Theory and Practice of Density Functional Theory

Peter E. Blöchl
Institute for Theoretical Physics
Clausthal University of Technology, Germany
http://www.pt.tu-clausthal.de/atp/
Standard model of Solid State Physics

- particles: nuclei and electrons
- interaction: electro\textit{statics}
- equations of motion:
 - Schrödinger equation: \(i\hbar \partial_t |\Psi\rangle = \hat{H} |\Psi\rangle \)
 - Poisson equation: \(\nabla^2 \Phi(\vec{r}) = \frac{1}{\epsilon_0} \rho(\vec{r}) \)

but:

exponential wall of many-particle physics

problem:

quantum mechanics + interaction
Density functional theory maps interacting electrons onto non-interacting quasi-electrons in an effective potential

- one-particle Schrödinger equation

\[
\left(-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{eff}}(\vec{r})\right) \psi_n(\vec{r}) = \psi_n(\vec{r}) \epsilon_n
\]

- limited to ground state properties
- based on an exact theorem
 - but: implementation requires approximations
Appetizer: high-K oxides for new transistors

Först, Ashman, Blöchl, German patent DE10303875

McKee et al., Science 300, 1726 (2003)

Hu et al.
PRB65, 75408 (2002)

Ojima, Yoshimura, Ueda

Norga et al. MRS Proc. 2004

Metal–Oxide Field–Effect Transistor (MOSFET)
Total energy functional

- Minimize total energy functional:

\[
E[|\psi_n\rangle, f_n] = \sum_n f_n \langle \psi_n | \frac{\hat{p}^2}{2m} | \psi_n \rangle + \frac{1}{2} \int d^3r \int d^3r' \frac{e^2[n(\vec{r}) + Z(\vec{r})][n(\vec{r'}) + Z(\vec{r'})]}{4\pi\varepsilon_0 |\vec{r} - \vec{r'}|}
\]

\[
+ \left\{ \begin{array}{l}
E_{xc}[n(\vec{r})] - \sum_{n,m} \Lambda_{n,m} (\langle \psi_n | \psi_m \rangle - \delta_{n,m}) \end{array} \right\}
\]

with \(n(\vec{r}) = \sum_n f_n |\psi(\vec{r})|^2 \)

\(Z(\vec{r}) = -\sum_j Z_j \delta(\vec{r} - \vec{R}_j) \)

- Solve Kohn-Sham equations:

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + v_{eff}(\vec{r}) \right] \psi_n(\vec{r}) = \psi_n(\vec{r})\varepsilon_n \quad \text{and} \quad v_{eff}(\vec{r}) = \int d^3r' \frac{e^2[n(\vec{r'}) + Z(\vec{r'})]}{4\pi\varepsilon_0 |\vec{r} - \vec{r'}|} + \frac{\delta E_{xc}}{\delta n(\vec{r})}
\]

\[
v_{Hartree}(\vec{r}) = \mu_{ xc}(\vec{r})
\]
Total energy functional

- Minimize total energy functional:

\[
E[|\psi_n\rangle, f_n] = \sum_n f_n \langle \psi_n | \hat{p}^2 \psi_n \rangle \frac{1}{2m} + \int d^3r \int d^3r' \frac{e^2 [n(\vec{r}) + Z(\vec{r'})][n(\vec{r'}) + Z(\vec{r})]}{4\pi\epsilon_0 |\vec{r} - \vec{r'}|}
\]

\[
+ \frac{1}{2} \sum_{n,m} A_{n,m} \left(\langle \psi_n | \psi_m \rangle - \delta_{n,m} \right)
\]

with

\[
n(\vec{r}) = \sum_n f_n |\psi(\vec{r})|^2
\]

electron density

\[
Z(\vec{r}) = - \sum_j Z_j \delta(\vec{r} - \vec{R}_j)
\]

charge density of nuclei in electron charges

- Solve Kohn-Sham equations:

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{eff}}(\vec{r})\right] \psi_n(\vec{r}) = \psi_n(\vec{r}) \epsilon_n \quad \text{and} \quad v_{\text{eff}}(\vec{r}) = \int d^3r' \frac{e^2 [n(\vec{r'}) + Z(\vec{r'})]}{4\pi\epsilon_0 |\vec{r} - \vec{r'}|} + \delta E_{xc} \frac{\delta n(\vec{r})}{\epsilon(\mu_{xc}(\vec{r}))}
\]
Total energy functional

