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ARPES of HTSC 

Figure 1: Fermi surface maps measured below Tc at 10 K (left) and above T
∗ at 172 K (right) in

the same momentum-space region (flipped for display). Dashed white lines labeled C1-C7 depict

the cuts along which the EDCs shown in Fig. 2, A-N were measured. Purple dots labeled P1-P16

along M-Γ indicate momenta where EDCs in Fig. 2, V-W) were measured. Red and blue squares
on the left indicate momenta of the Fermi crossing kF (kF1 and kF2 in Fig. 2, A-G) at 172 K and

back-bending kG (black arrows in Fig. 2, O-S) at 10 K of the dispersion of the EDC maximum

along cuts C1-C7. Red and blue circles on the right indicate momenta of identifiable peaks in the

momentum distribution curves (measured along cuts parallel to Cut C7) at EF at 172 K and 10 K,

respectively. The solid red curves are a guide to the eye for the red squares and circles, whereas

the dashed blue curve is the guide for the blue squares, together they show an increased kG − kF
misalignment going away from the nodal towards the antinodal region. The magenta-shaded region

is approximately where multiple EDC features are found at 10 K (Figs. 2W and S2F).
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FIG. 3: Renormalization of the hopping coefficients and of
their ratio as a function of density for t′/t = ±0.3.
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FIG. 4: A(k,ω = 0+) in the first quadrant of the Bril-
louin zone. From the top: in the first row t′ = −0.3t,
n = 0.73, 0.89, 0.96, color scale x = 0.28, 0.22, 0.12; in
the second t′ = +0.3t, n = 0.70, 0.90, 0.95, color scale
x = 0.82, 0.34, 0.27; in the lowest row t′ = +0.9t, n =
0.69, 0.92, 0.96, color scale x = 0.90, 0.32, 0.22. The white
dashed line is the FS given by teff(k) = µ.

first quadrant of the Brillouin Zone.
Let us now turn to the formation of hot and cold re-

gions. For both cases t′/t = ±0.3, ImΣ11 and ImΣ13

have the same negative sign in contrast with the half-
filled case of earlier studies on an anisotropic model [7].
While at T = 0, ImΣij(ω = 0) = 0, the finite effec-
tive temperature used in the ED calculation gives rise to

lifetimes which are strongly dependent on the position
on the FS and reflect the variation of the quasi-particle

residue Zk =

(

1 − ∂ImΣlatt(k,iωn)
∂ωn

∣

∣

∣

ωn→0

)−1

. The slopes

of all the imaginary parts of cluster self-energies increase
as we approach the Mott transition (see Fig. 2). As they
sum up differently to form Z−1

k in different regions of the
k-space, according to the k-dependent coefficient multi-
plying them, Zk may assume different values on different
points of the FS. This can be already seen in Fig. 4 and
5.

In the case t′ = +0.3t (electron-doped), as remarked
above, the FS is flat and crosses (π/2, π/2). There
ImΣlatt(k) " ImΣ11. On the other hand, near (π, 0)
[ (0, π) ], ImΣlatt(k) " ImΣ11 − ImΣ13 . Since ImΣ11 and
ImΣ13 have the same sign, we see that, while the local
self-energy Σ11 tends to decrease the quasiparticle residue
and increase the inverse scattering rate while approach-
ing the Mott transition, its effect is counterbalanced by
the growth of ImΣ13, resulting in the formation of a cold
patch around (0, π) [ (π, 0) ]. For t′ = −0.3t instead the
effect of the real part of the self-energy is to bend the
Fermi line slightly away from (π/2, π/2). The intersec-
tion of the Fermi line and the zone diagonal now occurs
at (0.4 π, 0.4 π). At that point coskx + cos ky " 0.6,
while cos kx cos ky is numerically much smaller (∼ 0.1).
Hence ImΣlatt " ImΣ11 + 0.6 ImΣ12 + 0.1 ImΣ13. The
growth of ImΣ12 (which has the opposite sign to ImΣ11

and ImΣ13) reduces the strong correlation effects along
the diagonal, and produces a cold patch. This ”screen-
ing” of the correlations is larger than the one that takes
place near the (0, π) [ (π, 0) ] region, where the screening
is given by ImΣ13. The modulation in k-space becomes
in fact noticeable as soon as ImΣ12 ≥ 1.7 |ImΣ13|. We
argue that this effect is a precursor to the localization of
particles that takes place at MIT. The hot quasiparticles
localize, showing an insulator-like nature, while the cold
quasiparticles retain their dispersion as the Mott insu-
lator is approached. This can be seen also in Fig. 5,
where we show the spectral weight A(k, ω) (at 4% dop-
ing for t′/t = −0.3, 5% for t′/t = +0.3) as a function
of the energy for different points in the Brillouin zone,
along the path (0, 0) → (π, π) → (0, π) → (0, 0). In the
case t′/t = −0.3 (the upper panel), a quasiparticle peak
disperses along the (0, 0) → (π, π), where a cold spot is
formed at the Fermi level; on the contrary the peak is
less dispersive passing through the region around (0, π),
where there is the hot spot. On the other hand, in the
case t′/t = +0.3 (lower panel) the quasiparticle peak is
dispersing more in the vicinity of the region (0, π) and,
while dispersing less, evaporates around (π/2, π/2). The
hot-cold spots are in this way switched.

For t′ = +0.3t the Mott insulating state has antiferro-
magnetic long range order. To investigate the influence
of antiferromagnetic correlation in determining the evolu-
tion of the electronic structure described above, we have

M. Civelli et al PRL (2005)  CDMFT 
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Figure 7. (Color online) Comparison of the −t′/t values deduced from the tight-
binding fit to the ARPES data with theoretical predictions. (a) Comparison between
−t′/t calculated by LDA [46](filled diamond) and those estimated from ARPES (circle),
plotted as a function of the Cu-apical oxygen distance [45]. The largest and smallest
−t′/t in the ARPES data corresponds to those of x=0.03 and x=0.30 samples,
respectively. (b) Comparison of t′/t estimated from ARPES Fermi surface and those
calculated using CDMFT [47]. The theoretical values have been normalized to the bare
(i.e., input) t′/t, while the experimental values have been normalized to the values at
x=0.3. n = 1 − x is the electron number.
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Figure 8. (Color online) Fermi surface area and shape of LSCO as functions of
doping [27]. Data for Na-CCOC [48] are also plotted. (a) Doping dependence of the
hole number xFS deduced from the Fermi surface area. Luttinger’s sum rule xFS = x
is shown for comparison. (b) Fermi surface position in the nodal direction.



Phase diagram of Hubbard model 

d ¼ 2. Figure 28 shows the phase diagram of the two-
dimensional Hubbard model obtained in a detailed
CT-HYB study of the four-site CDMFT approximation
(Park et al., 2008a). It should be compared to Fig. 25 which
presents single-site DMFT results for the same model. The
interaction-driven transition was found to be first order, as in
the single-site case. However, not only is the critical interac-
tion strength much less than in the single-site approximation,
but the phase boundary bends in the opposite direction from
that found in the single-site calculation, indicating that in the
multisite approximation the insulating phase has lower en-
tropy than the metallic phase. The narrow band of in-gap
states whose appearance characterizes the Mott transition in
high dimension (Fisher et al., 1995; Kotliar et al., 2002) is
not found in cluster calculations for 2D systems.

Insight into the metal-insulator transition is enhanced by
the ability of CT-HYB to provide sector occupation statistics
(Haule, 2007). These are indicated in Fig. 28 by pie-chart
insets. The low temperature insulating phase was found to be
characterized by a strongly dominant occupation of one state,
corresponding to a singlet configuration of the four electrons
on the plaquette. This correlation was argued by Gull et al.
(2008b) to indicate that in the cluster dynamical mean-field
methods the metal-insulator transition was driven by the
appearance of strong short-ranged order (most likely related
to a columnar dimer phase). By contrast, the high temperature
‘‘bad insulator’’ state, which has entropy of the order of lnð2Þ,
populates many states of the plaquette with significant
probability.

Further evidence of the importance of short-ranged order
was obtained from the electron spectral functions (Gull et al.,
2008b; Park et al., 2008a) computed by maximum-entropy
analytical continuation and shown in Fig. 29. The insulating
state has a gap. The dotted line gives the spectral function
calculated in a mean-field approximation based on a two

sublattice order; the strong similarity indicates that short-
ranged order is responsible for the insulating behavior.

The left panel of Fig. 30 presents the changes in the density
of states in the P ¼ ð0;!Þ; ð!; 0Þ sector as electrons are
added. The curves are obtained by analytical continuation
of quantumMonte Carlo data. The Mott gap visible in Fig. 29
has filled in even at the lowest doping shown, but for the
lower dopings a small pseudogap (suppression of density of
states) appears near the Fermi level while for x ¼ 0:15 the
value of the spectral function at the Fermi level approaches
that of the noninteracting model, indicating the restoration of
Fermi-liquid behavior, consistent with experiment and with
many previous theoretical results.

Examination of the sector statistics shown in the right panel
of Fig. 30 indicated that the transition from pseudogapped to
Fermi-liquid behavior occurred at the doping at which the
plaquette singlet state ceased to dominate the physics. An
intriguing and still open question concerns the degree towhich
the level crossing in sector statistics is related to the ‘‘avoided
criticality’’ discussed by Haule and Kotliar (2007a).

Recently CT-AUX methods were used to examine the
larger eight-site cluster shown in Fig. 31. The greater effi-
ciency of the CT-AUX method permitted a comprehensive
examination of the behavior as a function of interaction
strength, carrier concentration, second neighbor hopping,
and temperature (Gull et al., 2009; Werner et al., 2009a).
A striking new result is that both the interaction-dependent
and doping-dependent metal-insulator transitions are multi-
staged, where different regions of the Fermi surface are
successively gapped as carrier concentration or interaction
strength is varied. [Similar behavior was also found in a two-
site cluster with a clever choice of momentum-space patching
(Ferrero et al., 2009a)]. The phase diagram for the
interaction-driven transition is shown in the right-hand panel
of Fig. 31.

