

Multiple-scattering formalism for correlated systems: A KKR-DMFT approach

H. Ebert, J. Minár, D. Ködderitzsch

Ludwig-Maximilians-Universität München, Department Chemie - Lehrbereich Phys. Chemie Butenandtstraße 11, D-81377 MÜnchen

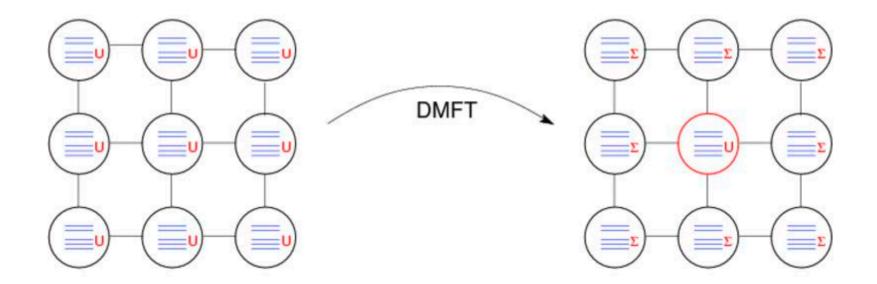
In close collaboration with

A. Lichtenstein ¹, M. Katsnelson ², L. Chioncel ³

- ¹ University Hamburg, Germany
- ² University Nijmegen, Netherlands
- ³ University Augsburg, Germany

and many experimental colleagues

Outline


- Introduction
- The standard LSDA+DMFT implementation
- Combination of LSDA+KKR
 - single site problem
 - multiple scattering
- Electronic properties and relativistic extension
- Disordered Alloys
- Applications
 - Magnetic moments
 - Total energy
 - spectroscopy
- Summary

Universität _ München ___

Dynamical mean field theory (DMFT)

 DMFT maps a lattice many-body system onto multi-orbital Anderson-like impurity model (AIM)

- Metzner, Vollhardt, PRL '89, simplification for $d \to \infty$
- Georges, Kotliar, PRB '92, mapping onto a AIM
- Anisimov et al., EPJ '97, LDA+DMFT

Combined LSDA+DMFT Hamiltonian

- $U_{mm'}^{\uparrow \downarrow} = U$ $U_{mm'}^{\sigma \sigma'} = U 2J J\delta_{\sigma \sigma'}$ U intra-orbital Coulomb repulsion from constrained LSDA or linear response
- J Hund exchange term
- $\Delta \varepsilon$ double counting corrections

Standard DMFT scheme (e.g. LMTO)

SCF-cycle

LSDA Green's function in reciprocal space

$$G_{\mathrm{LSDA}}(k,E) = \left[E - H_{\mathrm{LSDA}}(k)
ight]^{-1}$$

AIM: Dyson-equation for LSDA+DMFT Green's function

$$G^{-1}(k,E) = G^{-1}_{\mathrm{LSDA}}(k,E) - \Sigma(E)$$

LSDA+DMFT single particle Green's function

$$G(E) = \Omega^{-1} \int \mathrm{d}^3 k \,\, G(k,E)$$

Effective medium or bath Green's function

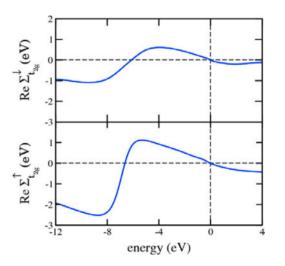
$$\mathcal{G}^{-1}(E) = G^{-1}(E) + \Sigma(E)$$

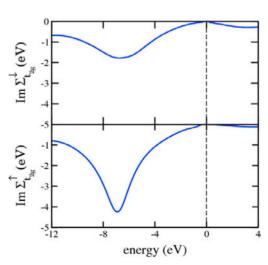
LSDA:
$$G(E)
ightarrow
ho(E)
ightarrow V_{
m LSDA}
ightarrow H_{
m LSDA}$$

Electronic self-energy Σ

one-particle Green's function \hat{G}

$$igl[E - \hat{H}_{LSDA} - \hat{\Sigma}(E)igr]\hat{G} = \hat{1}$$


effective self-energy operator


$$\hat{\Sigma}(E) = \sum_{ij} |\phi_{ni}\rangle \Sigma_{ij}(E)\langle \phi_{nj}|$$

assumed to be site diagonal

 $|\phi_{ni}\rangle$ localized orbitals for lattice site n

Spin-dependent self-energy matrix for fcc-Ni

Green's function based methods

One-electron Green's function in terms of eigen values E_i and eigen functions $\phi_i(\vec{r})$

$$G^+(\vec{r}, \vec{r}', E) = \lim_{\epsilon \to 0} \sum_i \frac{\phi_i(\vec{r})\phi_i^*(\vec{r})}{E - E_i + i\epsilon}$$

- Dyson equation $G = G_0 + G\Delta \mathcal{H}G_0$
 - linear response formalism
 - treatment of complex structures: surfaces, nano-structures
- CPA alloy theory
- description of spectroscopic quantities
- central quantity of many-body theories

LMU Implementation of LSDA+DMFT using Green's function methods

Dyson equation for one-electron Green's function

$$egin{aligned} G(ec{r},ec{r}^{\,\prime},E) &=& G_0(ec{r},ec{r}^{\,\prime},E) \ &+ \int \mathrm{d}^3r^{\prime\prime\prime} \int \mathrm{d}^3r^{\prime\prime\prime} G_0(ec{r},ec{r}^{\,\prime\prime},E) \ &[V_{\mathrm{LSDA}}(ec{r}^{\,\prime\prime\prime})\delta(ec{r}^{\,\prime\prime}-ec{r}^{\,\prime\prime\prime\prime}) + \Sigma(ec{r}^{\,\prime\prime\prime},ec{r}^{\,\prime\prime\prime},E)] \ &G(ec{r}^{\,\prime\prime\prime\prime},ec{r}^{\,\prime\prime\prime},E) \end{aligned}$$

$$G_0(\vec{r}, \vec{r}', E)$$
 free electron Green's function

$$\Sigma(\vec{r},\vec{r}',E)$$
 self-energy

Approximation: $\Sigma(\vec{r},\vec{r}^{\,\prime},E)$ is site-diagonal

Universität __ München

Densities and expectation values

The Dirac identity $\lim_{\epsilon o 0} \Im rac{1}{x+i\epsilon} = -\pi \, \delta(x)$ leads to

$$-rac{1}{\pi}\Im G^+(ec{r},ec{r}',E)=\sum_i\psi_i(ec{r})\psi_i^ imes(ec{r}')\delta(E-E_i)$$

