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1 Introduction

Understanding the behavior of large interacting quantum systems is essential in quantum chem-

istry, in the study of exotic condensed matter phenomena such as high-Tc superconductivity or

the fractional quantum Hall effect, and beyond. For sytems with only weak interactions, mean

field approaches have been applied successfully. However, this approach breaks down when the

interactions between parts of the system become sufficiently strong – interactions give rise to

quantum correlations, i.e., entanglement, in the system, which is not captured by a mean field

approach. The study of entanglement, on the other hand, is one of the core topics of Quan-

tum Information Theory, where an extensive framework for the characterization, quantification,

and manipulation of entanglement has been developed. This suggests to apply quantum infor-

mation concepts, and in particular the theory of entanglement, to the description of quantum

many-body systems. Indeed, an active field of research has grown during the last decade at the

interface of quantum information theory and quantum many-body physics, and the aim of this

lecture is to give an introduction to this area.

For clarity of the presentation, we will initially restrict to quantum spin systems on a lattice

(such as a line or a square lattice in 2D), with a corresponding Hilbert space (Cd)⊗N (where each

spin has d levels, and the lattice has N sites); generalizations to fermionic systems and beyond

lattices will be discussed later. Also, we will for the moment focus on ground state problems,

i.e., given some Hamiltonian H acting on our spin system, we will ask about properties of its

ground state |Ψ〉. The approach we pursue will be variational – we will try to obtain a family

of states which gives a good approximation of the ground state, for which quantities of interest

can be evaluated efficiently, and where the best approximation to the ground state can be found

efficiently. For instance, mean-field theory is a variational theory based on the class of product

states (for spin systems) or Slater determinants (for electronic systems).

Of course, one could simply parametrize the ground state as

|Ψ〉 =
∑

i1,...,iN

ci1...iN |i1, . . . , iN〉 , (1)

and use the ci1...iN as variational parameters. Unfortunately, the number of parameters ci1...iN
grows exponentially with N , making it impossible to have an efficient description of |Ψ〉 for

growing system sizes. On the other hand, we know that efficient descriptions exist for physical

Hamiltonians: Since H =
∑

i hi is a sum of few-body terms (even if we don’t restrict to

lattice systems), a polynomial number Nk of parameters (with k the bodiness of the interaction)

allows to specify H , and thus its ground state. This is, while a general N-body quantum state

can occupy an exponentially large Hilbert space, all physical states live in a very small “corner”

of this space. The difficulty, of course, is to find an efficient parametrization which captures the

states in this corner of Hilbert space, while at the same time allowing for efficient simulation

methods.
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2 Matrix product states (MPS)

2.1 The area law

In order to have a guideline for constructing an ansatz class, let us look at the entanglement

properties of ground states of interacting quantum systems. To this end, we consider a ground

state |Ψ〉 on a lattice and cut a contiguous region of length L (in one dimension) or an area A

(in two dimensions), cf. Fig. 1. It is a well-known result from quantum information theory [1]

Fig. 1: Area law: The entropy of the reduced states of a block A scales like the length of its

boundary ∂A; in one dimension, this implies that the entropy is bounded by a constant.

that the von Neumann entropy of the reduced density matrix ρA of region A,

S(ρA) = −ρA log ρA ,

quantifies the entanglement between region A and the rest of the system. For a random quantum

state, we expect this entanglement to be almost maximal, i.e., on the order of |A| log d (where

|A| is the number of spins in region A). Yet, if we study the behavior of S(ρA) for ground

states of local Hamiltonians, it is found that S(ρA) essentially scales like the boundary of re-

gion A, S(ρA) ∝ |∂A|, with possible corrections for gapless Hamiltonians which are at most

logarithmic in the volume, S(ρA) ∝ |∂A| log |A|. This behavior is known as the area law for

the entanglement entropy and has been observed throughout for ground states of local Hamil-

tonians (see, e.g., Ref. [2] for a review); for gapped Hamiltonians in one dimension, this result

has been recently proven rigorously [3].