FIG. 28 (color online). Metal-insulator phase diagram of the
paramagnetic phase of the two-dimensional Hubbard model in the
plane of temperature T=t and interaction U=t measured relative to
the critical end-point value UMIT ¼ 6:05t in the 4-site CDMFT
cluster approximation. Band parameters are identical to those used
in Fig. 25. Inset: Pie-chart histogram of occupancy probability of the
two insulating states at low and high temperatures. From Park et al.,
2008a.
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FIG. 29 (color online). Solid line: On-site spectral function com-
puted for different momentum sectors by maximum-entropy ana-
lytical continuation of QMC data for U ¼ 6t and doping x ¼ 0.
Dashed line: Spectral function in the P ¼ ð0;!Þ; ð!; 0Þ-momentum
sector. Dotted and dash-dotted lines: P ¼ ð0;!Þ; ð!; 0Þ and local
spectral functions obtained by performing the DCA momentum
averages of the standard spin density wave (SDW) mean-field
expressions for the Green’s function, with gap ! ¼ 1:3t. From
Gull et al., 2008b.
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FIG. 25 (Color online) Metal-insulator phase diagram of
paramagnetic two dimensional Hubbard model in the single
site DMFT approximation, plotted against normalized inter-
action strength Ur = U−UMIT

UMIT
with UMIT = 9.35t for this

model. The transition is first order, with coexistence region
indicated by shading (yellow online). The dashed line indi-
cates the bad metal/bad insulator crossover determined from
the condition that the imaginary part of the self-energy at few
lowest Matsubara frequencies is flat at the crossover value of
U . From Ref. (Park et al., 2008a).

electronic condensed matter physics (Imada et al., 1998;
Mott, 1949). The essential physics is captured by the
one-band Hubbard model, specified by a hopping tij be-
tween sites i and j and an on-site interaction U :

H =
∑

ij

tijc
†
iσcjσ + U

∑

i

ni↑ni↓. (219)

It has been known for many years (Imada et al., 1998)
that at a carrier concentration n = 1 per site the model
exhibits a paramagnetic metal to paramagnetic (’Mott’)
insulator transition as the interaction strength U is in-
creased above a critical value of the order of the band-
width. The state obtained by doping the large U Mott
insulating state has many unusual properties.
A single-site dynamical mean field theory of the Hub-

bard model was formulated in Ref. (Georges and Kotliar,
1992). As shown by Müller-Hartmann (1989) and by
Metzner and Vollhardt (1989), it becomes exact in a
limit of spatial dimensionality d → ∞ and is believed to
be reasonably reliable in d = 3; (Kotliar and Vollhardt,
2004) corrections are significant in d = 2 and d = 1.
The corresponding quantum impurity model is Eq. (12).
Studies prior to the advent of CT-QMC established that
in the single-site dynamical mean field approximation the
phase diagram at half filling involves a first-order transi-
tion with a critical end-point in the T − U plane and a
higher temperature crossover regime, as shown in Fig. 25.
Physics beyond the single-site approximation will correct
the phase diagram. As will be seen in more detail below,
in two spatial dimensions the change is qualitative, but
in higher dimension the changes are less severe and the
single-site phase diagram remains relevant. The scales

are low, presenting a challenge to computational meth-
ods.
The metal-insulator transition may be characterized by

the ‘kinetic energy’, essentially 〈
∑

ij ti−jc
†
iσcjσ〉, which

gives a measure of the degree to which electron motion
is blocked by the interaction U (Millis, 2004). At low
T the transition from insulator to metal is marked by
the appearance of a very narrow band of quasiparticle
states inside the gap, which itself remains well formed
for a range of U below the transition. These states form
a Fermi liquid, but with very low Fermi temperature.
Theoretical arguments (Fisher et al., 1995; Kotliar et al.,
2002) established that the doping driven transition is
also first order at low T , marked by the sudden ap-
pearance of states inside the Mott gap. However, the
transition in this case is only weakly first order and for
many years proved difficult to observe. These and other
somewhat unusual features of the phase diagram occur
because in the single-site approximation the paramag-
netic insulating state has an extensive entropy of ln 2 per
site (Georges et al., 1996). In the physical situation the
entropy will be quenched below some scale, but in real
three dimensional materials the scales are low enough
that the single-site phase diagram remains experimen-
tally relevant.(Kotliar and Vollhardt, 2004)
The top panel of Fig. 26 shows results from the first

CT-HYB study of the interaction driven metal-insulator
phase transition (Werner et al., 2006). It compares the
kinetic energy calculated in the single-site dynamical
mean field theory for the one band Hubbard model
via a Hirsch-Fye simulation, an exact-diagonalization
method, and the CT-HYB method. One see that the
CT-HYB method agrees with the other methods (where
there is overlap), allows access to very low tempera-
tures, clearly reveals the T 2 behavior associated with a
strongly renormalized Fermi liquid and captures the first-
order Mott transition. The bottom panel, taken from
(Werner and Millis, 2007a) shows the dependence of car-
rier concentration on chemical potential for interaction
strengths above and below the Mott transition providing
the first clear verification that the doping-driven Mott
transition is first order. Results such as these established
that the CT-HYB method provides a successful descrip-
tion even of subtle, low temperature properties of impu-
rity models.
Another long-standing question in correlated electronic

theory was Nagaoka’s prediction (Nagaoka, 1966) of fer-
romagnetism in the Hubbard model at carrier concen-
trations very near to half filling and very strong interac-
tions. The status of this result was unclear for many years
because Nagaoka’s original arguments applied rigorously
only to one hole in a Mott insulator, not to a thermo-
dynamic density of holes. Park, Haule, Marianetti and
Kotliar used the CT-HYB method to establish the ex-
istence of a thermodynamic Nagaoka phase (Park et al.,
2008b), at least in the d = ∞ limit.

Uc=9.35t Uc=6.05t 
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Cluster Idea 

11.2 A.I. Lichtenstein and H. Hafermann

1 Introduction

The tremendous success of Dynamical Mean-Field Theory (DMFT) [1, 2] in understanding the

Mott transition in simple model systems shows that the main correlation effects in fermionic

lattices have a local character. Moreover realistic investigations of correlated materials within

the LDA+DMFT scheme [3–5] also support the idea that the electronic structure of prototype

Mott insulators, like V2O3, can be well understood within a local multi-orbital t2g scheme. Nev-

ertheless many interesting correlation effects in solid state physics, such as antiferromagnetic

spin fluctuations, superconducting d-wave pairing, and many other phenomena have non-local

character. In this Lecture we will discuss different ways to go beyond the DMFT approximation

and include non-local correlations. There are two different approaches to non-local effects be-

yond the DMFT framework: one is based on numerical cluster DMFT extensions while another

one is built on an analytical expansion around the local DMFT solution.

2 Cluster DMFT scheme

There are two groups of cluster DMFT extensions, which are formulated in real space (cellu-

lar DMFT – CDMFT) or in reciprocal space (Dynamical Cluster Approximation – DCA). We

discuss first a simple model for the cluster DMFT scheme in real space which consists of a

supercell in a two dimensional square lattice (Fig.1). Lower-case letters will be used for the

original lattice vectors (x) and site indices (i, j), while upper-case will be reserved for supercell

coordinates (X) and position of atoms in a supercell (I, J). Similarly, for wave vectors in orig-

inal reciprocal lattice we will use (k) while for the reduced supercell Brillouin zone (K) will

be used. The minimal cluster which allows us to investigate both antiferromagnetic (AFM) and

superconducting (d-wave) order parameters on an equal footing consists of a 2× 2 plaquette in

an effective medium (see Fig.1).

The one band Hubbard model on the square lattice reads:

H =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (1)

where tij are effective hopping parameters and U is the local Coulomb interaction. The exact

Green function for the one-band Hubbard model (1) can be written in the following form

G(k, iω) = (iω + µ− t(k)−Σ(k, iω))−1, (2)

where ω = (2n+ 1)π/β, n = 0,±1, ... are the Matsubara frequencies, β is the inverse temper-

ature, µ the chemical potential, t(k) the Fourier transform of the hopping parameters tij , and

Σ(k, iω) is the non-local self-energy, which contains all information on single-particle correla-

tions.

We can approximate the momentum-dependence of the self-energy in terms of a finite number

of basis functions φi(k) [6]

Σ(k, iω) ≈
N∑

i=1

φi(k)Σi(ω) (3)

One-band Habbard model on Lattice 

Exact solurion:  
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superconducting (d-wave) order parameters on an equal footing consists of a 2× 2 plaquette in

an effective medium (see Fig.1).

The one band Hubbard model on the square lattice reads:

H =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (1)

where tij are effective hopping parameters and U is the local Coulomb interaction. The exact

Green function for the one-band Hubbard model (1) can be written in the following form

G(k, iω) = (iω + µ− t(k)−Σ(k, iω))−1, (2)

where ω = (2n+ 1)π/β, n = 0,±1, ... are the Matsubara frequencies, β is the inverse temper-

ature, µ the chemical potential, t(k) the Fourier transform of the hopping parameters tij , and

Σ(k, iω) is the non-local self-energy, which contains all information on single-particle correla-

tions.

We can approximate the momentum-dependence of the self-energy in terms of a finite number

of basis functions φi(k) [6]

Σ(k, iω) ≈
N∑

i=1

φi(k)Σi(ω) (3)

Approximate self-energy: 
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where ω = (2n+ 1)π/β, n = 0,±1, ... are the Matsubara frequencies, β is the inverse temper-

ature, µ the chemical potential, t(k) the Fourier transform of the hopping parameters tij , and

Σ(k, iω) is the non-local self-energy, which contains all information on single-particle correla-
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Fig. 1: Schematic representation of the 2 × 2 supercell with antiferromagnetic and supercon-
ducting d-wave order parameters for cluster DMFT.

In the most general scheme we can find Σi(ω) as a solution of a fictitious N-site quantum

impurity model. Different cluster DMFT schemes differ in the choice of these basis functions.

Numerical solutions of generalized multi-site quantum impurity models can be found within the

recently developed continuous time Quantum Monte-Carlo scheme [7].

We introduce a ”super-site” object as the 2 × 2 plaquette on a square lattice. The enumeration

of the atoms inside the super-site is shown in the Fig. 1. A superspinor C†
I = {c†Iα} where

α = 1, 2, 3, 4 (including also the spin-indices) defines a super-fermionic operator for the I-th

plaquette. The plaquette Green’s function for the Hubbard model can be rewritten as

G (K, iω) = [(iω + µ) 1− T (K)−Σ (iω)]−1
(4)

where T (K) is the effective hopping supermatrix, andK are the wave vectors within the reduced

Brillouin zone, and Σ (iω) is the self-energy supermatrix. For simplicity we will write all

equations in the nearest-neighbor approximation, which means only one hopping in x- (tx) and

y- (ty) direction. After supercell Fourier-transform we have the following expression for the

supercell hopping matrix:

TI,J (K) =




0 txK
+
x 0 tyK

+
y

txK
−
x 0 tyK

+
y 0

0 tyK
−
y 0 txK

−
x

tyK
−
y 0 txK

+
x 0


 (5)

whereK±
x(y) ≡ 1+exp

(
±iKx(y)a

)
, a is the lattice constant, and each elements is a 2×2 matrix

in spin space. Within the cluster DMFT approach we introduce the intra-atomic self-energy Σ0

Plaquette hopping matrix 
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ducting d-wave order parameters for cluster DMFT.

In the most general scheme we can find Σi(ω) as a solution of a fictitious N-site quantum

impurity model. Different cluster DMFT schemes differ in the choice of these basis functions.

Numerical solutions of generalized multi-site quantum impurity models can be found within the

recently developed continuous time Quantum Monte-Carlo scheme [7].

