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6.2 Eva Pavarini

1 Introduction

The central equation of solid-state physics is the eigenvalue problem Ĥ	 = E	 , de�ned (in

the non-relativistic limit) by the many-body Hamiltonian

Ĥ = �1
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where frig are the coordinates of the Ne electrons, fR�g those of the Nn nuclei, Z� the atomic

numbers, and M� the nuclear masses.1 The Born-Oppenheimer Ansatz

	 (frig; fR�g) =  (frig; fR�g)�(fR�g); (1)

splits the Schr¤odinger equation Ĥ	 = E	 into the system
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:

Ĥe (frig; fR�g) = "(fR�g) (frig; fR�g);

Ĥn�(fR�g) = E�(fR�g);

(2)

where the Hamilton operator for the electrons (Ĥe) and that for the lattice (Ĥn) are

Ĥe = �1
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= T̂e + V̂ee + V̂en + V̂nn; (3)
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= T̂n + Ûn; (4)

and where in (4) we neglect non-adiabatic corrections.2 The electronic eigenvalue "(fR�g) acts

as potential for the nuclei and de�nes a Born-Oppenheimer energy surface. While (3) describes

the electronic structure, (4) yields the equilibrium crystal structure of the system and the phonon

modes. If the equilibrium structure fR0
�g is known, for example experimentally, we can focus

on (3). Because V̂ee is not separable, with increasing Ne, �nding the eigenvalues and eigenvec-

tors of (3) becomes quickly an unfeasible task, even for a single atom. The modern approach to

such many-body problems consists in building, starting from (3), minimal but material speci�c

low-energy many-body models, which retain the essential physics of the phenomenon we want

to understand [1].

The �rst step in model building consists in performing density-functional theory (DFT) calcula-

tions. DFT is based on the Hohenberg-Kohn theorem, which states that the ground-state energy

of the many-body Hamiltonian (3) is a functional E[n] of the electron density, minimized by

1In this lecture we use atomic units (see Appendix A).
2The neglected term is �̂n = �P
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the ground-state density. In the Kohn-Sham DFT scheme, the ground-state energy of (3) can be

obtained by solving an auxiliary Schr¤odinger equation ĥe = " , with

ĥe =
X

i

�

�1

2
r2

i + vR(ri)

�

=
X

i

ĥe(ri): (5)

The auxiliary Hamiltonian describesNe non-interacting electrons in an external potential, vR(r),

chosen such that the ground-state electron density n0(r) of the auxiliary model equals n(r), the

ground-state electron density of the original interacting system. This potential can be written as

vR(r) = �
X

�

Z�

jr � R�j +

Z

dr0 n(r0)

jr � r0j +
�Exc[n]

�n
= ven(r) + vH(r) + vxc(r); (6)

where vH(r) is the long-range Hartree term and Exc[n] is the so-called exchange-correlation

functional. The main dif�culty of DFT is that Exc[n] is not know, and it is therefore necessary

to �nd good approximations for it. Most common are the local-density approximation (LDA)

and its extensions; they work remarkably well for several classes of materials and properties,

as discussed in the lecture of David Singh. The class of systems at the center of this school,

however, is made of compounds for which many-body effects beyond the LDA play a crucial

role, leading to cooperative emergent phenomena; examples are transition-metal oxides with

partially �lled d-shells, Mott insulators, Kondo systems, and heavy fermions. For such strongly

correlated materials simple approximations to Exc[n] fail, even qualitatively.

For strongly correlated systems, the second step consists in using DFT to construct a localized

one-electron basis; this is usually achieved building from the Bloch functions  nk�(r), obtained

by solving (5) for a given crystal, material-speci�c Wannier functions

 in�(r) =
1p
N

X

k

e�iRi�k  nk�(r):

Localized Wannier functions can be constructed using different procedures: the downfolding

approach, discussed in [2] and in the lecture of Ole Andersen, the maximally-localized Wannier

functions algorithm of Marzari and Vanderbilt [3], and the projectors technique, described in

the lecture of Sasha Lichtenstein.

The third step consists in writing the Hamiltonian (3) in second quantization using such local-

ized Wannier functions as one-electron basis. The resulting many-body Hamiltonian is the sum

of an LDA term ĤLDA, a Coulomb term Û , and a double-counting correction ĤDC

Ĥe = ĤLDA + Û � ĤDC: (7)

The LDA part of the Hamiltonian is given by

ĤLDA = �
X

�

X

in;i0n0

ti;i
0

n;n0c
y
in�ci0n0�; (8)

where cy
in� (cin�) creates (annihilates) an electron of spin � in orbital n at site i, and

ti;i
0

n;n0 = �
Z

dr  in�(r)[�1

2
r2 + vR(r)] i0n0�(r): (9)
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The i 6= i0 contributions are the hopping integrals, while the on-site (i = i0) term yields the

crystal-�eld matrix

"i;i
n;n0 = �ti;in;n0 =

Z

dr  in�(r)

�

�1

2
r2 + vR(r)

�

 in0�(r): (10)

The Coulomb interaction Û is given by
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y
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np n0p0 =

Z

dr1

Z
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 in�(r1) jp�0(r2) j0p0�0(r2) i0n0�(r1)

jr1 � r2j
: (11)

The Coulomb tensor (11) is discussed in [4] and in the lecture of Robert Eder. The double

counting term ĤDC cancels the part of the electron-electron interaction contained and already

well accounted for in ĤLDA, such as the mean-�eld part of the exchange-correlation interaction

and the long-range Hartree term; the difference Û � ĤDC is therefore a short-range many-body

correction to the LDA [4]. The Hamiltonian (7) still describes the full many-body problem and

further approximations are necessary to make progress. Typically electrons are divided into two

types, correlated or heavy electrons (e.g., d or f open shells) and uncorrelated or light electrons.