2.2 Matrix product states

Since the entropy S(ρA) quantifies the entanglement between region A and its complement, the

fact that S(ρA) scales like the boundary of ρA suggests that the entanglement between region A

and the rest is essentially located around the boundary between the two regions, as illustrated

in Fig. 2. We will now construct an ansatz for many-body quantum systems, starting from the

Fig. 2: The area law suggests that the entanglement between two regions is located around the

boundary.
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Fig. 3: Construction of MPS: a) Each site is composed of two virtual subsystems. b) The virtual

subsystems are placed in maximally entangled states. c) Linear maps Ps are applied which map

the two virtual systems to the physical system.

insight that the entanglement is concentrated around the boundary of regions; for the moment,

we will focus on one-dimensional systems. Clearly, since we want to have this property for

any partitioning of the lattice, we cannot just place entangled pairs as in Fig. 2, but we have

to choose a more subtle strategy. To this end, we consider the system at each site as being

composed of two “virtual” subsystems of dimension D each, as illustrated in Fig. 3a. Then,

each of the two subsystems is placed in a maximally entangled state

|ωD〉 =
D
∑

i=1

|i, i〉

with the corresponding subsystems at the adjacent sites, as shown in Fig. 3b. The maximally

entangled states are called “bonds”, with D the “bond dimension”. This construction already

satisfies the area law: For any region we cut, there are exactly two maximally entangled states

crossing the cuts, bounding the entanglement by 2 logD. Finally, we apply at each site s linear

maps Ps : CD ⊗ CD → Cd, which creates a description of a state on a chain of d-level sys-

tems, cf. Fig. 3c. (Note that the rank of the reduced density operator of any region cannot be

increased by applying the linear maps Ps.) The construction can be carried out either with peri-

odic boundary conditions, or with open boundary conditions by omitting the outermost virtual

subsystems at the end of the chain. The total state of the chain can be written as

|Ψ〉 = (P1 ⊗ · · · ⊗ PN )|ωD〉⊗N , (2)

where the maps Ps act on the maximally entangled states as illustrated in Fig. 3c.

This class of states can be rewritten as follows: For each site s, define a three-index tensor A
[s]
i,αβ,

i = 1, . . . , d, α, β = 1, . . . , D, where the A
[s]
i can be interpreted as D ×D matrices, such that

Ps =
∑

i,α,β

A
[s]
i,αβ|i〉〈α, β| . (3)

Then, the state (2) can be rewritten as

|Ψ〉 =
∑

i1,...,iN

tr
[

A
[1]
i1
A

[2]
i2
· · ·A[N ]

iN

]

|i1, . . . , iN〉 , (4)

i.e., the coefficient ci1...iN in (1) can be expressed as a product of matrices.1 For this reason, these

states are called Matrix Product States (MPS). For systems with open boundary conditions, the

1 The equivalence of (2) and (4) can be proven straightforwardly by noting that for two maps P1 and P2, and
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matrices A
[1]
i1

and A
[N ]
iN

are 1 × D and D × 1 matrices, respectively, so that the trace can be

omitted. More generally, D can be chosen differently across each link.

As it turns out, MPS are very well suited to describe ground states of one-dimensional quantum

systems. On the one hand, we have seen that by construction, these states all satisfy the area

law. On the other hand, it can be shown that all states which satisfy an area law, such as ground

states of gapped Hamiltonians [3], as well as states for which the entanglement of a block grows

slowly (such as for critical 1D systems), can be well approximated by an MPS [4, 3]: Given a

state |Φ〉 on a chain of length N for which the entropy of any block of length L is bounded by

Smax, S(ρL) ≤ Smax, there exists an MPS |ΨD〉 which approximates |Φ〉 up to error2

∣

∣ |Φ〉 − |ΨD〉
∣

∣ =: ǫ ≤ const× N ecSmax

Dc
. (5)

Note that even if Smax grows logarithmically with N , the numerator is still a polynomial in N .

