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1 Introduction

An impurity model describes an atom or molecule embedded in some host or bath, with which

it can exchange electrons. This exchange of electrons allows the impurity to make transitions

between different quantum states, and leads to a non-trivial dynamics. Therefore, despite the

zero dimensional nature (which makes impurity problems computationally much more tractable

than fermionic lattice models), their numerical simulation remains a challenging task. Methods

such as exact diagonalization or numerical RG, which explicitly treat a finite number of bath

states, work well for single orbital models. However, because the number of bath states must be

increased proportional to the number of orbitals, the computational effort grows exponentially

with system size, and requires severe truncations of the bath already for two orbitals. Monte

Carlo methods have the advantage that the bath is integrated out and thus the (infinite) size of

the bath Hilbert space does not affect the simulation. While restricted to non-zero temperature,

Monte Carlo methods are thus the method of choice for the solution of large multi-orbital or

cluster impurity problems.

U, µ

p

p

V 

ε

Fig. 1: Schematic representation of a quantum impurity model. Spin up and down electrons on

the impurity (black dot) interact with a repulsive energy U and can hop to non-interacting bath

levels ǫp with transition amplitude V ∗
p .

Over the last few years, significant progress has been made (both in terms of efficiency and

flexibility) with the development of continuous-time Monte Carlo techniques. This chapter pro-

vides an overview of two recently developed, complementary methods: (i) the weak-coupling

approach, which scales favorably with system size and allows the efficient simulation of large

impurity clusters, and (ii) the strong-coupling approach, which can handle impurity models with

strong interactions. The contents of this chapter is based on lecture notes originally written for

the Sherbrooke summer school in 2008 [1]. A comprehensive discussion of continuous-time

impurity solvers can be found in a recently published review article [2].

For simplicity, we will focus on the single orbital Anderson impurity model (Fig. 1) defined by
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the Hamiltonian H = H0 +HU +Hbath +Hmix with

H0 = −(µ − U/2)(n↑ + n↓), (1)

HU = U(n↑n↓ − (n↑ + n↓)/2), (2)

Hbath =
∑

σ,p

ǫpa
†
p,σap,σ, (3)

Hmix =
∑

σ,p

(V σ
p d

†
σap,σ + h.c.). (4)

Here, H0+HU ≡ Hloc describes the impurity with creation operators d†σ, Hbath a non-interacting

bath of electrons (labeled by quantum numbers p) with creation operators a†p,σ, while Hmix

controls the exchange of electrons between the impurity and the bath. The transition amplitudes

V σ
p are called hybridizations.

The impurity model partition function Z is given by

Z = Tr
[

e−βH
]

, (5)

with β the inverse temperature, and Tr = TrdTra denotes the trace over the impurity and bath

states. By solving the impurity model we essentially mean computing the impurity Green’s

function (0 < τ < β)

g(τ) = 〈Td(τ)d†(0)〉 = 1

Z
Tr
[

e−(β−τ)Hde−τHd†
]

, (6)

which we choose to be positive.

Continuous-time Monte Carlo simulation relies on an expansion of the partition function into a

series of diagrams and the stochastic sampling of (collections) of these diagrams. We represent

the partition function as a sum (or, more precisely, integral) of configurations c with weight wc,

Z =
∑

c

wc, (7)

and implement a random walk c1 → c2 → c3 → . . . in configuration space in such a way that

each configuration can be reached from any other in a finite number of steps (ergodicity) and

that detailed balance is satisfied,

|wc1| p(c1 → c2) = |wc2| p(c2 → c1). (8)

This assures that each configuration is visited with a probability proportional to |wc| and one

can thus obtain an estimate for the Green’s function from a finite number N of measurements:

g =

∑

c wcgc
∑

cwc

=

∑

c |wc|signc gc
∑

c |wc|signc

≈
∑N

i=1 signci
gci

∑N

i=1 signci

=
〈sign · g〉MC

〈sign〉MC

. (9)

The error on this estimate decreases like 1/
√
N . If the average sign of the configurations is

small and decreases exponentially with decreasing temperature, the algorithm suffers from a

sign problem.
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2 General recipe

The first step in the diagrammatic expansion is to rewrite the partition function as a time ordered

exponential using some interaction representation. We split the Hamiltonian into two parts,

H = H1 + H2 and define the time dependent operators in the interaction picture as O(τ) =

eτH1Oe−τH1 . We furthermore introduce the operator A(β) = eβH1e−βH and write the partition

function as Z = Tr[e−βH1A(β)]. The operator A(β) satisfies dA/dβ = eβH1(H1 −H)e−βH =

−H2(β)A(β) and can be expressed as A(β) = T exp[−
∫ β

0
dτH2(τ)].