For the correlated electrons the LDA fails qualitatively, and Û�ĤDC has to be accounted for ex-

plicitly; for the light electrons we can instead assume that LDA is overall a good approximations

and no correction Û � ĤDC is needed. The main effect of the light electrons is assumed to be

a renormalization of the Coulomb parameters (screening), which, as a consequence, cannot be

calculated any more as in (11); since the exact screening is not known, approximated schemes

such as the constrained LDA or the constrained random-phase approximation are commonly

used. These schemes are discussed in the lecture of Olle Gunnarsson. The separation of elec-

tron in light and heavy is the most delicate aspect of model building, as only in few cases the

distinction is really clear cut. In most cases we can only make a reasonable guess, that has to

be tested a posteriori, e.g., comparing with experiments, or better, when doable, extending the

basis of heavy electrons to include, e.g., other states close to the Fermi level.

In the last step, the minimal material-speci�c many-body model is solved using many-body

methods. If we solve it with the dynamical mean-�eld theory (DMFT) approach, the procedure

described above de�nes the LDA+DMFT method [4].

While strong-correlation effects arise from the Coulomb matrix (11), chemistry enters mostly

through the hopping integrals (9) and the crystal-�eld matrix (10). The purpose of this lecture is

to explain the physical origin of these parameters, and the role they can play. To do this we will

use some basic results of group theory. For simplicity, in most derivations we will use atomic

hydrogen-like orbitals as a basis; the generalization to Wannier functions is straightforward.

The lecture is organized as follows. In section 2 we introduce group theory; we discuss the case

of a free atom and the covering operations of molecules and crystals. In section 3 we analyze
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how and why, in a crystal or a molecule, the atomic l-shells split, becoming the crystal-�eld

levels; we focus in particular on the splitting due to the electric �eld generated at a given site by

the surrounding ions. In section 4 we discuss covalency effects, which lead to the formations

of bonds and bands (hopping integrals), and contribute to the splitting of atomic levels. In the

last section we analyze the Jahn-Teller effect, a cooperative distortion driven by the coupling

between electrons and lattice, which leads to further crystal-�eld splitting.

2 Elements of group theory

A group3 G is a set of elements fgig plus an operation, ?, which satisfy the following conditions

1. G is closed under group multiplication, i.e., gi ? gj = gk 2 G 8gi; gj 2 G

2. the associative law holds, i.e., gi ? (gj ? gk) = (gi ? gj) ? gk 8gi; gj; gk 2 G

3. there is an identity element e 2 G, such that gi ? e = e ? gi = gi 8gi 2 G

4. there is an inverse element g�1
i 2 G to each gi 2 G, such that gi ? g

�1
i = g�1

i ? gi = e

If the operation ? is commutative, so that gi ? gj = gj ? gi 8gi; gj 2 G, the group is called

Abelian. Groups with a �nite number h of elements are called �nite groups, and h is said to be

the order of the group. An element gi in group G is said to be conjugated to gj if

gi = gX ? gj ? g
�1
X ;

where gX is some element of G. The elements of G can be collected into classes Ck, each of

which is made of all Nk mutually conjugated elements. The identity forms a class by itself.

A subgroup of G is a set of elements of G which forms a group with the same multiplication

operation of G, ?. Every group has at least two trivial subgroups, the group itself and a group

formed by the identity only. A subgroup N of G is invariant if gNg�1 = N 8g 2 G.

Two groups G and G0 are homomorphic if there is a correspondence gi ! gi
0 between the

elements of the two groups, so that

(gi ? gj)
0 = g0

i ?
0 g0

j 8gi; gj 2 G;

where ? and ?0 are the multiplication operations of G and G0, respectively. A homomorphism is

in general a many-to-one correspondence, fg1; g2; : : : g ! g0
i. The identity ofG, e, has as image

the identity of G0, e0; however in general there are several elements of G, fa1 = e; a2; : : : aeg
which have e0 as image in G0. Furthermore, if gj 2 G has the image g0

j 2 G0, all elements

fgjaig have the same image g0
j in G0. The set fa1; a2; : : : aeg forms an invariant subgroup of G.

If the correspondence between the elements of G0 and G is one-to-one, G and G0 are said to be

isomorphic. A �nite group is speci�ed by the multiplication table of its elements; two groups

with the same multiplication table are isomorphic.

3This section is a short summary of results relevant for the topics treated; it does not aim to be a rigorous

introduction to group theory. For the latter, we refer the interested reader to specialized books [5, 6].
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Fig. 1: The symmetry operations which transform the ammonia molecule NH3 into itself (viewed

from the top). The point group is C3v, the group of covering operations of a trigonal pyramid.

Some of the groups relevant in physics are:

� S(n), the group of permutations of n objects; ? is the composition of permutations

� the group of vectors in three dimensions; ? is the sum of vectors

� groups of matrices, with the matrix product as ?; in particular

� U(n), the group of unitary n � n matrices

� O(n), the group of orthogonal n � n matrices

� SU(n), the group of unitary n� n matrices with determinant 1

� SO(n), the group of orthogonal n � n matrices with determinant 1

� �nite groups of matrices

The group of all proper rotations in three dimensions is isomorphic to SO(3). Every �nite

group of order n is isomorphic to a subgroup of S(n). The set of all geometric symmetries that

leave at least one point �xed (the origin) forms the point group. The point groups of crystals

or molecules are isomorphic to �nite subgroups of the orthogonal group O(3); they are also

the groups of covering operations of a given polyhedron. For example, the point group of the

ammonia molecule NH3 is the group of covering operations of a trigonal pyramid, and has six

elements, shown in Fig. 1: the identity E, two rotations, by 2�=3 and 4�=3 (operations C3 and

C2
3 = C3 
 C3), and three re�ections (�, �0, �00). This group, called C3v, has three classes,

C1 = fEg, C2 = fC3; C
2
3g, and C3 = f�, �0, �00g.



Crystal-Field, Tight-Binding and Jahn-Teller 6.7

A representation of an abstract groupG is any groupG0 homomorphic (or isomorphic) toG that

is composed of speci�c operators acting on a given linear space L. If G and G0 are isomorphic

the representation is said to be faithful. In this lecture we work with representations made of

square matrices, which we indicate as � (gi); the multiplication operation of the group, ?, is the

matrix product. As an example, we consider the group G of the rotations about the z axis. In

this example, G is the abstract group. We can associate to each counterclockwise rotation by an

angle � (i.e., to each element g = R(�) of G) a matrix M(�)

g = R(�) ! M(�) =

 

cos � � sin �

sin � cos �

!

