Exercise Sheet 9 due 9 July

1. Clebsch-Gordan coefficients

Prove the following recursion relation for the Clebsch-Gordan coefficients:

$$\begin{split} &\sqrt{j(j+1)-m(m\pm1)}\,\langle j_1,\,m_1;\,j_2,\,m_2|j,\,m\pm1;\,j_1;j_2\rangle\\ &=\sqrt{j_1(j_1+1)-m_1(m_1\mp1)}\,\langle j_1,\,m_1\mp1;\,j_2,\,m_2|j,\,m;\,j_1;j_2\rangle\\ &+\sqrt{j_2(j_2+1)-m_2(m_2\mp1)}\,\langle j_1,\,m_1;\,j_2,\,m_2\mp1|j,\,m;\,j_1;j_2\rangle \end{split}$$

2. Clebsch-Gordan coefficients

Write a program that takes two angular momentum quantum numbers j_a and j_b as input and produces a matrix for transforming from the product states $|j_a,m_a;j_b,m_b\rangle$ to the total angular momentum states $|j,m\rangle$. Example:

Hint: Expand the square of the coefficients into a continued fraction.

3. Addition of three angular momenta

Consider three independent spin 1/2 systems with spin operators \vec{S}_a , \vec{S}_b , and \vec{S}_c . Add the spins in two different ways:

i.
$$(\vec{S}_a + \vec{S}_b) + \vec{S}_c$$

ii.
$$\vec{S}_a + (\vec{S}_b + \vec{S}_c)$$

Compare the results.