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1 Introduction
The tremendous success of Dynamical Mean-Field Theory (DMFT) [1, 2] in understanding the
Mott transition in simple model systems shows that the main correlation effects in fermionic
lattices have a local character. Moreover realistic investigations of correlated materials within
the LDA+DMFT scheme [3–5] also support the idea that the electronic structure of prototype
Mott insulators, like V2O3, can be well understood within a local multi-orbital t2g scheme. Nev-
ertheless many interesting correlation effects in solid state physics, such as antiferromagnetic
spin fluctuations, superconducting d-wave pairing, and many other phenomena have non-local
character. In this Lecture we will discuss different ways to go beyond the DMFT approximation
and include non-local correlations. There are two different approaches to non-local effects be-
yond the DMFT framework: one is based on numerical cluster DMFT extensions while another
one is built on an analytical expansion around the local DMFT solution.

2 Cluster DMFT scheme
There are two groups of cluster DMFT extensions, which are formulated in real space (cellu-
lar DMFT – CDMFT) or in reciprocal space (Dynamical Cluster Approximation – DCA). We
discuss first a simple model for the cluster DMFT scheme in real space which consists of a
supercell in a two dimensional square lattice (Fig.1). Lower-case letters will be used for the
original lattice vectors (x) and site indices (i, j), while upper-case will be reserved for supercell
coordinates (X) and position of atoms in a supercell (I, J). Similarly, for wave vectors in orig-
inal reciprocal lattice we will use (k) while for the reduced supercell Brillouin zone (K) will
be used. The minimal cluster which allows us to investigate both antiferromagnetic (AFM) and
superconducting (d-wave) order parameters on an equal footing consists of a 2× 2 plaquette in
an effective medium (see Fig.1).
The one band Hubbard model on the square lattice reads:

H =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (1)

where tij are effective hopping parameters and U is the local Coulomb interaction. The exact
Green function for the one-band Hubbard model (1) can be written in the following form

G(k, iω) = (iω + µ− t(k)−Σ(k, iω))−1, (2)

where ω = (2n+ 1)π/β, n = 0,±1, ... are the Matsubara frequencies, β is the inverse temper-
ature, µ the chemical potential, t(k) the Fourier transform of the hopping parameters tij , and
Σ(k, iω) is the non-local self-energy, which contains all information on single-particle correla-
tions.
We can approximate the momentum-dependence of the self-energy in terms of a finite number
of basis functions φi(k) [6]

Σ(k, iω) ≈
N∑

i=1

φi(k)Σi(ω) (3)
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Fig. 1: Schematic representation of the 2 × 2 supercell with antiferromagnetic and supercon-
ducting d-wave order parameters for cluster DMFT.

In the most general scheme we can find Σi(ω) as a solution of a fictitious N-site quantum
impurity model. Different cluster DMFT schemes differ in the choice of these basis functions.
Numerical solutions of generalized multi-site quantum impurity models can be found within the
recently developed continuous time Quantum Monte-Carlo scheme [7].
We introduce a ”super-site” object as the 2 × 2 plaquette on a square lattice. The enumeration
of the atoms inside the super-site is shown in the Fig. 1. A superspinor C†

I = {c†Iα} where
α = 1, 2, 3, 4 (including also the spin-indices) defines a super-fermionic operator for the I-th
plaquette. The plaquette Green’s function for the Hubbard model can be rewritten as

G (K, iω) = [(iω + µ) 1− T (K)−Σ (iω)]−1 (4)

where T (K) is the effective hopping supermatrix, and K are the wave vectors within the reduced
Brillouin zone, and Σ (iω) is the self-energy supermatrix. For simplicity we will write all
equations in the nearest-neighbor approximation, which means only one hopping in x- (tx) and
y- (ty) direction. After supercell Fourier-transform we have the following expression for the
supercell hopping matrix:

TI,J (K) =




0 txK
+
x 0 tyK

+
y

txK
−
x 0 tyK

+
y 0

0 tyK
−
y 0 txK

−
x

tyK
−
y 0 txK

+
x 0


 (5)

where K±
x(y) ≡ 1+exp

(
±iKx(y)a

)
, a is the lattice constant, and each elements is a 2×2 matrix

in spin space. Within the cluster DMFT approach we introduce the intra-atomic self-energy Σ0
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,
which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =




Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0




For a general N ×N super-site impurity model (simp) the partition function can be written as a
functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :
Z =

∫
D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[
G−1
σ (τ − τ ′)

]
IJ

cJσ(τ
′)

+
N∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.
The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to
obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space
GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular
DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following
prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the
standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.
Next we can write the matrix equation for the bath Green function matrix G, which describes the
effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,
which allowed us to account for double-counting corrections for the local self-energy matrix:
the bath Green function is not supposed to have any local self-energy contribution, since it
comes later from the solution of the effective super-impurity problem (7). Therefore one needs
to subtract the local self-energy contribution, which is equivalent to a solution of the following
impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the
”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).
We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity
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Green’s function Gsimp
IJ (τ) = −〈cIσ(τ)c

†
Jσ(0)〉simp. The new cluster-local self-energy is equal

to the difference of the inverse input and output Green’s functions of this local many-body
problem:

Σnew (iω) = G−1 (iω)−G−1
simp (iω) . (10)

Finally, we can close the CDMFT self-consistent loop for the cluster self-energy ΣI,J (iω) by
using in the next iterations the new self-energy from Eq. (10) in the super-lattice Hamiltonian
from Eq. (1). The CDMFT self-consistency condition reads:

Gsimp
IJ (iω) = GIJ (iω) . (11)

In fact this CDMFT scheme is equivalent to the multi-orbital LDA+DMFT approach [4], where
the super-site indices (I, J) play the role of different orbitals (m,m′). A crucial difference
is related to the fact, that multi-orbital DMFT does not break the translational symmetry of
original lattice, while the standard CDMFT scheme [8, 6] does lower the symmetry of lattice
due to the local form of the super-site self-energy Eq. (7). The present “matrix” form of CDMFT
with non-periodic self-energy allows us to study multicomponent order parameters (Fig. 1). In
this case we have the standard DMFT problem with four “orbital” states per super-site. We use
the generalized Gorkov-Nambu technique to analyze the coexistence of magnetic ordering and
superconductivity. Let us introduce the superspinor

Ψ+
I (τ) =

(
c†I↑, c

†
I↓, cI↑, cI↓

)
(12)

and the anomalous averages describing the (collinear) antiferromagnetism
〈
c†I↑cJ↓