:

The elements of the matrix are the coef�cients of the transformation

x0 = x cos � � y sin �;

y0 = y sin � + x cos �:

The matrices M(�) form a representation of G acting on the two-dimensional linear space

L of vectors in the xy plane. The number of rows and columns of the matrices yields the

dimensionality d of the representation; in the example just discussed d = 2.

A matrix representation � is called reducible if every matrix in the representation, � (gi), can

be written in the same block form through the same similarity transformation.4 If this cannot

be done, the representation is said to be irreducible. For example if

� (gi) =

 

�1(gi) 0

0 �2(gi)

!

8gi 2 G;

the representation � is said to be reducible. The number of irreducible representations is equal

to the number of the classes. If the group is Abelian, the number of irreducible representations

equals the number of elements and the irreducible representations are all one dimensional.

If the matrices of a representation are unitary, the representation is said to be unitary. A repre-

sentation of a �nite group made of non-singular n � n matrices is equivalent, through a simi-

larity transformation, to a representation by unitary matrices. For �nite groups, it is therefore

always possible to work with unitary representations. There is nevertheless an in�nite number

of equivalent representations of a group G, and thus a large arbitrariness in the form of the

representation. However the trace of a matrix is invariant under a similarity transformation; it

is therefore useful to classify matrix representations through their characters, de�ned as

�(gi) = Tr � (gi):

The matrix representations of all the elements gk in a given class, Ck, have the same character,

�(gk) = �(Ck), 8gk 2 Ck. Furthermore the following orthogonality relations hold for the

4A similarity transformation is the transformation of a n�nmatrix � into another n�nmatrix � 0 = B�1AB,

where B is an invertible n� n matrix.
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irreducible representations �j of a given group

X

i

[�j1(gi)]
��j2(gi) =

X

k

Nk[�j1(Ck)]��j2(Ck) = h�j1;j2; (12)

X

j

[�j(Ck)]��j(Cl) =
h

Nk

�l;k; (13)

where h =
P

k Nk is the order of the group, Nk the number of elements in the class, and where

for simplicity we have assumed that the irreducible representations are unitary matrices.

It is convenient to display the characters of irreducible representations in a character table. For

the point group C3v such character table is

C3v E 2C3 3�v

�1 1 1 1

�2 1 1 �1

�3 2 �1 0

where for each class a representative element and, in front of it, the number of elements in the

class, Nk, are given (here C1 ! E, C2 ! 2C3, C3 ! 3�v). The orthogonality relations tell us

that different columns or different rows (the latter with weights Nk, see (12)) form orthogonal

vectors. The �rst column of the character table is the trace of the identity and therefore yields

the dimensionality of the irreducible representation. The �rst irreducible representation, �1,

has character 1 for every element of the group, and it is called trivial representation. The

trivial representation exists for any group and is one dimensional. If an object (a molecule

or a crystal) is invariant under all symmetry operations of a given group, we can say that it

transforms according to the trivial representation.

A reducible representation can be decomposed in irreducible ones using the orthogonality rela-

tions of characters. One can show that, if �(gi) are the characters of the reducible representation,

they must be given by a linear combination of the characters of irreducible representations

�(gi) =
X

j

aj�j(gi);

where the coef�cients are determined from the orthogonality relations

aj =
1

h

X

k

Nk[�j(Ck)]��(Ck):

Hence

� = a1�1 � a2�2 � � � � =
M

j

aj�j : (14)

In quantum mechanics we are interested in the group of symmetry operators O(g) which leave

the Hamiltonian invariant, the group of the Hamiltonian, and in their action on wavefunctions.

It is therefore important to know how a symmetry operator acts on a function f(r) and on an

operator Ĥ. A function f(r) is transformed by the symmetry operation O(g) into the function
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Fig. 2: Rotation of an x2 � y2 atomic orbital by an angle 2�=4 about the z axis (operation C4).

O(g)f(r) = f 0(r0), where r0 = gr are the transformed coordinates, i.e.,

f 0(r0) = O(g)f(r) = f(g�1r): (15)

This equation tells us how to construct an operator that corresponds to a given geometrical trans-

formation. Fig. 2 shows (15) for an atomic x2 � y2 function and a rotation by 2�=4 (operation

C4); the inverse operation is the rotation by �2�=4 (operation C�4 = C3
4 ).

The Hamiltonian, or any other operator Ĥ, transforms as follows

Ĥ 0 = O(g)ĤO(g�1): (16)

The group of the Hamiltonian is the group of h operators fO(g)g which leave Ĥ unchanged

(Ĥ = Ĥ 0), i.e., which commute with the Hamiltonian. If  (r) is an eigenvector of the Hamil-

tonian with eigenvalue "j , then for any operator in the group of the Hamiltonian

O(g)Ĥ (r) = O(g)"j (r) = "jO(g) (r) = ĤO(g) (r):

Thus O(g) (r) is an eigenvector of Ĥ with eigenvalue "j . The wavefunctions fO(g) (r)g,

where the O(g) are operators in the group of the Hamiltonian, are all degenerate eigenvectors

of Ĥ . They de�ne a linear space Lj of functions f(x) =
P

g cg O(g) (r), where the coef�-

cients cg are complex numbers. The space Lj is invariant under the action of the operatorsO(g)

in the group of the Hamiltonian, and has dimension dj � h. If Lj includes all wavefunctions

with eigenvalue "j , the degeneracy is said to be essential. If there are degenerate wavefunctions

which are not in Lj , this additional degeneracy is said to be accidental; accidental degenera-

cies sometime occur because of hidden symmetries. The symmetry group of the Hamiltonian

is also the symmetry group of the solid or the molecule described by the Hamiltonian. The

Hamiltonian, as the physical system, is invariant under all symmetry operations in the group

and therefore transforms according to the trivial irreducible representation.