We introduce a ”super-site” object as the 2 × 2 plaquette on a square lattice. The enumeration

of the atoms inside the super-site is shown in the Fig. 1. A superspinor C†
I = {c†Iα} where

α = 1, 2, 3, 4 (including also the spin-indices) defines a super-fermionic operator for the I-th

plaquette. The plaquette Green’s function for the Hubbard model can be rewritten as

G (K, iω) = [(iω + µ) 1− T (K)−Σ (iω)]−1
(4)

where T (K) is the effective hopping supermatrix, andK are the wave vectors within the reduced

Brillouin zone, and Σ (iω) is the self-energy supermatrix. For simplicity we will write all

equations in the nearest-neighbor approximation, which means only one hopping in x- (tx) and

y- (ty) direction. After supercell Fourier-transform we have the following expression for the

supercell hopping matrix:

TI,J (K) =


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0 txK
+
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+
y
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−
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+
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−
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+
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whereK±
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(
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)
, a is the lattice constant, and each elements is a 2×2 matrix

in spin space. Within the cluster DMFT approach we introduce the intra-atomic self-energy Σ0
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,

which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =




Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0




For a generalN ×N super-site impurity model (simp) the partition function can be written as a

functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :

Z =

∫
D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[
G−1
σ (τ − τ ′)

]
IJ

cJσ(τ
′)

+
N∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.

The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to

obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space

GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular

DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following

prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the

standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.

Next we can write the matrix equation for the bath Green function matrix G, which describes the

effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,

which allowed us to account for double-counting corrections for the local self-energy matrix:

the bath Green function is not supposed to have any local self-energy contribution, since it

comes later from the solution of the effective super-impurity problem (7). Therefore one needs

to subtract the local self-energy contribution, which is equivalent to a solution of the following

impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the

”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).

We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity

Where Self-energy matrix 
for  plaquette has the form: 



Dynamical Mean Field Theory 

W. Metzner and D. Vollhardt, PRL(1989) 
A. Georges et al., RMP 68, 13 (1996) 

  

€ 

ˆ G iωn( ) =
1
Ω

ˆ I µ + iωn( ) − ˆ H 0
 
k ( ) − ˆ Σ iωn( )[ ]

 
k 

BZ

∑
−1

€ 

ˆ G τ − ′ τ ( ) = −
1
Z

D[c,c +]∫ c(τ )c +( ′ τ )e−Seff



Cluster DMFT scheme 

  

€ 

Seff = − dτd ′ τ ∫∫ cIσ
+ (τ )GIJ

−1(τ − ′ τ )cJσ ( ′ τ ) + dτ∫ UnI↑(τ )nJ↓(τ )

€ 

ˆ G IJ τ − ′ τ ( ) = −
1
Z

D[c,c +]∫ cI (τ)cJ
+( ′ τ )e−Seff

A.L., M. Katsnelson, PRB 62, R928368, (2000) 
G. Kotliar, et al RMP 78, 865 (2006) 



Cluster Impurity Problem 

11.4 A.I. Lichtenstein and H. Hafermann

and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,

which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =
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Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0


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For a generalN ×N super-site impurity model (simp) the partition function can be written as a

functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :

Z =

∫
D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N∑
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[
G−1
σ (τ − τ ′)

]
IJ
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+
N∑
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∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.

The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to

obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space

GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular

DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following

prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the

standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.

Next we can write the matrix equation for the bath Green function matrix G, which describes the

effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,

which allowed us to account for double-counting corrections for the local self-energy matrix:

the bath Green function is not supposed to have any local self-energy contribution, since it

comes later from the solution of the effective super-impurity problem (7). Therefore one needs

to subtract the local self-energy contribution, which is equivalent to a solution of the following

impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the

”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).

We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity
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In the most general scheme we can find Σi(ω) as a solution of a fictitious N-site quantum

impurity model. Different cluster DMFT schemes differ in the choice of these basis functions.

Numerical solutions of generalized multi-site quantum impurity models can be found within the

recently developed continuous time Quantum Monte-Carlo scheme [7].

We introduce a ”super-site” object as the 2 × 2 plaquette on a square lattice. The enumeration

of the atoms inside the super-site is shown in the Fig. 1. A superspinor C†
I = {c†Iα} where

α = 1, 2, 3, 4 (including also the spin-indices) defines a super-fermionic operator for the I-th

plaquette. The plaquette Green’s function for the Hubbard model can be rewritten as

G (K, iω) = [(iω + µ) 1− T (K)−Σ (iω)]−1
(4)

where T (K) is the effective hopping supermatrix, andK are the wave vectors within the reduced

Brillouin zone, and Σ (iω) is the self-energy supermatrix. For simplicity we will write all

equations in the nearest-neighbor approximation, which means only one hopping in x- (tx) and

y- (ty) direction. After supercell Fourier-transform we have the following expression for the

supercell hopping matrix:
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, a is the lattice constant, and each elements is a 2×2 matrix

in spin space. Within the cluster DMFT approach we introduce the intra-atomic self-energy Σ0

11.4 A.I. Lichtenstein and H. Hafermann

and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,

which defines the local self-energy matrix for our 2× 2 super-site:
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For a generalN ×N super-site impurity model (simp) the partition function can be written as a

functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗
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Z =
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where

Ssimp = −
N∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[
G−1
σ (τ − τ ′)

]
IJ

cJσ(τ
′)

+
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∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.

The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to

obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space

GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular

DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following

prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the

standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.

Next we can write the matrix equation for the bath Green function matrix G, which describes the

effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,

which allowed us to account for double-counting corrections for the local self-energy matrix:

the bath Green function is not supposed to have any local self-energy contribution, since it

comes later from the solution of the effective super-impurity problem (7). Therefore one needs

to subtract the local self-energy contribution, which is equivalent to a solution of the following

impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the

”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).

We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity
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DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following

prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the

standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
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GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.

Next we can write the matrix equation for the bath Green function matrix G, which describes the

effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,

which allowed us to account for double-counting corrections for the local self-energy matrix:

the bath Green function is not supposed to have any local self-energy contribution, since it

comes later from the solution of the effective super-impurity problem (7). Therefore one needs

to subtract the local self-energy contribution, which is equivalent to a solution of the following

impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the

”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).

We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity
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Green’s function Gsimp
IJ (τ) = −〈cIσ(τ)c

†
Jσ(0)〉simp. The new cluster-local self-energy is equal

to the difference of the inverse input and output Green’s functions of this local many-body

problem:

Σnew (iω) = G−1 (iω)−G−1
simp (iω) . (10)

Finally, we can close the CDMFT self-consistent loop for the cluster self-energy ΣI,J (iω) by

using in the next iterations the new self-energy from Eq. (10) in the super-lattice Hamiltonian

from Eq. (1). The CDMFT self-consistency condition reads:

Gsimp
IJ (iω) = GIJ (iω) . (11)

In fact this CDMFT scheme is equivalent to the multi-orbital LDA+DMFT approach [4], where

the super-site indices (I, J) play the role of different orbitals (m,m′). A crucial difference

is related to the fact, that multi-orbital DMFT does not break the translational symmetry of

original lattice, while the standard CDMFT scheme [8, 6] does lower the symmetry of lattice

due to the local form of the super-site self-energy Eq. (7). The present “matrix” form of CDMFT

with non-periodic self-energy allows us to study multicomponent order parameters (Fig. 1). In

this case we have the standard DMFT problem with four “orbital” states per super-site. We use

the generalized Gorkov-Nambu technique to analyze the coexistence of magnetic ordering and

superconductivity. Let us introduce the superspinor

Ψ+
I (τ) =

(
c†I↑, c

†
I↓, cI↑, cI↓

)
(12)

and the anomalous averages describing the (collinear) antiferromagnetism
〈
c†I↑cJ↓

〉
and the

superconductivity∆IJ = 〈cI↓cJ↑〉.

One may realize that the cellular DMFT approximation is not very suitable for the supercon-

ducting d-wave order parameter since∆ is located on the bonds as depicted in Fig. (1). There-

fore one can lose half of the superconducting bonds and reduce approximately by a factor of

two the HTSC transition temperature. We can also formulate a ”periodic” CDMFT scheme by

renormalizing the hopping with the cluster self-energy [6].

The effective Hamiltonian defined through the translationally invariant (k-dependent) self-energy

corresponds to the renormalized energy dependent hoppings: tx = t+Σx, ty = t+Σy. The func-

tionsΣ0 (iω), Σx (iω), Σy (iω) are found self-consistently within the cluster DMFT scheme [6]

and for the d-wave superconducting state Σx $= Σy. It is straightforward to generalize this

scheme for a next-nearest neighbor hopping as well as the long-range Green function and the

self-energy. In this case we can renormalize also the second-nearest hopping: txy = t′+Σxy for

the 2×2 cluster. The local cluster Green matrix in this case is equal toGij (iω) =
∑
k

Gij (k,iω) ,

and the summation runs over the original Brillouin zone of the square lattice. Unfortunately we

can not prove that this periodic CDMFT scheme is causal. Later we will discuss different ways

of obtaining a periodic self-energy within CDMFT.
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,

which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =




Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0




For a generalN ×N super-site impurity model (simp) the partition function can be written as a

functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :

Z =

∫
D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[
G−1
σ (τ − τ ′)

]
IJ

cJσ(τ
′)

+
N∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.

The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to

obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space

GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular

DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following

prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the

standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.

Next we can write the matrix equation for the bath Green function matrix G, which describes the

effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,
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the bath Green function is not supposed to have any local self-energy contribution, since it

comes later from the solution of the effective super-impurity problem (7). Therefore one needs

to subtract the local self-energy contribution, which is equivalent to a solution of the following

impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the

”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).

We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity
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Green’s function Gsimp
IJ (τ) = −〈cIσ(τ)c

†
Jσ(0)〉simp. The new cluster-local self-energy is equal

to the difference of the inverse input and output Green’s functions of this local many-body

problem:

Σnew (iω) = G−1 (iω)−G−1
simp (iω) . (10)

Finally, we can close the CDMFT self-consistent loop for the cluster self-energy ΣI,J (iω) by

using in the next iterations the new self-energy from Eq. (10) in the super-lattice Hamiltonian

from Eq. (1). The CDMFT self-consistency condition reads:

Gsimp
IJ (iω) = GIJ (iω) . (11)

In fact this CDMFT scheme is equivalent to the multi-orbital LDA+DMFT approach [4], where

the super-site indices (I, J) play the role of different orbitals (m,m′). A crucial difference

is related to the fact, that multi-orbital DMFT does not break the translational symmetry of

original lattice, while the standard CDMFT scheme [8, 6] does lower the symmetry of lattice

due to the local form of the super-site self-energy Eq. (7). The present “matrix” form of CDMFT

with non-periodic self-energy allows us to study multicomponent order parameters (Fig. 1). In

this case we have the standard DMFT problem with four “orbital” states per super-site. We use

the generalized Gorkov-Nambu technique to analyze the coexistence of magnetic ordering and

superconductivity. Let us introduce the superspinor

Ψ+
I (τ) =

(
c†I↑, c

†
I↓, cI↑, cI↓

)
(12)

and the anomalous averages describing the (collinear) antiferromagnetism
〈
c†I↑cJ↓

〉
and the

superconductivity∆IJ = 〈cI↓cJ↑〉.

One may realize that the cellular DMFT approximation is not very suitable for the supercon-

ducting d-wave order parameter since∆ is located on the bonds as depicted in Fig. (1). There-

fore one can lose half of the superconducting bonds and reduce approximately by a factor of

two the HTSC transition temperature. We can also formulate a ”periodic” CDMFT scheme by

renormalizing the hopping with the cluster self-energy [6].

