hydrogen atom: center-of-mass and relative

2-particle problem (electron & proton)
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separation in center-of-mass and relative coordinates
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hydrogen atom: spherical separation

relative motion
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spherical symmetry

01 =" v,.(6.9)

h° d? | h2 (1 + 1) e’
ou dr2  2u r? Ameqr

)U(f)z Enu(r)
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hydrogen atom: radial solution

ansatz (solve asymptotics)
u(p) = o w(p)e™

differential equation for L(s):

d?w dw
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ansatz: power series w(p) = Z ap”
k=0
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recursion for coefficients ax+1 =

normalizability: recurrence must terminate at some finite k
n>1+1



radial functions uni(r) = r Rni(r)
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radial functions Rn(r)
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periodic table o




atom in spherical mean-field approximation

Fe : [Ar] 3d° 4s? 4p°
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numerical differentiation

task: evaluate f'(x), only knowing f(x) at some specified abscissae x;

idea: approximate f by a function that can be easily differentiated, e.g.,
a Taylor expansion. Then combine the f(x;) such that — except for the
desired derivative — as many terms as possible are cancelled.

example: first derivative

> 3

f(Xo + h) - f(XQ) + h f/(Xo) —+ % f”(Xo) -+ % f”/(Xo) + O(h4)
f(x0) = f(xo)

/ h2 !/ h3 11/ 4

f(xg—h) = f(Xo)—hf(Xo)JF?f (Xo)—gf (x0) + O(h")

h3
Then f(xo+h)—f(xg—h) =2hf"(x) + 3 " (x0) + O(h*)

f(Xo—f—h) — f(XO — h)

f(x0) =
or (Xo) 5h

+ O(h?)




numerical differentiation

Approximations to 15t derivative:

f'(x0)
f'(x0)
f'(z0)
f'(x0)

abs(error)

Hoth)=f () +0(h) differences of similar
flroth)—flzo=h) +0(h2)  numbers in numerator
—f(330+2h)+6f(3304;3};3—3f(330)—2f($0—h) O(h3) & small denominator
—f($0+2h)+8f($o +h)—8f(33o—h)+f(330 —Qh) 4
12h O(h )

example: sin(x), xg = 1
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method of undetermined coefficients

idea: given a set of abscissae xn, €.9., Xn=Xo+nh, n=-1, 0, 1, 2, make an ansatz with
undetermined coefficients, e.g.,:

f’(XO) _ a1 f(X_l) + Qg f(XQ)h—I— aq f(Xl) -+ Qo f(XQ)

determine the coefficients a; by requiring that the formula differentiates polynomials of
order, e.g., 0 to 3 exactly by solving the resulting system of linear equations

. Maple session:

> with (linalg ) :

:> n:=1: # formula for nth derivative

> mesh = [XO-1, X0, X0+ A, x0+ 2% /1 |; p := nops(mesh) : # abscz’ssaexl.
mesh:= [ x0— h, x0, x0+ /h,x0+ 2 /]

> S x:=array([ seq(map(x — x™, mesh), £=0.p-1)]); # evaluate monomials on mesh
' 1 1 1 1 '

x0— /4 x0 x0+ 7 X0+ 24

Sox= 2

(X0—h)> x0° (W04 h)> (A0+24)°

3

(0= k) 20’ (0+4) (20+24)°

> der = array([seg(binomial (4, 7)) * n\* x0" (k-n), £=0.p-1)]);
# derivative of monomials

der [ = [ 01 2x0 3x02]

> cogfficients = linsolve ( [ x, der ['); # cogfficients alpha ,
1 11 1 }

3/ 2h /K 6 /

coefficients =




Numerov method

one-dimensional Schrodinger equation
U (x) + k*(x)u(x) =0 where k?(x) = ZB(E — V(x))

numerical derivative

f(xo+h)—2f(x) +f(x—h) h*

f// —
(x0) P 7

f(4) (Xo) + O(h4)

two-point iteration of wave function u(x;):

Uiyr = (2 = k7)) uj — uj—1 + O(h*)

Numerov trick:
remove leading error in derivative formula by using Schrodinger equation
h? h? d?

