Exercise Sheet 3 due 7 May

1. matching

Calculate the radial wave function on a radial grid by integrating outwards \tilde{u}_i^{\leftarrow} and inwards \tilde{u}_i^{\leftarrow} on the logarithmic mesh to the matching point x_M .

- i. Write a routine to find the classical turning points on the logarithmic mesh. How many are there for any given *!*?
- ii. Consider the radial function obtained by putting together the two solutions at the matching point

$$\tilde{u}_i = \left\{ \begin{array}{ll} \tilde{u}_i^{\rightarrow} \, \tilde{u}_M^{\leftarrow} & \text{for } i \leq M \\ \tilde{u}_i^{\leftarrow} \, \tilde{u}_M^{\rightarrow} & \text{for } i \geq M \end{array} \right.$$

Normalize \tilde{u} on the logarithmic mesh using

$$\int_0^\infty dr |u(r)|^2 = \int_{-\infty}^\infty dx \, r^2 |\tilde{u}(x)|^2$$

Estimate the contributions from the missing regions $x < x_{min}$ and $x > x_{max}$.

- iii. By what Δk_M^2 would you have to change the original k_M^2 so that \tilde{u}_i is a solution of the radial eigenvalue problem? Hint: look at the Numerov iteration connecting \tilde{u}_{M-1} , \tilde{u}_M , and \tilde{u}_{M+1} and solve for k_M^2 , assuming $k_{M\pm 1}^2$ are unchanged.
- iv. When considering $-\Delta k_M^2$ as perturbation to the above exact solution, we can estimate the eigenenergy for the potential we are interested in using first-order perturbation theory.
- v. For the integration at the new energy use the normalization factor for getting reasonable values for initializing the wave functions.
- vi. Stop when the change in energy is smaller than the desired accuracy.