 $\Im G^+(\vec{r},\vec{r}',E)$ can be interpreted as density matrix

Density of states

$$n(E) = -rac{1}{\pi} \Im \int_V d^3 r \, G^+(ec{r}, ec{r}, E)$$

Particle density

$$n(ec{r}) = -rac{1}{\pi}\Im\int^{E_F}\!\!\!dE\,G^+(ec{r},ec{r},E)$$

Expectation value
$$\langle \mathcal{A} \rangle = -\frac{1}{\pi} \Im \int^{E_F} \!\!\! dE \, \int_V d^3r \, \mathcal{A} \, G^+(\vec{r},\vec{r},E)$$

One-electron Green's function via KKR formalism

Electronic structure represented by Green's function

$$G^{+}(\vec{r}, \vec{r}', E) = \lim_{\epsilon \to 0} \sum_{i} \frac{\phi_{i}(\vec{r})\phi_{i}^{\times}(\vec{r}')}{E - E_{i} + i\epsilon}$$

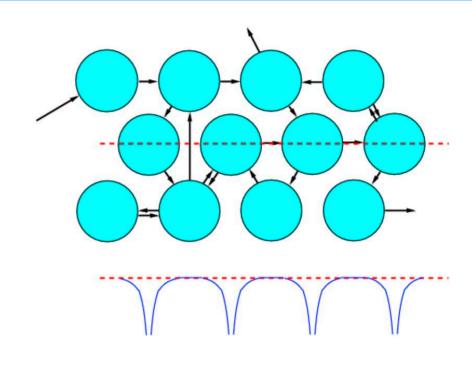
Korringa-Kohn-Rostoker (KKR) method based on multiple scattering theory

$$G^{+}(\vec{r}, \vec{r}', E) = \sum_{L,L'} Z_{L}(\vec{r}, E) \tau_{LL'}^{nm}(E) Z_{L}^{\times}(\vec{r}', E) - \delta_{nm} \sum_{L} Z_{L}(\vec{r}_{<}, E) J_{L}^{\times}(\vec{r}_{>}, E)$$

$$m{Z}(m{J})$$
 regular (irregular) solution of Schrödinger equation scattering path operator $m{L}=(m{l},m{m_l})$ angular momentum quantum numbers

Multiple scattering (KKR) formalism

Solve Dyson equation


$$\mathcal{G} = \mathcal{G}_0 + \mathcal{G}_0 V \mathcal{G}$$

= $\mathcal{G}_0 + \mathcal{G}_0 \mathcal{T} \mathcal{G}_0$

for scattering operator

$$\mathcal{T} = \sum_{n,m} au^{nm}$$

scattering path operator

$$\tau^{nm} = t^n \delta_{nm} + \sum_{k \neq n} t^n \mathcal{G}_0 \, \tau^{km}$$

single-site scattering matrix t^n

free electron Green's function \mathcal{G}_0

Universität _ München

KKR single-site problem

$$[-
abla^2+V^\sigma(r)-E]\Psi(ec r)+\int \Sigma^\sigma(ec r,ec r',E)\Psi(ec r')d^3r=0$$

Ansatz: $\Psi(\vec{r}) = \sum_L \Psi_L(\vec{r})$

$$egin{align} \left[rac{d^2}{dr^2}-rac{l(l+1)}{r^2}-V(r)+E
ight]\Psi_L(r,E) = \ &\sum_{L''}\int r'^2dr'\Sigma_{LL''}(E)\ \phi_l(r)\phi_{l''}(r')\Psi_L(r',E) \end{aligned}$$

Approximation for the self-energy:

$$\sum_L \int d^3r' \phi_{L'}^\dagger(ec{r}) \Sigma_{L'L}(E) \phi_L(ec{r}~') \Psi_L(ec{r}~',E) pprox \sum_L \Sigma_{L'L}(E) \Psi_L(ec{r},E)$$

Pure differential equation:

$$\left[rac{d^2}{dr^2} - rac{l(l+1)}{r^2} - V(r) + E
ight] \Psi_L(r,E) = \sum_{L'} \; \Sigma_{LL'}(E) \; \Psi_{L'}(r,E)$$

Angular momentum representation for $au^{nm}(E)$

$$au_{LL'}^{nm}(E) = \int_{\Omega_n} \!\!\! \mathrm{d} 3 r_n \int_{\Omega_m} \!\!\! \mathrm{d} 3 r_m' j_L^ imes (ec{r}_n, E) \langle ec{r}_n | au^{nm} | ec{r}_m'
angle j_{L'}(ec{r}_m^{\ \prime}, E)$$

corresponding equation of motion

$$\underline{\tau}^{nm}(E) = \underline{t}^{n}(E)\delta_{nm} + \underline{t}^{n}(E)\sum_{k\neq n}\underline{G}_{0}^{nk}(E)\underline{\tau}^{km}(E)$$

and

$$egin{array}{lll} [\underline{ au}^{nm}]_{LL'} &=& au^{nm}_{LL'} \ egin{array}{lll} [\underline{G}^{nm}]_{LL'} &=& G^{nm}_{0\,LL'} (1-\delta_{nm}) \ egin{array}{lll} [\underline{t}^n]_{LL'} &=& t^n_l \delta_{LL'} \end{array}$$

matrix dimension:

$$\sum_{l=0}^{l_{ ext{max}}} \sum_{m=-l}^{+l} 1 = (l_{ ext{max}} + 1)2$$

Universität _ München

Calculating au^{nm} for finite array of scatterers

$$\underline{\underline{\tau}}(E) = \underline{\underline{t}}(E) + \underline{\underline{t}}(E) \underline{\underline{G}}_{0}(E) \underline{\underline{\tau}}(E)$$

with

$$\begin{bmatrix} \underline{\underline{\tau}} \end{bmatrix}^{nm} = \underline{\tau}^{nm}$$

$$\begin{bmatrix} \underline{\underline{t}} \end{bmatrix}^{nm} = \underline{\underline{t}}^{n} \delta_{nm}$$