The effective Hamiltonian defined through the translationally invariant (k-dependent) self-energy

corresponds to the renormalized energy dependent hoppings: tx = t+Σx, ty = t+Σy. The func-

tionsΣ0 (iω), Σx (iω), Σy (iω) are found self-consistently within the cluster DMFT scheme [6]

and for the d-wave superconducting state Σx $= Σy. It is straightforward to generalize this

scheme for a next-nearest neighbor hopping as well as the long-range Green function and the

self-energy. In this case we can renormalize also the second-nearest hopping: txy = t′+Σxy for

the 2×2 cluster. The local cluster Green matrix in this case is equal toGij (iω) =
∑
k

Gij (k,iω) ,

and the summation runs over the original Brillouin zone of the square lattice. Unfortunately we

can not prove that this periodic CDMFT scheme is causal. Later we will discuss different ways

of obtaining a periodic self-energy within CDMFT.

CTQMC: Exact solution of S-imp:   

New self-energy matrix:  
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Fig. 2: Decomposition of real-space lattice vectors, x = X + x̃, and reciprocal-space wave

vectors, k = k̃+K, for aD = 1 dimensional lattice (lattice constant a) with L = 12 sites tiled
with L/Lc = 3 clusters consisting of Lc = 4 sites each. x: original lattice. x̃: superlattice.X:

sites in a cluster. Reciprocal space: There are L allowed wave vectors k in the unit cell of the

lattice reciprocal to x, and there are L/Lc allowed wave vectors k̃ in the unit cell of the lattice

reciprocal to the superlattice x̃. K are the reciprocal superlattice vectors, exp(iKx̃) = 1.
From Ref. [19].

3 Dynamical cluster approximation: general consideration

We start discussion of dynamical cluster approaches in reciprocal space with introducing some

notations (see Fig. 2) (for a review, see Ref. [10]). The cluster need not be a physical subsystem

of the original lattice [11–13]. We consider a system on aD-dimensional lattice of L sites with

periodic boundary conditions and L → ∞ in the end. The position vector to a site in the lattice

is denoted by x. There are L allowed wave vectors in a unit cell of the reciprocal lattice which

are denoted by k. The lattice is tiled with L/Lc clusters consisting of Lc sites each. Let x̃ be

the position vector of the cluster origin, andX the position vector of a site in a cluster, referring

to the cluster origin. We then have the unique decomposition x = X + x̃. The vectors x̃ form

a superlattice with a unit-cell volume enlarged by the factor Lc. In a unit cell of the reciprocal

superlattice there are L/Lc allowed wave vectors k̃. Its volume is reduced by the factor Lc as

compared to the volume of the reciprocal unit cell of the original lattice. For a given k we have

the unique decompositionk = k̃+K whereK are the vectors of the reciprocal superlattice, i.e.

exp(iKx̃) = 1. In the reciprocal unit cell of the original lattice, there are Lc vectorsK. These

can also be interpreted as the allowed cluster wave vectors when imposing periodic boundary
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11.6 A.I. Lichtenstein and H. Hafermann

allowed k points
2  /La!

2  /L  a! c

2  /a!

lattice sites

L  a

unit cell

superlattice unit cell

x

(cluster)c

La

a

u.c. of rec. superlattice

system

k

unit cell of rec. lattice

K reciprocal space

real spaceXx

k

~

~

Fig. 2: Decomposition of real-space lattice vectors, x = X + x̃, and reciprocal-space wave

vectors, k = k̃+K, for aD = 1 dimensional lattice (lattice constant a) with L = 12 sites tiled
with L/Lc = 3 clusters consisting of Lc = 4 sites each. x: original lattice. x̃: superlattice.X:

sites in a cluster. Reciprocal space: There are L allowed wave vectors k in the unit cell of the

lattice reciprocal to x, and there are L/Lc allowed wave vectors k̃ in the unit cell of the lattice

reciprocal to the superlattice x̃. K are the reciprocal superlattice vectors, exp(iKx̃) = 1.
From Ref. [19].

3 Dynamical cluster approximation: general consideration

We start discussion of dynamical cluster approaches in reciprocal space with introducing some

notations (see Fig. 2) (for a review, see Ref. [10]). The cluster need not be a physical subsystem

of the original lattice [11–13]. We consider a system on aD-dimensional lattice of L sites with

periodic boundary conditions and L → ∞ in the end. The position vector to a site in the lattice

is denoted by x. There are L allowed wave vectors in a unit cell of the reciprocal lattice which

are denoted by k. The lattice is tiled with L/Lc clusters consisting of Lc sites each. Let x̃ be

the position vector of the cluster origin, andX the position vector of a site in a cluster, referring

to the cluster origin. We then have the unique decomposition x = X + x̃. The vectors x̃ form

a superlattice with a unit-cell volume enlarged by the factor Lc. In a unit cell of the reciprocal

superlattice there are L/Lc allowed wave vectors k̃. Its volume is reduced by the factor Lc as

compared to the volume of the reciprocal unit cell of the original lattice. For a given k we have

the unique decompositionk = k̃+K whereK are the vectors of the reciprocal superlattice, i.e.

exp(iKx̃) = 1. In the reciprocal unit cell of the original lattice, there are Lc vectorsK. These

can also be interpreted as the allowed cluster wave vectors when imposing periodic boundary

11.6 A.I. Lichtenstein and H. Hafermann

allowed k points
2  /La!

2  /L  a! c

2  /a!

lattice sites

L  a

unit cell

superlattice unit cell

x

(cluster)c

La

a

u.c. of rec. superlattice

system

k

unit cell of rec. lattice

K reciprocal space

real spaceXx

k

~

~

Fig. 2: Decomposition of real-space lattice vectors, x = X + x̃, and reciprocal-space wave

vectors, k = k̃+K, for aD = 1 dimensional lattice (lattice constant a) with L = 12 sites tiled
with L/Lc = 3 clusters consisting of Lc = 4 sites each. x: original lattice. x̃: superlattice.X:

sites in a cluster. Reciprocal space: There are L allowed wave vectors k in the unit cell of the

lattice reciprocal to x, and there are L/Lc allowed wave vectors k̃ in the unit cell of the lattice

reciprocal to the superlattice x̃. K are the reciprocal superlattice vectors, exp(iKx̃) = 1.
From Ref. [19].

3 Dynamical cluster approximation: general consideration

We start discussion of dynamical cluster approaches in reciprocal space with introducing some

notations (see Fig. 2) (for a review, see Ref. [10]). The cluster need not be a physical subsystem

of the original lattice [11–13]. We consider a system on aD-dimensional lattice of L sites with

periodic boundary conditions and L → ∞ in the end. The position vector to a site in the lattice

is denoted by x. There are L allowed wave vectors in a unit cell of the reciprocal lattice which

are denoted by k. The lattice is tiled with L/Lc clusters consisting of Lc sites each. Let x̃ be

the position vector of the cluster origin, andX the position vector of a site in a cluster, referring

to the cluster origin. We then have the unique decomposition x = X + x̃. The vectors x̃ form

a superlattice with a unit-cell volume enlarged by the factor Lc. In a unit cell of the reciprocal

superlattice there are L/Lc allowed wave vectors k̃. Its volume is reduced by the factor Lc as

compared to the volume of the reciprocal unit cell of the original lattice. For a given k we have

the unique decompositionk = k̃+K whereK are the vectors of the reciprocal superlattice, i.e.

exp(iKx̃) = 1. In the reciprocal unit cell of the original lattice, there are Lc vectorsK. These

can also be interpreted as the allowed cluster wave vectors when imposing periodic boundary

11.6 A.I. Lichtenstein and H. Hafermann

allowed k points
2  /La!

2  /L  a! c

2  /a!

lattice sites

L  a

unit cell

superlattice unit cell

x

(cluster)c

La

a

u.c. of rec. superlattice

system

k

unit cell of rec. lattice

K reciprocal space

real spaceXx

k

~

~

Fig. 2: Decomposition of real-space lattice vectors, x = X + x̃, and reciprocal-space wave

vectors, k = k̃+K, for aD = 1 dimensional lattice (lattice constant a) with L = 12 sites tiled
with L/Lc = 3 clusters consisting of Lc = 4 sites each. x: original lattice. x̃: superlattice.X:

sites in a cluster. Reciprocal space: There are L allowed wave vectors k in the unit cell of the

lattice reciprocal to x, and there are L/Lc allowed wave vectors k̃ in the unit cell of the lattice

reciprocal to the superlattice x̃. K are the reciprocal superlattice vectors, exp(iKx̃) = 1.
From Ref. [19].

3 Dynamical cluster approximation: general consideration

We start discussion of dynamical cluster approaches in reciprocal space with introducing some

notations (see Fig. 2) (for a review, see Ref. [10]). The cluster need not be a physical subsystem

of the original lattice [11–13]. We consider a system on aD-dimensional lattice of L sites with

periodic boundary conditions and L → ∞ in the end. The position vector to a site in the lattice

is denoted by x. There are L allowed wave vectors in a unit cell of the reciprocal lattice which

are denoted by k. The lattice is tiled with L/Lc clusters consisting of Lc sites each. Let x̃ be

the position vector of the cluster origin, andX the position vector of a site in a cluster, referring
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the unique decompositionk = k̃+K whereK are the vectors of the reciprocal superlattice, i.e.
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conditions on the individual cluster.
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Ux,k =
1

√
L
eikx =

1
√
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A hopping tx,x′ which is invariant under lattice translations x0, i.e. tx+x0,x′+x0 = tx,x′ , is di-

agonalized by normal Fourier transformations U : (U †tU)kk′ = t(k)δk,k′ . By definition, the

one-electron spectrum is just Fourier transform of the hopping matrix elements: εk ≡ t(k). A

quantity Tx,x′ which is invariant under superlattice translations x̃0 as well as under cluster trans-

lationsX0 (i.e. which is cyclic on the cluster), Tx+x̃0,x′+x̃0 = Tx+X0,x′+X0 = Tx,x′ , is diagonal-

ized by alternative DCA-transformation V W : (W †V †TV W )
k̃K,k̃′K′ = T (k̃,K)δ

k̃,k̃′δK,K′.

Following Refs. [15, 16, 19], we introduce a fictitious hopping which corresponds to the real-

space formulation of the DCA-scheme:

t = (VW )U †
t U(V W )† , (17)
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k̃,k̃′δK,K′.