〉
and the

superconductivity∆IJ = 〈cI↓cJ↑〉.
One may realize that the cellular DMFT approximation is not very suitable for the supercon-
ducting d-wave order parameter since ∆ is located on the bonds as depicted in Fig. (1). There-
fore one can lose half of the superconducting bonds and reduce approximately by a factor of
two the HTSC transition temperature. We can also formulate a ”periodic” CDMFT scheme by
renormalizing the hopping with the cluster self-energy [6].
The effective Hamiltonian defined through the translationally invariant (k-dependent) self-energy
corresponds to the renormalized energy dependent hoppings: tx = t+Σx, ty = t+Σy. The func-
tionsΣ0 (iω), Σx (iω), Σy (iω) are found self-consistently within the cluster DMFT scheme [6]
and for the d-wave superconducting state Σx '= Σy. It is straightforward to generalize this
scheme for a next-nearest neighbor hopping as well as the long-range Green function and the
self-energy. In this case we can renormalize also the second-nearest hopping: txy = t′+Σxy for
the 2×2 cluster. The local cluster Green matrix in this case is equal to Gij (iω) =

∑
k

Gij (k,iω) ,

and the summation runs over the original Brillouin zone of the square lattice. Unfortunately we
can not prove that this periodic CDMFT scheme is causal. Later we will discuss different ways
of obtaining a periodic self-energy within CDMFT.
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Fig. 2: Decomposition of real-space lattice vectors, x = X + x̃, and reciprocal-space wave
vectors, k = k̃+K, for aD = 1 dimensional lattice (lattice constant a) with L = 12 sites tiled
with L/Lc = 3 clusters consisting of Lc = 4 sites each. x: original lattice. x̃: superlattice.X:
sites in a cluster. Reciprocal space: There are L allowed wave vectors k in the unit cell of the
lattice reciprocal to x, and there are L/Lc allowed wave vectors k̃ in the unit cell of the lattice
reciprocal to the superlattice x̃. K are the reciprocal superlattice vectors, exp(iKx̃) = 1.
From Ref. [19].

3 Dynamical cluster approximation: general consideration

We start discussion of dynamical cluster approaches in reciprocal space with introducing some
notations (see Fig. 2) (for a review, see Ref. [10]). The cluster need not be a physical subsystem
of the original lattice [11–13]. We consider a system on a D-dimensional lattice of L sites with
periodic boundary conditions and L → ∞ in the end. The position vector to a site in the lattice
is denoted by x. There are L allowed wave vectors in a unit cell of the reciprocal lattice which
are denoted by k. The lattice is tiled with L/Lc clusters consisting of Lc sites each. Let x̃ be
the position vector of the cluster origin, and X the position vector of a site in a cluster, referring
to the cluster origin. We then have the unique decomposition x = X + x̃. The vectors x̃ form
a superlattice with a unit-cell volume enlarged by the factor Lc. In a unit cell of the reciprocal
superlattice there are L/Lc allowed wave vectors k̃. Its volume is reduced by the factor Lc as
compared to the volume of the reciprocal unit cell of the original lattice. For a given k we have
the unique decomposition k = k̃+K where K are the vectors of the reciprocal superlattice, i.e.
exp(iKx̃) = 1. In the reciprocal unit cell of the original lattice, there are Lc vectors K. These
can also be interpreted as the allowed cluster wave vectors when imposing periodic boundary
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Fig. 3: a) Hubbard 1d-model. b) The original Hubbard model but with a modified one-particle
part t → t which is the starting point for the dynamical cluster approximation (DCA). t is
invariant under superlattice and cluster translations. c) Reference system generating the DCA.
Note that t′ has the same translational symmetries as t. d) Reference system generating a
simplified DCA. From Ref. [19].

conditions on the individual cluster.
In the following we consider the L× L matrix U with elements

Ux,k =
1

√
L
eikx , (13)

and the L/Lc × L/Lc matrix V with elements

V
x̃,k̃

=
1√
L/Lc

eik̃x̃ , (14)

and the Lc × Lc matrix W with elements

WX,K =
1

√
Lc

eiKX . (15)

Notes, that U , V and W are unitary and define Fourier transformations between the respective
real and reciprocal spaces. It is obvious, that U '= V W = WV :

Ux,k =
1

√
L
eikx =

1
√
L
ei(k̃X+k̃x̃+KX) '=

1
√
L
ei(k̃x̃+KX) = V

x̃,k̃
WX,K . (16)

A hopping tx,x′ which is invariant under lattice translations x0, i.e. tx+x0,x′+x0 = tx,x′ , is di-
agonalized by normal Fourier transformations U : (U †tU)kk′ = t(k)δk,k′ . By definition, the
one-electron spectrum is just Fourier transform of the hopping matrix elements: εk ≡ t(k). A
quantity Tx,x′ which is invariant under superlattice translations x̃0 as well as under cluster trans-
lations X0 (i.e. which is cyclic on the cluster), Tx+x̃0,x′+x̃0 = Tx+X0,x′+X0 = Tx,x′ , is diagonal-
ized by alternative DCA-transformation V W : (W †V †TV W )

k̃K,k̃′K′ = T (k̃,K)δ
k̃,k̃′δK,K′.

Following Refs. [15, 16, 19], we introduce a fictitious hopping which corresponds to the real-
space formulation of the DCA-scheme:

t = (VW )U †
t U(V W )† , (17)
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which is just the DCA Fourier back-transform of the one-electron spectrum εk. For clusters of
finite size Lc, the combined Fourier transformation V W is different from U . For Lc → ∞,
however, this becomes irrelevant. With ε(k) = (U †tU)(k) we have:

txx′ =
1

Lc

∑

K

eiK(X−X′)Lc

L

∑

k̃

eik̃(x̃−x̃′)ε(k̃ +K) . (18)

Obviously, t is invariant under superlattice translations as well as under cluster translations
(with periodic cluster boundary conditions). The original and the modified system are repre-
sented by Fig. 3a, b. The construction of t is such that it exhibits the same translational sym-
metries as the one-particle parameters t′ of a reference system consisting of isolated clusters
tiling the original lattice with periodic boundary conditions, see Fig. 3c, d. Since both, t and t,
are invariant under superlattice translations, we can compare tXX′(k̃) = (V †tV )XX′(k̃) with
tXX′(k̃) = (V †tV )XX′(k̃). It turns out they are equal up to a phase factor:

tXX′(k̃) =
1

Lc

∑

K

eiK(X−X′)ε(k̃ +K)

=
Lc

L

∑

x̃x̃′

e−ik̃(x̃+X−x̃′−X′)tx̃+X,x̃′+X′

= e−ik̃(X−X′)tXX′(k̃) . (19)

The main idea of the DCA is to restore momentum conservation within the cluster by a rescale
the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the
super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ε
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.
(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X′) =
1