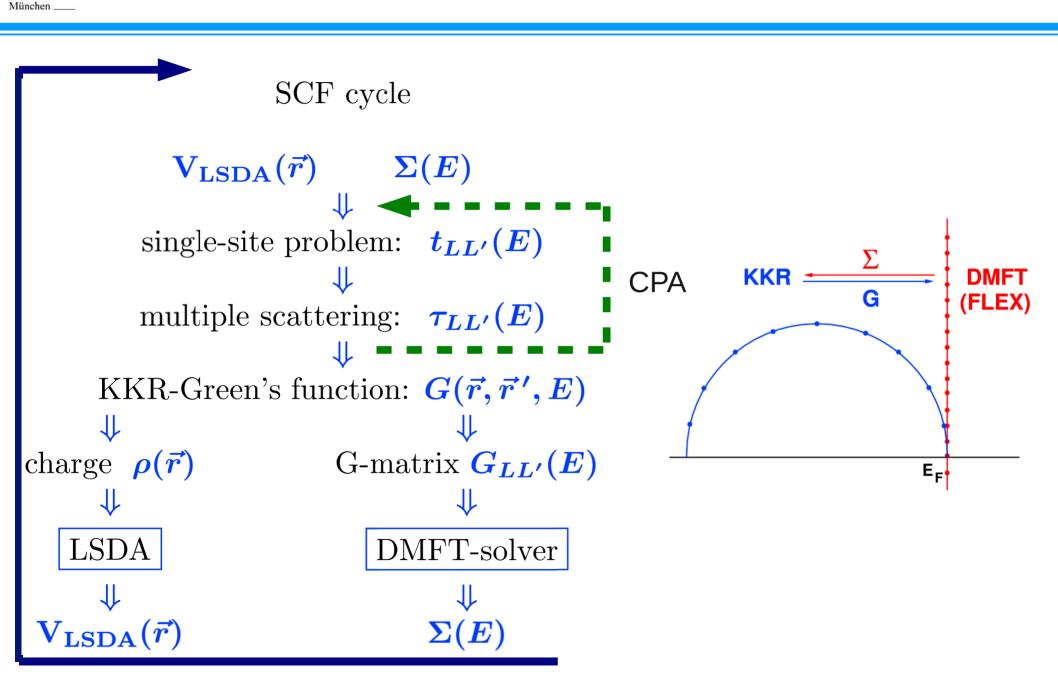
$$\begin{bmatrix} \underline{\underline{G}}_{0} \end{bmatrix}^{nm} = \underline{\underline{G}}_{0}^{nm} (1 - \delta_{nm})$$

$$\underline{\underline{\tau}}(E) = \left[\underline{\underline{t}}(E)^{-1} - \underline{\underline{G}}_{0}(E)\right]^{-1}$$

matrix dimension: $N_{\text{scatterers}} \times (l_{\text{max}} + 1)2$

KKR Green's function matrix

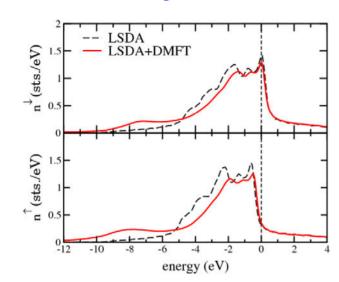
Green's function matrix G_{LL}^{nm} , within KKR-formalism


$$egin{array}{lll} G_{LL'}^{nm}(E) &=& \sum\limits_{L_1,L_2} \langle \phi_L \mid Z_{L_1}
angle au_{LL'}^{nm}(E) \langle Z_{L_2}^ imes \mid \phi_{L'}
angle \ &-& \delta_{nm} \sum\limits_{L_1} \langle \phi_L \mid Z_{L_1}(\mathbf{r}_<,E) J_{L_1}^ imes(\mathbf{r}_>,E) \mid \phi_{L'}
angle \end{array}$$

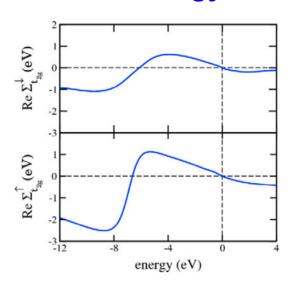
 $G_{LL'}^{nn}$ — input for the many-body effective impurity problem

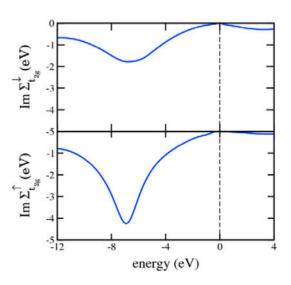
 $\phi_L(\vec{r})$ — basis function solution of the Schrödinger equation for spherical LSDA non-magnetic potential

KKR+DMFT scheme



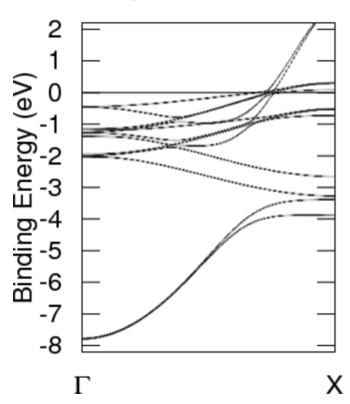
München _


LSDA+DMFT applied to fcc Ni

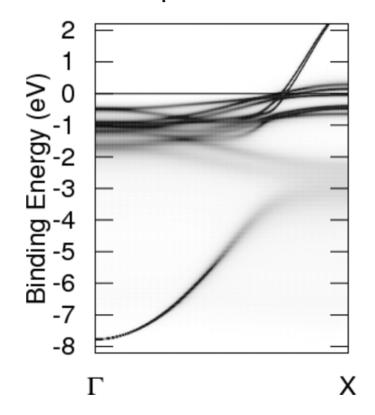

Density of states

	$\mu_{ m spin}$
LSDA	0.563
LSDA+DMFT	0.569

Self-energy



Bloch spectral function


Band structure of fcc-Ni

LSDA dispersion relation

\vec{k} along Γ -X

LSDA+DMFT **Bloch spectral function**

Bloch spectral function

$$A_{
m B}(ec{k},E) = -rac{1}{\pi} \sum_{
m DMFT\,Autumn\,\,school,\,\,Hubert\,\,Ebert}^{N} \left\langle G\left(ec{r},ec{r}+ec{R}_n,E
ight)
ight
angle$$

2011/10/06

The Dirac Equation for magnetic solids

$$\left[rac{\hbar}{i}cec{lpha}\cdotec{
abla}+eta mc^2+ar{V}(ec{r})+etaec{\sigma}\cdotec{B}_{ ext{eff}}(ec{r})
ight]\Psi(ec{r},E)=E\,\Psi(ec{r},E)$$

effective magnetic field

$$ec{B}_{ ext{eff}}(ec{r}) = rac{\partial E_{ ext{xc}}[n,ec{m}]}{\partial ec{m}(ec{r})}$$

is determined by the spin magnetisation $\vec{m}(\vec{r})$ within spin density functional theory (SDFT)

Within an atomic cell one can choose \hat{z}' to have:

$$V_{
m spin}(ec{r}) = eta \sigma_{{f z}'} \, B_{
m eff}(r)$$

Ansatz to solve the single site Dirac equation

$$\psi_{m{
u}}(ec{r},E) = \sum_{m{\Lambda}} \psi_{m{\Lambda}m{
u}}(ec{r},E)$$

with

$$\psi_{\Lambda
u}(ec{r},E) = \left(egin{array}{c} g_{\Lambda
u}(r,E)\,\chi_{\Lambda}(\hat{ec{r}}) \ if_{\Lambda
u}(r,E)\,\chi_{-\Lambda}(\hat{ec{r}}) \end{array}
ight)$$

