Exercise Sheet 3 due 7 May

1. matching

Calculate the radial wave function on a radial grid by integrating outwards $\tilde{u}_{i}{ }^{\rightarrow}$ and inwards $\tilde{u}_{i}^{\leftarrow}$ on the logarithmic mesh to the matching point x_{M}.
i. Write a routine to find the classical turning points on the logarithmic mesh. How many are there for any given 1 ?
ii. Consider the radial function obtained by putting together the two solutions at the matching point

$$
\tilde{u}_{i}= \begin{cases}\tilde{u}_{i}^{\rightarrow} \tilde{u}_{M}^{\leftarrow} & \text { for } i \leq M \\ \tilde{u}_{i}^{\leftarrow} \tilde{u}_{M}^{\vec{M}} & \text { for } i \geq M\end{cases}
$$

Normalize \tilde{u} on the logarithmic mesh using

$$
\int_{0}^{\infty} d r|u(r)|^{2}=\int_{-\infty}^{\infty} d x r^{2}|\tilde{u}(x)|^{2}
$$

Estimate the contributions from the missing regions $x<x_{\text {min }}$ and $x>x_{\text {max }}$.
iii. By what Δk_{M}^{2} would you have to change the original k_{M}^{2} so that \tilde{u}_{i} is a solution of the radial eigenvalue problem? Hint: look at the Numerov iteration connecting $\tilde{u}_{M-1}, \tilde{u}_{M}$, and \tilde{u}_{M+1} and solve for k_{M}^{2}, assuming $k_{M \pm 1}^{2}$ are unchanged.
iv. When considering $-\Delta k_{M}^{2}$ as perturbation to the above exact solution, we can estimate the eigenenergy for the potential we are interested in using first-order perturbation theory.
v . For the integration at the new energy use the normalization factor for getting reasonable values for initializing the wave functions.
vi. Stop when the change in energy is smaller than the desired accuracy.