In a second step, the time ordered exponential is expanded into a power series,

Z = Tr
[

e−βH1Te−
∫ β

0
dτH2(τ)

]

=
∞
∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτnTr
[

e−(β−τn)H1(−H2) . . . e
−(τ2−τ1)H1(−H2)e

−τ1H1

]

, (10)

which is a representation of the partition function of the form (7), namely the sum of all config-

urations c = {τ1, . . . , τn}, with n = 0, 1, . . . and τi ∈ [0, β) with weight

wc = Tr
[

e−(β−τn)H1(−H2) . . . e
−(τ2−τ1)H1(−H2)e

−τ1H1

]

dτn. (11)

In the following we will discuss in detail two complementary diagrammatic Monte Carlo algo-

rithms, namely

1. a weak-coupling approach, based on an expansion of Z in powers of the interaction U ,

and on an interaction representation in which the time evolution is determined by the

quadratic part H0 +Hbath +Hmix of the Hamiltonian,

2. a strong-coupling approach, based on an expansion of Z in powers of the impurity-bath

hybridization V , and an interaction representation in which the time evolution is deter-

mined by the local part H0 +HU +Hbath of the Hamiltonian.

3 Weak-coupling approach - expansion in the interaction

The first diagrammatic impurity solver, proposed by Rubtsov et al. in 2005 [3], is based on an

expansion in powers of the interaction. Here, we will discuss a variant of the weak coupling

approach, worked out by Gull et al. [4], which combines the weak-coupling expansion with

an auxiliary field decomposition. This continuous-time auxiliary field method is an adaptation

of an algorithm by Rombouts et al. [5] for lattice models (the first diagrammatic Monte Carlo

algorithm for Fermions) and in some respects similar to the time-honored Hirsch-Fye algorithm

[6].

3.1 Monte Carlo configurations

Following Rombouts and collaborators, we define H2 = HU − K/β and H1 = H − H2 =

H0 + Hbath + Hmix + K/β, with K some non-zero constant. Equation (10) then gives the ex-

pression for the partition function after expansion in H2, and (11) the weight of a configuration
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of n interaction vertices. At this stage, we extend our configuration space by decoupling each

interaction vertex using the decoupling formula proposed by Rombouts,

−H2 = K/β − U(n↑n↓ − (n↑ + n↓)/2) =
K

2β

∑

s=−1,1

eγs(n↑−n↓), (12)

cosh(γ) = 1 + (βU)/(2K). (13)

This formula can easily be verified by checking the four states |0〉, |↑〉, |↓〉, and |↑↓〉. The con-

figuration space is now the collection of all possible Ising spin configurations on the imaginary

time interval [0, β): c = {{τ1, s1}, . . . , {τn, sn}}, n = 0, 1, . . ., τi ∈ [0, β), si = ±1. These

configurations have weight

wc = Tr
[

e−(β−τn)H1eγsn(n↑−n↓) . . . e−(τ2−τ1)H1eγs1(n↑−n↓)e−τ1H1

]

(

Kdτ

2β

)n

. (14)

All the operators in the trace are quadratic in c and a, so we can first separate the spin compo-

nents and then proceed to the analytical calculation of the trace. Introducing Hσ
1 = −µ(nσ −

U/2)+
∑

p ǫpa
†
p,σap,σ +

∑

p(Vσ,pc
†
σap,σ +h.c.), which is the Hamiltonian of the non-interacting

impurity model, the trace in Eq. (14) becomes (Z0,σ = Tr[e−βHσ
1 ])

Tr
[

. . .
]

= e−K
∏

σ

Tr
[

e−(β−τn)Hσ
1 eγsnσnσ . . . e−(τ2−τ1)Hσ

1 eγs1σnσe−τ1H
σ
1

]

. (15)

Using the identity eγsσnσ = eγsσc†σcσ + cσc
†
σ = eγsσ − (eγsσ − 1)cσc

†
σ, the trace factors can be

expressed in terms of non-interacting impurity Green’s functions g0 and evaluated using Wick’s

theorem. For example, at first order, we find

Tr
[

e−(β−τ1)Hσ
1 (eγsσ − (eγsσ − 1)cσc

†
σ)e

−τ1H1

]

= Z0,σ(e
γsσ − g0σ(0+)(e

γsσ − 1)). (16)