Let us assume that f i
j(r)g is a set of dj � h linearly independent and essentially degenerate

wavefunctions with eigenvalue "j which span Lj . We can then construct a dj-dimensional
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irreducible matrix representation of the group of the Hamiltonian using the set f i
j(r)g as a

basis. The matrices of this representation, �j(g), are de�ned formally by

O(g) i
j(r) =

X

i0

� i0;i
j (g) i0

j (r):

The function  i
j(r) is said to belong to the i-th row of the j-th irreducible representation. If a

function  i
j(r) belongs to the i-th row of the j-th irreducible representation with dimensionality

dj , the remaining dj � 1 functions required to complete the basis for that irreducible represen-

tations are called partners functions of  i
j(r). Two functions belonging to different irreducible

representations or to different rows of the same irreducibile representations are orthogonal

h i
j j i0

j0i = �i;i0�j;j0
1

dj

X

k

h k
j j k

j i:

Any function f(r) in the space on which a groupG of operators fO(g)g acts can be decomposed

as

f(r) =

Nj
X

j

dj
X

i

f i
j(r);

where j = 1; : : : ; Nj labels all distinct irreducible representations of G, and f i
j belongs to the

i-th row of the j-th irreducible representation. The components f i
j(r) can be obtained by means

of the projection operator P̂ ii
j

P̂ ii
j =

dj

h

X

g

�

� ii
j (g)

��
O(g); (17)

f i
j(r) = P̂ ii

j f(r):

The symmetry group G of the Hamiltonian can be often written as a direct product of two

subgroups Ga and Gb, of dimension ha and hb. The direct product G = Ga 
 Gb is the group

G with elements fgg

fgg = fE = (ea; eb); g2 = (ea; g2b
); : : : ; gh = (gha

; ghb
)g;

with group multiplication

g ? g0 = (ga; gb) ? (g0
a; g

0
b) = (ga ? g

0
a; gb ? g

0
b):

The matrices of the irreducible representations ofG, �j(g), can be constructed as direct products

of the matrices of the irreducible representations of Ga and Gb, �ja
(ga) and �ja

(gb)

[�j(g)]i ;i0 = [�ja
(ga)]ia;i0a 
 [�jb

(gb)]
i
b
;i0

b = [�ja
(ga) 
 �jb

(gb)]
iai

b
;i0ai0

b:

The character of a direct product representation is the product of the characters

�j(g) = �ja
(ga)�jb

(gb):
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Fig. 3: Stereographic projections illustrating the effect of some point symmetry operations. A

point P at position r in the northern hemisphere is joint to the south pole S; the intersection of

the line PS with the equatorial plane (+) is P 0, the stereographic projection of P . To treat the

two hemispheres symmetrically, a point in the southern hemisphere is projected from the north

pole N; the intersection with the equatorial plane is shown as an empty circle. Let us assume

that P is in the northern hemisphere. The identity operation leaves P untouched; this is shown

in the picture of the equatorial circle labeled with E. The operations g = I; C4; S4; �v; �h; �d

move P (grey +) to position r0 = gr (black circle or black +); this is shown in the pictures

labeled with g. For g = �d, the two-fold axes (labeled with a digon) are also shown. The

principal axis is perpendicular to the equatorial plane.

Let us now consider the geometrical symmetry operations and symmetry groups relevant for

atoms, molecules and solids. The symmetry group of an atom (central potential) is at least

O(3) = SO(3) 
 Ci, where SO(3) is the group of proper rotations in three dimensions and

Ci = fE; Ig is the group of order two, which has the identity E and the inversion I as only

elements. The group O(3) includes proper rotations and improper rotations; the latter are com-

posed operations made of rotations and inversion. For molecules and crystals, only a subset of

the proper and improper rotations are covering operations. These point group operations can

include

� E, the identity

� Cn, a rotation by an angle 2�=n; in a crystal, n can only take the values n = 2; 3; 4; 6
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� � re�ection in a plane, classi�ed as

� �h, re�ection through a plane perpendicular to the axis of highest rotation symmetry,

called principal axis

� �v, re�ection through a plane to which the principal axis belongs

� �d, re�ection through a plane to which the principal axis belongs, and bisecting the

angle between the two-fold axes perpendicular to the principal axis.

� Sn = �h 
Cn, improper rotation of an angle 2�=n; in a crystal, n can only take the values

n = 3; 4; 6.

� I = S2, the inversion.

Some of these operations are illustrated in Fig. 3 using stereographic projections.

In a crystal, additional covering operations are

� lattice translations T = n1a + n2b + n3c, where ni are integers and a, b, c the primitive

translations that de�ne the unit cell.

� glide planes and screw axes, which are made by a point group operation R and a transla-

tion of a vector f which is a fraction of a lattice vector.

The lattice translations form the translation group. The complete set of covering operation of a

crystal is known as space group. In three dimensions, there are 32 crystallographic point groups

and 230 space groups. An operation in the space group is indicated as f� jRg, where R is an

element of the point group, and � a translation (� = T or � = f ). Space groups which do not

include glide planes or screw axes are said to be symmorphic; the remaining space groups are

said to be non symmorphic.

To understand solids and molecules, it is often useful to work in a basis of atomic orbitals.

Atomic functions can be used, e.g., as a starting point to construct orbitals for molecules and

crystals, as in the tight-binding method. These orbitals (see Appendix B) are de�ned as

 nlm(�; �; �) = Rnl(�)Y
l

m(�; �);

where Rnl(�) is the radial function, Y l
m(�; �) a spherical harmonic, � = Zr, Z the atomic

number, and nlm the quantum numbers. In a hydrogen-like atom, the states with the same prin-

cipal quantum number n but different angular momentum l are degenerate. This �accidental�

degeneracy is caused by a hidden symmetry5 of the Hamiltonian of the hydrogen atom. The

(2l+1)-fold degeneracy of a given l shell is instead essential for any system withO(3) symme-

try. Thus we can construct irreducible representations of O(3) with dimensionality d = 2l + 1

5It can be shown that the degeneracy is associated with rotational symmetry in 4 dimensions and that the group

the Hamiltonian (1=r potential) is actually O(4). This additional symmetry is associated with the conservation

of the Laplace-Runge-Lenz (LRL) vector; a generalization of the LRL vector to the case of an arbitrary central

potential also exist.
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using as basis set hydrogen-like atomic functions with principal quantum number n and angular

momentum quantum number l.