- Minimize total energy functional:

\[
E[|\psi_n\rangle, f_n] = \sum_n f_n \langle \psi_n | \frac{\hat{p}^2}{2m} | \psi_n \rangle + \frac{1}{2} \int d^3r \int d^3r' \frac{e^2[n(\vec{r}) + Z(\vec{r})][n(\vec{r}') + Z(\vec{r}')] - \delta_{n,m}}{4\pi\epsilon_0|\vec{r} - \vec{r}'|} \]

\[= E_{\text{kin}} + E_{\text{Hartree}} + E_{\text{xc}}[n(\vec{r})] - \sum_{n,m} \Lambda_{n,m} \left(\langle \psi_n | \psi_m \rangle - \delta_{n,m} \right)\]

with

\[n(\vec{r}) = \sum_n f_n |\psi(\vec{r})|^2\]

\[Z(\vec{r}) = -\sum_j Z_j \delta(\vec{r} - \vec{R}_j)\]

- Solve Kohn-Sham equations:

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + v_{\text{eff}}(\vec{r}) \right] \psi_n(\vec{r}) = \psi_n(\vec{r}) \epsilon_n \quad \text{and} \quad v_{\text{eff}}(\vec{r}) = \int d^3r' \frac{e^2[n(\vec{r}') + Z(\vec{r}')]}{4\pi\epsilon_0|\vec{r} - \vec{r}'|} + \frac{\delta E_{\text{xc}}}{\delta n(\vec{r})} \]

\[\text{with} \quad v_{\text{Hartree}}(\vec{r}) \]

Tuesday, October 4, 11
Self-consistency loop

\[
\begin{align*}
E[\psi_n, f_n] &= \sum_n f_n \langle \psi_n | \mathcal{H}_{\text{ele}} | \psi_n \rangle + \frac{1}{2} \int d^3r \int d^3r' \left[e^2 [n(\vec{r}) + Z(\vec{r})][n(\vec{r'}) + Z(\vec{r'})] \right] \\
&\quad + \frac{E_{\text{exc}}[\phi(\vec{r})] - \sum_n \delta_{n,m} (\psi_n \psi_m) - \delta_{n,m}}{E_{\text{exc}}} \\
\text{with} \quad n(\vec{r}) &= \sum_n f_n |\psi_n(\vec{r})|^2 \\
Z(\vec{r}) &= - \sum_j Z_j \delta(\vec{r} - \vec{R}_j)
\end{align*}
\]

and

\[
\begin{align*}
\rho(\vec{r}) &= \sum_n f_n |\psi_n(\vec{r})|^2 \\
\text{charge density of nuclei in electron charges}
\end{align*}
\]

\[
\begin{align*}
\mathcal{H}_{\text{ele}} &= -\frac{\hbar^2}{2m_e} \nabla^2 + v_{\text{eff}}(\vec{r}) - \epsilon_n \\
\psi_n(\vec{x}) &= 0.
\end{align*}
\]

\[
\begin{align*}
v_{\text{eff}}(\vec{r}) &= v_{\text{ext}}(\vec{r}) + \int d^3r' \frac{e^2 n^{(1)}(\vec{r'})}{4\pi \epsilon_0 |\vec{r} - \vec{r'}|} + \frac{\delta E_{\text{xc}}[n^{(1)}]}{\delta n^{(1)}(\vec{r})}
\end{align*}
\]

\[
\begin{align*}
n^{(1)}(\vec{r}) &= \sum_n f_n \sum_\sigma |\psi_n(\vec{x})|^2 \psi_n(\vec{x})
\end{align*}
\]
Car-Parrinello method

Car, Parrinello, PRL 55, 2471(1985)

- Paradigm shift:
 - *eigenvalue problems* → minimize energy

- Access to the molecular dynamics
Levy’s constrained search

Is there a density functional?

constrained search:
proof of existence by presenting a construction principle

1. sort all fermionic many-particle wave functions according to their density

2. For each density find
 a. the wave function with lowest kinetic energy and
 b. the wave function with lowest kinetic and interaction energy

This defines two universal density functionals, $F^0[n]$ and $F^W[n]$

3. determine energy and density of the ground state for a given external potential by minimization over all densities
 - potential energy depends only on the density

\[
E_0 = \min_{n(\vec{r})} \left\{ F^W[n] + \int d^3 r \, v_{\text{ext}}(\vec{r}) n(\vec{r}) - \mu \left(\int d^3 r \, n(\vec{r}) - N \right) \right\}
\]

\[
= \min_{n(\vec{r})} \left\{ T[n] + \int d^3 r \, v_{\text{ext}}(\vec{r}) n(\vec{r}) + \frac{F^W[n] - F^0[n]}{E_{\text{H} + E_{\text{xc}}}} - \mu \left(\int d^3 r \, n(\vec{r}) - N \right) \right\}
\]
Exchange-correlation hole