Following Refs. [15, 16, 19], we introduce a fictitious hopping which corresponds to the real-

space formulation of the DCA-scheme:

t = (VW )U †
t U (V W )† , (17)Effective DCA-hopping: 
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which is just the DCA Fourier back-transform of the one-electron spectrum εk. For clusters of

finite size Lc, the combined Fourier transformation V W is different from U . For Lc → ∞,

however, this becomes irrelevant. With ε(k) = (U †tU)(k) we have:

txx′ =
1

Lc

∑

K

eiK(X−X′)Lc

L

∑

k̃

eik̃(x̃−x̃′)ε(k̃ +K) . (18)

Obviously, t is invariant under superlattice translations as well as under cluster translations

(with periodic cluster boundary conditions). The original and the modified system are repre-

sented by Fig. 3a, b. The construction of t is such that it exhibits the same translational sym-

metries as the one-particle parameters t′ of a reference system consisting of isolated clusters

tiling the original lattice with periodic boundary conditions, see Fig. 3c, d. Since both, t and t,

are invariant under superlattice translations, we can compare tXX′(k̃) = (V †tV )XX′(k̃) with

tXX′(k̃) = (V †tV )XX′(k̃). It turns out they are equal up to a phase factor:

tXX′(k̃) =
1

Lc

∑

K

eiK(X−X′)ε(k̃ +K)

=
Lc

L

∑

x̃x̃′

e−ik̃(x̃+X−x̃′−X′)tx̃+X,x̃′+X′

= e−ik̃(X−X′)tXX′(k̃) . (19)

The main idea of the DCA is to restore momentum conservation within the cluster by a rescale

the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the

super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ε
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.

(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X′) =
1

Lc

∑

K

eiK(X−X′)ε
K+k̃

. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the

dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function

which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)−Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-

consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)

Band-structure spectrum: 
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= e−ik̃(X−X′)tXX′(k̃) . (19)

The main idea of the DCA is to restore momentum conservation within the cluster by a rescale

the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the

super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ε
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.

(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X′) =
1

Lc

∑

K

eiK(X−X′)ε
K+k̃

. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the

dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function

which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)−Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-

consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)

DCA long-range hopping: 
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Fig. 3: a) Hubbard 1d-model. b) The original Hubbard model but with a modified one-particle

part t → t which is the starting point for the dynamical cluster approximation (DCA). t is

invariant under superlattice and cluster translations. c) Reference system generating the DCA.

Note that t′ has the same translational symmetries as t. d) Reference system generating a

simplified DCA. From Ref. [19].

conditions on the individual cluster.

In the following we consider the L× L matrixU with elements

Ux,k =
1

√
L
eikx , (13)

and the L/Lc × L/Lc matrix V with elements

V
x̃,k̃

=
1√
L/Lc

eik̃x̃ , (14)

and the Lc × Lc matrixW with elements

WX,K =
1

√
Lc

eiKX . (15)

Notes, thatU , V andW are unitary and define Fourier transformations between the respective

real and reciprocal spaces. It is obvious, thatU $= V W = WV :

Ux,k =
1

√
L
eikx =

1
√
L
ei(k̃X+k̃x̃+KX) $=

1
√
L
ei(k̃x̃+KX) = V

x̃,k̃
WX,K . (16)

A hopping tx,x′ which is invariant under lattice translations x0, i.e. tx+x0,x′+x0 = tx,x′ , is di-

agonalized by normal Fourier transformations U : (U †tU)kk′ = t(k)δk,k′ . By definition, the

one-electron spectrum is just Fourier transform of the hopping matrix elements: εk ≡ t(k). A

quantity Tx,x′ which is invariant under superlattice translations x̃0 as well as under cluster trans-

lationsX0 (i.e. which is cyclic on the cluster), Tx+x̃0,x′+x̃0 = Tx+X0,x′+X0 = Tx,x′ , is diagonal-

ized by alternative DCA-transformation V W : (W †V †TV W )
k̃K,k̃′K′ = T (k̃,K)δ

k̃,k̃′δK,K′.

Following Refs. [15, 16, 19], we introduce a fictitious hopping which corresponds to the real-

space formulation of the DCA-scheme:

t = (VW )U †
t U(V W )† , (17)

Comparison of real and DCA hopping:   
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which is just the DCA Fourier back-transform of the one-electron spectrum εk. For clusters of

finite size Lc, the combined Fourier transformation V W is different from U . For Lc → ∞,

however, this becomes irrelevant. With ε(k) = (U †tU)(k) we have:

txx′ =
1

Lc

∑

K

eiK(X−X′)Lc

L

∑

k̃

eik̃(x̃−x̃′)ε(k̃ +K) . (18)

Obviously, t is invariant under superlattice translations as well as under cluster translations

(with periodic cluster boundary conditions). The original and the modified system are repre-

sented by Fig. 3a, b. The construction of t is such that it exhibits the same translational sym-

metries as the one-particle parameters t′ of a reference system consisting of isolated clusters

tiling the original lattice with periodic boundary conditions, see Fig. 3c, d. Since both, t and t,

are invariant under superlattice translations, we can compare tXX′(k̃) = (V †tV )XX′(k̃) with

tXX′(k̃) = (V †tV )XX′(k̃). It turns out they are equal up to a phase factor:

tXX′(k̃) =
1

Lc

∑

K

eiK(X−X′)ε(k̃ +K)

=
Lc

L

∑

x̃x̃′

e−ik̃(x̃+X−x̃′−X′)tx̃+X,x̃′+X′

= e−ik̃(X−X′)tXX′(k̃) . (19)

The main idea of the DCA is to restore momentum conservation within the cluster by a rescale

the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the

super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ε
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.

(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X′) =
1

Lc

∑

K

eiK(X−X′)ε
K+k̃

. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the

dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function

which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)−Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-

consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)
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(with periodic cluster boundary conditions). The original and the modified system are repre-
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∑
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e−ik̃(x̃+X−x̃′−X′)tx̃+X,x̃′+X′

= e−ik̃(X−X′)tXX′(k̃) . (19)

The main idea of the DCA is to restore momentum conservation within the cluster by a rescale

the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the

super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ε
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.

(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X′) =
1

Lc

∑

K

eiK(X−X′)ε
K+k̃

. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the

dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function

which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)−Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-

consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)
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The main idea of the DCA is to restore momentum conservation within the cluster by a rescale

the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the

super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ε
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.

(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X′) =
1
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∑
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eiK(X−X′)ε
K+k̃

. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the

dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function

which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)−Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-

consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)
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which is just the DCA Fourier back-transform of the one-electron spectrum εk. For clusters of

finite size Lc, the combined Fourier transformation V W is different from U . For Lc → ∞,

however, this becomes irrelevant. With ε(k) = (U †tU)(k) we have:
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Obviously, t is invariant under superlattice translations as well as under cluster translations

(with periodic cluster boundary conditions). The original and the modified system are repre-

sented by Fig. 3a, b. The construction of t is such that it exhibits the same translational sym-

metries as the one-particle parameters t′ of a reference system consisting of isolated clusters

tiling the original lattice with periodic boundary conditions, see Fig. 3c, d. Since both, t and t,

are invariant under superlattice translations, we can compare tXX′(k̃) = (V †tV )XX′(k̃) with

tXX′(k̃) = (V †tV )XX′(k̃). It turns out they are equal up to a phase factor:
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∑
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eiK(X−X′)ε(k̃ +K)

=
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L

∑

x̃x̃′

e−ik̃(x̃+X−x̃′−X′)tx̃+X,x̃′+X′

= e−ik̃(X−X′)tXX′(k̃) . (19)

The main idea of the DCA is to restore momentum conservation within the cluster by a rescale

the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the

super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ε
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.

(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X′) =
1

Lc

∑

K

eiK(X−X′)ε
K+k̃

. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the

dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function

which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)−Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-

consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)

DCA Green function: 
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finite size Lc, the combined Fourier transformation V W is different from U . For Lc → ∞,

however, this becomes irrelevant. With ε(k) = (U †tU)(k) we have:
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Obviously, t is invariant under superlattice translations as well as under cluster translations

(with periodic cluster boundary conditions). The original and the modified system are repre-

sented by Fig. 3a, b. The construction of t is such that it exhibits the same translational sym-

metries as the one-particle parameters t′ of a reference system consisting of isolated clusters

tiling the original lattice with periodic boundary conditions, see Fig. 3c, d. Since both, t and t,

are invariant under superlattice translations, we can compare tXX′(k̃) = (V †tV )XX′(k̃) with

tXX′(k̃) = (V †tV )XX′(k̃). It turns out they are equal up to a phase factor:
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=
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e−ik̃(x̃+X−x̃′−X′)tx̃+X,x̃′+X′

= e−ik̃(X−X′)tXX′(k̃) . (19)

The main idea of the DCA is to restore momentum conservation within the cluster by a rescale

the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the

super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ε
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.

(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X′) =
1

Lc

∑

K

eiK(X−X′)ε
K+k̃

. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the

dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function

which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)−Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-

consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)Self-consistent condition: 
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Non-Local Correlations Effects in Solids 11.9

We can also try to ’periodize’ the cluster-DMFT scheme [6, 15]. The CDMFT violates trans-

lational invariance with respect to the cluster sites. This is obvious for clusters with Lc ≥ 3,

where bulk and surface sites of a cluster may be distinguished. The CDMFT calculations are

carried out in the cluster real-space representation (i.e. all quantities are matrices in the cluster

sites), since there is no benefit in changing to the cluster k-space representation, which is not

diagonal.

Since translational invariance is broken, the lattice quantities are functions of two independent

momenta k and k′. They can differ by a reciprocal lattice vectorQ, where Qi = 0, . . . , (Lc −

1)2π/Lc. The self-energy can be expressed in terms of the cluster self-energy as

Σ(k,k′, iω) =
1

Lc

∑

Q

∑

X,X′

eikXΣc(X,X′, iω)e−ik′X′

δ(k− k′ −Q), (24)

where the dependence on cluster sites is written explicitly. A translationally invariant solution

is obtained by approximating the lattice quantities only by theQ = 0 contribution:

Σ(k, iω) =
1

Lc

∑

X,X′

= eik(X−X′)Σc(X,X′, iω). (25)

Transforming back to real space shows that the lattice quantities for a given distance x− x′ are

obtained as an average over the cluster quantities for the same distance,

Σ(x− x′, iω) =
1

Lc

∑

X,X′

Σc(X,X′, iω) δX−X′,x−x′. (26)

Spatial correlations are hence included up to a length determined by the extension of the cluster.

Note that Eq. (26) underestimates the nonlocal contributions, in particular for small clusters.

Using the shorthand notationΣX,X′ = Σ(X,X′), one sees that the local self-energy is averaged

correctly, Σ(x = 0) = (Σc 00 + Σc 11)/2, while the nearest-neighbor self-energy contribution

according to (26) would read Σ(x = 1) = (1/2)Σc 10, since Σc 01 contributes to Σ(x = −1). It

was therefore suggested to reweigh the terms in the sum [15]. For the above example, Σ(x =

1) = Σc 10.

When translational invariance is recovered in this way, the solution of the lattice problem may

be viewed as shown in Fig. 4: The lattice is replaced by a lattice of clusters all of which are em-

bedded in a self-consistent bath. The self-energy on a cluster is obtained from the self-consistent

solution of the local problem and the intercluster self-energy between sites on neighboring clus-

ters at a distance x− x′ is artificially set equal to the average of the intracluster self-energy for

the same distance. The self-energy for distances exceeding the maximum distance between sites

within the cluster is zero.