Let us calculate the characters of such representations. The radial function is invariant under

proper and improper rotations; thus we have only to consider the effect of these operations on

the spherical harmonics. According to (15), the rotation of Y l
m(�; �) about the z axis by an angle

� (C�) is equivalent to the rotation of the xy axes by ��. Thus

O(C�)Y l
m(�; �) = Y l

m(�; �� �) = e�im�Y l
m(�; �):

Therefore the matrix � l(C�) of the d-dimensional representation � l has elements

[� l(C�)]m;m0 = �m;m0e�im�:

The character of the representation � l for a rotation C� is then

�l(�) =
l
X

m=�l

e�im� =
sin(l + 1

2
)�

sin �
2

:

This result is valid for any direction of the rotation axis, and for any d-dimensional basis set

obtained by making linear combinations of the Y l
m(�; �) functions, because the trace of a matrix

is invariant under basis transformation; in particular the result is valid for real combinations of

spherical harmonics (Appendix B), the basis usually adopted to study crystals and molecules,

and for a set of Wannier functions with the symmetry of spherical or a real harmonics in a given

l shell. The characters of the identity and the inversion are

�l(E) = 2l + 1;

�l(I) = (�1)l(2l + 1):

The re�ection through an horizontal plane, �h, can be written as �h = I 
 C2; thus

�l(�h) = (�1)l:

This result is also valid for �v and �d, since it is alway possible to choose the quantization axis

perpendicular to the re�ection plane. Finally, an improper rotation S� = �h 
 C� can be also

obtained as S� = I 
 C�+�; thus

�l(S�) = (�1)l sin(l + 1
2
)(�+ �)

sin �+�
2

:

In Tab. 1 we summarize the characters of � l. Since O(3) = SO(3) 
 Ci, the characters in

Tab. 1 can also be obtained as product of the characters of the same representation in SO(3),

� l
SO(3), and one of the irreducible representations of the group Ci, Ag (even) and Au (odd). The

characters of � l
SO(3) and the table of characters of Ci are shown below

SO(3) E C�

� l
SO(3) 2l + 1 sin(l + 1

2
)�=sin �

2

Ci E I

Ag 1 1

Au 1 �1
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O(3) E C� I S� �

� l 2l + 1 sin(l + 1
2
)�=sin �

2
(�1)l(2l + 1) (�1)lsin(l + 1

2
)(� + �)=sin �+�

2
(�1)l

Table 1: Characters of the irreducible representations � l of group O(3).

The direct product representation � l
SO(3) 
 Ag with l even yields � l with l = 0; 2; 4; : : : , while

� l
SO(3) 
 Au with l odd yields � l with l = 1; 3; 5; : : : .

The representation � l is reducible in crystallographic or molecular point groups; we can �nd

its decomposition in irreducible representations using the decomposition formula (14). Thus

Tab. 1 can be viewed as the starting point to go from atoms to molecules and crystals.

3 Crystal-�eld theory

In an atom, the potential vR(r) which determines the one-electron energies (10) is central and

has (at least) all the symmetries of O(3). In a molecule or a solid, vR(r) has in general lower

symmetry, the symmetry of a �nite point group. Thus electronic states that are degenerate in an

atom can split in a solid or a molecule. The symmetry reduction arises from the crystal �eld;

the latter has two components, the Coulomb potential generated by the surrounding ions and the

ligand �eld due to the bonding neighbors. In this section we will analyze the �rst contribution;

the second effect will be discussed in the next section.

Let us assume that the crystal is ionic and the ions can be treated as point charges q� (point

charge model), and let us neglect vH(r) and vxc(r) in (6). Then, the one-electron potential can

be written as

vR(r) =
X

�

q�

jR� � rj = v0(r) +
X

�6=0

q�

jR� � rj = v0(r) + vc(r); (18)

where R� are the positions of the ions and q� their charges. The term v0(r) is the ionic central

potential at site R0, and has spherical symmetry. The term vc(r) is the electric �eld generated

at a given site R0 by all the surrounding ions in the crystal and it is called crystal-�eld potential.

Let us consider a crystal with the perovskite structure ABC3, shown in Fig. 4. We want to

calculate the crystal-�eld potential at the site of the transition metal, B. Let us �rst assume that

only the contribution of nearest neighbors (the negative C ions, usually oxygens) is relevant. The

C ions are located at positions (�a; 0; 0); (0;�a; 0); (0; 0;�a), where a is the lattice constant,

and have all the same charge qC . Expanding around r = 0, we �nd that the �rst contribution to

vc(r) with less than spherical symmetry is

voct(r) =
35

4

qC

a5

�

x4 + y4 + z4 � 3

5
r4
�

= D

�

x4 + y4 + z4 � 3

5
r4
�

:

We can rewrite this potential as

voct(r) =
7

6

1p
�

qC

a5
r4

"

Y 4
0 (�; �) +

r

5

14

�

Y 4
4 (�; �) + Y 4

�4(�; �)
�

#

; (19)
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Fig. 4: The unit cell of a cubic perovskite ABC3 and its symmetry axes; the lattice constant is

a. The transition metal B (red) is at (0; 0; 0); the ligands C (green) are located at (�a; 0; 0),
(0;�a; 0),(0; 0;�a), forming an octahedron; the cations A are located at (�a=2;�a=2;�a=2),
(�a=2;�a=2;�a=2), (�a=2;�a=2;�a=2), (�a=2;�a=2;�a=2), forming a cube. The bottom

�gures show different views illustrating the rotational symmetries of the cell.

where

Y 4
0 (�; �) =

3

16

1p
�

(35 cos4 � � 30 cos2 � + 3);

Y 4
�4(�; �) =

3

16

35p
2�

sin4 �e�4i�:

Let us now calculate the crystal �eld due to the cubic cage of cations A (with charge qA), shown

in Fig. 4. One can show that

vcube(r) = �8

9

qA

qC
voct(r);

i.e., vcube(r) has the same form as voct(r); this happens because a cube and an octahedron are

dual polyhedra6 and have therefore the same symmetry properties. If qA=qC > 0, vcube(r) has

opposite sign than voct(r); however, in the case of a perovskite, cations are positive ions; thus

the crystal �eld due to the A cage has the same sign of the �eld generated by the B octahedron.