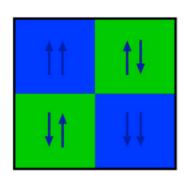
spin-angular function

$$\chi_{\Lambda}(\hat{r}) = \sum\limits_{m_s=\pm 1/2} C(lrac{1}{2}j;\mu-m_s,m_s)\,Y_l^{\mu-m_s}(\hat{r})\,\chi_{m_s}$$

short hand notation $\Lambda=(\kappa,\mu)$ and $-\Lambda=(-\kappa,\mu)$

Dirac Equation within LSDA+DMFT

$$\begin{bmatrix} \frac{\hbar}{i} c \vec{\alpha} \cdot \vec{\nabla} + \beta m c^2 + \bar{V}(\vec{r}) + \underline{\beta \sigma_z \cdot B_{\mathrm{eff}}(\vec{r})} - E \end{bmatrix} \Psi(\vec{r})$$


$$+ \int d^3 r \, ' \Sigma(\vec{r}, \vec{r}', E) \, \Psi(\vec{r}') = 0$$

$$ec{B}_{ ext{eff}}(ec{r}) = rac{\partial E_{ ext{xc}}[n,ec{m}]}{\partial ec{m}(ec{r})}$$

is determined by the spin magnetisation $\vec{m}(\vec{r})$ within spin density functional theory (SDFT)

Relativistic LSDA+DMFT scheme

$$(H_0 + V_\uparrow + \Sigma_{\uparrow\uparrow})\,\psi_\uparrow + \left(h^{
m SOC}_{\uparrow\downarrow} + \Sigma_{\uparrow\downarrow}
ight)\psi_\downarrow = arepsilon_\uparrow\psi_\uparrow$$

$$(H_0 + V_{\downarrow} + \Sigma_{\downarrow\downarrow})\,\psi_{\downarrow} + \left(h^{
m SOC}_{\downarrow\uparrow} + \Sigma_{\downarrow\uparrow}
ight)\psi_{\uparrow} = arepsilon_{\downarrow}\psi_{\downarrow}$$

3d transition metals:

- orbital magnetic moments ^c
- magneto-optics of 3d TM conductivity, Kerr effect ^c
- photoemission of 3d TM Fano effect, ARPES ^c

actinides:

magnetic moments

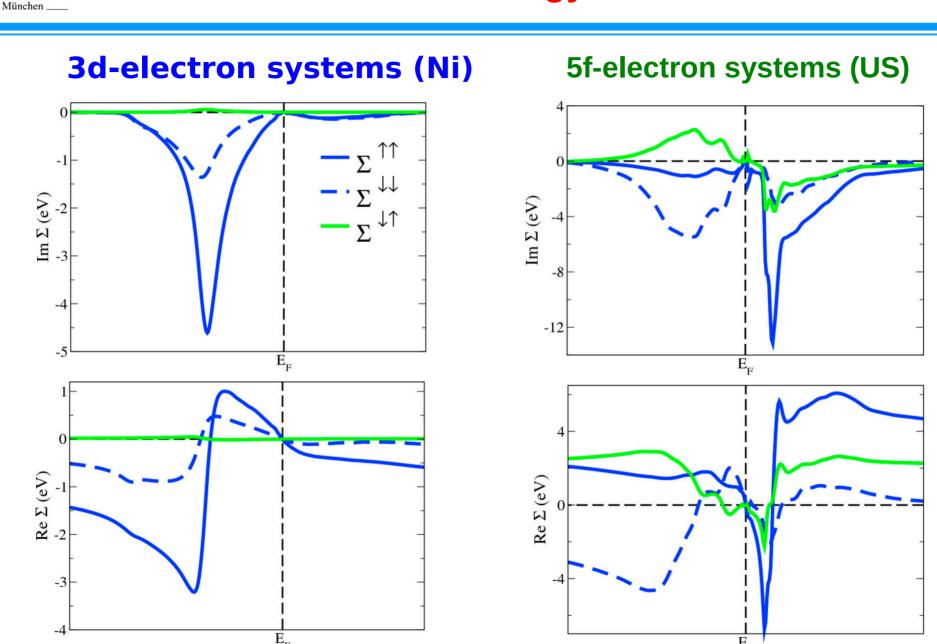
$$\mu_{
m spin, orbital} = 0$$
 in Pu $^{
m a,b}$

• phase transitions:

$$lpha$$
- δ - $arepsilon$ - transitions in Pu $^{
m a}$

• photoemission:

"3-peak"--structure in Pu a,b


^a Savrasov, Kotliar, Abrahams

^b Pourovskii, Katsnelson, Lichtenstein

^c Perlov, Chadov, Minár, Ebert, Chioncel, Lichtenstein, Katsnelson

Relativistic self-energy matrix

unpublished

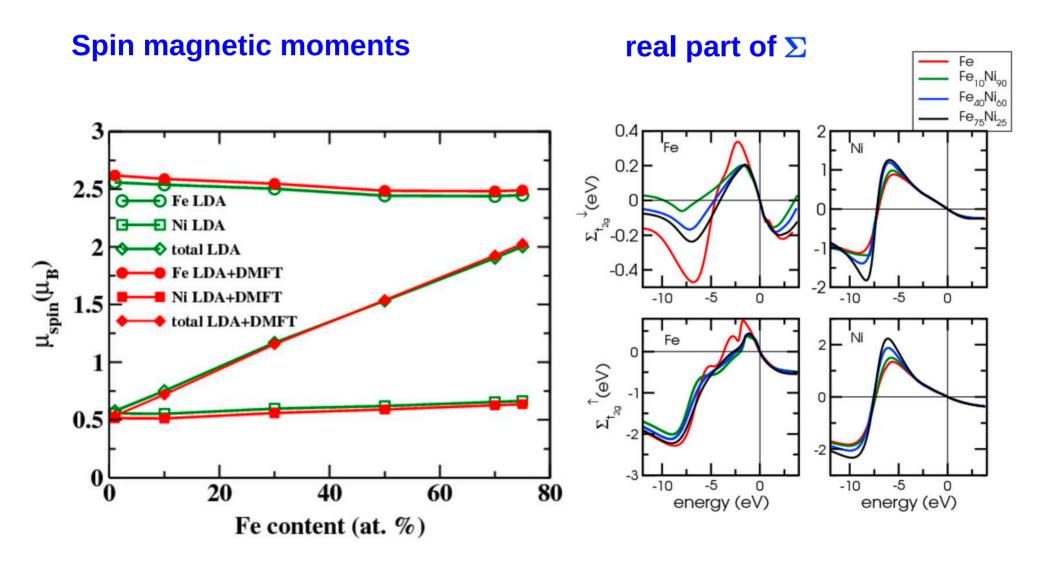
Coherent Potential Approximation - CPA

• effective CPA medium represents the electronic structure of an configurationally averaged substitutionally random alloy A_xB_{1-x}

use mean field description – find best possible single-site scheme

Embedding of an A- or B-atom into the CPA-medium - in the average - should not give rise to additional scattering