Lc

∑

K

eiK(X−X′)ε
K+k̃

. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the
dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function
which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)−Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-
consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)
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We can also try to ’periodize’ the cluster-DMFT scheme [6, 15]. The CDMFT violates trans-
lational invariance with respect to the cluster sites. This is obvious for clusters with Lc ≥ 3,
where bulk and surface sites of a cluster may be distinguished. The CDMFT calculations are
carried out in the cluster real-space representation (i.e. all quantities are matrices in the cluster
sites), since there is no benefit in changing to the cluster k-space representation, which is not
diagonal.
Since translational invariance is broken, the lattice quantities are functions of two independent
momenta k and k′. They can differ by a reciprocal lattice vector Q, where Qi = 0, . . . , (Lc −

1)2π/Lc. The self-energy can be expressed in terms of the cluster self-energy as

Σ(k,k′, iω) =
1

Lc

∑

Q

∑

X,X′

eikXΣc(X,X′, iω)e−ik′X′

δ(k− k′ −Q), (24)

where the dependence on cluster sites is written explicitly. A translationally invariant solution
is obtained by approximating the lattice quantities only by the Q = 0 contribution:

Σ(k, iω) =
1

Lc

∑

X,X′

= eik(X−X′)Σc(X,X′, iω). (25)

Transforming back to real space shows that the lattice quantities for a given distance x− x′ are
obtained as an average over the cluster quantities for the same distance,

Σ(x− x′, iω) =
1

Lc

∑

X,X′

Σc(X,X′, iω) δX−X′,x−x′. (26)

Spatial correlations are hence included up to a length determined by the extension of the cluster.
Note that Eq. (26) underestimates the nonlocal contributions, in particular for small clusters.
Using the shorthand notationΣX,X′ = Σ(X,X′), one sees that the local self-energy is averaged
correctly, Σ(x = 0) = (Σc 00 + Σc 11)/2, while the nearest-neighbor self-energy contribution
according to (26) would read Σ(x = 1) = (1/2)Σc 10, since Σc 01 contributes to Σ(x = −1). It
was therefore suggested to reweigh the terms in the sum [15]. For the above example, Σ(x =

1) = Σc 10.
When translational invariance is recovered in this way, the solution of the lattice problem may
be viewed as shown in Fig. 4: The lattice is replaced by a lattice of clusters all of which are em-
bedded in a self-consistent bath. The self-energy on a cluster is obtained from the self-consistent
solution of the local problem and the intercluster self-energy between sites on neighboring clus-
ters at a distance x− x′ is artificially set equal to the average of the intracluster self-energy for
the same distance. The self-energy for distances exceeding the maximum distance between sites
within the cluster is zero.
Following Ref. [17] we can compare the CDMFT and DCA schemes for the linear 3-cite cluster
from Fig. (3). Writing the single-electron part of Hamiltonian as the supercell matrix T(k̃), the
average cluster hopping is given by

Tc =

∫
dk̃ T(k̃) . (27)
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∆00 ∆11

Σc 10

Σ(x = 1) = Σc 10Σ(x = −2) ≡ 0

Fig. 4: Illustration of the CDMFT lattice self-energy. The original lattice is replaced by a
collection of clusters embedded in a self-consistent bath. The intercluster self-energyΣ(x = 1)
is approximated by the intracluster self-energyΣc 10 for this distance not exceeding the maximal
distance between cluster sites and zero otherwise. From the Ref. [14].

The interaction terms are simply those of Eq. (1), restricted to the cluster.
The Hamiltonian H(k̃) in the reciprocal space of the super-lattice {x̃} of clusters can be ob-
tained by changing to the basis of fermionic-operators in Eq.(1):

c̃CDMFT
X,σ (k̃) =

∑

x̃

e−ik̃x̃ cx̃+X,σ . (28)

The resulting quantum cluster approximation is the CDMFT. Alternatively, we can start from
the operators in the reciprocal space of the lattice to obtain

c̃DCA
X,σ (k̃) =

∑

x̃

e−ik̃(x̃+X) cx̃+X,σ ≡=
∑

x̃

e−i(k̃x̃+φ(k̃,x̃)) cx̃+X,σ . (29)

The choice of the operators in the two approaches differs just by local phase factors φ(k̃, x̃)
[17]. In the CDMFT this gauge is chosen such that phases appear only in matrix elements
involving different clusters. Thus all matrix elements on the cluster are the same as in the
original Hamiltonian. The price for retaining the original matrix elements on the cluster is a
breaking of the translation-symmetry of the original lattice. The DCA-scheme opts instead to
retain this symmetry by distributing the phase change uniformly over the cluster-sites. The price
for retaining translation-invariance is that the matrix elements in the cluster Hamiltonian differ
from those in the original Hamiltonian. In both cases, CDMFT and DCA, the eigenvalues of
T(k̃) are identical to the eigenvalues of the non-interacting part of H .
In the CDMFT gauge we have we have for a three-site cluster (Lc = 3) in 1-d lattice [17] :

TCDMFT (k̃) = t




0 1 e−3ik̃

1 0 1

e3ik̃ 1 0


 (30)

so that Tc is the original single-electron Hamiltonian restricted to the cluster:

TCDMFT
c =

3

2π

∫ π/3

−π/3

dk̃T(k̃) = t




0 1 0

1 0 1

0 1 0


 . (31)
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In the DCA gauge for 3-cite linear cluster we have

TDCA(k̃) = t




0 eik̃ e−ik̃

e−ik̃ 0 eik̃

eik̃ e−ik̃ 0


 . (32)

Now the Tc matrix is cyclic and has translation symmetry (see Fig.(3 c)), but rescaled hopping
matrix elements:

TDCA
c =

3

2π

∫ π/3

π/3

dk̃T(k̃) =
3
√
3

2π
t




0 1 1

1 0 1

1 1 0


 . (33)

This effective rescaling of the hopping parameters in DCA-scheme can lead to a problem with
investigations of complex band structure effects, such as an extended van Hove singularities
[32]. We note also that the similar consideration apply to the variational cluster approach [11],
which is based on the self-energy functional theory [18, 19].

4 Symmetry properties of the cluster scheme
Let us discuss a symmetry properties of paramagnetic solution of culster extension of DMFT
in the simple case of 2- and 4-site clusters [20]. In Fig. Fig. (5) the simplest 2-site and 4-
site tiling on square and cubic lattices plotted. For each quantity, like Green’s function G, self
energy Σ, and bath function G, there are momentum and real-space components labeled by
some subscript. In this paper, the real-space component is labeled by a number (0 - on-site, 1 -
nearest neighbor, etc.) while the momentum-space sectors labelled by capital letters (S, P, D).