For n spins, this expression generalizes to

Tr
[

e−(β−τn)Hσ
1 eγsnσnσ . . . e−(τ2−τ1)Hσ

1 eγs1σnσe−τ1H
σ
1

]

= Z0,σ detN
−1
σ ({si, τi}), (17)

where Nσ is a (n× n) matrix defined by the location of the decoupled interaction vertices, the

spin orientations, and the non-interacting Green’s functions:

N−1
σ ({si, τi}) ≡ eΓσ −G0σ

(

eΓσ − I
)

. (18)

The notation is eΓσ ≡ diag(eγσs1 , . . . , eγσsn), (G0σ)i,j = g0σ(τi − τj) for i 6= j, (G0σ)i,i =

g0σ(0+). Combining Eqs. (14), (15), (17) and (18) we thus obtain the following weight for the

configuration c = {{τ1, s1}, . . . , {τn, sn}}:

wc = e−K
(Kdτ

2β

)n∏

σ

Z0σ detN
−1
σ ({si, τi}). (19)
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β
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Fig. 2: Local update in the continuous-time auxiliary field method. The dashed line represents

the imaginary time interval [0, β). We increase the perturbation order by adding a spin with

random orientation at a random time. The perturbation order is decreased by removing a

randomly chosen spin.

3.2 Sampling procedure and detailed balance

For ergodicity it is sufficient to insert/remove spins with random orientation at random times,

because this allows in principle to generate all possible configurations. Furthermore, the ran-

dom walk in configuration space must satisfy the detailed balance condition (8). Splitting the

probability to move from configuration ci to configuration cj into a probability to propose the

move and a probability to accept it,

p(ci → cj) = pprop(ci → cj)p
acc(ci → cj), (20)

we arrive at the condition

pacc(ci → cj)

pacc(cj → ci)
=

pprop(cj → ci)

pprop(ci → cj)

|w(cj)|
|w(ci)|

. (21)

There is some flexibility in choosing the proposal probabilities. A reasonable choice for the

insertion/removal of a spin is the following (illustrated in Fig. 2):

• Insertion

Pick a random time in [0, β) and a random direction for the new spin:

pprop(n → n+ 1) = (1/2)(dτ/β),

• Removal

Pick a random spin: pprop(n+ 1 → n) = 1/(n+ 1).

For this choice, the ratio of acceptance probabilities becomes

pacc(n → n+ 1)

pacc(n + 1 → n)
=

K

n+ 1

∏

σ=↑,↓

| det(N (n+1)
σ )−1|

| det(N (n)
σ )−1|

, (22)
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and the random walk can thus be implemented for example on the basis of the Metropolis

algorithm, i.e. the proposed move from n to n± 1 is accepted with probability

min

[

1,
pacc(n → n± 1)

pacc(n± 1 → n)

]

. (23)

3.3 Determinant ratios and fast matrix updates

From Eq. (22) it follows that each update requires the calculation of a ratio of two determinants.

Computing the determinant of a matrix of size (n× n) is an O(n3) operation (LU decomposi-

tion). The important thing to realize is that each insertion or removal of a spin merely changes

one row and one column of the matrix N−1
σ . We will now show that it is therefore possible to

evaluate the ratio in Eq. (22) in a time O(n2) (insertion) or O(1) (removal).

The objects which are stored and manipulated during the simulation are, besides the lists of the

times {τi} and spins {si}, the matrices Nσ = (eΓσ − G0σ(e
Γσ − I))−1. Inserting a spin adds a

new row and column to N−1
σ . We define the blocks (omitting the σ index)

(N (n+1))−1 =

(

(N (n))−1 Q

R S

)

, N (n+1) =

(

P̃ Q̃

R̃ S̃

)

, (24)

where Q, R, S denote (n × 1), (1 × n), and (1 × 1) matrices, respectively, which contain

the contribution of the added spin. The determinant ratio needed for the acceptance/rejection

probability is then given by

det(N (n+1))−1

det(N (n))−1
=

1

det S̃
= S − [R][N (n)Q]. (25)

As we store N (n), computing the acceptance/rejection probability of an insertion move is an

O(n2) operation. If the move is accepted, the new matrix N (n+1) is computed out of N (n), Q,R,

and S, also in a time O(n2):

S̃ = (S − [R][N (n)Q])−1, (26)

Q̃ = −[N (n)Q]S̃, (27)

R̃ = −S̃[RN (n)], (28)

P̃ = N (n) + [N (n)Q]S̃[RN (n)]. (29)