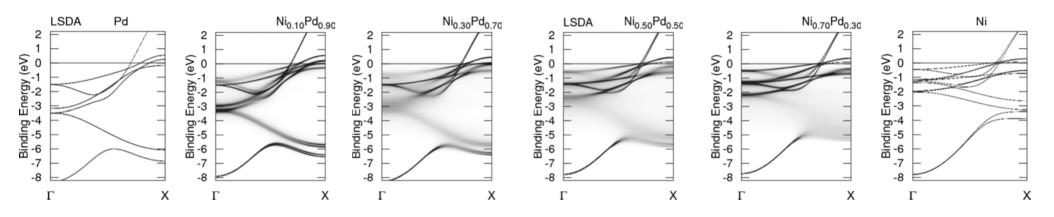
$$x_{A} \xrightarrow{r_{A}} + x_{B} \xrightarrow{r_{B}} = \xrightarrow{r_{CPA}}$$


with the projected scattering path operator $\underline{\tau}_{\alpha}^{nn}$

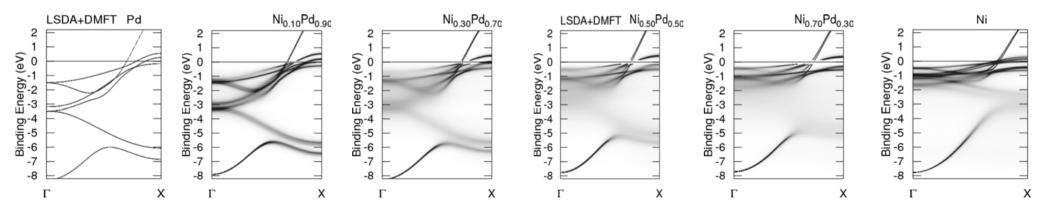
Soven, Physical Review **156**, 809 (1967)

München .

CPA calculations for Fe_xNi_{1-x} alloy



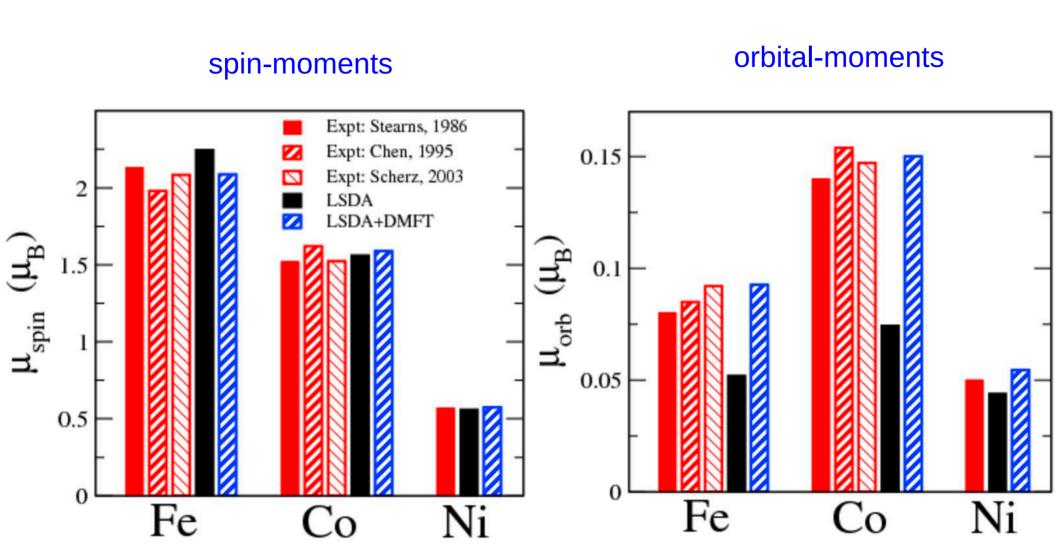
J. Minar et al., PRB **72**, 045125 (2005)



Bloch spectral function of Ni_xPd_{1-x}

LSDA

LSDA+DMFT



J. Braun et al., PRB 82, 024411 (2010)

München _

Magnetic moments of Fe, Co and Ni

S. Chadov et al., EPL 82, 37001 (2008)

München _

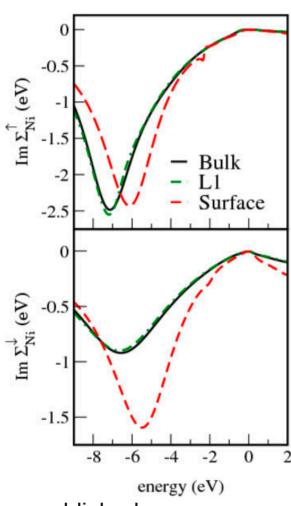
Double counting

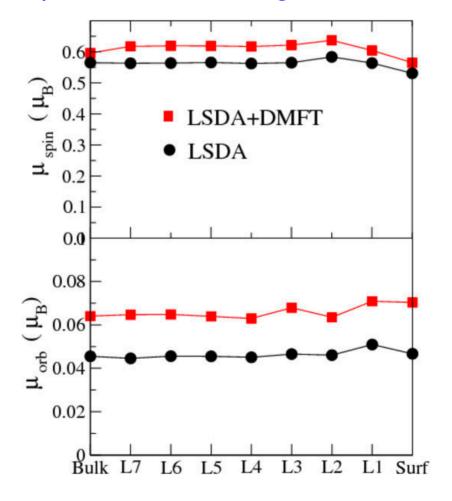
$$egin{align*} \Sigma_{12}^{ ext{LSDA}+ ext{DMFT}}(\omega) \ &= \Sigma_{12}^{ ext{LSDA}+ ext{DMFT}}(\omega) - \Sigma_{12}^{ ext{LSDA}+ ext{DMFT}}(\omega = 0) + \Sigma_{12}^{ ext{LSDA}+ ext{U}}(\omega = 0) \ & \Sigma_{12}^{ ext{LSDA}+ ext{U}} = \sum_{34} \left\{ U_{1234} - U_{1342} \right\} n_{34} - \delta_{12} \Sigma_{12}^{ ext{DC}} \ & < n >_{\sigma} \ & = rac{1}{2l+1} \sum_{m=-l}^{l} n_{mm}^{\sigma\sigma} \end{array}$$

Atomic limit (fully localised limit)

$$egin{aligned} \mathbf{\Sigma_{11}^{AL-DC}} \ &= oldsymbol{U} \left(oldsymbol{N} - rac{1}{2}
ight) + oldsymbol{J} \left(oldsymbol{N_{\sigma_1}} - rac{1}{2}
ight) \end{aligned}$$