6Every polyhedron has a dual which can be obtained by exchanging the location of faces and vertices.
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The crystal-�eld potential vc(r) can split the (2l + 1)-fold degeneracy of the atomic levels. To

calculate how the l manifold splits, we use group theory. We assume for simplicity that the

symmetry is only O (group of the proper rotations which leave a cube invariant); using the full

symmetry group of the cube, Oh = O 
 Ci, does not change the result, because the spherical

harmonics have �xed parity. The character table of group O is

O E 8C3 3C2 6C2 6C4

(x2 + y2 + z2) A1 1 1 1 1 1

A2 1 1 1 �1 �1

(x2 � y2; 3z2 � r2) E 2 �1 2 0 0

(x; y; z) T1 3 0 �1 �1 1

(xy; xz; yz) T2 3 0 �1 1 �1

(20)

We want to calculate the characters of the reducible matrix representation � l constructed using

spherical harmonics with quantum numbers lm as a basis. From Tab. 1

�l(C2) = (�1)l

�l(C3) =

8

>

<

>

:

1 l = 0; 3; : : :

0 l = 1; 4; : : :

�1 l = 2; 5; : : :

�l(C4) =

(

1 l = 0; 1; 4; 5; : : :

�1 l = 2; 3; 6; 7; : : :

For the s; p; d; f shells we can therefore write for representations � l

O E 8C3 3C2 6C2 6C4

� s 1 1 1 1 1

� p 3 0 �1 �1 1

� d 5 �1 1 1 �1

� f 7 1 �1 �1 �1

We can now determine how the reducible representations � l splits using the decomposition for-

mula Eq. (14). Hereafter for convenience the symmetry representations of electronic terms are

written in lower case to distinguish them from capital letters used for the nuclear displacements

and the general irreducible representations. We �nd

� s = a1

� p = t1

� d = e� t2

� f = a2 � t1 � t2

Thus, the s- and the p-functions do not split, because the a1 irreducible representation is one-

dimensional and the t1 irreducible representation is 3-dimensional. However, d-functions split
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into a doublet and a triplet, while f -functions into a singlet and two triplets. To calculate

which functions belong to which representation we can, e.g., use the projector (17). For d-

electrons, relevant for the case of a transition-metal ion, we �nd that the d-shell splits into e

(x2 � y2; 3z2 � r2) and t2 (xy; xz; yz). The partner functions for the representations of group O

are given in the �rst column of the character table (20), on the left.

The full symmetry of the B site is Oh. The group Oh can be obtained as direct product, Oh =

O
Ci; with respect to O, the groupOh has twice the number of elements and classes, and thus

twice the number of irreducible representations. The latter split into even (a1g; a2g; eg; t1g; t2g)

and odd (a1u; a2u; eu; t1u; t2u) representations. The d-functions are even, and therefore x2 � y2

and 3z2 � r2 are partners functions for the eg irreducibile representation, while xy; xz; yz are

partner functions for the t2g irreducible representation. The p-orbitals are odd, and are partners

functions for the t1u representation.

Group theory tells us if the degenerate 2l + 1 levels split at a given site in a lattice, but not of

how much they do split, and which orbitals are higher in energy. We can however calculate

the crystal-�eld splitting approximately using (19). Let us consider �rst the case in which the

central atom B is a transition-metal ion in a 3d1 con�guration (e.g., Ti3+ or V4+), which has

degeneracy 2l + 1 = 5. In the perovskite structure, the octahedral potential voct(r) yields the

following element of matrix between states in the d1 manifold

h n20 jv̂octj n20 i = +6Dq

h n2�1jv̂octj n2�1i = �4Dq

h n2�2jv̂octj n2�2i = + Dq

h n2�2jv̂octj n2�2i = +5Dq

where Dq = �qChr4i=6a5. The crystal-�eld splitting between eg and t2g-states can be the

obtained by diagonalizing the crystal-�eld matrix

HCF =

0

B

B

B

B

B

@

Dq 0 0 0 5Dq

0 �4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 �4Dq 0

5Dq 0 0 0 Dq

1

C

C

C

C

C

A

:

We �nd two degenerate eg eigenvectors with energy 6Dq

j n20i = j3z2 � r2i;
1p
2

[j n22i + j n2�2i] = jx2 � y2i;
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Fig. 5: The Cu eg and t2g Wannier orbitals for the cubic perovskite KCuF3, obtained from �rst

principles calculations, using a Wannier basis that spans all bands.

and three degenerate t2g eigenvectors with energy �4Dq

ip
2

[j n22i � j n2�2i] = jxyi;

1p
2

[j n21i � j n2�1i] = jxzi;

ip
2

[j n21i + j n2�1i] = jyzi:

The splitting is

� = Eeg
�Et2g

= 10Dq:

Thus the eg-states are higher in energy than the t2g-states. This happens because eg electrons

point towards the negative C ions (see Fig. 5), and will therefore feel a larger Coulomb repulsion

than t2g electrons, which point between the negative C ions.

For a generic lattice, we can expand the crystal-�eld potential (18) in spherical harmonics using

1

jr1 � r2j
=

1
X

k=0

rk
<

rk+1
>

4�

2k + 1

k
X

q=�k

Y k
q (�2; �2)Y

k

q (�1; �1);

where r< ( r>) is the smaller (larger) of r1 and r2. The crystal-�eld potential can then be written
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as

vc(r) =
1
X

k=0

k
X

q=�k

Bk
qY

k
q ; (21)

where Bk
q = (�1)q �Bk

�q. Although the series in (21) is in principle in�nite, one can terminate it

by specifying the wavefunctions, since

hY l
mjY k

q jY l
m0i = 0 if k > 2l:

For example, for p electrons k � 2, for d-electrons, k � 4, and f electrons k � 6. Thus, for

d-electrons and Oh symmetry, the terms that appear in the potential (19) are actually also the

only ones to be taken into account.