- interaction energy
 \[E_{e-e} = \frac{1}{2} \int d^3r \int d^3r' \frac{e^2 n^{(2)}(\vec{r}, \vec{r}')}{4\pi\epsilon_0 |\vec{r} - \vec{r}'|} \]

- two-particle density
 - \(n^{(2)}(r, r') \) = probability density of finding one electron at \(r \) and another at \(r' \) times \(N(N-1) \) (number of pairs)

- exchange correlation hole \(h_{xc}(r, r') \)
 \[n^{(2)}(\vec{r}, \vec{r}') = n^{(1)}(\vec{r}) n^{(1)}(\vec{r}') + n^{(1)}(\vec{r}) h_{xc}(\vec{r}', \vec{r}) \]
 \[E_{e-e} = \frac{1}{2} \int d^3r \int d^3r' \frac{e^2 n^{(1)}(\vec{r}) n^{(1)}(\vec{r}')}{4\pi\epsilon_0 |\vec{r} - \vec{r}'|} + \int d^3r n^{(1)}(\vec{r}) \left[\frac{1}{2} \int d^3r' \frac{e^2 h_{xc}(\vec{r}, \vec{r}')}{4\pi\epsilon_0 |\vec{r} - \vec{r}'|} \right] \]
 Hartree energy
 potential energy of exchange and correlation

- properties of the exchange correlation hole
 - each electron interacts with \(N-1 \) other electrons: hole integrates to -1 electron (Charge sum rule)
 - two electrons with the same spin cannot be at the same position (Pauli principle)
 - the hole vanishes at large distances (short-sightedness)

Tuesday, October 4, 11
Model for E_{xc}

- properties of the exchange correlation hole
 - each electron interacts with $N-1$ other electrons: hole integrates to -1 electron (Charge sum rule)
 - two electrons with the same spin cannot be at the same position (Pauli principle)
 - the hole vanishes at large distances (short-sightedness)

- Model:
 - homogeneously charged sphere

For a free electron gas not much worse than a Hartree Fock calculation
Correlation energy

\[E_{xc}[n^{(1)}] = F^W[n^{(1)}] - F^0[n^{(1)}] - E_{\text{Hartree}} \]

- Exchange energy uses hole of non-interacting electrons
- Coulomb repulsion pushes electrons away
- deformation of wave function raises kinetic energy

Correlation energy is due to the balance between energy gain by lowering the Coulomb repulsion and kinetic energy cost

adiabatic connection:
- switch the interaction slowly on and integrate opposing “force”
- never evaluate kinetic energy explicitly

\[\hat{H}(\lambda) = \hat{H}_0 + \lambda \hat{W} \]

\[E_{xc} = \int_0^1 d\lambda \int d^3r \ n(\vec{r}) \frac{1}{2} \int d^3r' \frac{e^2 h_\lambda(\vec{r}, \vec{r'})}{4\pi \epsilon_0 |\vec{r} - \vec{r'}|} \]

\[= \int d^3r \ n(\vec{r}) \frac{1}{2} \int d^3r' \frac{e^2 \int_0^1 d\lambda h_\lambda(\vec{r}, \vec{r'})}{4\pi \epsilon_0 |\vec{r} - \vec{r'}|} \]
Jacobs ladder to heaven

5. **Exact**: Constrained search

4. **Hybrid functionals**: Include exact (nonlocal) exchange: left-right correlations

3. **Meta-GGA**: use kinetic energy density to estimate the flexibility of the electron gas

2. **GGA**: asymmetry of the xc-hole favors surfaces and thus weakens bonds

1. **LDA**: xc-hole from free electron gas: strong overbinding
Local density approximation (LDA)

- Local density approximation (LDA) imports the “exact” exchange correlation hole of a free electron gas

\[
E_{xc} = \int d^3r \, n(\vec{r}) \epsilon_{xc}(n(\vec{r}))
\]

Why does it work?