This is, in order to achieve a given accuracy ǫ, we need to choose a bond dimension D which

scales polynomially in N and 1/ǫ, and thus, the total number of parameters (and, as we will see

later, also the computation time) scales polynomially as long as the desired accuracy is at most

1/poly(N).

2.3 Tensor network notation

The defining equation (4) for Matrix Product States is a special case of a so-called tensor net-

work. Generally, tensor networks are given by a number of tensors Ai1,i2,...,iK , Bi1,i2,...,iK , etc.,

where each tensor usually only depends on a few of the indices. Then, one takes the product of

the tensors and sums over a subset of the indices,

ci1...ik =
∑

ik+1,...,iK

Ai1,i2,...,iKBi1,i2,...,iK · · · .

For instance, in (4) the tensors are the A[s] ≡ A
[s]
i,αβ, and we sum over the virtual indices

α, β, . . . , yielding

ci1...iN = tr
[

A
[1]
i1
A

[2]
i2
· · ·A[N ]

iN

]

.

the bond |ωD〉 between them, it holds that

P1 ⊗ P2|ωD〉 =
∑

i1,i2,α,β

(A
[1]
i1
A

[2]
i2
)αβ |i1, i2〉〈α, β| ,

and iterating this argument through the chain.
2 Stricly speaking, this bound only follows from an area law for the Rényi entropy

Sα =
log tr[ρα]

1− α

for α < 1, with c in (5) depending on α [4], which also holds for gapped Hamiltonians [3]. The proof uses the fact

that a bound on the area law implies a fast decay of the Schmidt coefficients (i.e., the eigenvalues of the reduced

density operator), and thus, one can construct an MPS by sequentially doing Schmidt decompositions of the state

and discarding all but the largest D Schmidt coefficients [5, 4].
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Tensor networks are most conveniently expressed in a graphical language. Each tensor is de-

noted by a box with “legs” attached to it, where each leg corresponds to an index – a three-index

tensor A[s] ≡ A
[s]
i,αβ is then depicted as

.

Summing over a joint index is denoted by connecting the corresponding legs, e.g.,

.

In this language, the expansion coefficient ci1...iN [Eq. (1)] of an MPS (which we will further on

use interchangably with the state itself) is written as :

. (6)

We will make heavy use of this graphical language for tensor networks in the following.

2.4 Evaluating expectation values for MPS

As we have discussed at the end of Section 2.2, MPS approximate ground states of local Hamil-

tonians efficiently, as the effort needed for a good approximation scales only polynomially in

the length of the chain and the desired accuracy. Thus, it seems appealing to use the class of

MPS as a variational ansatz to simulate the properties of quantum many-body systems. How-

ever, to this end it is not sufficient to have an efficient description of relevant states – after all,

the Hamiltonian itself forms an efficient description of its ground state, but it is hard to extract

information from it! Rather, a good variational class also requires that we can efficiently extract

quantities of interest such as energies, correlation functions, and the like, and that there is an

efficient way to find the ground state (i.e., minimize the energy within the variational class of

states) in the first place.

Let us start by discussing how to compute the expectation value a local operator h (such as a

term in the Hamiltonian) for an MPS. To this end, note that

〈Ψ|h|Ψ〉 =
∑

i1,...,iN
j1,...,jN

c∗i1...iN cj1...jNδi1,j1 · · · δik−1,jk−1
h
jkjk+1

ikik+1
δik+2,jk+2

· · · δiN ,jN

where

h =
∑

ik,ik+1
jk,jk+1

h
jkjk+1

ikik+1
|ik, ik+1〉〈jk, jk+1|
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acts on sites k and k + 1. Using the graphical tensor network notation, this can be written as

. (7)

In order to evaluate this quantity, we have to contract the whole diagram (7). In principle,

contracting arbitrary tensor networks can become an extremely hard problem (strictly speaking,

PP-hard [6]), as in some cases it essentially requires to determine exponentially big tensors

(e.g., we might first have to compute ci1...iN from the tensor network and from it determine the

expectation value). Fortunately, it turns out that the tensor network of Eq. (7) can be contracted

efficiently, i.e., with an effort polynomial in D and N . To this end, let us start from the very

left of the tensor network in Eq. (7) and block the leftmost column (tensors A[1] and Ā[1]).

