Correlated Electrons

Erik Koch

Computational Materials Science
German Research School for Simulation Sciences

outline

many-body physics for atoms

- self-consistent field methods
- density matrices
- exchange-correlation hole
- density-functional theory
- exercises: DFT code for atoms
- multiplets in open shells
- second quantization
- Hamiltonian matrix elements
- angular momenta
- diagonalizing the interaction
- Hund's rules
www.cond-mat.de/teaching/correl

exercises

Exercise Sheet 1 due 16 April

prepare your solutions so you are ready to present them in class if you cannot solve a problem, explain where you got stuck.

1. atomic units

Express the speed of light and the Bohr magneton in atomic units.
What unit of temperature do we have to choose to also make the numerical value of the Boltzmann constant to equal 1?
2. magnetic moment

From classical magnetostatics we know that the magnetic moment due to an electrical current density \vec{j}_{e} is given by

$$
\vec{m}=\frac{1}{2} \int \vec{r} \times \vec{j}_{e} d^{3} r .
$$

i. Given the quantum-mechanical probability current density

Lecture Notes

E. Pavarini, E. Koch,
 F. Anders, M. Jarrell
 Correlated Electrons:
 From Models to Materials

- Exchange Mechanisms
- Multiplets in Transition Metal Ions
- Estimates of Model Parameter
- Crystal Field Theory, Tight-Binding

Correlated Electrons: From Models to Materials
Eva Pavanni, Erik Koch, Fnthijot Andra, and Mark larrell (Eda.)

dر süLich

Autumn School on Correlated Electrons www.cond-mat.de/events/correl.html

Übungsaufgabe

Gegeben:
Atome der Ordnungszahl Z_{α} an den Positionen R_{α}.
Lösen Sie
$H=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N_{e}} \nabla_{j}^{2}-\frac{1}{4 \pi \epsilon_{0}} \sum_{j=1}^{N_{e}} \sum_{\alpha=1}^{N_{i}} \frac{Z_{\alpha} e^{2}}{\left|r_{j}-R_{\alpha}\right|}+\frac{1}{4 \pi \epsilon_{0}} \sum_{j<k}^{N_{e}} \frac{e^{2}}{\left|r_{j}-r_{k}\right|}+\frac{1}{4 \pi \epsilon_{0}} \sum_{\alpha<\beta}^{N_{i}} \frac{Z_{\alpha} Z_{\beta} e^{2}}{\left|R_{\alpha}-R_{\beta}\right|}$

The underlying laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that exact applications of these laws lead to equations which are too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.
P.M.A. Dirac, Proceedings of the Royal Society A123, 714 (1929)

Theory of (almost) Everything

typical units

$$
\begin{aligned}
h & =6.62606810^{-34} \mathrm{Js} \\
\mathrm{~m}_{\mathrm{el}} & =9.10938210^{-31} \mathrm{~kg} \\
\mathrm{e} & =1.60217610^{-19} \mathrm{C}
\end{aligned}
$$

why use \AA and eV ?
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{eV}=1.602176$ 10-19 J
http://physics.nist.gov/cuu/Constants/index.html

$$
\begin{gathered}
E=\frac{\hbar^{2} k^{2}}{2 m_{e l}} \\
E\left[\text { in J] }=6.1010^{-39}\left(\mathrm{k}\left[\text { in } \mathrm{m}^{-1}\right]\right)^{2}\right.
\end{gathered}
$$

$E[$ in eV$]=3.81 \quad\left(\mathrm{k}\left[\text { in } \AA^{-1}\right]\right)^{2}$

atomic units

$$
\begin{aligned}
& \hbar \quad=1.0546 \cdot 10^{-34} \mathrm{Js} \quad\left[M L^{2} T^{-1}\right] \\
& m_{e}=9.1094 \cdot 10^{-31} \mathrm{~kg} \quad[M] \\
& e=1.6022 \cdot 10^{-19} \mathrm{C} \quad[Q] \\
& 4 \pi \varepsilon_{0}=1.1127 \cdot 10^{-10} \mathrm{~F} / \mathrm{m} \quad\left[M^{-1} L^{-3} T^{2} Q^{2}\right] \\
& \text { http://physics.nist.gov/cuu } \\
& \text { H. Shull and G.G. Hall, Nature 184, } 1559 \text { (1959) } \\
& \text { solve } \\
& \hbar=1 a_{0}^{2} m_{e} / t_{0} \\
& m_{e}=1 m_{e} \\
& e=1 e \\
& 4 \pi \varepsilon_{0}=1 t_{0}^{2} e^{2} / a_{0}^{3} m_{e}
\end{aligned}
$$