It follows from Eq. (25) that the calculation of the determinant ratio for removing a spin is O(1),

since it is just element S̃, and from the above formulas we also immediately find the elements

of the reduced matrix:

N (n) = P̃ − [Q̃][R̃]

S̃
. (30)
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3.4 Measurement of the Green’s function

To compute the contribution of a configuration c to the Green’s function measurement (6), we

insert a creation operator d† at time 0 and an annihilation operator d at time τ ,

gcσ(τ) =
1

wc

Tr
[

e−(β−τn)H1eγsn(n↑−n↓) . . . e−(τk+1−τ)H1dσe
−(τ−τk)H1 . . . eγs1(n↑−n↓)e−τ1H1d†σ

]

(

Kdτ

2β

)n

with wc given in Eq. (14). The same steps as in section 3.1 (Wick’s theorem) then lead to the

expression

gcσ(τ) =
1

detN−1
σ detN−1

σ̄

detN−1
σ̄ det

(

(N
(n)
σ )−1 [g0σ(τi)]

−[g0σ(τ − τj)(e
Γσj − 1)] g0σ(τ)

)

= g0σ(τ) + [g0σ(τ − τj)(e
Γσj − 1)]N (n)

σ [g0σ(τi)]. (31)

The second equality follows from Eq. (25) and square brackets denote vectors of length n. To

avoid unnecessary and time consuming summations during the Monte Carlo simulations, we

only accumulate the quantity

Sσ(τ̃) ≡
n
∑

k=1

δ(τ̃ − τk)
n
∑

l=1

[

(eΓσ − I)Nσ

]

kl
g0σ(τl), (32)

binning the time points τ̃ on a fine grid. After the simulation is completed, the Green’s function

is computed as

gσ(τ) = g0σ(τ) +

∫ β

0

dτ̃g0σ(τ − τ̃)
〈

Sσ(τ̃)
〉

MC
. (33)

3.5 Expansion order

It follows from Eq. (10) that

〈−H2〉 =
1

β

∫ β

0

dτ〈−H2(τ)〉

=
1

β

1

Z

∞
∑

n=0

n+ 1

(n + 1)!

∫ β

0

dτ

∫ β

0

dτ1 . . .

∫ β

0

dτnTr
[

e−βH1T (−H2(τ))(−H2(τn)) . . . (−H2(τ1))
]

=
1

β

1

Z

∑

c

n(c)wc =
1

β
〈n〉, (34)

and because 〈−H2〉 = K/β−U〈n↑n↓−(n↑+n↓)/2〉 we conclude that the average perturbation

order 〈n〉 is related to the parameter K and the potential energy by

〈n〉 = K − βU〈n↑n↓ − (n↑ + n↓)/2〉. (35)
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Increasing K leads to a higher perturbation order (and thus slower matrix updates), but through

Eq. (13) also to a smaller value of γ and thus to less polarization of the auxiliary spins. A K of

the order 1 appears to work well. We also learn from Eq. (35) that the average perturbation order

grows essentially proportional to U (as expected for a weak-coupling method), and proportional

to inverse temperature.

4 Strong coupling approach - expansion in the impurity-bath

hybridization

The second continuous-time method, which is in many ways complementary to the weak-

coupling approach, is based on an expansion of the partition function in powers of the impurity-

bath hybridization V . This method has been developed in Ref. [7] and applied to the Anderson

impurity model. A more general matrix formulation which allows to treat arbitrary impurity

models was presented in Refs. [8, 9]. An alternative to the matrix formulation, which we will

not touch in this chapter, is the recently proposed Krylov method [10].

4.1 Monte Carlo configurations

Here, we decompose the Hamiltonian as H2 = Hmix and H1 = H − H2 = H0 +HU +Hbath.

Since H2 ≡ Hd†

2 + Hd
2 =

∑

σ,p V
σ
p d

†
σap,σ +

∑

σ,p′ V
σ∗
p′ dσa

†
p,σ has two terms, corresponding to

electrons hopping from the bath to the impurity and from the impurity back to the bath, only

even perturbation orders contribute to Eq. (10). Furthermore, at perturbation order 2n only

the (2n)!/(n!)2 terms corresponding to n creation operators d† and n annihilation operators

d will contribute. We can therefore write the partition function as a sum over configurations

c = {τ1, . . . , τn; τ ′1, . . . , τ ′n}:

Z =

∞
∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτn

∫ β

0

dτ ′1 . . .

∫ β

τ ′n−1

dτ ′nTr
[

e−βH1THd
2 (τn)H

d†

2 (τ ′n) . . .H
d
2 (τ1)H

d†

2 (τ ′1)
]

.

