10 Continuous-Time Impurity Solvers

Philipp Werner
Theoretical Physics
ETH Zurich, 8093 Zurich, Switzerland

Contents

1 Introduction 2
2 General recipe 4
3 Weak-coupling approach - expansion in the interaction 4
 3.1 Monte Carlo configurations 4
 3.2 Sampling procedure and detailed balance 6
 3.3 Determinant ratios and fast matrix updates 7
 3.4 Measurement of the Green’s function 8
 3.5 Expansion order 8
4 Strong coupling approach - expansion in the impurity-bath hybridization 9
 4.1 Monte Carlo configurations 9
 4.2 Sampling procedure and detailed balance 11
 4.3 Measurement of the Green’s function 12
 4.4 Generalization - Matrix formalism 13
5 Comparison between the two approaches 14
A Rubtsov’s weak-coupling approach 15
1 Introduction

An impurity model describes an atom or molecule embedded in some host or *bath*, with which it can exchange electrons. This exchange of electrons allows the impurity to make transitions between different quantum states, and leads to a non-trivial dynamics. Therefore, despite the zero dimensional nature (which makes impurity problems computationally much more tractable than fermionic lattice models), their numerical simulation remains a challenging task. Methods such as exact diagonalization or numerical RG, which explicitly treat a finite number of bath states, work well for single orbital models. However, because the number of bath states must be increased proportional to the number of orbitals, the computational effort grows exponentially with system size, and requires severe truncations of the bath already for two orbitals. Monte Carlo methods have the advantage that the bath is integrated out and thus the (infinite) size of the bath Hilbert space does not affect the simulation. While restricted to non-zero temperature, Monte Carlo methods are thus the method of choice for the solution of large multi-orbital or cluster impurity problems.

Fig. 1: Schematic representation of a quantum impurity model. Spin up and down electrons on the impurity (black dot) interact with a repulsive energy U and can hop to non-interacting bath levels ϵ_p with transition amplitude V_p^*.

Over the last few years, significant progress has been made (both in terms of efficiency and flexibility) with the development of continuous-time Monte Carlo techniques. This chapter provides an overview of two recently developed, complementary methods: (i) the weak-coupling approach, which scales favorably with system size and allows the efficient simulation of large impurity clusters, and (ii) the strong-coupling approach, which can handle impurity models with strong interactions. The contents of this chapter is based on lecture notes originally written for the Sherbrooke summer school in 2008 [1]. A comprehensive discussion of continuous-time impurity solvers can be found in a recently published review article [2]. For simplicity, we will focus on the single orbital Anderson impurity model (Fig. 1) defined by
the Hamiltonian $H = H_0 + H_U + H_{\text{bath}} + H_{\text{mix}}$ with

\begin{align*}
H_0 &= -(\mu - U/2)(n_\uparrow + n_\downarrow), \\
H_U &= U(n_\uparrow n_\downarrow - (n_\uparrow + n_\downarrow)/2), \\
H_{\text{bath}} &= \sum_{\sigma, p} \epsilon_p a_{p, \sigma}^\dagger a_{p, \sigma}, \\
H_{\text{mix}} &= \sum_{\sigma, p} (V_p^\sigma d_{\sigma}^\dagger a_{p, \sigma} + \text{h.c.}).
\end{align*}

(1) (2) (3) (4)

Here, $H_0 + H_U \equiv H_{\text{loc}}$ describes the impurity with creation operators d_{σ}^\dagger, H_{bath} a non-interacting bath of electrons (labeled by quantum numbers p) with creation operators $a_{p, \sigma}^\dagger$, while H_{mix} controls the exchange of electrons between the impurity and the bath. The transition amplitudes V_p^σ are called hybridizations.

The impurity model partition function Z is given by

$$Z = \text{Tr} \left[e^{-\beta H} \right],$$

(5)

with β the inverse temperature, and $\text{Tr} = \text{Tr}_d \text{Tr}_a$ denotes the trace over the impurity and bath states. By solving the impurity model we essentially mean computing the impurity Green’s function $(0 < \tau < \beta)$

$$g(\tau) = \langle T d(\tau) d^\dagger(0) \rangle = \frac{1}{Z} \text{Tr} \left[e^{-(\beta-\tau)H} e^{-\tau H} d^\dagger \right],$$

(6)

which we choose to be positive.

Continuous-time Monte Carlo simulation relies on an expansion of the partition function into a series of diagrams and the stochastic sampling of (collections) of these diagrams. We represent the partition function as a sum (or, more precisely, integral) of configurations c with weight w_c,

$$Z = \sum_c w_c,$$

(7)

and implement a random walk $c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow \ldots$ in configuration space in such a way that each configuration can be reached from any other in a finite number of steps (ergodicity) and that detailed balance is satisfied,

$$|w_{c_1}| p(c_1 \rightarrow c_2) = |w_{c_2}| p(c_2 \rightarrow c_1).$$

(8)

This assures that each configuration is visited with a probability proportional to $|w_c|$ and one can thus obtain an estimate for the Green’s function from a finite number N of measurements:

$$g = \frac{\sum_c w_c g_c}{\sum_c w_c} = \frac{\sum_c |w_c| \text{sign} \cdot g_c}{\sum_c |w_c| \text{sign} \cdot g_c} \approx \frac{\sum_{i=1}^N \text{sign} \cdot g_{c_i}}{\sum_{i=1}^N \text{sign} \cdot g_{c_i}} = \frac{\langle \text{sign} \cdot g \rangle_{\text{MC}}}{\langle \text{sign} \rangle_{\text{MC}}},$$

(9)

The error on this estimate decreases like $1/\sqrt{N}$. If the average sign of the configurations is small and decreases exponentially with decreasing temperature, the algorithm suffers from a sign problem.
2 General recipe

The first step in the diagrammatic expansion is to rewrite the partition function as a time ordered exponential using some interaction representation. We split the Hamiltonian into two parts, \(H = H_1 + H_2 \) and define the time dependent operators in the interaction picture as \(O(\tau) = e^{\tau H_1} O e^{-\tau H_1} \). We furthermore introduce the operator \(A(\beta) = e^{\beta H_1} e^{-\beta H} \) and write the partition function as \(Z = \text{Tr}[e^{-\beta H_1} A(\beta)] \). The operator \(A(\beta) \) satisfies \(dA/d\beta = e^{\beta H_1} (H_1 - H) e^{-\beta H} = -H_2(\beta) A(\beta) \) and can be expressed as \(A(\beta) = T \exp[-\int_0^\beta d\tau H_2(\tau)] \).