1 a.u. length $=a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}} \approx 5.2918 \cdot 10^{-11} \mathrm{~m}$
1a.u. mass $=m_{e}=\quad \approx 9.1095 \cdot 10^{-31} \mathrm{~kg}$
1 a.u. time $=t_{0}=\frac{\left(4 \pi \varepsilon_{0}\right)^{2} \hbar^{3}}{m_{e} e^{4}} \approx 2.4189 \cdot 10^{-17} \mathrm{~s}$
1a.u. charge $=e=\quad \approx 1.6022 \cdot 10^{-19} \mathrm{C}$

Übungsaufgabe

Gegeben:
Atome der Ordnungszahl Z_{α} an den Positionen R_{α}.
Lösen Sie

The underlying laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that exact applications of these laws lead to equations which are too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.
P.M.A. Dirac, Proceedings of the Royal Society A123, 714 (1929)

Theory of (almost) Everything

More is Different

... the reductionist hypothesis does not by any means imply a "constructionist" one: The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe.
Sometimes, as in the case of superconductivity, the new symmetry - now called broken symmetry because the original symmetry is no longer evident - may be of an entirely unexpected kind and extremely difficult to visualize. In the case of superconductivity, 30 years elapsed between the time when physicists were in possession of every fundamental law necessary for explaining it and the time when it was actually done.
Thus with increasing complication at each stage, we go up the hierarchy of the sciences. We expect to encounter fascinating and, I believe, very fundamental questions at each stage in fitting together less complicated pieces into the more complicated system and understanding the the basically new types of behavior which can result.
P.W. Anderson: More is Different, Science 177, 393 (1972)

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

atomic radii

E. Clementi, D.L.Raimondi, and W.P. Reinhardt J. Chem. Phys. 47, 1300 (1967)

real harmonics

p_{z}
$\begin{array}{ll}p_{x} & \sqrt{\frac{1}{2}}\left(Y_{1,-1}-Y_{1,1}\right)=\sqrt{\frac{3}{4 \pi}} \sin \theta \cos \phi \\ p_{y} & \sqrt{\frac{1}{2}} i\left(Y_{1,-1}+Y_{1,1}\right)=\sqrt{\frac{3}{4 \pi}} \sin \theta \sin \phi\end{array}$
$d_{3 z^{2}-1}$
$Y_{2,0} \quad=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)$
$d_{z x} \quad \sqrt{\frac{1}{2}}\left(Y_{2,-1}-Y_{2,1}\right)=\sqrt{\frac{15}{16 \pi}} \sin 2 \theta \cos \phi$
$d_{y z}$
$\sqrt{\frac{1}{2}} i\left(Y_{2,-1}+Y_{2,1}\right)=\sqrt{\frac{15}{16 \pi}} \sin 2 \theta \sin \phi$
$d_{x^{2}-y^{2}} \quad \sqrt{\frac{1}{2}}\left(Y_{2,-2}+Y_{2,2}\right)=\sqrt{\frac{15}{16 \pi}} \sin ^{2} \theta \cos 2 \phi$
$d_{x y} \quad \sqrt{\frac{1}{2}} i\left(Y_{2,-2}-Y_{2,2}\right)=\sqrt{\frac{15}{16 \pi}} \sin ^{2} \theta \sin 2 \phi$

real harmonics

$f_{z\left(5 z^{2}-3\right)} \quad Y_{3,0} \quad=\sqrt{\frac{7}{16 \pi}}\left(5 \cos ^{2} \theta-3\right) \cos \theta$

$\begin{array}{ll}f_{x\left(5 z^{2}-1\right)} & \sqrt{\frac{1}{2}}\left(Y_{3,-1}-Y_{3,1}\right)=\sqrt{\frac{21}{32 \pi}}\left(5 \cos ^{2} \theta-1\right) \sin \theta \cos \phi \\ f_{y\left(5 z^{2}-1\right)} & \sqrt{\frac{1}{2}} i\left(Y_{3,-1}+Y_{3,1}\right)=\sqrt{\frac{21}{32 \pi}}\left(5 \cos ^{2} \theta-1\right) \sin \theta \sin \phi\end{array}$

$$
\begin{array}{ll}
f_{z\left(x^{2}-y^{2}\right)} & \sqrt{\frac{1}{2}}\left(Y_{3,-2}+Y_{3,2}\right)=\sqrt{\frac{105}{16 \pi}} \cos \theta \sin ^{2} \theta \cos 2 \phi \\
f_{x y z} & \sqrt{\frac{1}{2}} i\left(Y_{3,-2}-Y_{3,2}\right)=\sqrt{\frac{105}{16 \pi}} \cos \theta \sin ^{2} \theta \sin 2 \phi
\end{array}
$$