Sum rules!

\[
\epsilon_{xc} = \frac{1}{2} \frac{4\pi e^2}{4\pi e_0} \int_0^\infty dr \, r \langle h(\vec{r}_0, \vec{r}_0 + \vec{r}) \rangle_{\text{angle}}
\]

\[
1 = 4\pi \int_0^\infty dr \, r^2 \langle h(\vec{r}_0, \vec{r}_0 + \vec{r}) \rangle_{\text{angle}}
\]

- charge sum rule exact
- only spherical average matters
- only first moment of radial hole matters
Generalized gradient approximation (GGA)

- an electron far away from an atom sees a positive ion
- the exchange hole is entirely on the atom.
- the LDA hole is centered on the electron and smeared out over a wide region.
- LDA overestimates the exchange energy at the surface

\[\varepsilon_{xc}(r \to \infty) = -\frac{1}{2} \frac{e^2}{4\pi\epsilon} r^{-1} \ll A \exp(-\lambda r) \]

- GGA stabilizes the surfaces (overbinding reduced)

Binding energies are dramatically improved

DFT became of interest to chemists
Hybrid functionals

- adiabatic connection
 \[\hat{H}(\lambda) = \hat{H}_0 + \lambda \hat{W} \]
 \[E_{xc} = \int_0^1 d\lambda \int d^3r \; n(\vec{r}) \frac{1}{2} \int d^3r' \frac{e^2 h_\lambda(\vec{r}, \vec{r}')}{4\pi \epsilon_0 |\vec{r} - \vec{r}'|} \frac{dE/d\lambda}{dE/d\lambda} \]
 \[= \int d^3r \; n(\vec{r}) \frac{1}{2} \int d^3r' \frac{e^2}{4\pi \epsilon_0 |\vec{r} - \vec{r}'|} \int_0^1 d\lambda h_\lambda(\vec{r}, \vec{r}') \]

- approximate integral by weighted sum of the values at the end-points of the interval
 - Hartree-Fock exchange introduces nonlocality
 - finite band gaps for Mott insulators
 - correct dissociation limit of bonds
 - related to GW, LDA+U, etc.
Band-gap problem

- GGA’s underestimate band gaps
 - in silicon 0.7 eV instead of 1.17 eV
- Many transition metal oxides are metals instead of insulators!
- Problem: energy of average density instead of average of energies
Electronic structure methods: how to solve the Kohn-Sham equations

- **pseudopotentials**
 - Hamann-Bachelet-Schlüter, Troullier-Martins, Kleinman-Bylander, Vanderbilt ultrasoft

- **augmented wave methods**
 - Korringa Kohn Rostocker (KKR), augmented plane wave (APW) method

- **linear methods**
 - linear augmented muffin tin-orbital (LMTO) method
 - linear augmented plane wave (LAPW) method

- **projector augmented wave method**
What is the problem?

1. Wave function oscillates strongly in the atomic region (Coulomb singularity).

2. Wave function needs to be very flexible in the bonding region and the tails (Chemistry).

3. Most electrons (core) are “irrelevant.”

4. Relativistic effects.

5. Tiny but finite nucleus.
Strategies

Pseudopotentials
- Chop off singular potential
- node-less wave functions
- no core states
- no information on inner electrons
- transferability problems

Augmented waves
- start with envelope function
- replace incorrect shape with atomic partial waves
- complex basisset
- retain full information on wave functions and potential

Hamann-Bachelet-Schlüter, Kerker, Kleinman-Bylander, Troullier Martins, Ultrasoft, etc

LMTO, ASW, LAPW, APW, KKR, PAW, (all-electron)
PAW augmentation

\[|\psi\rangle = |\tilde{\psi}\rangle + \sum_{\alpha} |\phi_{\alpha}\rangle \langle \tilde{p}_{\alpha} | \psi\rangle - |\tilde{\psi}^{1}\rangle \]

- all-electron
- 1-center, all-el.
- 1-center, pseudo

\[\sum_{\alpha} |\tilde{\phi}_{\alpha}\rangle \langle \tilde{p}_{\alpha} | \tilde{\psi}\rangle \]

\[\sum_{\alpha} |\tilde{\phi}_{\alpha}\rangle \langle \tilde{p}_{\alpha} | \tilde{\psi}^{1}\rangle \]