In a second step, the time ordered exponential is expanded into a power series,

\[
Z = \text{Tr} \left[e^{-\beta H_1} T e^{-\int_0^\beta d\tau H_2(\tau)} \right] = \sum_{n=0}^{\infty} \int_0^\beta d\tau_1 \ldots \int_0^\beta d\tau_n \text{Tr} \left[e^{-(\beta-\tau_n) H_1} (-H_2) \ldots e^{-(\tau_2-\tau_1) H_1} (-H_2) e^{-\tau_1 H_1} \right], \tag{10}
\]

which is a representation of the partition function of the form (7), namely the sum of all configurations \(c = \{ \tau_1, \ldots, \tau_n \} \), with \(n = 0, 1, \ldots \) and \(\tau_i \in [0, \beta] \) with weight

\[
w_c = \text{Tr} \left[e^{-(\beta-\tau_n) H_1} (-H_2) \ldots e^{-(\tau_2-\tau_1) H_1} (-H_2) e^{-\tau_1 H_1} \right] d\tau^n. \tag{11}
\]

In the following we will discuss in detail two complementary diagrammatic Monte Carlo algorithms, namely

1. a weak-coupling approach, based on an expansion of \(Z \) in powers of the interaction \(U \), and on an interaction representation in which the time evolution is determined by the quadratic part \(H_0 + H_{\text{bath}} + H_{\text{mix}} \) of the Hamiltonian,

2. a strong-coupling approach, based on an expansion of \(Z \) in powers of the impurity-bath hybridization \(V \), and an interaction representation in which the time evolution is determined by the local part \(H_0 + H_U + H_{\text{bath}} \) of the Hamiltonian.

3 Weak-coupling approach - expansion in the interaction

The first diagrammatic impurity solver, proposed by Rubtsov et al. in 2005 [3], is based on an expansion in powers of the interaction. Here, we will discuss a variant of the weak coupling approach, worked out by Gull et al. [4], which combines the weak-coupling expansion with an auxiliary field decomposition. This continuous-time auxiliary field method is an adaptation of an algorithm by Rombouts et al. [5] for lattice models (the first diagrammatic Monte Carlo algorithm for Fermions) and in some respects similar to the time-honored Hirsch-Fye algorithm [6].

3.1 Monte Carlo configurations

Following Rombouts and collaborators, we define \(H_2 = H_U - K/\beta \) and \(H_1 = H - H_2 = H_0 + H_{\text{bath}} + H_{\text{mix}} + K/\beta \), with \(K \) some non-zero constant. Equation (10) then gives the expression for the partition function after expansion in \(H_2 \), and (11) the weight of a configuration
of \(n \) interaction vertices. At this stage, we extend our configuration space by decoupling each interaction vertex using the decoupling formula proposed by Rombouts,

\[
-H_2 = K/\beta - U(n_1 n_1 - (n_1 + n_1)/2) = \frac{K}{2\beta} \sum_{s=-1,1} e^{\gamma s(n_1 - n_1)}.
\]

(12)

\[
cosh(\gamma) = 1 + (\beta U)/(2K).
\]

(13)

This formula can easily be verified by checking the four states \(|0\rangle, |\uparrow\rangle, |\downarrow\rangle, \text{and} |\uparrow\downarrow\rangle\). The configuration space is now the collection of all possible Ising spin configurations on the imaginary time interval \([0, \beta]\): \(c = \{\{\tau_1, s_1\}, \ldots, \{\tau_n, s_n\}\}, n = 0, 1, \ldots, \tau_i \in [0, \beta], s_i = \pm 1. \) These configurations have weight

\[
w_c = \text{Tr} \left[e^{-(\beta - \tau_i)H_i} e^{\gamma s_n(n_1 - n_1)} \cdots e^{-(\gamma s_2(n_1 - n_1))} e^{\gamma s_1(n_1 - n_1)} e^{-\gamma H_1} \right] \left(\frac{K d\tau}{2\beta} \right)^n. \]

(14)

All the operators in the trace are quadratic in \(c \) and \(a \), so we can first separate the spin components and then proceed to the analytical calculation of the trace. Introducing \(H_i^\gamma = -\mu(n_\sigma - U/2) + \sum_p \epsilon_p a_p^\dagger a_p + \sum_p (V_{\sigma\rho} a_p^\dagger a_p + h.c.), \) which is the Hamiltonian of the non-interacting impurity model, the trace in Eq. (14) becomes \((Z_{0,\sigma} = \text{Tr}[e^{-\beta H_i^\gamma}] \)

\[
\text{Tr} \left[\ldots \right] = e^{-K} \prod_{\sigma} \text{Tr} \left[e^{-(\beta - \tau_0)H_i^\gamma} e^{\gamma s_\sigma s_{n\sigma}} \cdots e^{-(\gamma s_2(n_1 - n_1))} e^{\gamma s_1(n_1 - n_1)} e^{-\gamma H_1} \right].
\]

(15)

Using the identity \(e^{\gamma s_\sigma s_{n\sigma}} = e^{\gamma(s\sigma - (e^{\gamma s\sigma} - 1))c_\sigma c_\sigma^\dagger} \), the trace factors can be expressed in terms of non-interacting impurity Green’s functions \(g_0 \) and evaluated using Wick’s theorem. For example, at first order, we find

\[
\text{Tr} \left[e^{-(\beta - \tau_0)H_i^\gamma} (e^{\gamma s_\sigma} - (e^{\gamma s\sigma} - 1) c_\sigma c_\sigma^\dagger) e^{-\gamma H_1} \right] = Z_{0,\sigma}(e^{\gamma s_\sigma} - g_{0\sigma}(0_+)(e^{\gamma s\sigma} - 1)).
\]