Contracting the internal index, this gives a two-index tensor

L
αα′

=
∑

i

A
[1]
iαĀ

[1]
iα′ ,

which we interpret as a (bra) vector with a “double index” αα′ of dimension D2. Graphically,

this can be denoted as

,

where we use a doubled line to denote the “doubled” index of dimension D2. We can now

continue this way, and define operators (called transfer operators)

(E[s])ββ
′

αα′ =
∑

i

A
[s]
i,αβĀ

[s]
i,α′β′

which we interpret as mapping the double index αα′ to ββ ′, and graphically write as

.

Similarly, we define operators

(8)

and

.
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All of these operators can be computed efficiently (in the parameters D and N), as they are

vectors/matrices of fixed dimension D2, and can be obtained by contracting a constant number

of indices.

Using the newly defined objects L, E, Eh, and R, the expectation value 〈Ψ|h|Ψ〉, Eq. (7), can

be rewritten as

〈Ψ|h|Ψ〉 = LE
[2] · · ·E[k−1]

EhE
[k+2] · · ·R

= .

This is, 〈Ψ|h|Ψ〉 can be computed by multiplying a D2-dimensional vector O(N) times with

D2 × D2 matrices. Each of these multiplication takes O(D4) operations, and thus, 〈Ψ|h|Ψ〉
can be evaluated in O(ND4) operations. There are O(N) terms in the Hamiltonian, and thus,

the energy 〈Ψ|∑i hi|Ψ〉/〈Ψ|Ψ〉 can be evaluated in time O(N2D4), and thus efficiently; in

fact, this method can be easily improved to scale as O(ND3).3 Similarly, one can see that e.g.

correlation functions 〈Ψ|Pi ⊗ Qj |Ψ〉 or string order parameters 〈Ψ|X ⊗ X ⊗ · · · ⊗ X|Ψ〉 can

be reduced to matrix multiplications and thus evaluated in O(ND3). Exactly the same way,

evaluating expectation values for MPS with periodic boundary conditions can be reduced to

computing the trace of a product of matrices E of size D2 × D2. Each multiplication scales

like O(D6), and using the same tricks as before, one can show that for systems with periodic

boundary conditions, expectation values can be evaluated in time O(ND5).

In summary, we find that energies, correlations functions, etc. can be efficiently evaluated for

MPS, with computation times scaling as O(ND3) and O(ND5) for open and periodic boundary

conditions, respectively.

2.5 Variational optimization of MPS

As we have seen, we can efficiently compute the energy of an MPS with respect to a given local

Hamiltonian H =
∑

i hi. In order to use MPS for numerical simulations, we still need to figure

out an efficient way to find the MPS which minimizes the energy for a given D. To this end,

let us first pick a site k, and try to minimize the energy as a function of A[k], while keeping all

other MPS tensors A[s], s 6= k, fixed. Now, since |Ψ〉 is a linear function of A[k], we have that

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

~A[k]†X ~A[k]

~A[k]†Y ~A[k]

is the ratio of two quadratic forms in A[k]. Here, ~A[k] denotes the vectorized version of A
[k]
i,αβ,

where (i, α, β) is interpreted as a single index. The matrices X and Y can be obtained by

contracting the full tensor network (7) except for the tensors A[k] and Ā[k], which can be done