Tuesday, October 4, 11
PAW transformation theory

\[
|\psi\rangle = |\tilde{\psi}\rangle + \sum_{\alpha} \left(|\phi_{\alpha}\rangle - |\tilde{\phi}_{\alpha}\rangle \right) \langle \tilde{p}_{\alpha} | \tilde{\psi}\rangle
\]

with

\[
\hat{T} = 1 + \sum_{R} \hat{S}_{R}
\]

all-electron \(\langle \psi \rangle \) \quad \text{pseudo} \quad \text{atomic} \partial \text{wave}

plane waves

atomic partial wave

auxiliary partial wave

projector function

\[
\hat{S}_{R} = \sum_{\alpha} \left(|\phi_{\alpha}\rangle - |\tilde{\phi}_{\alpha}\rangle \right) \langle \tilde{p}_{\alpha} |
\]
PAW transformation theory

\[|\psi\rangle = T |\tilde{\psi}\rangle + \sum_{\alpha} \left(|\phi_{\alpha}\rangle - |\tilde{\phi}_{\alpha}\rangle \right) \langle \tilde{p}_{\alpha} | \tilde{\psi}\rangle \]

with

\[\hat{T} = 1 + \sum_{R} \hat{S}_{R} \]

\[\hat{S}_{R} = \sum_{\alpha} \left(|\phi_{\alpha}\rangle - |\tilde{\phi}_{\alpha}\rangle \right) \langle \tilde{p}_{\alpha} | \tilde{\psi}\rangle \]
PAW augmentation

\[
|\psi\rangle = |\tilde{\psi}\rangle + \sum_\alpha |\phi_\alpha\rangle \langle \tilde{p}_\alpha |\tilde{\psi}\rangle - |\tilde{\psi}^1\rangle
\]

- all-electron
- pseudo
- 1-center, all-el.
- 1-center, pseudo

\[
\sum_\alpha |\tilde{\phi}_\alpha\rangle \langle \tilde{p}_\alpha |\tilde{\psi}\rangle
\]
PAW total energy

Also, the total energy is written as sum of
- an extended plane wave part
- two one-center expansions for each site

\[
\tilde{E} = \sum_n \langle \tilde{\Psi}_n | -\frac{\hbar^2}{2m_e} \nabla^2 | \tilde{\Psi}_n \rangle + \int d^3r \, \bar{v}(\vec{r}) \tilde{n}(\vec{r})
+ \frac{1}{2} \int d^3r \int d^3r' \frac{e^2 [\tilde{n}(\vec{r}) + \tilde{Z}(\vec{r})] [\tilde{n}(\vec{r}') + \tilde{Z}(\vec{r}')]}{4\pi\varepsilon_0 |\vec{r} - \vec{r}'|} + E_{xc}[\tilde{n}(\vec{r})]
\]

\[
E'_R = \sum_{i,j \in R} D_{i,j} \langle \phi_j | -\frac{\hbar^2}{2m_e} \nabla^2 | \phi_i \rangle + \sum_{n \in R} \langle \phi_n^c | -\frac{\hbar^2}{2m_e} \nabla^2 | \phi_n^c \rangle
+ \frac{1}{2} \int d^3r \int d^3r' \frac{e^2 [n^1(\vec{r}) + Z(\vec{r})] [n^1(\vec{r}') + Z(\vec{r}')]}{4\pi\varepsilon_0 |\vec{r} - \vec{r}'|} + E_{xc}[n^1(\vec{r})]
\]

\[
\tilde{E}'_R = \sum_{i,j \in R} D_{i,j} \langle \tilde{\phi}_j | -\frac{\hbar^2}{2m_e} \nabla^2 | \tilde{\phi}_i \rangle + \int d^3r \, \bar{v}(\vec{r}) \tilde{n}^1(\vec{r})
+ \frac{1}{2} \int d^3r \int d^3r' \frac{e^2 [\tilde{n}^1(\vec{r}) + \tilde{Z}(\vec{r})] [\tilde{n}^1(\vec{r}') + \tilde{Z}(\vec{r}')]}{4\pi\varepsilon_0 |\vec{r} - \vec{r}'|} + E_{xc}[\tilde{n}^1(\vec{r})]
\]

\[
E'[\{ |\tilde{\psi}_n \rangle, R_j \}] = \tilde{E} + \sum_R \left(E^1_R - \tilde{E}^1_R \right)
\]
Accuracy

- **VASP:** [Paier, Hirschl, Marsman, Kresse JCP122, 234102 (1005)]
- **GPAW:** [Carsten Rostgaard]

PBE atomization energies relative to Gaussian:

Atomization energy error in kcal/mol

![Graph showing atomization energy errors for various molecules using VASP and GPAW compared to Gaussian.](image)
The End