(16)

For \(n \) spins, this expression generalizes to

\[
\text{Tr} \left[e^{-(\beta - \tau_0)H_i^\gamma} e^{\gamma s_\sigma s_{n\sigma}} \cdots e^{-(\gamma s_2(n_1 - n_1))} e^{\gamma s_1(n_1 - n_1)} e^{-\gamma H_1} \right] = Z_{0,\sigma} \det N^{-1}_\sigma(\{s_i, \tau_i\}),
\]

(17)

where \(N_\sigma \) is a \((n \times n)\) matrix defined by the location of the decoupled interaction vertices, the spin orientations, and the non-interacting Green’s functions:

\[
N^{-1}_\sigma(\{s_i, \tau_i\}) \equiv e^{\Gamma_\sigma} - G_{0\sigma}(e^{\Gamma_\sigma} - I).
\]

(18)

The notation is \(e^{\Gamma_\sigma} \equiv \text{diag}(e^{\gamma s_{i_1}}, \ldots, e^{\gamma s_{i_n}}), (G_{0\sigma})_{i,j} = g_{0\sigma}(\tau_i - \tau_j) \) for \(i \neq j, (G_{0\sigma})_{i,i} = g_{0\sigma}(0_+) \). Combining Eqs. (14), (15), (17) and (18) we thus obtain the following weight for the configuration \(c = \{\{\tau_1, s_1\}, \ldots, \{\tau_n, s_n\}\} \):

\[
w_c = e^{-K} \left(\frac{K d\tau}{2\beta} \right)^n \prod_{\sigma} Z_{0\sigma} \det N^{-1}_\sigma(\{s_i, \tau_i\}).
\]

(19)
3.2 Sampling procedure and detailed balance

For ergodicity it is sufficient to insert/remove spins with random orientation at random times, because this allows in principle to generate all possible configurations. Furthermore, the random walk in configuration space must satisfy the detailed balance condition (8). Splitting the probability to move from configuration c_i to configuration c_j into a probability to propose the move and a probability to accept it,

$$p(c_i \rightarrow c_j) = p^{\text{prop}}(c_i \rightarrow c_j)p^{\text{acc}}(c_i \rightarrow c_j),$$

we arrive at the condition

$$\frac{p^{\text{acc}}(c_i \rightarrow c_j)}{p^{\text{acc}}(c_j \rightarrow c_i)} = \frac{p^{\text{prop}}(c_j \rightarrow c_i) |w(c_j)|}{p^{\text{prop}}(c_i \rightarrow c_j) |w(c_i)|}.$$ \hfill (21)

There is some flexibility in choosing the proposal probabilities. A reasonable choice for the insertion/removal of a spin is the following (illustrated in Fig. 2):

- **Insertion**
 Pick a random time in $[0, \beta)$ and a random direction for the new spin:
 $$p^{\text{prop}}(n \rightarrow n + 1) = (1/2)(d\tau/\beta),$$

- **Removal**
 Pick a random spin: $p^{\text{prop}}(n + 1 \rightarrow n) = 1/(n + 1)$.

For this choice, the ratio of acceptance probabilities becomes

$$\frac{p^{\text{acc}}(n \rightarrow n + 1)}{p^{\text{acc}}(n + 1 \rightarrow n)} = \frac{K}{n + 1} \prod_{\sigma = \uparrow, \downarrow} |\det(N_{\sigma}^{(n+1)})^{-1}| \big/ |\det(N_{\sigma}^{(n)})^{-1}|,$$ \hfill (22)
and the random walk can thus be implemented for example on the basis of the Metropolis algorithm, i.e. the proposed move from n to $n \pm 1$ is accepted with probability

$$\min \left[1, \frac{p^{\text{acc}}(n \rightarrow n \pm 1)}{p^{\text{acc}}(n \pm 1 \rightarrow n)} \right].$$

(23)

3.3 Determinant ratios and fast matrix updates

From Eq. (22) it follows that each update requires the calculation of a ratio of two determinants. Computing the determinant of a matrix of size $(n \times n)$ is an $\mathcal{O}(n^3)$ operation (LU decomposition). The important thing to realize is that each insertion or removal of a spin merely changes one row and one column of the matrix N^{-1}_{σ}. We will now show that it is therefore possible to evaluate the ratio in Eq. (22) in a time $\mathcal{O}(n^2)$ (insertion) or $\mathcal{O}(1)$ (removal).

The objects which are stored and manipulated during the simulation are, besides the lists of the times $\{\tau_i\}$ and spins $\{s_i\}$, the matrices $N_{\sigma} = (e^{\Gamma_{\sigma}} - G_{0\sigma}(e^{I_{\sigma}} - I))^{-1}$. Inserting a spin adds a new row and column to N_{σ}^{-1}. We define the blocks (omitting the σ index)

$$(N^{(n+1)})^{-1} = \begin{pmatrix} (N^{(n)})^{-1} & Q \\ R & S \end{pmatrix}, \quad N^{(n+1)} = \begin{pmatrix} \tilde{P} & \tilde{Q} \\ \tilde{R} & \tilde{S} \end{pmatrix},$$

(24)

where Q, R, S denote $(n \times 1)$, $(1 \times n)$, and (1×1) matrices, respectively, which contain the contribution of the added spin. The determinant ratio needed for the acceptance/rejection probability is then given by

$$\frac{\det(N^{(n+1)})^{-1}}{\det(N^{(n)})^{-1}} = \frac{1}{\det S} = S - [R][N^{(n)}Q].$$

(25)

As we store $N^{(n)}$, computing the acceptance/rejection probability of an insertion move is an $\mathcal{O}(n^2)$ operation. If the move is accepted, the new matrix $N^{(n+1)}$ is computed out of $N^{(n)}$, Q, R, and S, also in a time $\mathcal{O}(n^2)$:

$$\tilde{S} = (S - [R][N^{(n)}Q])^{-1},$$

(26)

$$\tilde{Q} = -[N^{(n)}Q]\tilde{S},$$

(27)

$$\tilde{R} = -\tilde{S}[RN^{(n)}],$$

(28)

$$\tilde{P} = N^{(n)} + [N^{(n)}Q]\tilde{S}[RN^{(n)}].$$

(29)