Since the time evolution of the Anderson model (given by H1) does not rotate the spin, there is

an additional constraint, namely that both for spin up and spin down, there is an equal number

of creation and annihilation operators. Taking this into account and writing out the expressions

for Hd
2 and Hd†

2 explicitly, we find

Z =
∑

{nσ}

∏

σ

∫ β

0

dτσ1 . . .

∫ β

τσnσ−1

dτσnσ

∫ β

0

dτ ′σ1 . . .

∫ β

τ ′σnσ−1

dτ ′σnσ

× Tr
[

e−βH1T
∏

σ

∑

p1,...,pnσ

∑

p′
1
,...,p′nσ

V σ
p1
V σ∗
p′
1
...V σ

pnσ
V σ∗
p′nσ

dσ(τ
σ
nσ
)a†σ,pnσ

(τσnσ
)aσ,p′nσ

(τ ′σnσ
)d†σ(τ

′σ
nσ
) . . . dσ(τ

σ
1 )a

†
σ,p1

(τσ1 )aσ,p′1(τ
′σ
1 )d†σ(τ

′σ
1 )
]

. (36)
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Now, because the d and a operate on different spaces and H1 does not mix the impurity and

bath states, we can separate the bath and the impurity and write

Z = Zbath

∑

{nσ}

∏

σ

∫ β

0

dτσ1 . . .

∫ β

τσnσ−1

dτσnσ

∫ β

0

dτ ′σ1 . . .

∫ β

τ ′σnσ−1

dτ ′σnσ

× Trd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ
)d†σ(τ

′σ
nσ
) . . . dσ(τ

σ
1 )d

†
σ(τ

′σ
1 )
]

× 1

Zbath

Tra

[

e−βHbathT
∏

σ

∑

p1,...,pnσ

∑

p′
1
,...,p′nσ

V σ
p1
V σ∗
p′
1
...V σ

pnσ
V σ∗
p′nσ

a†σ,pnσ
(τσnσ

)aσ,p′nσ
(τ ′σnσ

) . . . a†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

, (37)

where Zbath = Trae
−βHbath , and Hloc = H0 + HU . Since the bath is non-interacting, there is a

Wick theorem for the bath and Tra[. . .] can be expressed as the determinant of some matrix,

whose size is equal to the perturbation order. To find the elements of this matrix, it is useful to

consider the lowest perturbation order, nσ = 1, nσ̄ = 0. In this case

∑

p1

∑

p′
1

V σ
p1
V σ∗
p′
1

1

Zbath

Tra

[

e−βHbathTa†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

=
∑

p1

|V σ
p1
|2

e−ǫp1β + 1

{

e−ǫp1 (β−(τσ1 −τ ′σ1 )) τσ1 > τ ′σ1
−e−ǫp1 (τ

′σ
1

−τσ
1
) τσ1 < τ ′σ1

. (38)

Note that Zbath =
∏

σ

∏

p(e
−ǫpβ + 1). Introducing the β-antiperiodic hybridization function

Fσ(τ) =
∑

p

|Vp|2
e−ǫpβ + 1

{

e−ǫp(β−τ) τ > 0

−e−ǫp(−τ) τ < 0
, Fσ(−iωn) =

∑

p

|V σ
p |2

iωn − ǫp
, (39)

which is related to the non-interacting Green’s function G0σ of Section 3 by Fσ(−iωn) = iωn+

µ − U/2 − G0σ(iωn)
−1, the first order result becomes Fσ(τ

σ
1 − τ ′σ1 ). For higher orders, one

obtains

1

Zbath

Tra

[

e−βHbathT
∏

σ

∑

p1,...,pnσ

∑

p′
1
,...,p′nσ

V σ
p1
V σ∗
p′
1
...V σ

pnσ
V σ∗
p′nσ

a†σ,pnσ
(τσnσ

)aσ,p′nσ
(τ ′σnσ

) . . . a†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

=
∏

σ

detM−1
σ , (40)

where M−1
σ is a (nσ × nσ) matrix with elements

M−1
σ (i, j) = Fσ(τ

σ
i − τ ′σj ). (41)

In the hybridization expansion method, the configuration space consists of all sequences c =

{τ ↑1 , . . . , τ↑n↑
; τ ′↑1 , . . . , τ

′↑
n↑
|τ ↓1 , . . . , τ↓n↓

; τ ′↓1 , . . . , τ
′↓
n↓
}, of n↑ creation and annihilation operators

for spin up (n↑ = 0, 1, . . .), and n↓ creation and annihilation operators for spin down (n↓ =
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0, 1, . . .). The weight of this configuration is

wc = ZbathTrd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ
)d†σ(τ

′σ
nσ
) . . . dσ(τ

σ
1 )d

†
σ(τ

′σ
1 )
]

×
∏

σ

detM−1
σ (τσ1 , . . . , τ

σ
nσ
; τ ′σ1 , . . . , τ ′σnσ

)(dτ)2nσ . (42)

The trace factor represents the contribution of the impurity, which fluctuates between different

quantum states, as electrons hop in and out. The determinants resum all the bath evolutions

which are compatible with the given sequence of transitions.