4.1 Formalism for the 2-site cluster method
Now we apply general cluster formalism to specific cases, first to the 2-site cluster in the square
lattice. The solution of 2-site impurity problem gives the following matrix Green function:

Ĝimp =

(
G0 G1

G1 G0

)
Σ̂imp =

(
Σ0 Σ1

Σ1 Σ0

)
(34)

The partitioning of Brillouin zone in this case is given in Fig(5), so two K points according
to this division is KI = 0, KII = (π, π). We label region I and II or S and P sectors.
Corresponding to KI and KII , one gets R0 = 0 and R1 = (±1, 0) or (0,±1). The lattice self
energy is related to Σ̂imp by

ΣDCA(-k,ω) =

{
Σimp

S = Σ0 +Σ1 fork ∈ Region I(S)

Σimp
P = Σ0 −Σ1 fork ∈ Region II(P )

(35)

The partial density of states are

DS(P )(ε) = 2×

∫

k∈I(II)

dk δ(ε− εk) (36)
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Fig. 5: Partition of the Brillouin zone. (a) 2-site DCA on square lattice. (b) 4-site DCA on
square lattice. (c) 2-site DCA on cubic lattice From Ref. [20].

and the self-consistency equation is

G0 = (GS +GP )/2

G1 = (GS −GP )/2 (37)

with

GS(P ) =

∫
DS(P )(ε) dε

ω + µ− εk − (Σ0 ±Σ1)
(38)

4.2 Formalism for the 4-site cluster method

In the 4-site cluster the Brillouin zone is divided into four sectors which are labelled as S, P, and
D, as shown in Fig(5). Four K points are (0, 0) (π, 0) (0, π) (π, π) leading to four R as (0, 0)
(1, 0) (0, 1) (1, 1). The partial DOS is defined as

D
(4)
S(P,D)(ε) = 4×

∫

k∈S(P,D)

dk δ(ε− εk) (39)

where the superscript (4) is used to distinguish from the partial DOS in 2-site DCA (see Fig(6)).
After solving a 4-site impurity cluster problem, in the disordered phase one gets

Ĝimp =




G0 G1 G2 G1

G1 G0 G1 G2

G2 G1 G0 G1

G1 G2 G1 G0


 Σ̂imp =




Σ0 Σ1 Σ2 Σ1

Σ1 Σ0 Σ1 Σ2

Σ2 Σ1 Σ0 Σ1

Σ1 Σ2 Σ1 Σ0


 (40)
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Fig. 6: The PDOS for 2-site and 4-site DCA partitioning on the square lattice with nearest
neighbor hopping. The total bandwidth is 12 which corresponds to the hopping t=1.5. From
Ref. [20].

and the momentum-dependent self energies are

ΣS = Σ0 + 2Σ1 +Σ2

ΣP = Σ0 −Σ2

ΣD = Σ0 − 2Σ1 +Σ2 (41)

and correspondingly the components of lattice Green’s functions are

GS(P,D) =

∫
DS(P,D)(ε)dε

iωn + µ− ε−ΣS(P,D)
(42)

The self-consistency equations are

G0 = (GS + 2GP +GD)/4

G1 = (GS −GD)/4

G2 = (GS − 2GP +GD)/4 (43)

We can compare the DCA-partial DOS with a similar consideration for the cluster DMFT [21].
In this case, one first calculate the proper local matrix of the Green functions Eq. (8) and then
transform it to the basis of molecular orbitals (inverse of Eqs. (37) and (43) ) in order to obtained
partial DOS ρm (Fig. (7)). It is clear that the DCA partial DOS overestimate ”localization” of the
partial sectors orbitals φm while the CDMFT has larger overlap between different partial DOS
with non-local Green function contributions. This can lead to spurious k-selective polarization
of correlated orbitals in the DCA-scheme compare to the CDMFT method.
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Fig. 7: Total density of states ρ(ω) and molecular orbital CDMFT-components ρm(ω) for 2-site
(left panel) and 4-site clusters (right panel) of square lattice. The total bandwidth is 8, which
corresponds to the hopping t=1. From Ref. [21].

5 Long-range correlations: Dual-Fermion approach

The shortcomings of cluster DMFT scheme have triggered many efforts to go beyond the mean-
field description, while maintaining DMFT as a starting point. The standard DMFT scheme
becomes exact in the limit of infinite coordination number z. An expansion in 1/z, however,
leads to difficulties as the action depends in a non-analytic way on the coordination number [22].
Building on earlier work on strong-coupling expansions for the Hubbard model [23–25], a
general framework to perform a systematic cumulant expansion around DMFT even considering
non-local Coulomb interaction was developed in Ref. [26].
While cluster extension to DMFT breaks translational symmetry of the lattice, the combination
of numerical and analytic methods is a promising route for including the effects of long-range
correlations. Recent developments have led to approaches which include long-range correla-
tions via straightforward diagrammatic corrections to DMFT [27–29]. Based on earlier sug-
gestions for bosonic fields [30], it was recognized that that a systematic, fully renormalized
expansion around DMFT can be formulated in terms of auxiliary fermions [31].
Our goal is to find optimal strong-coupling expansion of the general lattice problem described
by the imaginary time action

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[
(iω + µ)1− tmm′

kσ

]
cωkσm′ +

∑

i

SU[c
∗
i , ci]. (44)

Here tkσ is the one-electron part of the Hamiltonian, σ =↑, ↓ labels the spin projection, m,m′

are orbital indices and c∗, c are Grassmann variables. The index i labels the lattice sites and
k-vectors are quasimomenta. In order to keep the notation simple, it is useful to introduce the
combined index α ≡ {mσ}. Translational invariance is assumed for simplicity in the following.
For applications it is important to note that the local part of the action, SU, may contain any
type of local interaction. The only requirement is that it is local within the multi-orbital atom
or cluster.
In order to formulate a perturbation expansion around DMFT, a local quantum impurity problem
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is introduced:

Sloc[c
∗, c] = −

∑

ω αβ

c∗ωα [(iω + µ)1−∆ω]αβ cωβ + SU[c
∗, c], (45)

where ∆ω is the hybridization matrix describing the coupling of the impurity to an electronic
bath. Apart from the connection to DMFT, another motivation for rewriting the lattice action in
this form is to express it in terms of a reference problem that can be solved accurately for an
arbitrary hybridization function using the CTQMC methods [7]. Exploiting the locality of the
hybridization function∆ω, the lattice action (44) is rewritten exactly by adding and subtracting
∆ω at each lattice site:

S[c∗, c] =
∑

i

Sloc[c
∗
i , ci] +

∑

ωkαβ

c∗ωkα (tk −∆ω)αβ cωkβ. (46)

Note that this step leaves the hybridization function unspecified. This will be used later to
optimize the approach. The lattice may now be viewed as a collection of impurities, which are
coupled through the bilinear term to the right of this equation (see Fig. 8. The effect of spatial
correlations enters here and renders an exact solution impossible. A perturbative treatment is
desirable, but not straightforward as the impurity action is non-Gaussian and hence there is no
Wick theorem. Therefore, dual fermions are introduced in the path integral representation of
the partition function from Eq. (6) through the standard Hubbard-Stratonovich transformation

exp
(
c∗αBαβ(A

−1)βγBγδcδ
)
=

1

detA

∫
D[γ∗, γ] exp (−f ∗

αAαβfβ − f ∗
αBαβcβ − c∗αBαβfβ) . (47)