It follows from Eq. (25) that the calculation of the determinant ratio for removing a spin is $\mathcal{O}(1)$, since it is just element \tilde{S}, and from the above formulas we also immediately find the elements of the reduced matrix:

$$N^{(n)} = \tilde{P} - \frac{[\tilde{Q}][\tilde{R}]}{\tilde{S}}.$$
3.4 Measurement of the Green’s function

To compute the contribution of a configuration c to the Green’s function measurement (6), we insert a creation operator d^\dagger at time 0 and an annihilation operator d at time τ,

$$g_c(\tau) = \frac{1}{w_c} \text{Tr} \left[e^{-(\beta-\tau_n)H_1} e^{\gamma \sigma_n (n_1-n_1)} \ldots e^{-(\tau_{k+1}-\tau_k)H_1} e^{\gamma \sigma_1 (n_1-n_1)} e^{-\tau_1 H_1 d^\dagger} \right] \left(\frac{K d \tau}{2 \beta} \right)^n$$

with w_c given in Eq. (14). The same steps as in section 3.1 (Wick’s theorem) then lead to the expression

$$g_c(\tau) = \frac{1}{\det N^{-1} \sigma \det N^{-1} \sigma} \det (N^{-1} \sigma)^{-1} \det (g_{0\sigma}(\tau)) \left[g_{0\sigma}(\tau) + [g_{0\sigma}(\tau - \tau_j) (e^{\tau_{ej}} - 1)] N^{(n)} \sigma [g_{0\sigma}(\tau_i)] \right].$$

The second equality follows from Eq. (25) and square brackets denote vectors of length n. To avoid unnecessary and time consuming summations during the Monte Carlo simulations, we only accumulate the quantity

$$S_\sigma(\tilde{\tau}) \equiv \sum_{k=1}^{n} \delta(\tilde{\tau} - \tau_k) \sum_{l=1}^{n} [(e^{\Gamma_{\sigma}} - I) N_{\sigma}]_{kl} g_{0\sigma}(\tau_l),$$

binning the time points $\tilde{\tau}$ on a fine grid. After the simulation is completed, the Green’s function is computed as

$$g_{\sigma}(\tau) = g_{0\sigma}(\tau) + \int_{0}^{\beta} d\tilde{\tau} g_{0\sigma}(\tau - \tilde{\tau}) \langle S_\sigma(\tilde{\tau}) \rangle_{MC}.$$

3.5 Expansion order

It follows from Eq. (10) that

$$\langle -H_2 \rangle = \frac{1}{\beta} \int_{0}^{\beta} d\tau \langle -H_2(\tau) \rangle$$

$$= \frac{1}{\beta Z} \sum_{n=0}^{\infty} \frac{n + 1}{(n + 1)!} \int_{0}^{\beta} d\tau_1 \ldots \int_{0}^{\beta} d\tau_n \text{Tr} \left[e^{-\beta H_1 T(-H_2(\tau))(-H_2(\tau_n)) \ldots (-H_2(\tau_1))} \right]$$

$$= \frac{1}{\beta Z} \sum_{c}^{\infty} n(c) w_c = \frac{1}{\beta} \langle n \rangle,$$

and because $\langle -H_2 \rangle = K/\beta - U (n_1 n_1 - (n_1 + n_1)/2)$ we conclude that the average perturbation order $\langle n \rangle$ is related to the parameter K and the potential energy by

$$\langle n \rangle = K - \beta U (n_1 n_1 - (n_1 + n_1)/2).$$
Increasing K leads to a higher perturbation order (and thus slower matrix updates), but through Eq. (13) also to a smaller value of $γ$ and thus to less polarization of the auxiliary spins. A K of the order 1 appears to work well. We also learn from Eq. (35) that the average perturbation order grows essentially proportional to U (as expected for a weak-coupling method), and proportional to inverse temperature.

4 Strong coupling approach - expansion in the impurity-bath hybridization

The second continuous-time method, which is in many ways complementary to the weak-coupling approach, is based on an expansion of the partition function in powers of the impurity-bath hybridization V. This method has been developed in Ref. [7] and applied to the Anderson impurity model. A more general matrix formulation which allows to treat arbitrary impurity models was presented in Refs. [8, 9]. An alternative to the matrix formulation, which we will not touch in this chapter, is the recently proposed Krylov method [10].

4.1 Monte Carlo configurations

Here, we decompose the Hamiltonian as $H_2 = H_{\text{mix}}$ and $H_1 = H - H_2 = H_0 + H_U + H_{\text{bath}}$. Since $H_2 = H_2^d + H_2^d = \sum_{\sigma,p} V_\sigma^d d_\sigma^d a_{\sigma,p}$ has two terms, corresponding to electrons hopping from the bath to the impurity and from the impurity back to the bath, only even perturbation orders contribute to Eq. (10). Furthermore, at perturbation order $2n$ only the $(2n)!/(n!)^2$ terms corresponding to n creation operators d^\dagger and n annihilation operators d will contribute. We can therefore write the partition function as a sum over configurations $c = \{τ_1, \ldots, τ_n; τ'_1, \ldots, τ'_n\}:

$$Z = \sum_{n=0}^{\infty} \int_0^\beta dτ_1 \ldots \int_0^\beta dτ_n \int_0^\beta dτ'_1 \ldots \int_0^\beta dτ'_n \\Tr\left[e^{-βH_1} \prod_\sigma (τ_1^\sigma \prod_{p_1} V_{p_1}^\sigma \prod_{p_n} V_{p_n}^\sigma) \prod_\sigma (τ_1'^\sigma \prod_{p_1'} V_{p_1'}^\sigma \prod_{p_n'} V_{p_n'}^\sigma) \right].$$

Since the time evolution of the Anderson model (given by H_1) does not rotate the spin, there is an additional constraint, namely that both for spin up and spin down, there is an equal number of creation and annihilation operators. Taking this into account and writing out the expressions for H_2^d and H_2^d explicitly, we find

