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Standard model 
of Solid State Physics

• particles: nuclei and electrons
• interaction: electrostatics 
• equations of motion: 

– Schrödinger equation: 
– Poisson equation:
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but: 
       exponential wall of many-particle physics
problem: 
                quantum mechanics + interaction

Tuesday, October 4, 11



Density functional theory
maps interacting electrons onto         
non-interacting quasi-electrons in an       
effective potential

• one-particle Schrödinger equation

• limited to ground state properties
• based on an exact theorem

– but: implementation requires approximations
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• Minimize total energy functional:

• Solve Kohn-Sham equations:

Total energy functional
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• Minimize total energy functional:

• Solve Kohn-Sham equations:
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• Minimize total energy functional:

• Solve Kohn-Sham equations:
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Self-consistency loop
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• Paradigm shift: 
– eigenvalue problems           minimize energy         

• Access to the molecular dynamics

Car-Parrinello method

9

Car, Parrinello, PRL 55, 2471(1985)
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Levy’s constrained search
Is there a density functional?
constrained search:            
proof of existence by presenting a 
construction principle
1. sort all fermionic many-particle wave functions 

according to their density

2. For each density find 

a. the wave function with lowest kinetic energy 
and

b. the wave function with lowest kinetic and 
interaction energy

This defines two universal density functionals, 
F0[n] and FW[n] 

3. determine energy and density of the ground 
state for a given external potential by 
minimization over all densities

- potential energy depends only on the density
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n(r1)h(r1,r2)

|r2−r1|0

n2
n(2)(r2,r1)

n(2)(r2,r1)

0

Exchange-correlation hole
• interaction energy

• two-particle density
– n(2)(r,r’)= probability density of finding one electron 

at r and another at r’ times N(N-1) (number of pairs)

• exchange correlation hole hxc(r,r’)

• properties of the exchange correlation hole
– each electron interacts with N-1 other electrons: 

hole integrates to -1 electron (Charge sum rule) 

– two electrons with the same spin cannot be at the 
same position (Pauli principle)

– the hole vanishes at large distances (short-
sightedness)
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Model for Exc

• properties of the exchange correlation 
hole

– each electron interacts with N-1 other 
electrons: hole integrates to -1 electron 
(Charge sum rule) 

– two electrons with the same spin cannot be at 
the same position (Pauli principle)

– the hole vanishes at large distances (short-
sightedness)

• Model: 

– homogeneously charged sphere

For a free electron gas not much worse 
than a Hartree Fock calculation
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Correlation energy

• Exchange energy uses hole of non-
interacting electrons

• Coulomb repulsion pushes electrons away

• deformation of wave function raises kinetic 
energy 

•adiabatic connection:
– switch the interaction slowly on and 

integrate opposing “force”

– never evaluate kinetic energy explicitly
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Coulomb hole

Correlation energy is due to the balance 
between energy gain by lowering the 

Coulomb repulsion and  kinetic energy cost
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Jacobs ladder to heaven

14

5. Exact: Constrained search

4. Hybrid functionals: Include exact    
(nonlocal) exchange: left-right correlations 

3. Meta-GGA: use kinetic energy density to 
estimate the flexibility of the electron gas

2. GGA: asymmetry of the xc-hole favors 
surfaces and thus weakens bonds

1. LDA: xc-hole from free electron gas: strong 
overbinding
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Local density 
approximation (LDA)

• Local density aproximation (LDA) imports the “exact” 
exchange correlation hole of a free electron gas
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Why does it work?
Sum rules!

• charge sum rule exact
• only spherical average matters
• only first moment of radial hole matters
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Generalized gradient 
approximation (GGA)

• an electron far away from an atom sees a positive ion 

• the exchange hole is entirely on the atom.

• the LDA hole is centered on the electron and smeared 
out over a wide region.

• LDA overestimates the exchange energy at the surface

• GGA stabilizes the surfaces (overbinding reduced)
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GGA correction 
stabilizes tails

binding energies are dramatically improved

DFT became of interest to chemists
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Hybrid functionals
• adiabatic connection

• approximate integral by 
weighted sum of the values at 
the end-points of the interval

– Hartree-Fock exchange introduces nonlocality

– finite band gaps for Mott insulators

– correct dissociation limit of bonds

– related to GW, LDA+U, etc.
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Band-gap problem

• GGA’s underestimate 
band gaps
– in silicon 0.7 eV instead 

of 1.17 eV

• Many transition metal 
oxides are metals 
instead of insulators!

• Problem: energy of 
average density instead 
of average of energies
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Electronic structure methods:
how to solve the Kohn-Sham equations

19

pseudopotentials
Hamann-Bachelet-Schlueter, Troulier-Martins, Kleinman-
Bylander, Vanderbilt ultrasoft

linear methods
linear augmented muffin tin-orbital (LMTO) method 
linear augmented plane wave (LAPW) method

projector augmented 
wave method

augmented wave methods
Korringa Kohn Rostocker (KKR), augmented plane wave (APW) method 
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atomic valence wave functions (s and d) of Pt

r

What is the problem?

1. wave function oscillates 
strongly in the atomic region 
(Coulomb singularity)

2. wave function needs to be very 
flexible in the bonding region 
and the tails (Chemistry)

3. most electrons (core) are 
“irrelevant”

4. relativistic effects

5. tiny but finite nucleus 
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Strategies

Pseudopotentials

21

• Chop off singular potential
• node-less wave functions
• no core states
• no information on inner electrons
• transferability problems

Augmented waves

• start with envelope function
• replace incorrect shape with 

atomic partial waves
• complex basisset
• retain full information on wave 

functions and potential

LMTO, ASW, LAPW, APW, KKR, PAW, 
(all-electron)

Hamann-Bachelet-Schlüter, Kerker, 
Kleinman-Bylander, Troullier Martins, 
Ultrasoft,etc
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PAW augmentation
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PAW transformation theory
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PAW transformation theory
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PAW augmentation
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PAW total energy
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E0[{| ̃ni, Rj}] = Ẽ +
X

R

⇣
E1

R � Ẽ1
R

⌘Also, the total energy is written as sum of
• an extended plane wave part
• two one-center expansions for each site

“smart zero”

contains pseudized core
(non-linear core correction)

Compensation density: 
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Accuracy

• VASP: [Paier,Hirschl, Marsman, Kresse JCP122,234102 (1005)]

• GPAW: [Carsten Rostgaard]
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All-electron calculations with PAW (continued)

PBE atomization energies relative to Gaussian:
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The End
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