In order to transform the exponential of the bilinear term in (46), we choose the matrices a, b in
accordance with Refs. [31] as

A = g−1
ω (∆ω − tk)

−1 g−1
ω , B = g−1

ω , (48)

where gω is the local, interacting Green function of the impurity problem. With this choice, the
lattice action transforms to

S[c∗, c, f ∗, f ] =
∑

i

Ssite,i +
∑

ωkαβ

f ∗
ωkα[g

−1
ω (∆ω − tk)

−1 g−1
ω ]αβfωkβ. (49)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions:

Ssite,i[c
∗
i , ci, f

∗
i , fi] = Sloc[c

∗
i , ci] +

∑

αβ

f ∗
ωiα g−1

ωαβcωiβ + c∗ωiα g−1
ω αβfωiβ . (50)

Since gω is local, the sum over all states labeled by k could be replaced by the equivalent
summation over all sites by a change of basis in the second term. The crucial point is that the
coupling to the auxiliary fermions is purely local and Ssite decomposes into a sum of local terms.
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U t
U

! ( -t)!

"

Fig. 8: Construction of the dual fermion approximation: In a first step, the original lattice
problem (left) with bonds (red lines) is replaced by a collection of decoupled impurities exerted
to an electronic bath, as indicated by the red spheres (middle), finally spatial correlations in the
original lattice problem are treated perturbatively over (∆ω − tk) (blue wiggly line) with local
interaction vertex γ (right).

The lattice fermions can therefore be integrated out from Ssite for each site i separately. This
completes the change of variables:

∫
D[c∗, c] exp (−Ssite[c

∗
i , ci, f

∗
i , fi]) =

Zloc exp
(
−

∑

ω αβ

f ∗
ωiα g−1

ω αβfωiβ − Vi[f
∗
i , fi]

)
. (51)

The above equation may be viewed as the defining equation for the dual potential V [f ∗, f ].
The choice of matrices (48) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (51) and equating the resulting expressions
by order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex:

V [f ∗, f ] =
1

4
γ1234f

∗
1 f

∗
2 f4f3, (52)

where the combined index 1 ≡ {ωα} comprises frequency, spin and orbital degrees of freedom.
γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity
problem. It is given by

γ1234 = g−1
11′g

−1
22′

[
χ1′2′3′4′ − χ

0
1′2′3′4′

]
g−1
3′3g

−1
4′4, (53)

with the two-particle Green function of the impurity being defined as

χ1234 = 〈c1c2c
∗
3c

∗
4〉loc =

1

Zloc

∫
D[c∗, c]c1c2c

∗
3c

∗
4 exp

(
− Sloc[c

∗, c]
)
. (54)
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Fig. 9: Diagrams contributing to the dual self-energy Σd. Diagrams a), a’), a”) and c) give
local, the other ones nonlocal contributions. The three diagrams labeled by a) do not contribute
in case the condition (66) is fulfilled. From the Ref. [14].

The disconnected part reads

χ01234 = g14g23 − g13g24. (55)

The single- and two-particle Green functions can be calculated using the CTQMC algorithms
[7]. After integrating out the lattice fermions, the dual action depends on the new variables only
and reads

S̃[f ∗, f ] = −
∑

ωkαβ

f ∗
ωkα[G̃

0
ω(k)]

−1
αβfωkβ +

∑

i

Vi[f
∗
i , fi]. (56)

and the bare dual Green function is found to be

G̃0
ω(k) = −gω

[
gω + (∆ω − tk)

−1]−1
gω, (57)

which involves the local Green function gω of the impurity model.
Up to now, Eqs. (56), (57) are merely a reformulation of the original problem. In practice,
approximate solutions are constructed by treating the dual problem perturbatively. Several di-
agrams that contribute to the dual self-energy are shown in Fig. 9. These are constructed from
the impurity vertices and dual Green functions as lines. The first diagram (a) is purely local,
while higher orders contain nonlocal contributions, e.g. diagram b). Inserting the renormalized
Green function into diagram a) includes contributions such as the one in a’). In practice, ap-
proximations to the self-energy are constructed in terms of skeleton diagrams. The lines shown
in Fig. 9 are therefore understood to be fully dressed propagators. The use of skeleton diagrams
is necessary to ensure the resulting theory to be conserving in the Baym-Kadanoff sense [33],
i. e. it fulfills the basic conservation laws for energy, momentum, spin and particle number.
It is an important consequence of the exact transformation (47) that for a theory which is con-
serving in terms of dual fermions, the result is also conserving in terms of lattice fermions [32].
This allows to construct general conserving approximations within the dual fermion approach.
Numerically, the self-energy is obtained in terms of skeleton diagrams by performing a self-
consistent renormalization as described below. Once an approximate dual self-energy is found,
the result may be transformed back to a physical result in terms of lattice fermions using exact
relations.
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The action (56) allows for a Feynman-type diagrammatic expansion in powers of the dual po-
tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [34].
Extension of these rules to include generic n-particle interaction vertices is straightforward.
Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-
tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As
simplest example we can write schematically the first self-energy correction of the diagram a)
in Fig. 9 contains a single closed loop:

Σ̃
(a)
12 = −T

∑

34

γ1324G̃
loc
43 (58)

where G̃loc = (1/N)
∑

k
G̃(k) denotes the local part of the dual Green function. The second-

order contribution represented by diagram b) contains two equivalent lines and one closed loop
and hence is k-dependence:

Σ̃
(b)
12 (k) = −

1

2

(
T

N

)2 ∑

k1k2

∑

345678

γ1345G̃57(k1)G̃83(k2)G̃46(k+ k2 − k1)γ6728 (59)

In practice, it is more efficient to evaluate the lowest order diagrams in real space and transform
back to reciprocal space using the fast Fourier transform.

5.1 Dual-Fermion approach: Exact relations
After an approximate result for the dual self-energy or the dual Green function has been ob-
tained, it has to be transformed back to the corresponding physical quantities in terms of lattice
fermions. The fact that dual fermions are introduced through the exact Hubbard-Stratonovich
transformation (47) allows to establish exact identities between dual and lattice quantities.
Hence the transformation does not involve any additional approximations [14, 31].
The relations between the n-particle cumulants of dual and lattice fermions can be established
using the cumulant (linked cluster) technique. To this end, one may consider two different,
equivalent representations of the following generating functional:

F [J∗, J ;L∗, L] = ln Zf

∫
D[c∗, c; f ∗, f ] exp

(
−S[c∗, c; f ∗, f ] + J∗

1 c1 + c∗2J2

+ L∗
1f1 + f ∗

2L2

)
. (60)

Integrating out the lattice fermions from this functional similar to (51) (this can be done with
the sources J and J∗ set to zero) yields

F [L∗, L] = ln Z̃f

∫
D[f ∗, f ] exp

(
−S̃[f ∗, f ] + L∗

1f1 + f ∗
2L2

)
. (61)

with Z̃f = Z/Z̃ . The dual Green function and two-particle correlator related with non-local
susceptibilities are obtained from (61) by suitable functional derivatives, e.g.