$Z = \sum_{\{n_a\}} \prod_\sigma \int_0^\beta dτ_1^\sigma \ldots \int_0^\beta dτ_n^\sigma \int_0^\beta dτ'_1^\sigma \ldots \int_0^\beta dτ'_n^\sigma \\Tr\left[e^{-βH_1} \prod_\sigma \sum_{p_1, \ldots, p_n} \sum_{p_1', \ldots, p_n'} V_{p_1}^\sigma V_{p_1'}^{\sigma^*} \ldots V_{p_n}^\sigma V_{p_n'}^{\sigma^*} \right] \\cdot \prod_\sigma (τ_1^\sigma a_{\sigma,p_1}^\dagger (τ_1^\sigma) a_{\sigma,p_1'} (τ_1^\sigma) \ldots (τ_n^\sigma) a_{\sigma,p_n}^\dagger (τ_n^\sigma) a_{\sigma,p_n'} (τ_n^\sigma) d_\sigma^\dagger (τ_1^\sigma) d_\sigma (τ_1^\sigma) \ldots d_\sigma (τ_n^\sigma) d_\sigma^\dagger (τ_n^\sigma)),$

(36)
Now, because the \(d \) and \(a \) operate on different spaces and \(H_1 \) does not mix the impurity and bath states, we can separate the bath and the impurity and write

\[
Z = Z_{\text{bath}} \prod_{\{n\}} \prod_{\tau} \int_{0}^{\beta} d\tau_1^{\alpha} \cdots \int_{0}^{\beta} d\tau_n^{\sigma} \prod_{\tau_{n_{\alpha}-1}}^{\beta} d\tau_{n_{\alpha}} \prod_{\tau_{n_{\alpha}}-1}^{\beta} d\tau_{n_{\alpha}} \\
\times \text{Tr}_d \left[e^{-\beta H_{\text{loc}}} T \prod_{\alpha} d_{\alpha}(\tau_{n_{\alpha}}^{\sigma}) d_{\alpha}^*(\tau_{n_{\alpha}}^{\sigma}) \right] \\
\times \frac{1}{Z_{\text{bath}}} \text{Tr}_a \left[e^{-\beta H_{\text{bath}}} T \prod_{\alpha} \sum_{p_{1}, \ldots, p_{n_{\alpha}}} \sum_{p_{1}', \ldots, p_{n_{\alpha}}} V_{p_{1}}^{\sigma} V_{p_{1}'}^{\sigma*} \cdots V_{p_{n_{\alpha}}}^{\sigma} V_{p_{n_{\alpha}}'}^{\sigma*} \\
\times a_{\sigma, p_{m_{\alpha}}}(\tau_{n_{\alpha}}^{\sigma}) a_{\sigma, p_{m_{\alpha}'}}(\tau_{n_{\alpha}}^{\sigma}) \cdots a_{\sigma, p_{1}'}(\tau_{1}^{\sigma}) a_{\sigma, p_{1}}(\tau_{1}^{\sigma}) \right],
\]

(37)

where \(Z_{\text{bath}} = \text{Tr}_a e^{-\beta H_{\text{bath}}} \), and \(H_{\text{loc}} = H_0 + H_U \). Since the bath is non-interacting, there is a Wick theorem for the bath and \(\text{Tr}_a[\ldots] \) can be expressed as the determinant of some matrix, whose size is equal to the perturbation order. To find the elements of this matrix, it is useful to consider the lowest perturbation order, \(n_{\sigma} = 1, n_{\overline{\sigma}} = 0 \). In this case

\[
\sum_{p_{1}} \sum_{p_{1}'} |V_{p_{1}}^{\sigma}|^2 \frac{1}{Z_{\text{bath}}} \text{Tr}_a \left[e^{-\beta H_{\text{bath}}} T a_{\sigma, p_{1}}^\dagger(\tau_{1}^{\sigma}) a_{\sigma, p_{1}'}(\tau_{1}^{\sigma}) \right] \\
= \sum_{p_{1}} \left| \frac{|V_{p_{1}}^{\sigma}|^2}{e^{-\epsilon_{p_{1}} \beta} + 1} \right| \left\{ \begin{array}{ll} e^{-\epsilon_{p_{1}} (\beta - \tau_{1}^{\sigma})} & \tau_{1}^{\sigma} > \tau_{1}^{\sigma} \\
 e^{-\epsilon_{p_{1}} (\tau_{1}^{\sigma} - \tau_{1}^{\sigma})} & \tau_{1}^{\sigma} < \tau_{1}^{\sigma} \end{array} \right.
\]

(38)

Note that \(Z_{\text{bath}} = \prod_{\sigma} \prod_{p_{1}} (e^{-\epsilon_{p_{1}} \beta} + 1) \). Introducing the \(\beta \)-antiperiodic hybridization function

\[
F_{\sigma}(\tau) = \sum_{p} \frac{|V_{p_{1}}^{\sigma}|^2}{e^{-\epsilon_{p_{1}} \beta} + 1} \left\{ \begin{array}{ll} e^{-\epsilon_{p_{1}} (\beta - \tau)} & \tau > 0 \\
 e^{-\epsilon_{p_{1}} (\tau - \tau)} & \tau < 0 \end{array} \right.
\]

(39)

which is related to the non-interacting Green’s function \(G_{0\sigma} \) of Section 3 by \(F_{\sigma}(-i\omega_{n}) = i\omega_{n} + \mu - U/2 - G_{0\sigma}(i\omega_{n})^{-1} \), the first order result becomes \(F_{\sigma}(\tau_{1}^{\sigma} - \tau_{1}^{\sigma}) \). For higher orders, one obtains

\[
\frac{1}{Z_{\text{bath}}} \text{Tr}_a \left[e^{-\beta H_{\text{bath}}} T \prod_{\sigma} \sum_{p_{1}, \ldots, p_{n_{\sigma}}} \sum_{p_{1}', \ldots, p_{n_{\sigma}}} V_{p_{1}}^{\sigma} V_{p_{1}'}^{\sigma*} \cdots V_{p_{n_{\sigma}}}^{\sigma} V_{p_{n_{\sigma}}'}^{\sigma*} \\
a_{\sigma, p_{m_{\sigma}}}(\tau_{n_{\sigma}}^{\sigma}) a_{\sigma, p_{m_{\sigma}'}}(\tau_{n_{\sigma}}^{\sigma}) \cdots a_{\sigma, p_{1}'}(\tau_{1}^{\sigma}) a_{\sigma, p_{1}}(\tau_{1}^{\sigma}) \right] = \prod_{\sigma} \det M_{\sigma}^{-1},
\]