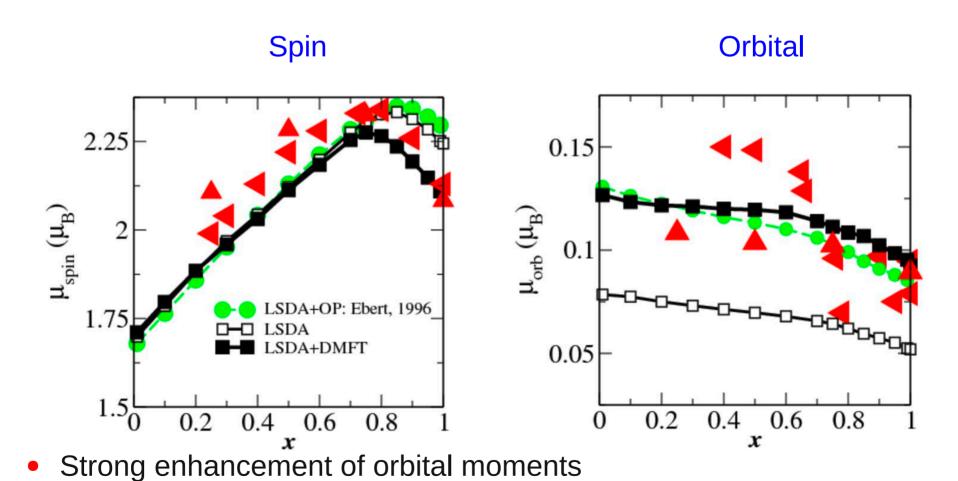
Around meanfield


$$egin{aligned} \Sigma_{11}^{ ext{AMF-DC}} \ &= U(N - < n >_{\sigma_1}) \ &- J(N_{\sigma_1} - < n >_{\sigma_1}) \end{aligned}$$


(111)-surface of fcc-Ni

LSDA+DMFT-based layer-resolved results

self-energy


Spin and orbital magnetic moments

Magnetic moments of bcc Fe_xCo_{1-x}

Comparison of LSDA-, LSDA+OP- and LSDA+DMFT-based results with experiment

- S. Chadov et al. EPL 82,37001 (2008)
- 2011/10/06

München _

Total energy of fcc Ni

	U=2eV	volume	bulk mod.
KKR+DMFT -	J=0.9eV	$(a.u.)^3$	(GPa)
0.08 - LDA - DMFT U=2.0 - DMFT U=2.3	LSDA	66.86	280
0.06	DMFT	76.20	163
0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05	(LMTO) DMFT (KKR)	76.28	171
	Expt.	73.52	186

I. Di Marco et al., PRB **79**, 115111 (2009)

Spin- and Angle-resolved photoemission

radiation source wave vector \vec{q} polarisation λ

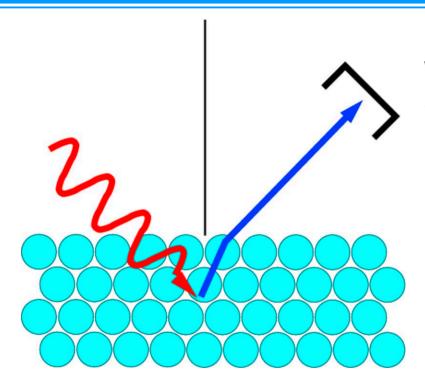
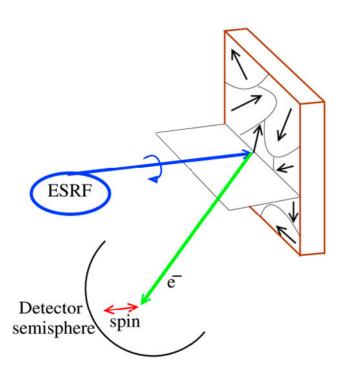


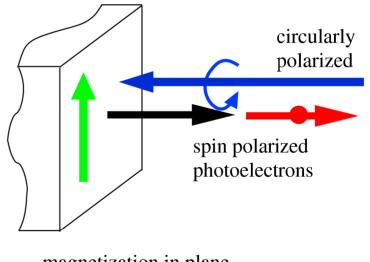
photo electron detector wave vector $ec{k}$ spin state m_s

photo current

$$j_{ec{k}m_s}^{ec{q}\lambda}(E+\omega) \propto \int d^3r_1 \int d^3r_2 \left[\mathcal{T}_R \phi_{ec{k}m_s}^{ ext{LEED}}(ec{r}_1,E+\omega)
ight]^\dagger X_{ec{q}\lambda}(ec{r}_1) \ \Im G(ec{r}_1,ec{r}_2,E) X_{ec{q}\lambda}^\dagger(ec{r}_2) \, \mathcal{T}_R \phi_{ec{k}m_s}^{ ext{LEED}}(ec{r}_2,E+\omega)$$

$$\phi^{
m LEED}_{ec{k}m_s}(ec{r},E) \;\; = \;\; \Xi_{m_s} e^{iec{k}ec{r}} + \int d^3r' \, G(ec{r},ec{r}',E) \, V(ec{r}') \, \Xi_{m_s} e^{iec{k}ec{r}'}$$