G̃12 = −
δ2F

δL2δL
∗
1

∣∣∣∣
L∗=L=0

,
[
X̃−G̃⊗ G̃

]
1234

=
δ4F

δL4δL3δL
∗
2δL

∗
1

∣∣∣∣
L∗=L=0

,

(62)
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where G ⊗ G is the antisymmetrized direct product of Green functions, so that the angular
brackets is the connected part of the dual two-particle Green function. Conversely, integrating
out the dual fermions from (60) using the HST, one obtains an alternative representation, which
more clearly reveals a connection of the functional derivatives with respect to the sources J ,J∗

and L, L∗. The result is

F [J∗, J ;L∗, L] =L∗
1[g(∆− h)g]12L2 + ln

∫
D[c∗, c] exp

(
− S[c∗, c] +

+ J∗
1 c1 + c∗2J2 + L∗

1[g(∆− t)]12c2 + c∗1[(∆− t)g]12L2

)
. (63)

In analogy to (62), the cumulants in terms of lattice fermions are obviously obtained by func-
tional derivative with respect to the sources J and J∗ with L and L∗ set to zero. Applying the
derivatives with respect to L, L∗ to (63) with J = J∗ = 0 and comparing to (62), e.g. yields the
following identity:

G̃12 = −[g(∆− t)g]12 + [g(∆− t)]11′G1′2′ [(∆− t)g]2′2. (64)

Solving for G provides the rule how to transform the dual Green function to the physical quan-
tity in terms of lattice fermions. For higher-order cumulants the additive term in (63) does not
contribute and the relation between the two-particle cumulants evaluates to

[
X̃ − G̃⊗ G̃

]
1234

=

[g(∆− t)]11′ [g(∆− t)]22′ [X −G⊗G]1′2′3′4′ [(∆− t)g]3′3 [(∆− t)g]4′4 , (65)

It is apparent that similar relations hold for higher-order cumulants. Note that the transforma-
tion only involves single-particle functions. Hence one may conclude that n-particle collective
excitations are the same for dual and lattice fermions.

5.2 Self-consistency condition and relation to DMFT
The hybridization function∆, which so far has not been specified, allows to optimize the start-
ing point of the perturbation theory and should be chosen in an optimal way. The condition of
the first diagram (Fig. 9 a) in the expansion of the dual self-energy to be equal to zero at all
frequencies fixes the hybridization. This eliminates the leading order diagrammatic correction
to the self-energy and establishes a connection to DMFT, which can be seen as follows: Since
γ vertex is local, this condition amounts to demanding that the local part of the dual Green
function be zero: ∑

k

G̃ω(k) = 0. (66)

The simplest nontrivial approximation is obtained by taking the leading-order correction, dia-
gram a), evaluated with the bare dual propagator (57). Recalling the expression for the DMFT
Green function, Eq. (4), it is readily verified that

GDMFT
ω (k)− gω =

[
g−1
ω +∆ω − tk

]−1
− gω

= −gω
[
gω + (∆ω − tk)

−1
]−1

gω = G̃0
ω(k). (67)
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It immediately follows that (66) evaluated with the bare dual Green function is exactly equiva-
lent to the DMFT self-consistency condition:

1

N

∑

k

G̃0
ω(k) = 0 ⇐⇒

1

N

∑

k

GDMFT
ω (k) = gω. (68)

Hence DMFT appears as the zero-order approximation in this approach and corrections to
DMFT are included perturbatively. A formal relation to DMFT can be established using the
Feynman variational functional approach. In this context, DMFT appears as the optimal ap-
proximation to a Gaussian ensemble of dual fermions [32].
When diagrammatic corrections are taken into account and the first diagram is evaluated with
the dressed propagator G̃, the condition (66) will in general be violated. It can be reinforced by
adjusting the hybridization function iteratively. This corresponds to eliminating an infinite par-
tial series starting from the diagrams labeled by a) in Fig. 9. These contributions are effectively
absorbed into the impurity problem. Note that such an expansion is not one around DMFT, but
rather around an optimized impurity problem.
The only difference between a DMFT and a DF calculation are the diagrammatic corrections
which are included into the dual Green function. To this end, the local impurity vertex γ has to
be calculated in addition to the Green function in the impurity solver step.
Since the choice of the hybridization function is not unique, one may replace it by a discrete
version∆(n) =

∑n

k=1|Vk|2/(iω−εk) for a small number n of bath degrees of freedom, for which
the impurity problem can be solved efficiently using exact diagonalization. In this case, the
condition (66) cannot be fulfilled in general, but one may require the correction to be minimal
instead. This results in a variational approach. The corresponding perturbation expansion is
considerably more stable than an expansion around the atomic limit, i.e. ∆ ≡ 0 [24].

5.3 Results for the 2d-Hubbard model
In the following, we show some illustrative results for the Hubbard model, which is governed
by the Hamiltonian (1). Unless otherwise stated, only the two lowest-order diagrams a) and
b) of Fig. 9 have been used. It may be considered as a benchmark system for the approach,
because the importance of nonlocal correlations is expected to increase by reducing the dimen-
sionality. This is clearly an unfavorable situation for DMFT, which completely neglects spatial
correlations.
In order to visualized the nonlocal correlations, the k-dependent self-energy is shown in Fig.
(10). The upper panel of Figure 10 presents contour plots for ImΣω=0,k at U = 1.0 and U = 2.0

(the data are obtained by a polynomial extrapolation from the Matsubara frequencies). The
value of ImΣω=0,k grows dramatically as U changes from 1.0 to 2.0. Close to the Mott transition
there is a strong k-dependence ofΣ. The renormalized dispersion law εk+ReΣω=0,k is now also
in a qualitative agreement with numerical data, as the lower panel of Figure 10. In these graphs,
εk + ReΣω=0,k is compared with the reference data for a 10 × 10 lattice. There is a qualitative
difference between the results for U = 1.0 and U = 2.0: for later case the corrections are quite
large so that there is a dependence resembling ε−1

k [31, 31].
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Fig. 10: Momentum dependence for the self-energy function at Fermi energy, obtained with
diagram (b) within the translationally-invariant approximation for the undoped Hubbard model.
Data are shown at t = 0.25, β = 20, for U = 1.0 and U = 2.0. Upper panel: contour plots for
k-dependence of the imaginary part of the self energy. Lower panel: renormalized dispersion
law εk + ReΣω=0,k, compared with the reference data obtained for 10 × 10 lattice. From the
Ref. [31].