(40)

where \(M_{\sigma}^{-1} \) is a \((n_{\sigma} \times n_{\sigma}) \) matrix with elements

\[
M_{\sigma}^{-1}(i, j) = F_{\sigma}(\tau_{i}^{\sigma} - \tau_{j}^{\sigma}).
\]

(41)

In the hybridization expansion method, the configuration space consists of all sequences \(c = \{\tau_{1}^{\uparrow}, \ldots, \tau_{n_{1}^{\uparrow}}^{\uparrow}; \tau_{1}^{\downarrow}, \ldots, \tau_{n_{1}^{\downarrow}}^{\downarrow}; \tau_{1}^{\uparrow}, \ldots, \tau_{n_{1}^{\uparrow}}^{\uparrow}, \tau_{1}^{\downarrow}, \ldots, \tau_{n_{1}^{\downarrow}}^{\downarrow} \} \), of \(n_{\uparrow} \) creation and annihilation operators for spin up \((n_{\uparrow} = 0, 1, \ldots) \), and \(n_{\downarrow} \) creation and annihilation operators for spin down \((n_{\downarrow} = 0, 1, \ldots) \).
The weight of this configuration is

\[w_c = Z_{\text{bath}} \text{Tr}_d \left[e^{-\beta H_{\text{loc}}} T \prod_\sigma d_\sigma (\tau^\sigma_{n_\sigma}) d^\dagger_\sigma (\tau^\sigma_{n_\sigma}) \ldots d_\sigma (\tau^\sigma_{l_\sigma}) d^\dagger_\sigma (\tau^\sigma_{l_\sigma}) \right] \times \prod_\sigma \det M^{-1}_\sigma (\tau^\sigma_1, \ldots, \tau^\sigma_{n_\sigma}, \tau^\sigma_{1'}, \ldots, \tau^\sigma_{l_\sigma}) (dr)^{2n_\sigma}. \] (42)

The trace factor represents the contribution of the impurity, which fluctuates between different quantum states, as electrons hop in and out. The determinants resum all the bath evolutions which are compatible with the given sequence of transitions.

To evaluate the trace factor, we use the eigenbasis of \(H_{\text{loc}} \), which is \(|0\rangle\) (energy \(E_0 = 0 \)), \(|\uparrow\rangle\) (energy \(E_1 = -\mu \)) and \(|\downarrow\rangle\) (energy \(E_2 = U - 2\mu \)). In this basis, the time evolution operator \(e^{-\tau H_{\text{loc}}} = \text{diag}(e^{-\tau E_0}, e^{-\tau E_1}, e^{-\tau E_2}) \) is diagonal while the operators \(d_\sigma \) and \(d^\dagger_\sigma \) will produce transitions between eigenstates with amplitude \(\pm 1 \).

Because the time evolution does not flip the spin, the creation and annihilation operators for given spin have to alternate. This allows us to separate the operators for spin up from those for spin down and to depict the time evolution by a collection of segments (each segment representing a time interval in which an electron of spin up or down resides on the impurity). At each time, the eigenstate of the impurity follows immediately from the segment representation and we can easily compute the trace factor as (\(s \) is a permutation sign)

\[\text{Tr}_d \left[e^{-\beta H_{\text{loc}}} T \prod_\sigma d_\sigma (\tau^\sigma_{n_\sigma}) d^\dagger_\sigma (\tau^\sigma_{n_\sigma}) \ldots d_\sigma (\tau^\sigma_{l_\sigma}) d^\dagger_\sigma (\tau^\sigma_{l_\sigma}) \right] = s \exp \left[\mu (l_\uparrow + l_\downarrow) - Ul_{\text{overlap}} \right], \] (43)

with \(l_\sigma \) the total length of the segments for spin \(\sigma \) and \(l_{\text{overlap}} \) the total length of the overlap between up and down segments. The lower panel of Fig. 3 shows a configuration with 3 segments for spin up and two segments for spin down; the time intervals where segments overlap, indicated by gray rectangles, correspond to a doubly occupied impurity and cost a repulsion energy \(U \).

4.2 Sampling procedure and detailed balance

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators (segments or anti-segments) for spin up and down. One possible strategy for inserting a segment is the following: we pick a random time in \([0, \beta]\) for the creation operator. If it falls on an existing segment, the impurity is already occupied and the move is rejected. If it falls on an empty space, we compute \(l_{\text{max}} \), the length from this position to the next segment (in the direction of increasing \(\tau \)). If there are no segments, \(l_{\text{max}} = \beta \). The position of the new annihilation operator is then chosen randomly in this interval of length \(l_{\text{max}} \) (see Fig. 3). If we propose to remove a randomly chosen segment for this spin, then the proposal probabilities are

\[p_{\text{prop}}(n_\sigma \rightarrow n_\sigma + 1) = \frac{d\tau}{\beta l_{\text{max}}}, \quad (44) \]

\[p_{\text{prop}}(n_\sigma + 1 \rightarrow n_\sigma) = \frac{1}{n_\sigma + 1}, \quad (45) \]
and the ratio of acceptance probabilities therefore becomes

\[
\frac{p_{\text{acc}}(n_\sigma \rightarrow n_\sigma + 1)}{p_{\text{acc}}(n_\sigma + 1 \rightarrow n_\sigma)} = \frac{\beta l_{\text{new}}}{l_{\text{max}}} e^{\mu l_{\text{new}} - U \delta l_{\text{overlap}}} \left| \frac{\det(M_{n_\sigma + 1})^{-1}}{\det(M_{n_\sigma})^{-1}} \right|.
\]

(46)

Here, \(l_{\text{new}}\) is the length of the new segment, and \(\delta l_{\text{overlap}}\) the change in the overlap. Again, we compute the ratio of determinants using the fast update formulas discussed in Section 3.

