\dagger} c_{1 \uparrow}^{\dagger}|0\rangle
\end{aligned}
$$

$$
H_{\mathrm{eff}}=\left(t_{p d}, t_{p d}\right)\left(\begin{array}{cc}
\varepsilon-\left(U_{d}+\Delta_{p d}\right) & 0 \\
0 & \varepsilon-\left(U_{d}+\Delta_{p d}\right)
\end{array}\right)\binom{t_{p d}}{t_{p d}} \approx-\frac{2 t_{p d}^{2}}{U_{d}+\Delta_{p d}}
$$

superexchange: opposite spin

$$
\begin{aligned}
& \text { + + } \\
& \text { + \# } \\
& \frac{1}{7} \quad \frac{4}{1} \\
& \frac{1}{1} \quad 4 \quad \frac{14}{11} \\
& \frac{1}{1} \rightarrow \frac{14}{1} \\
& \frac{1}{1}-\frac{1}{1} \\
& -\frac{1}{4}+ \\
& \#-\frac{1}{n}
\end{aligned}
$$

superexchange: opposite spin

$$
\begin{aligned}
H_{\text {eff }}= & H_{00}+T_{01}\left(\varepsilon-\left(H_{11}+T_{12}\left(\varepsilon-H_{22}\right)^{-1} T_{21}\right)\right)^{-1} T_{10} \\
\approx & H_{00}-T_{01} H_{11}^{-1} T_{10}-T_{01} H_{11}^{-1} T_{12} H_{22}^{-1} T_{21} H_{11}^{-1} T_{10} \\
= & -\frac{2 t_{p d}^{2}}{U_{d}+\Delta_{p d}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\frac{2 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}}\left(\frac{1}{U_{d}}+\frac{1}{U_{d}+\Delta_{p d}}\right)\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right) \\
& \\
& \text { singlet-triplet splitting: } \quad J=\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}}\left(\frac{1}{U_{d}}+\frac{1}{U_{d}+\Delta_{p d}}\right)
\end{aligned}
$$

ferromagnetic superexchange

180° superexchange
hopping only via oxygen-p pointing in direction connecting d-orbitals

no hopping connecting d-orbitals but Coulomb exchange on oxygen double exchange

ferro superexchange: opposite spin $\uparrow \downarrow \downarrow \uparrow$

$$
\begin{aligned}
& H_{\text {eff }}=-\frac{2 t_{p d}^{2}}{U_{d}+\Delta_{p d}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}} \frac{1}{4\left(U_{d}+\Delta_{p d}\right)^{2}-J_{x y}^{2}}\left(\begin{array}{cc}
2\left(U_{d}+\Delta_{p d}\right) & +J_{x y} \\
+J_{x y} & 2\left(U_{d}+\Delta_{p d}\right)
\end{array}\right) \\
& =-\left(\frac{2 t_{p d}^{2}}{U_{d}+\Delta_{p d}}+\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}} \frac{1}{2\left(U_{d}+\Delta_{p d}\right)-J_{x y}}\right) \\
& \text { (as for same spin) } \\
& +\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}} \frac{J_{x y}}{4\left(U_{d}+\Delta_{p d}\right)^{2}-J_{x y}^{2}}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& \text { singlet-triplet splitting } \\
& J=-\frac{4 t_{p d}^{4}}{\left(U_{d}+\Delta_{p d}\right)^{2}} \frac{2 J_{x y}}{4\left(U_{d}+\Delta_{p d}\right)^{2}-J_{x y}^{2}}
\end{aligned}
$$

double exchange

double exchange involves both, full Coulomb matrix and hopping
mixed-valence compound: non-integer filling of d-orbital d-electrons can hop even when U is large
simple model: two sites with two orbitals each

double exchange

$$
H=\left(\begin{array}{ll}
-J_{a b} & -t_{b b} \\
-t_{b b} & -J_{a b}
\end{array}\right)
$$

$$
\begin{aligned}
& \varepsilon_{ \pm}=-J_{a b} \pm t_{b b} \\
& \psi_{ \pm}=\frac{1}{\sqrt{2}}\left(|\uparrow, \uparrow\rangle_{1}|\cdot, \uparrow\rangle_{2} \pm|\cdot, \uparrow\rangle_{1}|\uparrow, \uparrow\rangle_{2}\right)=\frac{1}{\sqrt{2}}\left(|\uparrow, \cdot\rangle_{b} \pm|\cdot, \uparrow\rangle_{b}\right)|\uparrow, \uparrow\rangle_{a}
\end{aligned}
$$