Following Ref. [17] we can compare the CDMFT and DCA schemes for the linear 3-cite cluster

from Fig. (3). Writing the single-electron part of Hamiltonian as the supercell matrixT(k̃), the

average cluster hopping is given by

Tc =

∫
dk̃ T(k̃) . (27)

Double Fourier Transform: 

Translational invariant solution: Q=0 
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carried out in the cluster real-space representation (i.e. all quantities are matrices in the cluster

sites), since there is no benefit in changing to the cluster k-space representation, which is not

diagonal.

Since translational invariance is broken, the lattice quantities are functions of two independent

momenta k and k′. They can differ by a reciprocal lattice vectorQ, where Qi = 0, . . . , (Lc −

1)2π/Lc. The self-energy can be expressed in terms of the cluster self-energy as

Σ(k,k′, iω) =
1
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∑

Q

∑

X,X′

eikXΣc(X,X′, iω)e−ik′X′

δ(k− k′ −Q), (24)

where the dependence on cluster sites is written explicitly. A translationally invariant solution

is obtained by approximating the lattice quantities only by theQ = 0 contribution:

Σ(k, iω) =
1

Lc

∑

X,X′

= eik(X−X′)Σc(X,X′, iω). (25)

Transforming back to real space shows that the lattice quantities for a given distance x− x′ are

obtained as an average over the cluster quantities for the same distance,

Σ(x− x′, iω) =
1

Lc

∑

X,X′

Σc(X,X′, iω) δX−X′,x−x′. (26)

Spatial correlations are hence included up to a length determined by the extension of the cluster.

Note that Eq. (26) underestimates the nonlocal contributions, in particular for small clusters.

Using the shorthand notationΣX,X′ = Σ(X,X′), one sees that the local self-energy is averaged

correctly, Σ(x = 0) = (Σc 00 + Σc 11)/2, while the nearest-neighbor self-energy contribution

according to (26) would read Σ(x = 1) = (1/2)Σc 10, since Σc 01 contributes to Σ(x = −1). It

was therefore suggested to reweigh the terms in the sum [15]. For the above example, Σ(x =

1) = Σc 10.

When translational invariance is recovered in this way, the solution of the lattice problem may

be viewed as shown in Fig. 4: The lattice is replaced by a lattice of clusters all of which are em-

bedded in a self-consistent bath. The self-energy on a cluster is obtained from the self-consistent

solution of the local problem and the intercluster self-energy between sites on neighboring clus-

ters at a distance x− x′ is artificially set equal to the average of the intracluster self-energy for

the same distance. The self-energy for distances exceeding the maximum distance between sites

within the cluster is zero.

Following Ref. [17] we can compare the CDMFT and DCA schemes for the linear 3-cite cluster

from Fig. (3). Writing the single-electron part of Hamiltonian as the supercell matrixT(k̃), the

average cluster hopping is given by

Tc =

∫
dk̃ T(k̃) . (27)
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M-Periodization - cumulant (G. Kotliar et al): 

16

This can be viewed as a truncation of the Fourier ex-
pansion of the lattice self-energy to the first two Fourier
components. Note that, the nearest-neighbor component
of the lattice self-energy is obtained, according to this
formula, as Σnn = Σ12/4, which is analogous to the repe-
riodization procedure of CDMFT (see e.g. Ref. 4).

Another method (M -interpolation) has been recently
introduced in Ref. 59,60 in the CDMFT method. It
consists in interpolating the cumulant, defined as M ≡
(ω + µ − Σ)−1. The lattice cumulant is obtained as

Mlatt(k, ω) = α+(k)
1

ω + µ − Σ+(ω)
+α−(k)

1

ω + µ − Σ−(ω)
.

(34)
From Mlatt(k, ω) it is then possible to extract a lattice
self-energy by

Σ(M)
latt (k, ω) = ω + µ − Mlatt(k, ω)−1. (35)

The cumulant is the dual quantity of the self-energy in an
expansion around the atomic limit. It is a natural mea-
sure of how much the hybridization to the self-consistent
environment changes the impurity Green’s function as
compared to an isolated dimer.

The Σ-interpolation is based on the assumption that
the self-energy is sufficiently short-range or small enough
for all frequencies. It corresponds to an expansion around
the free-electron limit, hence it is expected to work bet-
ter at weak coupling. On the other hand, the M -
interpolation is expected to be better close to the atomic
limit, and more generally at strong coupling, for exam-
ple close to a Mott insulating state where the cumulant
is more local than the self-energy.59 Other methods, like
the periodization of the Green’s function25 have also been
discussed, in the CDMFT context. In this section, we fo-
cus on a quantitative comparison of the Σ-interpolation
and the M -interpolation, using a plaquette (4 sites) cal-
culation as a benchmark.

Let us emphasize again that for our two-site cluster the
momenta k = (0, 0) and k = (π, π) are special. At these
two points lattice quantities are independent of the inter-
polation method used (since at those momenta, one of the
α’s vanishes), while at all other momenta the quantities
reconstructed with the two methods differ. On the other
hand, in a four-site cluster (plaquette) approach, there
are two additional momenta where the description is un-
biased by the interpolation procedure, namely k = (0, π)
and k = (π, 0), which are equivalent if rotational symme-
try is not broken. Hence performing a plaquette calcula-
tion gives us the opportunity to compare directly cluster
self-energies obtained with the dimer and the plaquette
at momenta k = (0, 0) and k = (π, π), and furthermore
provides a test for the interpolation method by compar-
ing self-energies at k = (0, π).

We compare in Fig. 20 the results of VB-DMFT and
plaquette calculations for momenta k = (0, 0) and k =
(π, π) for δ = 8% (upper panel) and δ = 16% (lower
panel), in Matsubara frequencies. The agreement be-
tween the two cluster calculations is good. The descrip-
tions of the Hubbard model given by VB-DMFT and

plaquette cluster calculations are consistent with one
another for these momenta. In order to decide which
momentum-interpolation procedure is better within VB-
DMFT, we also compare in Fig. 21 (at δ = 8% in the
upper panel and δ = 16% in the lower panel) the self-
energy obtained from the Σ- and M - interpolations, at
momentum k = (0, π), to the self-energy obtained from
a direct plaquette calculation (for which (0, π) is a clus-
ter momentum). Comparing the two data sets, we see
that the M -interpolation is clearly superior to the Σ -
interpolation in reconstructing the self-energy at (0, π).
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FIG. 20: (Color online) Real and imaginary part of dimer
(solid lines) and plaquette (symbols) self-energies at k = (0, 0)
(black solid line and red diamond) and k = (π,π) (orange
solid line and blue diamond) for β = 200 and δ = 0.08 (upper
panel) and δ = 0.16 (lower panel).

Applying the M -interpolation to the VB-DMFT re-
sults we can qualitatively, and to a large extent quan-
titatively, reproduce the larger cluster (plaquette) re-
sults, hence providing a justification to the use of the
M -interpolation. It is important to stress that the pla-
quette cluster-momentum k = (0, π) is not present as an
individual orbital in the two-site description: It is entirely
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In the DCA gauge for 3-cite linear cluster we have

TDCA(k̃) = t




0 eik̃ e−ik̃

e−ik̃ 0 eik̃

eik̃ e−ik̃ 0


 . (32)

Now the Tc matrix is cyclic and has translation symmetry (see Fig.(3 c)), but rescaled hopping

matrix elements:

TDCA
c =

3

2π

∫ π/3

π/3

dk̃T(k̃) =
3
√
3

2π
t




0 1 1

1 0 1

1 1 0


 . (33)

This effective rescaling of the hopping parameters in DCA-scheme can lead to a problem with

investigations of complex band structure effects, such as an extended van Hove singularities

[32]. We note also that the similar consideration apply to the variational cluster approach [11],

which is based on the self-energy functional theory [18, 19].

4 Symmetry properties of the cluster scheme

Let us discuss a symmetry properties of paramagnetic solution of culster extension of DMFT

in the simple case of 2- and 4-site clusters [20]. In Fig. Fig. (5) the simplest 2-site and 4-

site tiling on square and cubic lattices plotted. For each quantity, like Green’s function G, self

energy Σ, and bath function G, there are momentum and real-space components labeled by

some subscript. In this paper, the real-space component is labeled by a number (0 - on-site, 1 -

nearest neighbor, etc.) while the momentum-space sectors labelled by capital letters (S, P, D).

4.1 Formalism for the 2-site cluster method

Now we apply general cluster formalism to specific cases, first to the 2-site cluster in the square

lattice. The solution of 2-site impurity problem gives the following matrix Green function:

Ĝimp =

(
G0 G1

G1 G0

)
Σ̂imp =

(
Σ0 Σ1

Σ1 Σ0

)
(34)

The partitioning of Brillouin zone in this case is given in Fig(5), so two K points according

to this division is KI = 0, KII = (π, π). We label region I and II or S and P sectors.

Corresponding toKI and KII , one gets R0 = 0 and R1 = (±1, 0) or (0,±1). The lattice self

energy is related to Σ̂imp by

ΣDCA(#k,ω) =

{
Σimp

S = Σ0 +Σ1 fork ∈ Region I(S)

Σimp
P = Σ0 −Σ1 fork ∈ Region II(P )

(35)

The partial density of states are

DS(P )(ε) = 2×

∫

k∈I(II)

dk δ(ε− εk) (36)
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Fig. 5: Partition of the Brillouin zone. (a) 2-site DCA on square lattice. (b) 4-site DCA on

square lattice. (c) 2-site DCA on cubic lattice From Ref. [20].

and the self-consistency equation is

G0 = (GS +GP )/2

G1 = (GS −GP )/2 (37)

with

GS(P ) =

∫
DS(P )(ε) dε

ω + µ− εk − (Σ0 ±Σ1)
(38)

4.2 Formalism for the 4-site cluster method

In the 4-site cluster the Brillouin zone is divided into four sectors which are labelled as S, P, and

D, as shown in Fig(5). FourK points are (0, 0) (π, 0) (0, π) (π, π) leading to four R as (0, 0)

(1, 0) (0, 1) (1, 1). The partial DOS is defined as

D
(4)
S(P,D)(ε) = 4×

∫

k∈S(P,D)

dk δ(ε− εk) (39)

where the superscript (4) is used to distinguish from the partial DOS in 2-site DCA (see Fig(6)).

After solving a 4-site impurity cluster problem, in the disordered phase one gets

Ĝimp =




G0 G1 G2 G1

G1 G0 G1 G2

G2 G1 G0 G1

G1 G2 G1 G0


 Σ̂imp =




Σ0 Σ1 Σ2 Σ1

Σ1 Σ0 Σ1 Σ2

Σ2 Σ1 Σ0 Σ1

Σ1 Σ2 Σ1 Σ0


 (40)
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4.1 Formalism for the 2-site cluster method

Now we apply general cluster formalism to specific cases, first to the 2-site cluster in the square

lattice. The solution of 2-site impurity problem gives the following matrix Green function:

Ĝimp =

(
G0 G1
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)
Σ̂imp =
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)
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The partitioning of Brillouin zone in this case is given in Fig(5), so two K points according

to this division is KI = 0, KII = (π, π). We label region I and II or S and P sectors.