$f_{x\left(x^{2}-3 y^{2}\right)}$
$\sqrt{\frac{1}{2}}\left(Y_{3,-3}-Y_{3,3}\right)=$
$\sqrt{\frac{35}{32 \pi}} \sin ^{3} \theta \cos 3 \phi$
$f_{y\left(3 x^{2}-y^{2}\right)}$
$\sqrt{\frac{1}{2}} i\left(Y_{3,-3}+Y_{3,3}\right)=$
$\sqrt{\frac{35}{32 \pi}} \sin ^{3} \theta \sin 3 \phi$

atom in spherical mean-field approximation

Related links

GAMS Guide to Available Mathematical Software
PADE NIST Parallel Applications Development Environment

http://www.cond-mat.de/sims/multiplet/

Calculations of atomic multiplets across the periodic table

Self-consistent field computation

Self-consistent iterations

Converge total energy to $4 \hat{2}$ digits
iter $=13$, converge $=0.0295$ iter $=14$, converge $=0.0107$ iter $=15$, converge $=0.0056$

Units

$$
\text { Distance unit Bohr radius } \hat{v} \text { Energy unit Hartree } \hat{v}
$$

atom in spherical mean-field approximation

atom in spherical mean-field approximation

atom in spherical mean-field approximation

total energy

tools: pse

```
#!/bin/bash
if [ "$1" == "" ]
then
cat << EOF
12 3a La/Ac 4a5a6a7a8a8a8a1a2a3 4 5 6 7 8
H
LiBe
NaMg
K CaSc
RbSry
CsBaLaCePrNdPmSmEuGdTbDyHoErTmYbLuHfTaW ReOsIrPtAuHgTlPbBiPoAtRn
FrRaAcThPaU NpPuAmCmBkCfEsFmMdNoLr
usage: pse [nuclear charge | element name | element symbol ]
EOF
exit
fi
for pattern in $@
do
grep -iw " $pattern" << EOF
    1 \text { Hydrogen Wasserstoff H 1s1}
    2 Helium He 1s2
    3 Lithium Li [He] 2s1
    4 \text { Beryllium Be [He] 2s2}
    5 Bor B [He] 2s2 2p1
    6 Carbon Kohlenstoff C [He] 2s2 2p2
```


crystals

KCuF_{3} : orbital-ordering

d-bands; e_{g} orbitals

orbital ordering

k-space vs real space

$$
H=-\frac{\hbar^{2}}{2 m} \sum_{j=1}^{N_{e}} \nabla_{j}^{2}-\frac{1}{4 \pi \epsilon_{0}} \sum_{j=1}^{N_{e}} \sum_{\alpha=1}^{N_{i}} \frac{Z_{\alpha} e^{2}}{r_{j}-R_{\alpha} \mid}+\frac{1}{4 \pi \epsilon_{0}} \sum_{j<k}^{N_{e}} \frac{e^{2}}{\left|r_{j}-r_{k}\right|}+\frac{1}{4 \pi \epsilon_{0}} \sum_{\alpha<\beta}^{N_{i}} \frac{Z_{\alpha} Z_{\beta} e^{2}}{\left|R_{\alpha}-R_{\beta}\right|}
$$

single-electron terms diagonal in k-space (band structure)
interaction terms diagonal in real (configuration) space
intinerant vs. localized

magnetite $\mathrm{Fe}_{3} \mathrm{O}_{4}$

spinel structure $\mathrm{AB}_{2} \mathrm{O}_{4}$:
O on fcc sites
Fe in tetrahedral (1) and octahedral (2) sites

8 f.u. per unit cell space group Fd-3m

Inorganic Crystal Structure Database

http://icsd.fiz-karlsruhe.de

ICSD

Home I Contact
Weicome to ICSD Web. IP authenticated (134,94.129.1). Forschunaszentrum Juelich GmbH
I| Close session
Login
Lognid:
Passworc:
Login Personalized

Lest	Persenalize
password?	account

Easic snarch \& vetrieun
Advancud swarch 8 retrieve
P7 Bitlicy aply
[3 GAI
15 Chenusiry
Ls Symmery
15 Cyysta Chemistry
19 Srucure ype
(3) Experimerta rformation
CD DE Info
Qusry Managoment
15 Manage Guenes
15 List Liemorec Clueres
[G) Creato Combinod Quary
Gustomer Survay
15 RSD Cusicmer Survey 2U1E

Charge, orbital and trimeron order in the low-temperature magnetite structure.

MS Senn et al. Nature 481, 173 (2012) doi:10.1038/nature10704

oxydation states

$\mathrm{O}^{2-}:[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}=[\mathrm{Ar}]$

Fe^{2+} : $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{Fe}^{3+}:[\mathrm{Ar}] 3 \mathrm{~d}^{5}$

typical charge states

+1	+2											-2 -1					He
H																	
Li	Be											B	C	N	0	F	Ne
Na	Mg	transition metals										A	Si	P	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	G	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									

ionic radii