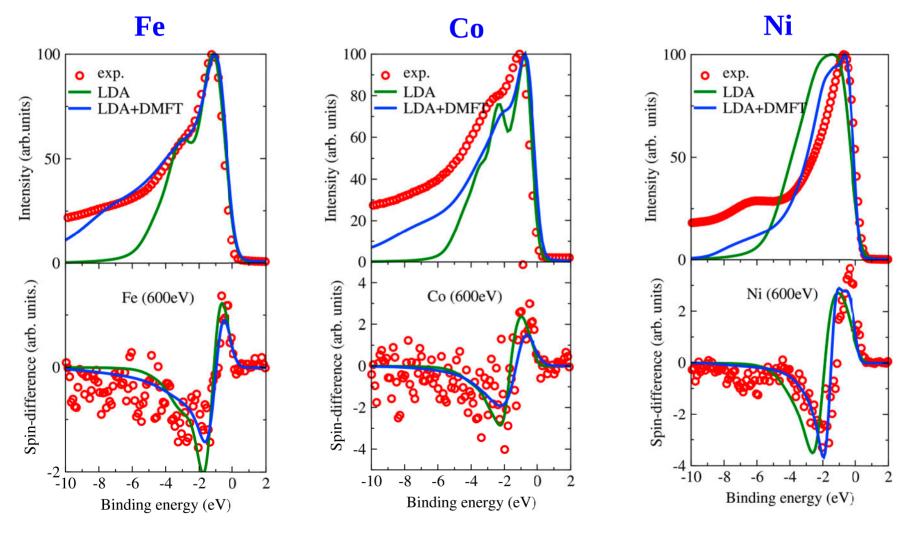



Fano effect in VB-photoemission

Spin polarisation of photo electrons due to spin-orbit coupling

spin-resolved angle-integrated photoemission experiment

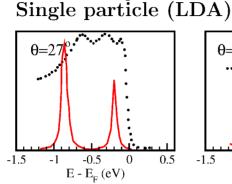
ferromagnetic systems

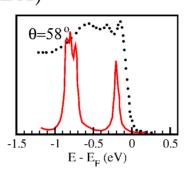


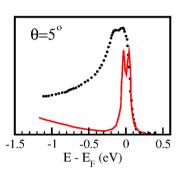
magnetization in plane

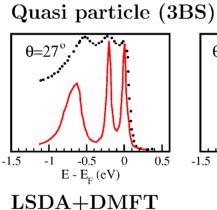
Fano effect in VB-XPS of ferromagnets

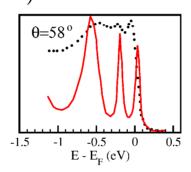
Photocurrent and spin-difference $E_{ m phot}\!=\!600~{ m eV}$

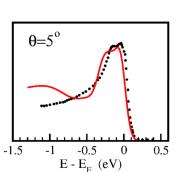

Minár et al., PRL 95, 166401 (2005) - Experiments - N. Brookes et al., ESRF

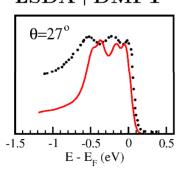


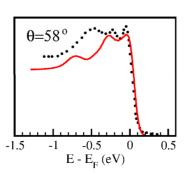

ARPES of Ni (110)

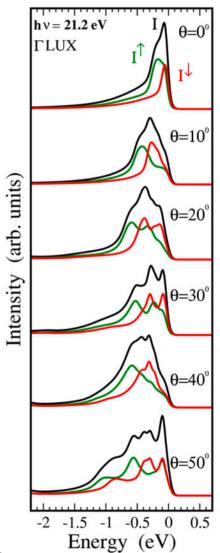

Comparison between experiment and theory


$\theta = 5^{\circ}$ -1.5 -1 -0.5 0 0.5 E - E_E (eV)

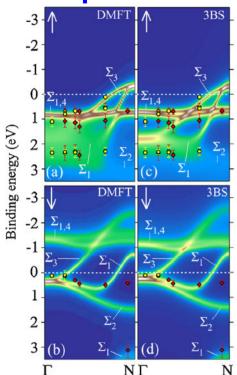








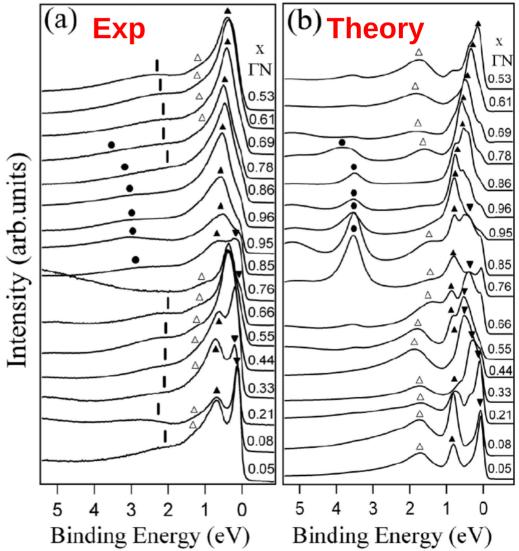
Spin-resolved spectra



3BS, Exp: F. Manghi, J. Osterwalder *et al.* PRB **59**, R10409 (1999) LSDA+DMFT: J. Braun et al., PRL **97**, 227601 (2006)

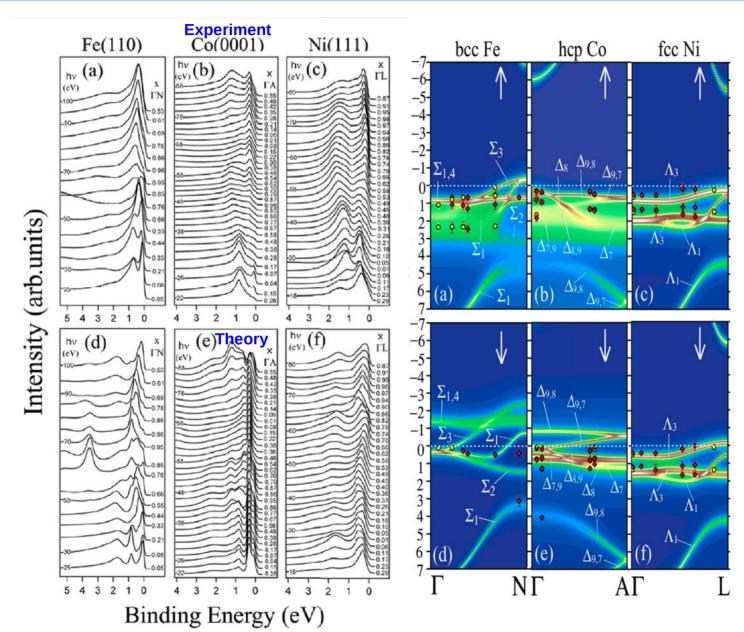
Electronic structure and ARUPS of Fe(110)

Bloch spectral functions


U=1.5eV, J=0.9eV

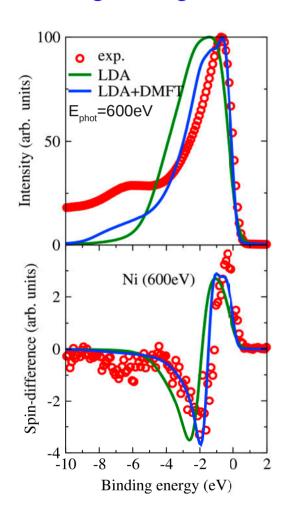
2011/10/06

- Agreement between3BS (F. Manghi) and DMFT
- Tamm resonance (close to E_F)
- Quantitative agreement for complete BZ along TN

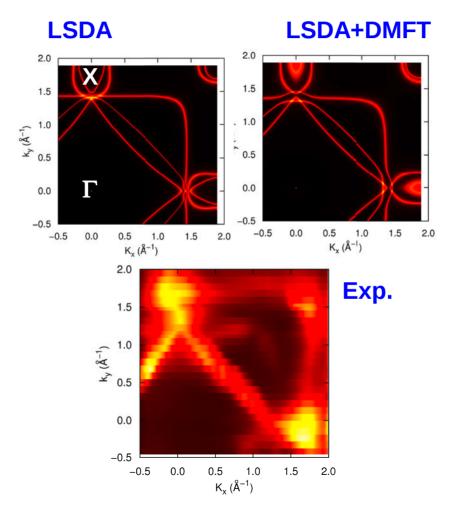

Normal emission along ΓN (E_{phot} =26-80eV)

$$\blacktriangledown \, \textstyle \sum_{l,3}^{\downarrow} (SR) \, \blacktriangle \, \textstyle \sum_{l,4}^{\uparrow} \, \triangle \, \textstyle \sum_{l,3}^{\uparrow} \, \blacktriangleright \, \textstyle \sum_{l,3}^{\uparrow} (SS) \, \bullet \, \text{sp band} \, \textstyle \sum_{l}^{\downarrow}$$