4.3 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function measurement by decoupling the bath from a given pair of creation and annihilation operators in \(c\). The idea is to write

\[
g(\tau) = \frac{1}{Z} \sum_c w_c^{d(\tau)d^\dagger(0)} = \frac{1}{Z} \sum_c w_c^{(\tau,0)} \frac{w_c^{d(\tau)d^\dagger(0)}}{w_c^{(\tau,0)}}
\]

(47)

where \(w_c^{d(\tau)d^\dagger(0)}\) denotes the weight of configuration \(c\) with an additional operator \(d^\dagger(0)\) and \(d(\tau)\) in the trace factor, and \(w_c^{(\tau,0)}\) the complete weight corresponding to the enlarged operator sequence (including enlarged hybridization determinants). Since the trace factors of both weights are identical, and \(\det M_c^{-1}\) is a minor of \(\det(M_c^{(\tau,0)})^{-1}\), we find

\[
\frac{w_c^{d(\tau)d^\dagger(0)}}{w_c^{(\tau,0)}} = \frac{\det(M_c^{-1})}{\det(M_c^{(\tau,0)})^{-1}} = (M_c^{(\tau,0)})_{j,i},
\]

(48)
with i and j denoting the row and column corresponding to the new operators d^{\dagger} and d in the enlarged $(M^{(\nu,0)}_c)^{-1}$. To transform the sum over c into a sum over configurations $c = \{c, \tau_i, \tau'_j\}$, the new operators must be free to be anywhere on the imaginary time interval, which (due to translational invariance) yields a factor $\frac{1}{\beta} \Delta(\tau, \tau - \tau'_j)$, with

$$\Delta(\tau, \tau') = \begin{cases}
\delta(\tau - \tau') & \tau' > 0 \\
-\delta(\tau - \tau' - \beta) & \tau' < 0
\end{cases}.$$

(49)

Hence, the measurement formula for the Green’s function becomes

$$g(\tau) = \frac{1}{Z} \sum_{i,j} w_i \sum_{\nu,\delta} \frac{1}{\beta} \Delta(\tau, \tau_i - \tau'_j)(M^{\nu}_{\delta})_{i,j} = \left\langle \sum_{i,j} \frac{1}{\beta} \Delta(\tau, \tau_i - \tau'_j) M_{i,j} \right\rangle_{MC}.$$

(50)

Note that if we let all the integrals run from 0 to β, there is a factor $1/(n!)^2$ in w_c and $1/((n + 1)!)^2$ in w_ν, with n the size of M_c. Changing from a sum over c to a sum over \tilde{c} therefore adds a factor $(n + 1)^2$ if we restrict the measurement to a specific pair of d^{\dagger} and d. Equivalently, we can sum over all the $(n + 1)^2$ pairs of operators in the enlarged configuration.

4.4 Generalization - Matrix formalism

It is obvious from the derivation in Section 4.1 that the hybridization expansion formalism is applicable to general classes of impurity models. Because the trace factor in the weight (42) is computed exactly, H_{loc} can contain essentially arbitrary interactions (e. g. spin-exchange terms in multi-orbital models), degrees of freedom (e. g. spins in Kondo-lattice models) or constraints (e. g. no double occupancy in the t-J model).

For multi-orbital impurity models with density-density interaction, the segment formalism is still applicable: we have now a collection of segments for each flavor α (orbital, spin) and the trace factor can still be computed from the length of the segments (chemical potential contribution) and the overlaps between segments of different flavor (interaction terms).

If H_{loc} is not diagonal in the occupation number basis defined by the d^{\dagger}_α, the calculation of $\text{Tr}_d[e^{-\beta H_{loc}^\tau}]$ becomes more involved. We now have to compute the trace explicitly in some basis of H_{loc}—for example the eigenbasis, in which the time evolution operators $e^{-\beta H_{loc}^\tau}$ become diagonal. The operators $d_{\nu,\delta}$ are expressed as matrices in this eigenbasis, and the evaluation of the trace factor thus involves the multiplication of matrices whose size is equal to the size of the Hilbert space of H_{loc}. Since the dimension of the Hilbert space grows exponentially with the number of flavors, the calculation of the trace factor becomes the computational bottleneck of the simulation, and the matrix formalism is therefore restricted to a relatively small number of flavors ($\lesssim 10$).

An important point, explained in Ref. [9], is the use of conserved quantum numbers (typically particle number for spin up and spin down, momentum, ...). If the eigenstates of H_{loc} are grouped according to these quantum numbers, the operator matrices will acquire a sparse block structure, because for example $d^{\dagger}_{1,q}$ will connect the states corresponding to quantum numbers $m = \{n_\uparrow, n_\downarrow, K\}$ to those corresponding to $m' = \{n_\uparrow + 1, n_\downarrow, K + q\}$ (if they exist). Checking
the compatibility of the operator sequence with a given starting block furthermore allows one to find the (potentially) contributing quantum number sectors without any matrix multiplications. The evaluation of the trace is thus reduced to a block matrix multiplication of the form
\[\sum_{\text{contr.}} \text{Tr}_m \left[\ldots (O)_{m'',m'} (e^{-(\tau' - \tau) H_{\text{loc}}})_{m'} (O)_{m'',m} (e^{-\tau H_{\text{loc}}})_m \right]. \] (51)

5 Comparison between the two approaches

The weak- and strong-coupling methods are in many ways complementary and their respective strengths/weaknesses result from the scaling of the computational effort with interaction strength and system size. For the Anderson impurity model considered in these notes, the \(U \) dependence of the average perturbation order is shown in Fig. 4 (these are dynamical mean field theory calculations for a one-band Hubbard model taken from Ref. [11]). In the weak-coupling algorithms, where the average perturbation order is related to the potential energy, one finds a roughly linear increase of the perturbation order with \(U \). In the hybridization-expansion method, the average perturbation order is related to the kinetic energy, and decreases as the interaction strength increases. Thus, in single site models with only density density interactions, where the evaluation of the trace factor in Eq. (42) is cheap, the hybridization expansion method beats the weak coupling method in the regime of strong correlations.

