Exercise Sheet 9 due 9 July

1. Clebsch-Gordan coefficients

Prove the following recursion relation for the Clebsch-Gordan coefficients:

$$
\begin{aligned}
& \sqrt{j(j+1)-m(m \pm 1)}\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m \pm 1 ; j_{1} ; j_{2}\right\rangle \\
& =\sqrt{j_{1}\left(j_{1}+1\right)-m_{1}\left(m_{1} \mp 1\right)}\left\langle j_{1}, m_{1} \mp 1 ; j_{2}, m_{2} \mid j, m ; j_{1} ; j_{2}\right\rangle \\
& +\sqrt{j_{2}\left(j_{2}+1\right)-m_{2}\left(m_{2} \mp 1\right)}\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mp 1 \mid j, m ; j_{1} ; j_{2}\right\rangle
\end{aligned}
$$

2. Clebsch-Gordan coefficients

Write a program that takes two angular momentum quantum numbers j_{a} and j_{b} as input and produces a matrix for transforming from the product states $\left|j_{a}, m_{a} ; j_{b}, m_{b}\right\rangle$ to the total angular momentum states $|j, m\rangle$. Example:

$j_{a}=1$	$j_{b}=1 / 2$	$j=3 / 2$				
m_{a}	m_{b}	$m=3 / 2$	$m=1 / 2$	$m=-1 / 2$	$m=-3 / 2$	$m=1 / 2$

Hint: Expand the square of the coefficients into a continued fraction.

3. Addition of three angular momenta

Consider three independent spin $1 / 2$ systems with spin operators \vec{S}_{a}, \vec{S}_{b}, and \vec{S}_{c}. Add the spins in two different ways:
i. $\left(\vec{S}_{a}+\vec{S}_{b}\right)+\vec{S}_{c}$
ii. $\vec{S}_{a}+\left(\vec{S}_{b}+\vec{S}_{c}\right)$

Compare the results.