KPiq Ujr1
—EUM)(XJ) +0O(h*) = +15 42 (K (x)u(x)) +O(h*) = ~

—2k7uj + k7 Ui
12

+ O(h*)

Numerov iteration:
2(1 — 5h2kj2/12)uj —(1+ thijl/lz)uj;l
1+ h2/<j2i1/12

di+1 = -+ O(h6j



Numerov iteration close to eigenvalue
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(in)stability of Numerov iteration
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indistinguishability and statistics

N-particle systems described by wave-function with
N particle degrees of freedom (tensor space):
W(x1, ..., XN)

iIntroduces labeling of particles

iIndistinguishable particles: no observable exists to distinguish them
In particular no observable can depend on labeling of particles

consider permutations P of particle labels
PV (x1, %) = W(x, x1) with [W(x1, x0)|° = [V (X, x1)|°
~ PW(Xl, X2) = €i¢W(X1, X2)

when P2=|d = e¢=x1 (¥ (anti)symmetric under permuation)
antisymmetric: ¥(x1, x2—x7) = 0 (Pauli principle)



spin-statistics connection

bosons (integer spin): symmetric wave-function

fermions (half-integer spin): anti-symmetric wave-function

Feynman Lectures lll, 4-1:

Why is it that particles with half-integral spin are Fermi particles whose amplitudes add
with the minus sign, whereas particles with integral spin are Bose particles whose
amplitudes add with the positive sign”? We apologize for the fact that we cannot give
you an elementary explanation. An explanation has been worked out by Pauli from
complicated arguments of quantum field theory and relativity. He has shown that the
two must necessarily go together, but we have not been able to find a way of
reproducing his arguments on an elementary level. It appears to be one of the few
places in physics where there is a rule which can be stated very simply, but for which
no one has found a simple and easy explanation. The explanation is deep down in
relativistic quantum mechanics. This probably means that we do not have a complete
understanding of the fundamental principle involved. For the moment, you will just have
to take it as one of the rules of the world.



permutations in lower dimensions

M. Berry et al.: spin-statistics connection from geometric phase
when permuting particles along paths?

//// \\\\
,/// \\\\
7 N

X1 X2 X1 Xo
2 dimensional 1 dimensional

P2 # |d: braiding statistics: anyons fermions cannot pass



2-particle wave-function: distinguishable

two particles in (different) ortho-normal single-particle states @a(x) and ¢n(x)

Wina(Xx1, X2) = @a(x1)@p(x2) or  Woi(x1, X2) = @p(x1)@al(x2)

expectation value of particle distance: M = (x1-x2)?

<(X1 - X2)2> — <X12> — 2 <X1X2> T <X22> Cnormalized)

<X12>12 = [dxaxfle.(x))? [dxa |op(xe)? = <X2>a- 1
(X5)., = [dx Je ()P [dxex3les(e)]f = 1 (x%),
<X1X2>12 = fdxl x1|@a(x1)]? dez lop())F = (X), - (X)p

(00 =205 = (62), + (), = 2(x), ()

= (0o =x)*), = (1 =)%),,

observable does not
distinguish particles




2-particle wave-function: indistinguishable

1

(M) = 5 (M) o (W2 MIV1) % (W | MW7)

2

(Vo |x2 W21 )
(W1a|x3|[Wa1)

symmetric / anti-symmetric wave-function

Uy (X1, Xx0) = % (V12(x1, X2)

T ng (Xl, X2))

observable does not)

cross-terms between product wave-functions ) gistinguish particles

(M)zy ) = (M) 15 (W Y1)

particle permutation: exchange-terms COFthOQO\r}a_D

— del X{Qa(x1)p(x1) dez
— del (,Oa(Xl)(,Ob(Xl) deQ Xzzwb(XQ)(pa(Xz) — 0 .<X2>ba
<W12|X1X2 ‘l//21> —

0p(2)Pa(x2) = (x7)_,- 0

del X1 ©a(x1)Pp(x1) deQ Xo Pp(X2)pa(xe) = <X>ab ' <X>ba

(Oa =x)?), = (), +(x*), = 2(x), () F2/(x) 5|

Bosons prefer company
Fermions keep their distance



probability density for 2 particles in a box
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How about electrons on the moon?

In principle we need to antisymmetrize the
wave-function for all electrons in the universe

really?

product states of states with zero overlap will not give an exchange contribution

(V1| M|W5y) = /O'Xl dxp Pa(X1)Pp(X2) M(Xx1, X2) 0p(X1)Pa(x2)

zero overlap makes electrons actually distinguishable by their coordinate
in practice:
can exclude electrons with negligible overlap from antisymmetrization

more practical example: spin
need not antisymmetrize electrons of different spin
when we are only interested in observables that do not change spin