Corresponding to KI and KII , one gets R0 = 0 and R1 = (±1, 0) or (0,±1). The lattice self

energy is related to Σ̂imp by

ΣDCA(#k,ω) =

{
Σimp

S = Σ0 +Σ1 fork ∈ Region I(S)

Σimp
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Fig. 6: The PDOS for 2-site and 4-site DCA partitioning on the square lattice with nearest

neighbor hopping. The total bandwidth is 12 which corresponds to the hopping t=1.5. From

Ref. [20].

and the momentum-dependent self energies are

ΣS = Σ0 + 2Σ1 +Σ2

ΣP = Σ0 −Σ2

ΣD = Σ0 − 2Σ1 +Σ2 (41)

and correspondingly the components of lattice Green’s functions are

GS(P,D) =

∫
DS(P,D)(ε)dε

iωn + µ− ε−ΣS(P,D)
(42)

The self-consistency equations are

G0 = (GS + 2GP +GD)/4

G1 = (GS −GD)/4

G2 = (GS − 2GP +GD)/4 (43)

We can compare the DCA-partial DOS with a similar consideration for the cluster DMFT [21].

In this case, one first calculate the proper local matrix of the Green functions Eq. (8) and then

transform it to the basis of molecular orbitals (inverse of Eqs. (37) and (43) ) in order to obtained

partial DOS ρm (Fig. (7)). It is clear that the DCA partial DOS overestimate”localization” of the

partial sectors orbitals φm while the CDMFT has larger overlap between different partial DOS

with non-local Green function contributions. This can lead to spurious k-selective polarization

of correlated orbitals in the DCA-scheme compare to the CDMFT method.
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partial DOS ρm (Fig. (7)). It is clear that the DCA partial DOS overestimate”localization” of the

partial sectors orbitals φm while the CDMFT has larger overlap between different partial DOS

with non-local Green function contributions. This can lead to spurious k-selective polarization

of correlated orbitals in the DCA-scheme compare to the CDMFT method.

Non-Local Correlations Effects in Solids 11.13

-8 -6 -4 -2 0 2 4 6 8
Frequency

0

0.1

0.2

0.3

0.4

0.5

P
ar

ti
al

 D
O

S
 

S-Sector, 2-site
P-Sector, 2-site
S-Sector, 4-site
P-Sector, 4-site
D-Sector, 4-site

Fig. 6: The PDOS for 2-site and 4-site DCA partitioning on the square lattice with nearest

neighbor hopping. The total bandwidth is 12 which corresponds to the hopping t=1.5. From

Ref. [20].
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and correspondingly the components of lattice Green’s functions are

GS(P,D) =
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We can compare the DCA-partial DOS with a similar consideration for the cluster DMFT [21].

In this case, one first calculate the proper local matrix of the Green functions Eq. (8) and then

transform it to the basis of molecular orbitals (inverse of Eqs. (37) and (43) ) in order to obtained

partial DOS ρm (Fig. (7)). It is clear that the DCA partial DOS overestimate”localization” of the

partial sectors orbitals φm while the CDMFT has larger overlap between different partial DOS

with non-local Green function contributions. This can lead to spurious k-selective polarization

of correlated orbitals in the DCA-scheme compare to the CDMFT method.
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Fig. 5: Partition of the Brillouin zone. (a) 2-site DCA on square lattice. (b) 4-site DCA on

square lattice. (c) 2-site DCA on cubic lattice From Ref. [20].

and the self-consistency equation is

G0 = (GS +GP )/2

G1 = (GS −GP )/2 (37)

with

GS(P ) =

∫
DS(P )(ε) dε

ω + µ− εk − (Σ0 ±Σ1)
(38)

4.2 Formalism for the 4-site cluster method

In the 4-site cluster the Brillouin zone is divided into four sectors which are labelled as S, P, and

D, as shown in Fig(5). FourK points are (0, 0) (π, 0) (0, π) (π, π) leading to four R as (0, 0)

(1, 0) (0, 1) (1, 1). The partial DOS is defined as

D
(4)
S(P,D)(ε) = 4×

∫

k∈S(P,D)

dk δ(ε− εk) (39)

where the superscript (4) is used to distinguish from the partial DOS in 2-site DCA (see Fig(6)).

After solving a 4-site impurity cluster problem, in the disordered phase one gets

Ĝimp =




G0 G1 G2 G1

G1 G0 G1 G2

G2 G1 G0 G1

G1 G2 G1 G0


 Σ̂imp =




Σ0 Σ1 Σ2 Σ1

Σ1 Σ0 Σ1 Σ2

Σ2 Σ1 Σ0 Σ1

Σ1 Σ2 Σ1 Σ0


 (40)

C. Lin and A. Millis PRB (2009) 
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and the momentum-dependent self energies are

ΣS = Σ0 + 2Σ1 +Σ2

ΣP = Σ0 −Σ2

ΣD = Σ0 − 2Σ1 +Σ2 (41)

and correspondingly the components of lattice Green’s functions are

GS(P,D) =

∫
DS(P,D)(ε)dε

iωn + µ− ε−ΣS(P,D)
(42)

The self-consistency equations are

G0 = (GS + 2GP +GD)/4

G1 = (GS −GD)/4

G2 = (GS − 2GP +GD)/4 (43)

We can compare the DCA-partial DOS with a similar consideration for the cluster DMFT [21].

In this case, one first calculate the proper local matrix of the Green functions Eq. (8) and then

transform it to the basis of molecular orbitals (inverse of Eqs. (37) and (43) ) in order to obtained

partial DOS ρm (Fig. (7)). It is clear that the DCA partial DOS overestimate”localization” of the

partial sectors orbitals φm while the CDMFT has larger overlap between different partial DOS

with non-local Green function contributions. This can lead to spurious k-selective polarization

of correlated orbitals in the DCA-scheme compare to the CDMFT method.
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5 Long-range correlations: Dual-Fermion approach

The shortcomings of cluster DMFT scheme have triggered many efforts to go beyond the mean-

field description, while maintaining DMFT as a starting point. The standard DMFT scheme

becomes exact in the limit of infinite coordination number z. An expansion in 1/z, however,

leads to difficulties as the action depends in a non-analyticway on the coordination number [22].

Building on earlier work on strong-coupling expansions for the Hubbard model [23–25], a

general framework to perform a systematic cumulant expansion around DMFT even considering

non-local Coulomb interaction was developed in Ref. [26].

While cluster extension to DMFT breaks translational symmetry of the lattice, the combination

of numerical and analytic methods is a promising route for including the effects of long-range

correlations. Recent developments have led to approaches which include long-range correla-

tions via straightforward diagrammatic corrections to DMFT [27–29]. Based on earlier sug-

gestions for bosonic fields [30], it was recognized that that a systematic, fully renormalized

expansion around DMFT can be formulated in terms of auxiliary fermions [31].

Our goal is to find optimal strong-coupling expansion of the general lattice problem described

by the imaginary time action

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[
(iω + µ)1− tmm′

kσ

]
cωkσm′ +

∑

i

SU[c
∗
i , ci]. (44)

Here tkσ is the one-electron part of the Hamiltonian, σ =↑, ↓ labels the spin projection, m,m′

are orbital indices and c∗, c are Grassmann variables. The index i labels the lattice sites and

k-vectors are quasimomenta. In order to keep the notation simple, it is useful to introduce the

combined index α ≡ {mσ}. Translational invariance is assumed for simplicity in the following.

For applications it is important to note that the local part of the action, SU, may contain any

type of local interaction. The only requirement is that it is local within the multi-orbital atom

or cluster.

In order to formulate a perturbation expansion around DMFT, a local quantum impurity problem

11.14 A.I. Lichtenstein and H. Hafermann
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5 Long-range correlations: Dual-Fermion approach

The shortcomings of cluster DMFT scheme have triggered many efforts to go beyond the mean-

field description, while maintaining DMFT as a starting point. The standard DMFT scheme

becomes exact in the limit of infinite coordination number z. An expansion in 1/z, however,

leads to difficulties as the action depends in a non-analyticway on the coordination number [22].

Building on earlier work on strong-coupling expansions for the Hubbard model [23–25], a

general framework to perform a systematic cumulant expansion around DMFT even considering

non-local Coulomb interaction was developed in Ref. [26].

While cluster extension to DMFT breaks translational symmetry of the lattice, the combination

of numerical and analytic methods is a promising route for including the effects of long-range

correlations. Recent developments have led to approaches which include long-range correla-

tions via straightforward diagrammatic corrections to DMFT [27–29]. Based on earlier sug-

gestions for bosonic fields [30], it was recognized that that a systematic, fully renormalized

expansion around DMFT can be formulated in terms of auxiliary fermions [31].

Our goal is to find optimal strong-coupling expansion of the general lattice problem described

by the imaginary time action

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[
(iω + µ)1− tmm′

kσ

]
cωkσm′ +

∑

i

SU[c
∗
i , ci]. (44)

Here tkσ is the one-electron part of the Hamiltonian, σ =↑, ↓ labels the spin projection, m,m′

are orbital indices and c∗, c are Grassmann variables. The index i labels the lattice sites and

k-vectors are quasimomenta. In order to keep the notation simple, it is useful to introduce the

combined index α ≡ {mσ}. Translational invariance is assumed for simplicity in the following.

For applications it is important to note that the local part of the action, SU, may contain any

type of local interaction. The only requirement is that it is local within the multi-orbital atom

or cluster.

In order to formulate a perturbation expansion around DMFT, a local quantum impurity problem

DCA:  
C. Lin and A. Millis PRB (2009) 

CDMFT:  
A. Liebsch et al, PRB (2009) 
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Momentum space approach: tile Brillouin zone

Choose N momenta Ka, draw an equal area patch 

around each one 

2 4 4* 8 161

Σp(ω) → Σapprox

p
(ω) =

∑

a

φa(p)Σa(ω)

φa(p) = 1 if p is in the patch containing Ka

and is 0 othewise

3

FIG. 2: (color online) Energy density per spin component and den-

sity (see inset) as a function of temperature for the 2D Hubbard

model at fixed interaction strength U/t = 4 and chemical potential

µ/t =−0.15. Within error bars, DMFT (blue circles) coincides with
the DiagMC (red squares) results. The Fermi liquid fit, see Eq.(2), is

shown by solid lines.

FIG. 3: (color online) Comparison between the DiagMC and DCA

methods: Density as a function of temperature for the 2D Hubbard

model atU/t = 4 and µ/t = 3.1. For temperatures T <
∼ t a systematic

deviation of DCA data from DiagMC points is seen. The deviation is

diminishing with increasing the size of the DCA cluster, the four-site

results show deviations from single site and larger clusters because

of the establishment of local short-range order[25].

regime and an extrapolation in the cluster size is needed to

reproduce the DiagMC results.

The difference between single-site DMFT and DiagMC re-

sults is reflected in the momentum dependence of the self-

energy. By construction, ! is momentum independent in

single-site DMFT. In Fig. 4, we consider !(p,") at the lowest
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p
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p
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FIG. 4: (color online) Momentum-dependence of the self-energy

at the Matsubara frequency " = #/$ along the cut (0,0)− (#,0)−
(#,#)− (0,0) in the first Brillouin zone for the Hubbard model with
the parametersU/t = 4, µ/t = 3.1 and T/t = 0.4. DiagMC (squares)
includes the full momentum-dependence, whereas single-site DMFT

(solid lines) is momentum independent. The results of DCA calcula-

tions are plotted by open symbols for clusters of size 4, 8, 16, and 32.