b-electron hops against background of half-filled a-orbitals

double exchange

ground state

$$
\varepsilon_{0}=-J_{a b}-t_{b b}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{6}}\left(|\uparrow, \uparrow\rangle_{1}|\cdot, \downarrow\rangle_{2}+|\cdot, \uparrow\rangle_{1}|\uparrow, \downarrow\rangle_{2}+|\cdot, \uparrow\rangle_{1}|\downarrow, \uparrow\rangle_{2}+|\downarrow, \uparrow\rangle_{1}|\cdot, \uparrow\rangle_{2}+|\uparrow, \downarrow\rangle_{1}|\cdot, \uparrow\rangle_{2}+|\cdot, \downarrow\rangle_{1}|\uparrow, \uparrow\rangle_{2}\right) \\
& \quad=\frac{1}{\sqrt{2}}\left(|\uparrow, \cdot\rangle_{b}+|\cdot, \uparrow\rangle_{b}\right) \frac{1}{\sqrt{2}}\left(|\uparrow, \downarrow\rangle_{a}+|\downarrow, \uparrow\rangle_{a}\right)+\frac{1}{\sqrt{2}}\left(|\downarrow, \cdot\rangle_{b}+|\cdot, \downarrow\rangle_{b}\right)|\uparrow, \uparrow\rangle_{a}
\end{aligned}
$$

hopping electron aligns a-electrons ferromagnetically (teleports local triplet into triplet of a-electrons)

double exchange

double exchange

alternative model:
assume passive orbitals with many electrons (large Hund's rule spin) example: e_{g} electrons hopping against $t_{2 g}$ background consider these spins fixed with quantization axis tilted by ϑ relative to each other

rotation of quantization axis

$$
\begin{aligned}
& d_{2 b \uparrow}=\cos (\vartheta / 2) c_{2 b \uparrow}-\sin (\vartheta / 2) c_{2 b \downarrow} \\
& d_{2 b \downarrow}=\sin (\vartheta / 2) c_{2 b \uparrow}+\cos (\vartheta / 2) c_{2 b \downarrow}
\end{aligned}
$$

hopping mixes spins

$$
\begin{aligned}
& -t_{b b} c_{2 b \uparrow}^{\dagger} c_{1 b \uparrow}=-t_{b b}\left(+\cos (\vartheta / 2) d_{2 b \uparrow}^{\dagger}+\sin (\vartheta / 2) d_{2 b \downarrow}^{\dagger}\right) c_{1 b \uparrow} \\
& -t_{b b} c_{2 b \downarrow}^{\dagger} c_{1 b \downarrow}=-t_{b b}\left(-\sin (\vartheta / 2) d_{2 b \uparrow}^{\dagger}+\cos (\vartheta / 2) d_{2 b \downarrow}^{\dagger}\right) c_{1 b \downarrow}
\end{aligned}
$$

double exchange

assume a-spins cannot be flipped \Rightarrow no J terms
4 independent 2×2 Hamiltonians
for $t_{b b} \ll J_{a b}$ tilt merely reduces width of b-band

$$
\varepsilon_{ \pm}=-J_{a b} \pm t_{b b} \cos (\vartheta / 2)
$$

again, hopping of b-electron prefers ferro aligned a-electrons

orbital ordering

same model, but now one electron per orbital

$H=\left(\begin{array}{cc|cc}0 & 0 & -t_{b b} & -t_{a a} \\ 0 & 0 & +t_{a a} & +t_{b b} \\ \hline-t_{b b} & +t_{a a} & U_{a b}-J_{a b} & 0 \\ -t_{a a} & +t_{b b} & 0 & U_{a b}-J_{a b}\end{array}\right)$
$H_{\text {eff }} \approx-\frac{1}{U_{a b}-J_{a b}}\left(\begin{array}{ll}t_{a a}^{2}+t_{b b}^{2} & -2 t_{a a} t_{b b} \\ -2 t_{a a} t_{b b} & t_{a a}^{2}+t_{b b}^{2}\end{array}\right)=-\frac{\left(t_{a a}-t_{b b}\right)^{2}}{U_{a b}-J_{a b}}-\frac{2 t_{a a} t_{b b}}{U_{a b}-J_{a b}}\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right)$
effective interaction between orbitals: orbital singlet/triplet

orbital ordering: opposite spins

$$
\begin{aligned}
& \text { +- - }+ \text { + } \\
& H=\left(\begin{array}{cccc|cccc}
0 & 0 & 0 & 0 & -t_{b b} & -t_{a a} & 0 & 0 \\
0 & 0 & 0 & 0 & +t_{a a} & +t_{b b} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -t_{b b} & -t_{a a} \\
0 & 0 & 0 & 0 & 0 & 0 & +t_{a a} & +t_{b b} \\
\hline-t_{b b} & +t_{a a} & 0 & 0 & U_{a b} & 0 & -J_{a b} & 0 \\
-t_{a a} & +t_{b b} & 0 & 0 & 0 & U_{a b} & 0 & -J_{a b} \\
0 & 0 & -t_{b b} & +t_{a a} & -J_{a b} & 0 & U_{a b} & 0 \\
0 & 0 & -t_{a a} & +t_{b b} & 0 & -J_{a b} & 0 & U_{a b}
\end{array}\right)
\end{aligned}
$$

