DMFT+HF-QMC Tutorial

Task: Find and explore MIT (Bethe lattice, paramagnetic case)

- 0. In your home directory create a symbolic link to the **bin** folder containing all the <u>executables and</u> <u>scripts</u> for this Tutorial:
 In -s /home/bluemer/bin
- 1. Perform <u>DMFT calculations</u> for T = 0.04, fixed value of $\Delta \tau$ = 0.2, and U = 3.5, 4, 4.5, 4.7, 4.8, 5, 5.5
 - in a series with increasing interaction values
 - in a series with decreasing interaction values
- 2. Extract observables:
 - i. double occupancy D(U)
 - ii. quasiparticle weight $Z(U) = (1 Im\Sigma(\omega_1)/\omega_1)^{-1}$
- 3. Check convergency with D and/or Z
- 4. <u>Compute spectra</u> (using MaxEnt)
- 5. Explore the dependence of the results on the imaginary time discretization $\Delta \tau$:
 - i. For one of the U values perform calculations for a set of $\Delta\tau$ values.
 - ii. Plot double occupancy as a function of $\Delta \tau^2$
 - iii. Perform $\Delta \tau \rightarrow 0$ extrapolation

Hint: you may use the provided <u>scripts</u> to create input files and extract observables.

Top | Back to TOC

Workflow: Preparing and Performing DMFT calculations

1. Prepare <u>input file</u> for the first run.

To scan the parameter region starting from the metal solution choose U = 3.5 and default initial guess for the self-energy:

B250U035dt020 m0.in

B250U035dt020_m0 (beta=25, U=3.5, dt=0.2 on Bethe lattice) Nwu 200, Nmc 10000, Nme 0 beta 25.0 U 3.5 dt 0.2 dos Bethe NIter 10

<u>Important!</u> Do not use default parameters (<u>Nwu, Nmc, Nme</u>) for QMC calculation! They are chosen for production runs, not for tutorial purposes!

Hint: starting from U = 5.5 and going downgrade will lead to the insulating solution within the (co)existence region.

2. Run DMFT job using **DMFT_serial < B250U035dt020_m0.in > B250U035dt020_m0.out &**

Hint: you can trace the computational progress with tail -f B250U035dt020_m0.out

- 3. After this run is finished you may proceed either with the same U to get better convergency, or with a slightly different U using the obtained pre-converged solution as an initial guess:
 - i. Prepare corresponding input file, e.g.

B250U040dt020 m1.in

B250U040dt020_m1 (beta=25, U=4, dt=0.2 on Bethe lattice, SE from U=3.5) Nwu 200, Nmc 10000, Nme 0 beta 25.0 U 4.0 dt 0.2 dos Bethe ReadSE NIter 10

Keyword <u>ReadSE</u> forces reading of the initial self-energy from the corresponding external file, in this case from the file B250U040dt020_m1.self.in

- ii. Create a symbolic link to the self-energy file from the previous calculation: In -s B250U035dt020_m0.self.sec B250U040dt020_m1.self.in
- iii. Run DMFT job: DMFT_serial < B250U040dt020_m1.in > B250U040dt020_m1.out &

Top | Back to TOC

Observables

- Double occupancy for each DMFT iteration is written in the 5th colomn of the corresponding <u>.mag</u> <u>file</u>
- Quasiparticle weight can be calculated with the self-energy at first Matsubara frequency $\Sigma(\omega_1)$ known:

 $\mathbf{Z} = (1 - Im\Sigma(\omega_1)/\omega_1)^{-1}$

Frequency-dependent self-energy $\Sigma(\omega)$ from the final DMFT iteration is written in the corresponding <u>.self.sec file</u>, whereas <u>.self file</u> contains the same information for each of the DMFT iterations.

Top | Back to TOC