Note that a good agreement between DiagMC and DCA is reached

with 32-site clusters. The mean-field contribution (the Hartree term

Un% ≈ 2.3t) was subtracted to magnify fine details. The arrows indi-
cate the position of the Fermi momentum pF .

Matsubara frequency " = #/$ along the cut (0,0)− (#,0)−
(#,#)− (0,0), in the (px, py) plane. Cluster DMFT simula-
tions do includemomentum dependence of the self-energy ap-

proximately. As expected, the DCA results get systematically

closer to the DiagMC curves when increasing the cluster size.

For a cluster of 32 sites, DCA shows a momentumdependence

which is in good agreement with DiagMC.

We now turn to the comparison with high-temperature se-

ries expansion up to tenth order in $t. To demonstrate that

the DiagMC is insensitive to the spatial dimension, we will

perform this comparison in three dimensions (3D). Figure 5

shows the energy and density dependence on temperature for

the 3D Hubbard model at U/t = 4. In this particular exam-

ple we keep the renormalized chemical potential µ′ = µ−Un%
fixed. Within DiagMC, the variableµ′ is more convenient than

the physical chemical potential µ because the Hartree term

Un% automatically accounts for tadpole diagrams, thus ex-

cluding them explicitly from the simulation. Qualitatively, the

data is similar to the 2D case. Without Padé approximation the

bare HTSE series give an unbiased answer for temperatures

only above T ∼ 2t, while the degenerate Fermi liquid behav-
ior develops only at T <

∼ t. Only then the energy and density

display the characteristic quadratic dependence on tempera-

ture. The fitted values of the density of single-particle states

at the Fermi energy and its derivative are given in the caption

of Fig. 5.

The data reported here can serve as established benchmarks

E. Kozik, 
E. Gull et all 
EPL (2010) 
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General Lattice Action 

Reference system: Local Action with hybridization Δω


Lattice-Impurity connection: 



Dual Fermions 
Gaussian path-integral 

With  
new Action: 

Diagrammatic: 

gω and χν,ν‘,ω from DMFT impurity solver 

-1 



    Dual Fermion Ac-on: Details 

-1 

!"#$%&'%(# !)*#" ++,+-

Fig. 8: Construction of the dual fermion approximation: In a first step, the original lattice

problem (left) with bonds (blue lines) is replaced by a collection of decoupled impurities exerted

to an electronic bath, as indicated by the blue spheres (right). From the Ref. [14].
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Fig. 8: Construction of the dual fermion approximation: In a first step, the original lattice

problem (left) with bonds (blue lines) is replaced by a collection of decoupled impurities exerted

to an electronic bath, as indicated by the blue spheres (right). From the Ref. [14].
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Fig. 9: Illustration of the dual fermion approach. Spatial correlations in the original lattice

problem are mediated between the impurities of Fig. 8 through dual fermions, which in turn

interact via n-particle interactions. From the Ref. [14].
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interact via n-particle interactions. From the Ref. [14].
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Basic diagrams for dual self-energy 

Lines  - dual Green’s function.  
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Condi-on for Δ and rela-on with DMFT 

To determine Δ, we require  
that Hartree correction in dual variables vanishes. 
If no higher diagrams are taken into account, one obtains DMFT: 

Higher-order diagrams give corrections to the DMFT self-energy,  
and already the leading-order correction is nonlocal. 
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Two equivalent Eqs for partition function: 

Hubbard-Stratanovich transformation: 

Relation between Green functions: 
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Two‐par-cle Green‐Func-ons 
Exact relation between TPGF in real and dual space: 

11.18 A.I. Lichtenstein and H. Hafermann

The action (56) allows for a Feynman-type diagrammatic expansion in powers of the dual po-

tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [34].

Extension of these rules to include generic n-particle interaction vertices is straightforward.

Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-

tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As

simplest example we can write schematically the first self-energy correction of the diagram a)

in Fig. 9 contains a single closed loop:
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where G̃loc = (1/N)
∑

k
G̃(k) denotes the local part of the dual Green function. The second-

order contribution represented by diagram b) contains two equivalent lines and one closed loop

and hence is k-dependence:
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In practice, it is more efficient to evaluate the lowest order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform.

5.1 Dual-Fermion approach: Exact relations

After an approximate result for the dual self-energy or the dual Green function has been ob-

tained, it has to be transformed back to the corresponding physical quantities in terms of lattice

fermions. The fact that dual fermions are introduced through the exact Hubbard-Stratonovich

transformation (47) allows to establish exact identities between dual and lattice quantities.

Hence the transformation does not involve any additional approximations [14, 31].

The relations between the n-particle cumulants of dual and lattice fermions can be established

using the cumulant (linked cluster) technique. To this end, one may consider two different,

equivalent representations of the following generating functional:

F [J∗, J ;L∗, L] = ln Zf

∫
D[c∗, c; f ∗, f ] exp

(
−S[c∗, c; f ∗, f ] + J∗

1 c1 + c∗2J2

+ L∗
1f1 + f ∗

2L2

)
. (60)

Integrating out the lattice fermions from this functional similar to (51) (this can be done with

the sources J and J∗ set to zero) yields

F [L∗, L] = ln Z̃f

∫
D[f ∗, f ] exp

(
−S̃[f ∗, f ] + L∗

1f1 + f ∗
2L2

)
. (61)

with Z̃f = Z/Z̃ . The dual Green function and two-particle correlator related with non-local

susceptibilities are obtained from (61) by suitable functional derivatives, e.g.

G̃12 = −
δ2F

δL2δL
∗
1

∣∣∣∣
L∗=L=0

,
[
X̃−G̃⊗ G̃

]
1234

=
δ4F

δL4δL3δL
∗
2δL

∗
1

∣∣∣∣
L∗=L=0

,

(62)

Non-Local Correlations Effects in Solids 11.19

where G ⊗ G is the antisymmetrized direct product of Green functions, so that the angular

brackets is the connected part of the dual two-particle Green function. Conversely, integrating

out the dual fermions from (60) using the HST, one obtains an alternative representation, which

more clearly reveals a connection of the functional derivatives with respect to the sources J ,J∗

and L, L∗. The result is

F [J∗, J ;L∗, L] =L∗
1[g(∆− h)g]12L2 + ln

∫
D[c∗, c] exp

(
− S[c∗, c] +

+ J∗
1 c1 + c∗2J2 + L∗

1[g(∆− t)]12c2 + c∗1[(∆− t)g]12L2

)
. (63)

In analogy to (62), the cumulants in terms of lattice fermions are obviously obtained by func-

tional derivative with respect to the sources J and J∗ with L and L∗ set to zero. Applying the

derivatives with respect to L, L∗ to (63) with J = J∗ = 0 and comparing to (62), e.g. yields the

following identity:

G̃12 = −[g(∆− t)g]12 + [g(∆− t)]11′G1′2′ [(∆− t)g]2′2. (64)

Solving for G provides the rule how to transform the dual Green function to the physical quan-

tity in terms of lattice fermions. For higher-order cumulants the additive term in (63) does not

contribute and the relation between the two-particle cumulants evaluates to
[
X̃ − G̃⊗ G̃

]
1234

=

[g(∆− t)]11′ [g(∆− t)]22′ [X −G⊗G]1′2′3′4′ [(∆− t)g]3′3 [(∆− t)g]4′4 , (65)

It is apparent that similar relations hold for higher-order cumulants. Note that the transforma-

tion only involves single-particle functions. Hence one may conclude that n-particle collective

excitations are the same for dual and lattice fermions.

5.2 Self-consistency condition and relation to DMFT

The hybridization function∆, which so far has not been specified, allows to optimize the start-

ing point of the perturbation theory and should be chosen in an optimal way. The condition of

the first diagram (Fig. 9 a) in the expansion of the dual self-energy to be equal to zero at all

frequencies fixes the hybridization. This eliminates the leading order diagrammatic correction

to the self-energy and establishes a connection to DMFT, which can be seen as follows: Since

γ vertex is local, this condition amounts to demanding that the local part of the dual Green

function be zero: ∑

k

G̃ω(k) = 0. (66)

The simplest nontrivial approximation is obtained by taking the leading-order correction, dia-

gram a), evaluated with the bare dual propagator (57). Recalling the expression for the DMFT

Green function, Eq. (4), it is readily verified that

GDMFT
ω (k)− gω =

[
g−1
ω +∆ω − tk

]−1
− gω

= −gω
[
gω + (∆ω − tk)

−1
]−1

gω = G̃0
ω(k). (67)
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Fig. 13: Bethe-Salpeter equation for the dual vertex in the electron-hole channel with a local

approximation Γirr = γ to the irreducible vertex. The solution Γ contains the sum of all ladder

diagrams up to infinite order in γ.

+ Γeh0χ0(q,Ω) + χ̃(q,Ω) =

Fig. 14: Diagrammatic representation of the susceptibility, Eqs. (71), (72).

5.4 Calculation of susceptibilities

For the calculation of the dual susceptibility, the dual vertex function is first calculated by means

of a Bethe-Salpeter equation [37,38] (in the following we write the equations for a single-orbital

model for simplicity)

Γα
ωω′Ω(q) = γα

ωω′Ω −
T

N

∑

ω′′

∑

k

γα
ωω′′ΩG̃ω′′(k)G̃ω′′+Ω(k+ q)Γ α

ω′′ω′Ω(q). (69)

This equation is depicted diagrammatically in Fig. 13. Here the irreducible vertex is ap-

proximated by the local irreducible interaction of dual fermions to lowest-order and is hence

given by the reducible vertex of the impurity model γ (the index ’(4)’ is omitted in what fol-

lows). Here α = d,m stands for the density (d) and magnetic (m) electron-hole channels:

Γ d = Γ ↑↑↑↑ + Γ ↑↑↓↓, Γm = Γ ↑↑↑↑ − Γ ↑↑↓↓. The physical content of the BSE is repeated scatter-

ing of particle-hole pairs. In the two channels the particle-hole pair has a definite total spin S

and spin projection Sz. The density channel corresponds to the S = 0, Sz = 0 singlet channel,

while Γm is the vertex in the S = 1, Sz = 0 triplet channel. In the magnetic channel, the collec-

tive excitations are magnons. The vertex Γ ↑↓↓↑ (Γ ↓↑↑↓) which corresponds to the Sz = +1(−1)

spin projection of the S = 1 channel must be equal to Γm in the paramagnetic state (longitudinal

and transverse modes cannot be distinguished).

The BSE may be solved iteratively, starting from the approximation Γ (0) ≈ γ. Inserting this

into the right-hand-side of Eq. (69) yields a new approximation Γ (1). Repeating this step suc-

cessively generates a sum of all ladder diagrams with 1, . . . , n + 1 irreducible rungs in the
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Summary 

•  Cluster DMFT can treat well short‐range non‐
local correla-ons 

•  DF is an efficient scheme  to describe long‐range 
non‐local correla-on effects in solids  


