Exercise Sheet 8 due 2 July

1. Spherical potential approximation

i. Show that the charge density of a filled shell $n(\vec{r})=\sum_{m=-1}^{\prime}\left|\varphi_{n / m}(\vec{r})\right|^{2}$ is spherically symmetric.
ii. Calculate the spherical average of the charge density of an open shell with quantum numbers $(n, l), n(r)=1 / 4 \pi \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} \sin \vartheta d \vartheta n(\vec{r})$, in terms of the radial function $u_{n \prime}(r)$. How does it depend on the number of electrons in the shell?

2. Slater-Condon parameters

i. Calculate the Slater-Condon parameters

$$
F_{n l}^{(k)}=\int_{0}^{\infty} d r_{1} u_{n /}^{2}\left(r_{1}\right)\left(\frac{1}{r_{1}^{k+1}} \int_{0}^{r_{1}} d r_{2} u_{n /}^{2}\left(r_{2}\right) r_{2}^{k}+r_{1}^{k} \int_{r_{1}}^{\infty} d r_{2} u_{n /}^{2}\left(r_{2}\right) \frac{1}{r_{2}^{k+1}}\right)
$$

for the $3 s$ (only $k=0$), $3 p(k=0,2)$ and $3 d(k=0,2,4)$ functions of hydrogen. Give the resulting energies in Rydbergs and in eV. For a given shell (n, I), calculate the ratio of the Parameters $F^{\left(k^{\prime}\right)} / F^{(k)}$.
ii. Write a routine that returns for a given radial function $u_{n /}(r)$ the SlaterCondon Parameters. Test your routine with the hydrogen wave-functions from above. Run a self-consistent calculation for iron (Fe) and compare the ratio $F^{(4)} / F^{(2)}$ for the self-consistent $3 d$-orbital to that obtained for a hydrogen $3 d$-function.