The derivation of (19) and (21) presented here might let us think that the �rst nearest neighbors

are those that determine the crystal �eld. However, this is often not the case, because Coulomb

repulsion is a long-range interaction; for example, in some systems the �rst nearest neighbors

yield cubic symmetry at a given site but further neighbors lower the symmetry.7

The point charge model discussed in this section is useful to explain the relation between crystal

�eld and site symmetry, however yields unsatisfactory results for the crystal-�eld splitting in

real materials. Corrections beyond the point-charge approximation turn out to be important.

In addition, as we will see in the next section, in many systems the crystal �eld has a large,

sometimes dominant, covalent contribution, the ligand �eld. The modern approach to calculate

crystal-�eld splittings including the ligand-�eld contribution is based on material-speci�c DFT

potentials and DFT localized Wannier functions as one-electron basis. We will discuss this

approach at the end of the next section.

Let us now analyze the splitting of energy levels in a many-electron 3dn manifold. Apart from

the crystal �eld (21), in calculating the energies of states in such manifold, we have also to take

into account the electron-electron Coulomb repulsion. This will be treated in detail in the lecture

of Robert Eder. Here we brie�y discuss some simple examples: 3d1, 3d9 and 3d2. We have seen

that for a d-electron surrounded by an octahedron of negative ions, � = 10Dq; the energy

difference between the electronic con�guration e1g and electronic con�guration t12g is therefore

�. In the case of a single hole in the d-shell (3d9 ion, e.g., Cu2+), the energy difference between

t62ge
3
g and t52ge

4
g, is then just ��, because of electron-hole symmetry. The d crystal-�eld orbitals

(Wannier functions) for the 3d9 perovskite KCuF3 (cubic structure) are shown in Fig. 5. For a

generic 3dn con�guration we can consider two limit cases, strong or weak crystal �eld. If the

crystal �eld is strong, one can treat Coulomb electron-electron interaction as a perturbation, and

classify the atomic states according to the crystal �eld. Let us consider the case of a perovskite

in which the central ion has electronic con�guration 3t22g (e.g., V3+); if we neglect the electron-

electron repulsion, the excited states are t12ge
1
g, with energy �, and e2g, with energy 2�. We

can obtain a representation of the group Oh in the basis of two-electron states from the direct

product of the representations in the basis of single-electron states. By using the decomposition

7This means that Oh is not the point group.
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formula (14), we can then show that

t2g 
 t2g = a1g � eg � t1g � t2g

eg 
 t2g = t1g � t2g

eg 
 eg = a1g � a2g � eg

The Coulomb repulsion acts as a perturbation and can split degenerate states belonging to dif-

ferent irreducible representations. In particular, the manifold t22g splits into 1a1g, 1eg;
1 t2g, and

3t1g (ground state), where (2S+1) indicates the spin degeneracy of the state.

If the crystal �eld is weak, the opposite approach can be used; the crystal �eld is treated as a

perturbation of the atomic Coulomb multiplets, labeled as 2S+1L. In this case the two-electron

ground state is the triplet 3F and the Oh crystal �eld splits it into 3t1g;
3 t2g; and 3a2g.

Up to here we have neglected the spin-orbit interaction. The latter plays an important role, e.g.,

in 5d- or f -systems. In the case in which the crystal �eld is weak with respect to the spin-orbit

coupling, as it happens in many f -electron compounds, the total angular momentum J is a

good quantum number. It is therefore useful to construct a reducible representation of the point

group, � J , in the basis of the eigenvectors of total angular momentum. The character of � J for

a rotation is

�J(�) =
sin(J + 1

2
)�

sin �
2

;

For half-integral values of J (odd number of electrons), �J(�) has the property

�J(�+ 2�) = ��J (�):

We therefore expand the original point group to include a new element, R, which represents the

rotation by 2�. The new group has twice the number of elements of the original group and is

known as double group. In the case of the group O the double group is labeled with O0 and its

character table is

O0 E 8C3 3C2 + 3RC2 6C2 + 6RC2 6C4 R 8RC3 6RC4

�1 1 1 1 1 1 1 1 1

�2 1 1 1 �1 �1 1 1 �1

�3 2 �1 2 0 0 2 �1 0

�4 3 0 �1 �1 1 3 0 1

�5 3 0 �1 1 �1 3 0 �1

�6 2 1 0 0
p

2 �2 �1 �
p

2

�7 2 1 0 0 �
p

2 �2 �1
p

2

�8 4 �1 0 0 0 �4 1 0

To determine if the atomic levels in a given J manifold split we use the same procedure adopted
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for the l-shell. First we calculate the characters of all elements in the group

�J(E) = 2J + 1

�J(R) = �(2J + 1)

�J(C2) = 0

�J(RC2) = 0

�J(C3) =

8

>

<

>

:

1 J = 1=2; 7=2; : : :

�1 J = 3=2; 9=2; : : :

0 J = 5=2; 11=2 : : :

�J(RC3) =

8

>

<

>

:

�1 J = 1=2; 7=2; : : :

1 J = 3=2; 9=2; : : :

0 J = 5=2; 11=2 : : :

�J(C4) =

8

>

<

>

:

p
2 J = 1=2; 9=2 : : :

0 J = 3=2; 7=2; : : :

�
p

2 J = 5=2; 13=2; : : :

�J(RC4) =

8

>

<

>

:

�
p

2 J = 1=2; 9=2 : : :

0 J = 3=2; 7=2; : : :

+
p

2 J = 5=2; 13=2; : : :

Next we use the decomposition formula (14) to �nd how the reducible representation � J is

decomposed in irreducible ones. One can show that

�
1

2 = �6

�
3

2 = �8

�
5

2 = �7 � �8

�
7

2 = �6 � �7 � �8

�
9

2 = �6 � 2�8

Since �6; �7; �8 have dimensionality d � 2, all levels remain at least two-fold degenerate. This

is an example of Kramers degeneracy. Kramers theorem states that, in the presence of (only)

electric �elds, the energy levels of a system with odd number of fermions are at least two-fold

degenerate. Kramers degeneracy is a consequence of time-reversal symmetry.