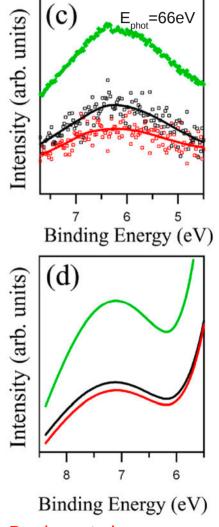
Spin integrated spectra for Fe, Co and Ni


Fe Ni Co **Averaged U Non-local correlations**

- LSDA+DMFT: improved description of spectroscopic data from 3d-ferromagnets
- Normal emission, p-pol light
- $U_{Fe} = 1.5 \text{ eV},$ $U_{co} = 2.5 \text{ eV}, U_{Ni} = 2.8 \text{ eV}$
- Need for non-local correlations

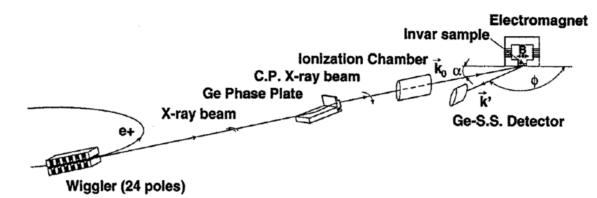

Long standing problems of LSDA in Ni

Fano effect Angle integrated PES


Minar et al, PRL 95, 166401 (2005) 2011/10/06

Soft X-PES Fermi surface

Minar, Braun, Chainani, Shin et al, PRL, submitted (2011)
DMFT Autumn school, Hubert Ebert


6eV Satellite in normal emission

Barriga et al, PRB, in preparation (2011)

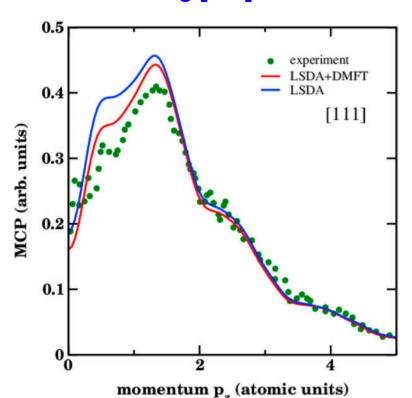
Magnetic Compton scattering

Spin contribution in cross-section

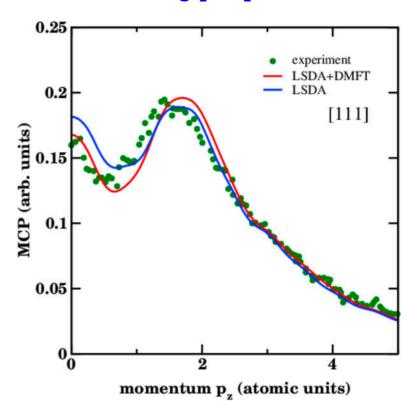
$$\left(rac{\partial^2\sigma}{\partial\Omega\partial p_z}
ight)_{\uparrow} \; - \left(rac{\partial^2\sigma}{\partial\Omega\partial p_z}
ight)_{\downarrow} = P_c r_0^2 \left(rac{k'}{k_0}
ight)^2 \Psi_2(ec{\sigma}) J_{spin}(p_z)$$

Geometry factor

$$\Psi_2 = \pm \sigma \left(k_o \cos \alpha \cos \phi - k' \cos(\alpha - \phi) \right) \times (\cos \phi - 1) \frac{\hbar c}{m_o c^2}$$


Magnetic Compton profile

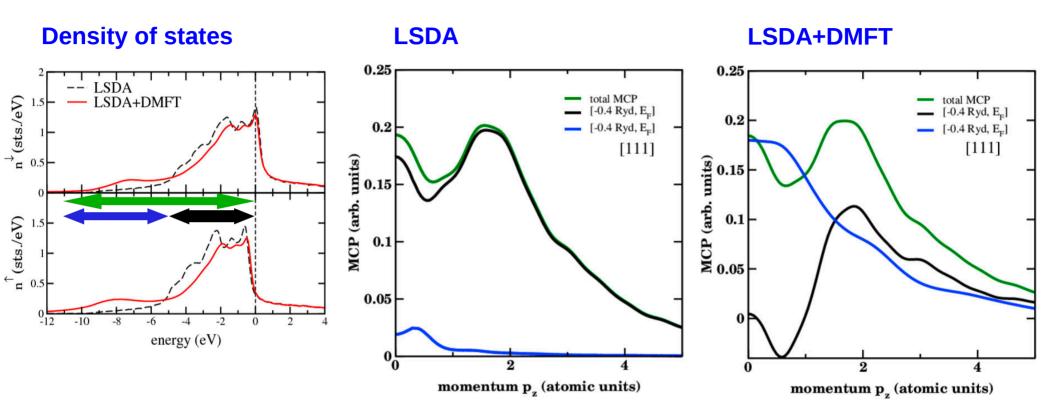
$$J_{spin}(p_z) \;\; = \;\; \int \int \left(n^{\uparrow} \; (ec{p}) - n^{\downarrow}(ec{p})
ight) dp_x dp_y$$



Magnetic Compton profile for Fe and Ni

Fe along [111] direction

Ni along [111] direction



- MCP ==> direct measure of the ground state spin density
- LSDA+DMFT calculations for U= 2.3eV, J= 0.9eV
- Experimental Data: McCarthy et al., jsr (1997), Dixon et al., jpcm (1998)
- Considerable improvement in low momentum regime

München _

6eV satellite contribution to MCP for Ni

- LSDA+DMFT calculations for U= 2.3eV, J= 0.9eV
- Signature of spin polarized 6eV satellite
- Broad contribution of 6eV satellite ==> localized states
- Similar contribution observed in various directions ==> localized states

Summary

- Combination of KKR-method and LSDA+DMFT
 - → alloys
 - → inhomogeneous systems
 - spectroscopy
- Direct comparison to experiment allows to check in particular
 - Accuracy of DMFT solver
 - Value of parameters U and J
 - Type of double counting
- Examples presented
 - Spin and magnetic moments
 - Equilibrium lattice properties via total energy
 - Angle resolved photo emission
 - Magnetic Compton scattering