To evaluate the trace factor, we use the eigenbasis of Hloc, which is |0〉 (energy E0 = 0), | ↑〉,
| ↓〉 (energy E1 = −µ) and | ↑↓〉 (energy E2 = U − 2µ). In this basis, the time evolution

operator e−τHloc = diag(e−τE0, e−τE1 , e−τE1, e−τE2) is diagonal while the operators dσ and d†σ
will produce transitions between eigenstates with amplitude ±1.

Because the time evolution does not flip the spin, the creation and annihilation operators for

given spin have to alternate. This allows us to separate the operators for spin up from those for

spin down and to depict the time evolution by a collection of segments (each segment represent-

ing a time interval in which an electron of spin up or down resides on the impurity). At each

time, the eigenstate of the impurity follows immediately from the segment representation and

we can easily compute the trace factor as (s is a permutation sign)

Trd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ
)d†σ(τ

′σ
nσ
) . . . dσ(τ

σ
1 )d

†
σ(τ

′σ
1 )
]

= s exp
[

µ(l↑ + l↓)− Uloverlap

]

, (43)

with lσ the total length of the segments for spin σ and loverlap the total length of the overlap be-

tween up and down segments. The lower panel of Fig. 3 shows a configuration with 3 segments

for spin up and two segments for spin down; the time intervals where segments overlap, indi-

cated by gray rectangles, correspond to a doubly occupied impurity and cost a repulsion energy

U .

4.2 Sampling procedure and detailed balance

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators

(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment

is the following: we pick a random time in [0, β) for the creation operator. If it falls on an

existing segment, the impurity is already occupied and the move is rejected. If it falls on an

empty space, we compute lmax, the length from this position to the next segment (in the direction

of increasing τ ). If there are no segments, lmax = β. The position of the new annihilation

operator is then chosen randomly in this interval of length lmax (see Fig. 3). If we propose to

remove a randomly chosen segment for this spin, then the proposal probabilities are

pprop(nσ → nσ + 1) =
dτ

β

dτ

lmax

, (44)

pprop(nσ + 1 → nσ) =
1

nσ + 1
, (45)
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overlap

0 β

0 βδ

l

l

l

max

new

Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and spin down. Each segment depicts a time interval in which an electron of the corre-

sponding spin resides on the impurity (the end points are the locations of the operators d† and

d). We increase the perturbation order by adding a segment or anti-segment of random length

for random spin. The perturbation order is decreased by removing a randomly chosen segment.

(Figure from Ref. [1].)

and the ratio of acceptance probabilities therefore becomes

pacc(nσ → nσ + 1)

pacc(nσ + 1 → nσ)
=

βlmax

nσ + 1
eµlnew−Uδloverlap

| det(M (nσ+1)
σ )−1|

| det(M (nσ)
σ )−1|

. (46)

Here, lnew is the length of the new segment, and δloverlap the change in the overlap. Again, we

compute the ratio of determinants using the fast update formulas discussed in Section 3.

4.3 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function measurement

by decoupling the bath from a given pair of creation and annihilation operators in c. The idea is

to write

g(τ) =
1

Z

∑

c

wd(τ)d†(0)
c =

1

Z

∑

c

w(τ,0)
c

w
d(τ)d†(0)
c

w
(τ,0)
c

, (47)

where w
d(τ)d†(0)
c denotes the weight of configuration c with an additional operator d†(0) and

d(τ) in the trace factor, and w
(τ,0)
c the complete weight corresponding to the enlarged opera-

tor sequence (including enlarged hybridization determinants). Since the trace factors of both

weights are identical, and detM−1
c is a minor of det(M

(τ,0)
c )−1, we find

w
d(τ)d†(0)
c

w
(τ,0)
c

=
detM−1

c

det(M
(τ,0)
c )−1

= (M (τ,0)
c )j,i, (48)
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with i and j denoting the row and column corresponding to the new operators d† and d in the

enlarged (M
(τ,0)
c )−1. To transform the sum over c into a sum over configurations c̃ = {c, τi, τ ′j},

the new operators must be free to be anywhere on the imaginary time interval, which (due to

translational invariance) yields a factor 1
β
∆(τ, τi − τ ′j), with

∆(τ, τ ′) =

{

δ(τ − τ ′) τ ′ > 0

−δ(τ − τ ′ − β) τ ′ < 0
. (49)