orbital-ordering: opposite spin

$$
\begin{aligned}
& H_{\text {eff }} \approx \frac{1}{U_{a b}^{2}-J_{a b}^{2}}\left(\begin{array}{ccc}
\left(t_{a a}^{2}+t_{b b}^{2}\right) U_{a b} & -2 t_{a a} t_{b b} U_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b} \\
-2 t_{a a} t_{b b} U_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) U_{a b} & -2 t_{a a} t_{b b} J_{a b} \\
\left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b} & -2 t_{a a} J_{a b} & \left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b} \\
-2 t_{a a} t_{b b} J_{a b} & \left.\left(t_{a a}^{2}+t_{b b}^{2}\right) J_{a b}^{2}+t_{b b}^{2}\right) U_{a b} & -2 t_{a a} t_{b b} U_{a b} \\
& \left(t_{a a}^{2}+t_{b b}^{2}\right) U_{a b}
\end{array}\right) \\
&=\frac{1}{U_{a b}^{2}-J_{a b}^{2}}\left(\begin{array}{cc}
U_{a b} & J_{a b} \\
J_{a b} & U_{a b}
\end{array}\right) \otimes\left(\begin{array}{cc}
t_{a a}^{2}+t_{b b}^{2} & -2 t_{a a} t_{b b} \\
-2 t_{a a} t_{b b} & t_{a a}^{2}+t_{b b}^{2}
\end{array}\right) \\
&=\frac{1}{U_{a b}^{2}-J_{a b}^{2}}\left[\begin{array}{l}
\left.U_{a b}+J_{a b}-J_{a b}\left(\begin{array}{rr}
1-1 \\
-1 & 1
\end{array}\right)\right] \otimes\left[\left(t_{a a}-t_{b b}\right)^{2}+2 t_{a a} t_{b b}\left(\begin{array}{rr}
1-1 \\
-1 & 1
\end{array}\right)\right] \\
\text { spin-exchange }
\end{array}\right. \\
& \text { orbital-exchange }
\end{aligned}
$$

simultaneous coupling of spins and orbital occupations spin- and orbital-exchange tend to have opposite sign

summary

exchange mechanisms

 dominant magnetic interaction in materials not a fundamental but an effective interaction: model/mechanismCoulomb exchange: off-diagonal Coulomb matrix-elements; ferromagnetic coupling (Hund's rule)
kinetic exchange: only diagonal Coulomb matrix-elements \& hopping
direct exchange: anti-ferromagnetic spins: virtual hopping -4t²/U
\$ superexchange: hopping via O-p orbitals tends to be anti-ferromagnetic (180° superexchange)
but 90° superexchange is ferromagnetic
double exchange: hopping electrons align spins ferromagnetically
orbital ordering: exchange interaction between orbital occupations

summary

$$
H_{U}=\left(\begin{array}{cccc}
U_{a b}-J_{a b} & 0 & 0 & 0 \\
0 & U_{a b} & -J_{a b} & 0 \\
0 & -J_{a b} & U_{a b} & 0 \\
0 & 0 & 0 & U_{a b}-J_{a b}
\end{array}\right)
$$

Coulomb exchange: ferro (Hund's rule)

summary

double exchange: often ferro

orbital-ordering

Computer Center, around 1890

ESSAY

The Harvard computers

Observatories hired computers a term used for human processors since the early 1700s

The first mass data crunchers were people, not machines. Sue Nelson looks at the discoveries and legacy of the remarkable women of Harvard's Observatory.

A photograph taken at the Harvard Observatory in Cambridge, Massachusetts, circa 1890, features eight women in
 what looks like a Victorian-
style sitting room. They wear long skirts, have upswept hair and are surrounded by flowered wallpaper and mahogany tables. At first glance they seem to be sampler stitching or reading. In fact these 'human computers' are analysing photographs of the heavens, cataloguing stars. When cameras were first attached to telescopes, with the ability to capture the image of thousands of stars on a single photographic plate, people were needed to trawl through these new data. Observatories hired 'computers' - a term used for human processors since the early 1700 s - to do the painstakingly repetitive work of measuring the brightness, position and colours of these stars.
From the 1880s until the 1940s, the Harvard College Observatory amassed half a million photographic glass plates, weighing around 300 tonnes and holding images of tens of millions of stars. A team of women trawled through these photos with nothing more than magnifying glasses - often for little pay and with no scientific training.

Williamina Fleming stands in the centre of the Harvard computers as Edward Pickering looks on.

Homecomputer, about 1951

[...] all went smoothly until I had to face up to the problem of factoring highorder secular equations. I knew how to do this by hand, but the task was time-consuming, and it was necessary to check and recheck the factoring to make sure no errors were made. It then occurred to me that my mother could help me with some of this work. I had read about the Hartrees how the younger Hartree (Douglas R.) had been aided by his father (William), who was a retired railroad engineer and enjoyed doing sums on a desk calculator. I showed my mother how to set up the OPW secular equations and how to factor them, and she agreed to do some of this in her spare time [...]

Frank Herman: Elephants and mahouts - early days in semiconductor physics

Physics Today, June 1984, p. 56

Wachstum der Rechenleistung