For more complicated models, which require the matrix formalism discussed in section 4.4, the hybridization expansion method scales exponentially with system size, and can only be applied to relatively small systems.\(^1\) Here, the weak-coupling approach – if applicable – becomes the method of choice. Table 1 gives a summary of the different scalings (assuming diagonal hybridization) and indicates which solver is appropriate for which type of problem.

<table>
<thead>
<tr>
<th>solver</th>
<th>scaling</th>
<th>use for</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak-coupling</td>
<td>(\beta^3)</td>
<td>(L^3) impurity clusters with density-density interactions and hopping</td>
</tr>
<tr>
<td>hybridization expansion</td>
<td>(\beta^3)</td>
<td>(L) single site multi-orbital models with density-density interaction</td>
</tr>
<tr>
<td>(segment formulation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hybridization expansion</td>
<td>(\beta)</td>
<td>(\exp(L)) single site multi-orbital models with general (U_{ijkl})</td>
</tr>
<tr>
<td>(matrix formulation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Scaling of the different impurity solvers with inverse temperature and system size.

Acknowledgment

Support of the Deutsche Forschungsgemeinschaft through FOR1346 is gratefully acknowledged.

\(^1\)While the calculation of the trace over atomic states is time consuming, it also yields useful information about the system (histogram of visited states).
Appendices

A Rubtsov’s weak-coupling approach

The weak-coupling continuous time impurity solver originally proposed by Rubtsov [3] is based on slightly different definitions of interaction and quadratic terms:

\[
H_U = U n_\uparrow n_\downarrow, \quad H_0 = -\mu(n_\uparrow + n_\downarrow). \quad (52)
\]

The method employs an expansion of the partition function in powers of \(H_2 = H_U\). Equation (11) then gives the weight of a configuration of \(n\) interaction vertices. Since \(H_1 = H - H_2 = H_0 + H_{\text{bath}} + H_{\text{mix}}\) is quadratic, we can use Wick’s theorem to evaluate the trace. The result is a product of two determinants of \(n \times n\) matrices (one for each spin), whose elements are bath Green functions \(\tilde{g}_0\) (here without the chemical potential shift \(U/2\)) evaluated at the time...
intervals defined by the vertex positions:

\[
\frac{w_c}{Z_0} = (-Ud\tau)^n \frac{1}{Z_0} \text{Tr} \left[e^{-(\beta-\tau_n)H_{1,n_1} \ldots e^{-(\tau_2-\tau_1)H_{1,n_1}} e^{-\tau_1 H_{1}}} \right]
\]

\[
= (-Ud\tau)^n \prod_{\sigma} \det M_{\sigma}^{-1},
\]

\[
(M_{\sigma}^{-1})_{ij} = \tilde{g}_{0,\sigma}(\tau_i - \tau_j),
\]

with \(Z_0 = \text{Tr}[e^{-\beta H_1}]\) the partition function of the noninteracting model.

At this point, we encounter a problem. In the paramagnetic phase, where \(\tilde{g}_{0,\uparrow} = \tilde{g}_{0,\downarrow}\), the product of determinants is positive, which means that for repulsive interaction (\(U > 0\)), odd perturbation orders yield negative weights. Except in the particle-hole symmetric case, where one can show that odd perturbation orders vanish, this will result in a severe sign problem. Fortunately, we can solve this sign problem by shifting the chemical potentials for up and down spins in an appropriate way. We rewrite the interaction term as [12]

\[
H_U = \frac{U}{2} \sum_{s} \prod_{\sigma} (n_{\sigma} - \alpha_{\sigma}(s)) + \frac{U}{4} (n_1 + n_1) - \frac{U}{4},
\]

\[
\alpha_{\sigma}(s) = 1/2 + \sigma s (1/2 + \delta).
\]

Here \(\delta\) is some constant and \(s = \pm 1\) an Ising variable. The constant \(-U/4\) in Eq. (56) is irrelevant, while the contribution \(U(n_1 + n_1)/2\) can be absorbed into the noninteracting Green function by shifting the chemical potential as \(\mu \rightarrow \mu - U/2\). Explicitly, we redefine the bath Green function as \(\tilde{g}_{0,\sigma}^{-1} = i\omega_n + \mu - \Delta_{\sigma} \rightarrow g_{0,\sigma}^{-1} = i\omega_n + \mu - U/2 - \Delta_{\sigma}\).

The introduction of an Ising variable \(s_i\) at each vertex position \(\tau_i\) enlarges the configuration space exponentially. A configuration \(c\) now corresponds to a collection of Ising spin variables on the imaginary time interval: \(c = \{ (\tau_1, s_1), (\tau_2, s_2), \ldots, (\tau_n, s_n) \}\). The weight of these configurations are

\[
\frac{w_c}{Z_0} = (-Ud\tau/2)^n \prod_{\sigma} \det M_{\sigma}^{-1},
\]

\[
(M_{\sigma}^{-1})_{ij} = g_{0,\sigma}(\tau_i - \tau_j) - \alpha_{\sigma}(s_i)\delta_{ij}.
\]

The Ising variables are in fact not needed to cure the sign problem. They have been introduced to symmetrize the interaction term and prevent ergodicity problems. Rubtsov’s weak-coupling approach is in principle applicable to models with arbitrarily complicated interaction terms. However, the best type of auxiliary field representation, which minimizes the sign problem in multi-orbital systems with complicated interaction and correlated hopping terms, is not yet known. For models with density-density interactions, the method is in fact equivalent to the continuous-time auxiliary-field approach discussed in Section 3. It was shown in Ref. [13] that the partition functions for the two weak-coupling methods become identical if the parameters \(K\) (for the continuous-time auxiliary field method) and \(\delta\) (Eq. 57) are related by

\[
K = \beta U[(1/2 + \delta) - 1/4].
\]
References