Hence, the measurement formula for the Green’s function becomes

g(τ) =
1

Z

∑

c̃

wc̃

∑

i,j

1

β
∆(τ, τi − τ ′j)(Mc̃)j,i =

〈

∑

i,j

1

β
∆(τ, τi − τ ′j)Mj,i

〉

MC

. (50)

Note that if we let all the integrals run from 0 to β, there is a factor 1/(n!)2 in wc and 1/((n +

1)!)2 in wc̃, with n the size of Mc. Changing from a sum over c to a sum over c̃ therefore adds

a factor (n + 1)2 if we restrict the measurement to a specific pair of d† and d. Equivalently, we

can sum over all the (n + 1)2 pairs of operators in the enlarged configuration.

4.4 Generalization - Matrix formalism

It is obvious from the derivation in Section 4.1 that the hybridization expansion formalism is

applicable to general classes of impurity models. Because the trace factor in the weight (42) is

computed exactly, Hloc can contain essentially arbitrary interactions (e. g. spin-exchange terms

in multi-orbital models), degrees of freedom (e. g. spins in Kondo-lattice models) or constraints

(e. g. no double occupancy in the t-J model).

For multi-orbital impurity models with density-density interaction, the segment formalism is

still applicable: we have now a collection of segments for each flavor α (orbital, spin) and the

trace factor can still be computed from the length of the segments (chemical potential contribu-

tion) and the overlaps between segments of different flavor (interaction terms).

If Hloc is not diagonal in the occupation number basis defined by the d†α, the calculation of

Trd
[

e−βHlocT
∏

α dα(τ
α
nα
)d†α(τ

′α
nα
) . . . dσ(τ

α
1 )d

†
α(τ

′α
1 )
]

becomes more involved. We now have to

compute the trace explicitly in some basis of Hloc – for example the eigenbasis, in which the

time evolution operators e−Hlocτ become diagonal. The operators dα and d†α are expressed as

matrices in this eigenbasis, and the evaluation of the trace factor thus involves the multiplication

of matrices whose size is equal to the size of the Hilbert space of Hloc. Since the dimension of

the Hilbert space grows exponentially with the number of flavors, the calculation of the trace

factor becomes the computational bottleneck of the simulation, and the matrix formalism is

therefore restricted to a relatively small number of flavors (. 10).

An important point, explained in Ref. [9], is the use of conserved quantum numbers (typically

particle number for spin up and spin down, momentum, . . . ). If the eigenstates of Hloc are

grouped according to these quantum numbers, the operator matrices will acquire a sparse block

structure, because for example d†↑,q will connect the states corresponding to quantum numbers

m = {n↑, n↓, K} to those corresponding to m′ = {n↑ + 1, n↓, K + q} (if they exist). Checking



10.14 Philipp Werner

the compatibility of the operator sequence with a given starting block furthermore allows one to

find the (potentially) contributing quantum number sectors without any matrix multiplications.

The evaluation of the trace is thus reduced to a block matrix multiplication of the form

∑

contr.m

Trm

[

. . . (O)m′′,m′(e−(τ ′−τ)Hloc)m′(O)m′,m(e
−τHloc)m

]

. (51)

5 Comparison between the two approaches

The weak- and strong-coupling methods are in many ways complementary and their respec-

tive strengths/weaknesses result from the scaling of the computational effort with interaction

strength and system size. For the Anderson impurity model considered in these notes, the U

dependence of the average perturbation order is shown in Fig. 4 (these are dynamical mean

field theory calculations for a one-band Hubbard model taken from Ref. [11]). In the weak-

coupling algorithms, where the average perturbation order is related to the potential energy, one

finds a roughly linear increase of the perturbation order with U . In the hybridization-expansion

method, the average perturbation order is related to the kinetic energy, and decreases as the in-

teraction strength increases. Thus, in single site models with only density density interactions,

where the evaluation of the trace factor in Eq. (42) is cheap, the hybridization expansion method

beats the weak coupling method in the regime of strong correlations.