The k-resolved spectral function A(k,ω) obtained from maximum-entropy analytical continu-
ation shown in Fig. 11. The DMFT spectral function displays a quasiparticle band, while in the
DF calculation, spectral weight is transferred away from the Fermi level. Recalling the nesting
condition εk+Q = −εk for the antiferromagnetic wave vector Q = (π, π), the locus of these fea-
tures allows to interpret them as shadow bands due to dynamical short-range antiferromagnetic
correlations. The strength of these correlations increases as the temperature is lowered.
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Fig. 11: Spectral function A(k,ω) for the 2D Hubbard model at half-filling obtained within
DMFT (left) and dual fermion calculations (right) for U = 8t and T/t = 0.235. From bottom
to top, the curves are plotted along the high-symmetry lines Γ → X → M → Γ . The high-
symmetry points X = (0, π) and M = (π, π) are marked by dashed lines. The structures
encircled in blue can be attributed to dynamical short-range antiferromagnetic correlations.
From the Ref. [14].
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Fig. 12: Metallic and insulating local density of states obtained in the coexistence region of the
Mott transition for U/t = 6.5 and T/t = 0.08. The insulating solution exhibits characteristic
peaks at the gap edge. The antiferromagnetic correlations lead to antiferromagnetic-gap-like
behavior [35]. The metallic solution exhibits shoulders on the peak at the Fermi level. From
the Ref. [14].

A detailed analysis of the phasediagram shows that these correlations lead to a drastic reduction
of the critical U from Uc/t ∼ 9.35 in DMFT down to Uc/t ∼ 6.5 within the dual fermion
calculation. This, as well as the density of states in the coexistence region (Fig. 12) and the
slope of the transition lines in the U − T phase diagram below the critical point, which are
modified from negative within DMFT to positive [14], is in qualitative agreement with cluster
DMFT results [36]. We emphasize that these results cannot be obtained from a straightforward
diagrammatic expansion around DMFT as the modification of the Weiss field is essential. This
distinguishes the present method from related approaches [28, 29].
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+= γ(4)γ(4)
Γd/mΓd/m q q

Fig. 13: Bethe-Salpeter equation for the dual vertex in the electron-hole channel with a local
approximation Γirr = γ to the irreducible vertex. The solution Γ contains the sum of all ladder
diagrams up to infinite order in γ.

+ Γeh0χ0(q,Ω) + χ̃(q,Ω) =

Fig. 14: Diagrammatic representation of the susceptibility, Eqs. (71), (72).

5.4 Calculation of susceptibilities

For the calculation of the dual susceptibility, the dual vertex function is first calculated by means
of a Bethe-Salpeter equation [37,38] (in the following we write the equations for a single-orbital
model for simplicity)

Γ α
ωω′Ω(q) = γ

α
ωω′Ω −

T

N

∑

ω′′

∑

k

γαωω′′ΩG̃ω′′(k)G̃ω′′+Ω(k+ q)Γ α
ω′′ω′Ω(q). (69)

This equation is depicted diagrammatically in Fig. 13. Here the irreducible vertex is ap-
proximated by the local irreducible interaction of dual fermions to lowest-order and is hence
given by the reducible vertex of the impurity model γ (the index ’(4)’ is omitted in what fol-
lows). Here α = d,m stands for the density (d) and magnetic (m) electron-hole channels:
Γ d = Γ ↑↑↑↑ + Γ ↑↑↓↓, Γm = Γ ↑↑↑↑ − Γ ↑↑↓↓. The physical content of the BSE is repeated scatter-
ing of particle-hole pairs. In the two channels the particle-hole pair has a definite total spin S

and spin projection Sz. The density channel corresponds to the S = 0, Sz = 0 singlet channel,
while Γm is the vertex in the S = 1, Sz = 0 triplet channel. In the magnetic channel, the collec-
tive excitations are magnons. The vertex Γ ↑↓↓↑ (Γ ↓↑↑↓) which corresponds to the Sz = +1(−1)

spin projection of the S = 1 channel must be equal to Γm in the paramagnetic state (longitudinal
and transverse modes cannot be distinguished).
The BSE may be solved iteratively, starting from the approximation Γ (0) ≈ γ. Inserting this
into the right-hand-side of Eq. (69) yields a new approximation Γ (1). Repeating this step suc-
cessively generates a sum of all ladder diagrams with 1, . . . , n + 1 irreducible rungs in the
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approximation Γ (n). In practice however, the BSE is solved by matrix inversion according to

[Γ α
ωω′Ω(q)]

−1 = (γαωω′Ω)
−1 +

T

N

∑

k

G̃ω(k)G̃ω+Ω(k+ q)δωω′ , (70)

which corresponds to summing up the infinite series. The vertices are matrices in the fermionic
Matsubara frequencies ω, ω′. They are diagonal with respect to Ω and q, since the center of
mass energy and momentum of the particle-hole pair is conserved in scattering processes.
From the vertex, the non-local spin and charge susceptibility is finally obtained as X = X0+X1,
where

X0(q,Ω) = −
T

N

∑

ω

∑

k

Gω(k)Gω+Ω(k+ q) (71)

and
Xα

1 (q,Ω) =
T 2

N2

∑

ωω′

∑

kk′

Gω(k)Gω+Ω(k+ q)Γ α
ωω′ΩGω′(k′)Gω′+Ω(k

′ + q). (72)

In principle, these relations are valid for dual and lattice fermions. If one is only interested
in instabilities, which are signalled by the divergence of the corresponding susceptibility , it is
sufficient to consider the dual quantities. The equivalence of two-particle excitations in terms
of dual and lattice fermions ensures that the dual and lattice susceptibilities diverge at the same
parameters. The lattice susceptibility is obtained using the exact relations between dual and
lattice correlation functions (65). In the context of DMFT, the susceptibility is obtained using
relations similar to Eqs. (69), (71) and (72) [2]. The momentum dependence of the irreducible
vertex is neglected in DMFT. It is further approximated by the irreducible vertex of the impurity
model. Recall that the lattice Green function is exactly equal to the DMFT Green function when
dual corrections to the self-energy are neglected and the dual Green function fulfills the self-
consistency condition (66). Using the relation between the DMFT and bare dual Green function
Eq. (67) we can find a simple relations between the bare susceptibilities:

X̃0(q,Ω) = X0(q,Ω)− χ0(Ω). (73)

It is an important property of the above equations that under the same conditions the lattice
susceptibility calculated within the dual fermion approach is exactly equal to the DMFT sus-
ceptibility [14].
As a further illustration, we plot the dynamical susceptibility χ(q,ω) in Fig. 15. It clearly
displays the magnon spectrum in the paramagnetic state. The dispersion from spin wave theory
is shown for comparison. It is given by the expression [39] ε(k) = 2zJS