4 Tight-binding method

In solids, electrons delocalize to form bonds and bands. In the Hamiltonian (8), these arise

from the elements of matrix (9), the hopping integrals. But what is the speci�c form of the

Hamiltonian (8) for a given system? Which parameters are large? Which are zero? The simplest

way to answer these questions is to use the tight-binding method, which consists in expanding

the crystal wavefunctions in the basis of functions centered at each atomic site; here we use
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as a basis atomic orbitals,8 f nlm(r)g. Let us �rst consider a simple example, a homonuclear

molecular ion formed by two hydrogen nuclei, located at R1 and R2, and one electron. The

electronic Hamiltonian for such an H+
2 molecular ion is

ĥe(r) = �1

2
r2 � 1

jr � R1j
� 1

jr � R2j
= �1

2
r2 +v(r �R1)+v(r �R2) = �1

2
r2 +vR(r):

We take as atomic basis the ground state 1s atomic orbitals,  1s(r � R1) and  1s(r � R2);

in the free hydrogen atom they have energy "01s. In this basis, the Hamiltonian and the overlap

matrix have the form

H = "01s O +

 

�"1s Vss�

Vss� �"1s

!

O =

 

1 S

S 1

!

where

�"1s =

Z

dr  1s(r � R�) [vR(r) � v(r � R�)] 1s(r � R�); � = 1; 2

Vss� =

Z

dr  1s(r � R�)v(r � R�) 1s(r � R�0); � 6= �0

S =

Z

dr  1s(r � R�) 1s(r � R�0); � 6= �0:

The hopping integral t = �Vss� > 0 is a Slater-Koster two-center integral (Appendix B).

The ground state of the molecular ion is the bonding linear combination

�B
1s(r) = [ 1s(r � R1) +  1s(r � R2)] =

p

2(1 + S);

and has energy

EB = "01s +
�"1s + Vss�

1 + S
:

The label � in Vss� indicates that the bonding state is symmetrical with respect to rotations about

the bond axis (see Fig. 6). The excited state is the antibonding state

�A
1s(r) = [ 1s(r � R1) �  1s(r � R2)] =

p

2(1 � S);

and has energy

EA = "01s +
�"1s � Vss�

1 � S
:

Let us now consider a crystal. If we neglect vH(r) and vxc(r) in (6), the one-electron Hamilto-

nian ĥe(r) in (5) becomes

ĥe(r) = �1

2
r2 �

X

i;�

Zi;�

jr � Ti � R�j = �1

2
r2 +

X

i;�

v(r � Ti � R�) = �1

2
r2 + vR(r);

8Linear Combination of Atomic Orbitals (LCAO) approach.
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Fig. 6: Pictorial view of the antibonding (top) and bonding (bonding) state of H+
2 .

where R� are the positions of the basis f�g atoms in the unit cell and Ti lattice vectors. For

each atomic orbital with quantum numbers lm we construct a Bloch state

 �
lm(k; r) =

1p
N

X

i

eiTi�k  lm(r � Ti � R�): (22)

In the Bloch basis (22), the Hamiltonian and the overlap matrix are given by

H�;�0

lm;l0m0(k) = h �
lm(k)jĥej �0

l0m0(k)i;
O�;�0

lm;l0m0(k) = h �
lm(k)j �0

l0m0(k)i:

They de�ne a generalized eigenvalue problem, the solution of which yields the band structure.

The Hamiltonian matrix is given by

H�;�0

lm;l0m0(k) = "0l0�0O
�;�0

lm;l0m0(k) +�"�
lm;l0m0��;�0 � 1

N

X

i�6=i0�0

ei(Ti0�Ti)�k ti�;i0�0

lm;l0m0 :

Here "0l� are atomic levels, and �"�
lm;l0m0 the crystal-�eld matrix

�"�
lm;l0m0 =

Z

dr  lm(r � R�)[vR(r) � v(r � R�)] l0m0(r � R�); (23)

which, as in the case of the H+
2 ion, is a two-center integral. Finally

ti�;i0�0

lm;l0m0 = �
Z

dr  lm(r � R� � Ti)[vR(r) � v(r � R�0 � Ti0)] l0m0(r � R�0 � Ti0): (24)
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Fig. 7: Independent Slater-Koster two-center integrals fors, p andd atomic orbitals (Appendix
B). The label� indicates that the bonding state is symmetrical with respect to rotations about
the bond axis; the label� that the bond axis lies in a nodal plane; the label� that the bond axis
lies in two nodal planes.

The hopping integrals (24) contain two-center and three-center terms; if the basis is localized,
we can neglect the three-center contributions and assume that t i�;i 0� 0

lm;l 0m0 � � V i�;i 0� 0

lm;l 0m0; where

V i�;i 0� 0

lm;l 0m0 =
Z

dr  lm (r � R � � Ti )v(r � R � � Ti ) l0m0(r � R � 0 � Ti 0)

is a two-center integral. A general Slater-Koster two-center integral can be expressed as a
function of few independent two-center integrals, shown inFig. 7 for s, p, andd-functions. A
part from the� bond, which is the strongest, other bonds are possible; the� bonds are made
of orbitals which share a nodal plane to which the bond axis belongs, and the� bond, which
has two nodal planes which contain the bond axis and the two ions; furthermore, if the ions on
the two sites are different, the bond ispolar. Fig. 8 shows how to obtain a generic two-center
integral involvingp ands orbitals.
Let us now consider as an example theeg andt2g bands of KCuF3; we assume for simplicity
that the system is an ideal cubic perovskite (point groupOh), as in Fig. (4). Let us use as
a basis only Cud and Fp atomic orbitals, and as matrix elements only on-site terms and pd
hopping integrals. We label thep-orbitals on different F sites as� � , where� = a; b; cidenti�es
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