For more complicated models, which require the matrix formalism discussed in section 4.4,

the hybridization expansion method scales exponentially with system size, and can only be ap-

plied to relatively small systems.1 Here, the weak-coupling approach – if applicable – becomes

the method of choice. Table 1 gives a summary of the different scalings (assuming diagonal

hybridization) and indicates which solver is appropriate for which type of problem.

solver scaling use for

weak-coupling β3 L3 impurity clusters with density-density

interactions and hopping

hybridization expansion β3 L single site multi-orbital models with

(segment formulation) density-density interaction

hybridization expansion β exp(L) single site multi-orbital models with

(matrix formulation) general Uijkl

Table 1: Scaling of the different impurity solvers with inverse temperature and system size.
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Fig. 4: Average perturbation order for the weak-coupling and strong coupling (hybridization

expansion) algorithm. These results correspond to the DMFT solution of the one-band Hubbard

model with semi-circular density of states of bandwidth 4t, and temperature β = 1/T = 30.

The bath is therefore different for each data point. (Figure adapted from Ref. [11].)

Appendices

A Rubtsov’s weak-coupling approach

The weak-coupling continuous time impurity solver originally proposed by Rubtsov [3] is based

on slightly different definitions of interaction and quadratic terms:

HU = Un↑n↓, (52)

H0 = −µ(n↑ + n↓). (53)

The method employs an expansion of the partition function in powers of H2 = HU . Equation

(11) then gives the weight of a configuration of n interaction vertices. Since H1 = H −H2 =

H0 + Hbath + Hmix is quadratic, we can use Wick’s theorem to evaluate the trace. The result

is a product of two determinants of n × n matrices (one for each spin), whose elements are

bath Green functions g̃0 (here without the chemical potential shift U/2) evaluated at the time
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intervals defined by the vertex positions:

wc

Z0
= (−Udτ)n

1

Z0
Tr
[

e−(β−τn)H1n↑n↓ . . . e
−(τ2−τ1)H1n↑n↓e

−τ1H1

]

= (−Udτ)n
∏

σ

det M̃−1
σ , (54)

(M̃−1
σ )ij = g̃0,σ(τi − τj), (55)

with Z0 = Tr[e−βH1 ] the partition function of the noninteracting model.

At this point, we encounter a problem. In the paramagnetic phase, where g̃0,↑ = g̃0,↓, the product

of determinants is positive, which means that for repulsive interaction (U > 0), odd perturbation

orders yield negative weights. Except in the particle-hole symmetric case, where one can show

that odd perturbation orders vanish, this will result in a severe sign problem. Fortunately, we

can solve this sign problem by shifting the chemical potentials for up and down spins in an

appropriate way. We rewrite the interaction term as [12]

HU =
U

2

∑

s

∏

σ

(nσ − ασ(s)) +
U

2
(n↑ + n↓)−

U

4
, (56)

ασ(s) = 1/2 + σs(1/2 + δ). (57)

Here δ is some constant and s = ±1 an Ising variable. The constant −U/4 in Eq. (56) is

irrelevant, while the contribution U(n↑ + n↓)/2 can be absorbed into the noninteracting Green

function by shifting the chemical potential as µ → µ − U/2. Explicitly, we redefine the bath

Green function as g̃−1
0,σ = iωn + µ−∆σ → g−1

0,σ = iωn + µ− U/2−∆σ.

The introduction of an Ising variable si at each vertex position τi enlarges the configuration

space exponentially. A configuration c now corresponds to a collection of Ising spin variables

on the imaginary time interval: c = {(τ1, s1), (τ2, s2), . . . , (τn, sn)}. The weight of these con-

figurations are

wc

Z0

= (−Udτ/2)n
∏

σ

detM−1
σ , (58)

(M−1
σ )ij = g0,σ(τi − τj)− ασ(si)δij . (59)

The Ising variables are in fact not needed to cure the sign problem. They have been introduced

to symmetrize the interaction term and prevent ergodicity problems.

Rubtsov’s weak-coupling approach is in principle applicable to models with arbitrarily compli-

cated interaction terms. However, the best type of auxiliary field representation, which min-

imizes the sign problem in multi-orbital systems with complicated interaction and correlated

hopping terms, is not yet known. For models with density-density interactions, the method

is in fact equivalent to the continuous-time auxiliary-field approach discussed in Section 3. It

was shown in Ref. [13] that the partition functions for the two weak-coupling methods become

identical if the parameters K (for the continuous-time auxiliary field method) and δ (Eq. 57) are

related by

K = βU [(1/2 + δ)− 1/4]. (60)
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