√
1− γ(k)2 where z

is the coordination number, S = 1/2 is the spin of the fermions and γ(k) = 1
z

∑
NN eikrNN =

(cos kx + cos ky) /2 for the square lattice. The right panel of Fig. 15 shows a cross-section
for the antiferromagnetic wave vector qAF = (π, π) (M-point). The peak is broadened and
slightly shifted from zero. Such a behavior is reminiscent of a 2D Heisenberg model at finite
temperature, where long-range order with a correlation length ξ 3 a takes place (a is the lattice
constant) and a corresponding small energy scale of order Ja/ξ arises [35].
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Fig. 15: Left: Dynamical susceptibility χ(q,ω) for U/t = 4 and T/t = 0.19, obtained from
a dual fermion calculation and analytical continuation using Padé approximants. It shows the
magnon spectrum in the paramagnetic state. The dispersion from spin wave theory with effective
exchange coupling J = 4t2/U is shown for comparison. Values for χ > 6 are excluded from the
colormap to improve the contrast. Right: Cross-section through the peak at theM-point. The
displacement from zero is consistent with a small energy scale J/ξ, where ξ is the correlation
length (in units of the lattice constant). From the Ref. [14].

5.5 Convergence properties

For a perturbative approach, the convergence properties are of paramount importance. For the
present theory [41], the vertices appear as a small parameter in the expansion in the weak-
coupling limit (U → 0), because they vanish at least proportionally to U : γ(4) ∼ U , γ(6) ∼

U2,. . .. On the other hand, for an expansion around the atomic limit (∆ ≡ 0), the dual Green
function is small near this limit: For hk small, the bare dual Green function can be approximated
as

G̃0
ω(k) ≈ gω hk gω. (74)

This enforces the convergence of the series in the opposite strong coupling limit. In contrast,
IPT or FLEX, which operate with the bare interaction U , have to break down at intermediate to
large U . In the general case, a fast convergence cannot be proven rigorously. Here we examine
the convergence properties numerically in the vicinity of the antiferromagnetic instability (AFI)
in the 2D Hubbard model. These can be characterized using the eigenvalue problem derived
from the BSE (69).
The matrix is the building block of the particle-hole ladder and may be thought of as the effective
two-fermion interaction. For dual fermions, the irreducible vertex is given by the bare dual
interaction Γ irr, m

ωω′Ω = γm
ωω′Ω = γ↑↑ωω′Ω − γ↑↓ωω′Ω in the magnetic channel and G̃ stands for the full

dual Green function. Here the focus is on the leading eigenvalues in the vicinity of the AFI and
hence q = (π, π) and Ω = 0. An eigenvalue of λmax = 1 implies a divergence of the ladder
sum and hence a breakdown of the perturbation theory.

−
T

N

∑

ω′k′

Γ irr, m
ωω′ΩG̃ω′(k)G̃ω′+Ω(k+ q)φω′ = λ̃φω′ . (75) Γ

irr, m
ωω′Ω

Gω′+Ω(k′ + q)
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Fig. 16: Leading eigenvalue of the Bethe-Salpeter equation obtained within various approxi-
mations in the q = (π, π) magnetic channel as a function of the interaction U . λ (λd) denotes
lattice (dual) fermion eigenvalues. The diagrams included are indicated in the legend (labels
are the same as in Fig. 9). The dual perturbation theory converges fast (i.e. the eigenvalues are
small) in particular for weak and strong coupling. A straightforward diagrammatic expansion
around DMFT breaks down for large U . From the Ref. [41].

The results are displayed in Fig. 16. For weak coupling, the leading eigenvalue is small and
implies a fast convergence of the diagrams in the electron-hole ladder. More significantly, the
eigenvalues decrease and converge to the same intercept in the large U limit. This nicely illus-
trates that the dual perturbation theory smoothly interpolates between a standard perturbation
expansion at small, and the cumulant expansion at large U , ensuring fast convergence in both
regimes. From the figure it is clear that this also improves the convergence properties for inter-
mediate coupling (U ∼ W ). Even here corrections from approximations involving higher-order
diagrams remain small, including those from the LDFA. Diagrams involving the three-particle
vertex give a negligible contribution.
For a straightforward diagrammatic expansion around DMFT, the building block of the particle-
hole ladder is constructed from the irreducible impurity vertex γirr, m

ωω′Ω and DMFT Green func-
tions. As seen in Fig. 16, the corresponding leading eigenvalue (and the effective interaction) is
much larger than for dual fermions over the whole parameter range (e.g. at red arrows). When
transforming the leading eigenvalue back to lattice fermions, it is close to the DMFT value for
these parameters. Hence convergence is enhanced for a perturbation theory in terms of dual
fermions. Remarkably, for the intermediate to strong coupling region, a straightforward pertur-
bation theory around DMFT breaks down (since the eigenvalue approaches one), while for a
theory in terms of dual fermions, this is not the case. The fact that the leading eigenvalue for
dual fermions is smaller is a generic feature. It is also observed away from half-filling and for
the electron-electron channel. Note that the interaction in the dual fermion approach is given
by the reducible vertex of the impurity. The frequency dependence accounts for the fact that
the Coulomb interaction acts on short time scales in this approach. Strong local correlations are
effectively separated (and treated non-perturbatively within the solution of the impurity model)
from weaker spatial correlations, which are treated diagrammatically.
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6 Summary and outlook
Different cluster extensions of the DMFT scheme are very useful tools to describe non-local
short-range correlations in solids. The solution of the effective multi-site cluster impurity prob-
lem in fermionic bath is a common feature of CDMFT and DCA methods and can be can
be found within numerically exact CTQMC approach. Nevertheless all cluster extension of
the DMFT have problems: while CDMFT breaks translational symmetry of crystals, DCA
effectively renormalized lattice hopping and makes a step-like momentum dependence of self-
energy. We still should find an optimal way of periodization the CDMFT scheme. For the DCA
approach one can average over different tiling of the Brillouin zone within the same cluster
as was suggested for non-local CPA scheme [9]. For the CDMFT scheme the main problem
is to find periodic self-energy solution, which preserve the analytical properties of the lattice
Green’s function [16]. In this case, even for small clusters one can find a similar solution for
both CDMFT and DCA methods.
The dual fermion scheme gives a general framework to include non-local correlations on all
scales. The bottleneck of DF-scheme related with finite number of diagrams which one can
calculate, and the accuracy of short-range correlations are not as good as in numerically exact
cluster solution. There are straightforward generalizations of the single site DF-approach to the
cluster dual fermion approach (CDFA) [40] as well as DFDCA-scheme [42]. We can think that
the cluster DMFT starting point will allow to find a better non-local solutions, which have exact
short-range correlations and reasonable long-range correlations. This may be an optimal way
to study the complicated non-local effects in solids.
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