3Firstly, one uses that the products L · · ·E[s] and E[s] · · ·R need to be computed only once (this can be sim-

plified even further by choosing the appropriate gauge [7, 8]), reducing the N -scaling to O(N). Secondly, one

slightly changes the contraction order: Starting from the left, one contracts A[1], Ā[1], A[2], Ā[2], A[3], etc.: This

involves multiplications of D×D matrices with D× dD matrices, and D×Dd matrices with Dd×D matrices,

yielding a O(dD3) scaling.
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efficiently. The ~A[k] which minimizes this energy can be found by solving the generalized

eigenvalue equation

X ~A[k] = E Y ~A[k]

where E is the energy; again, this can be done efficiently in D. For MPS with open boundary

conditions, we can choose a gauge4 for the tensors such that Y = 11 [7, 8] – this reduces the

problem to a usual eigenvalue problem, and avoids problems due to ill-conditioned Y .

This shows that we can efficiently minimize the energy as a function of the tensor A[k] at an

individual site k. In order to minimize the overall energy, we start from a randomly chosen

MPS, and then sweep through the sites, sequentially optimizing the tensor at each site. Itering

this a few times over the system (usually sweeping back and forth) quickly converges to a state

with low energy. Although in principle, such an optimization can get stuck [10, 11], in practice

it works extremely well and generally converges to the optimal MPS (though some care might

have to be put into choosing the initial conditions).

In summary, we find that we can use MPS to efficiently simulate ground state properties of

one-dimensional quantum systems with both open and periodic boundary conditions. This sim-

ulation method can be understood as a reformulation of the Density Matrix Renormalization

Group (DMRG) algorithm [12, 13], which is a renormalization algorithm based on keeping the

states which are most relevant for the entanglement of the system, and which since its invention

has been highly successful in simulating the physics of one-dimensional quantum systems (see

Refs. [7, 14] for a review of the DMRG algorithm and its relation to MPS).

3 Projected entangled pair states (PEPS)

3.1 PEPS for two-dimensional systems

As we have seen, MPS are very well suited for simulating ground state properties of one-

dimensional systems. But what if we want to go beyond one-dimensional systems, and, e.g.,

study interacting spin systems in two dimensions? Two-dimensional systems can exhibit a rich

variety of phenomena, such as topologically ordered states [15, 16], which are states distinct

from those in the trivial phase, yet which do not break any (local) symmetry. Moreover, two-

dimensional spin systems can be highly frustrated due to the presence of large loops in the

interaction graph, and even classical two-dimensional spin glasses can be hard to solve [17]. In

the following, we will focus on the square lattice without loss of generality.

4 MPS have a natural gauge degree of freedom, since for any Xs with a right inverse X−1
s , we can always

replace

A
[s]
i ↔ A

[s]
i Xs

A
[s+1]
i ↔ X−1

s A
[s+1]
i

without changing the state; this gauge degree of freedom can be used to obtain standard forms for MPS with

particularly nice properties [9, 8].
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Fig. 4: PEPS construction for a 2D square lattice, where we have omitted the site-dependence

P ≡ Ps of the maps Ps.

A first idea to simulate two-dimensional systems would be to simply use an MPS, by choosing

a one-dimensional ordering of the spins in the two-dimensional lattice. While this approach has

been applied successfully (see, e.g., Ref. [18]), it cannot reproduce the entanglement features of

typical ground states in two dimensions as one increases the system size: As we have discussed

in Section 2.1, two-dimensional systems also satisfy an area law, i.e., in the ground state we

expect the entanglement of a region A with its complement to scale like its boundary, S(ρA) ∼
|∂A|. To obtain an ansatz with such an entanglement scaling, we follow the same route as in the

construction of MPS: We consider each site as being composed of four D-dimensional virtual

subsystems, place each of them in a maximally entangled state |ωD〉 with the corresponding

subsystem of each of the adjacent sites, and finally apply a linear map

Ps : C
D ⊗ C

D ⊗ C
D ⊗→C

d

at each site s to obtain a description of the physical state on a 2D lattice of d-level sytems. The

construction is illustrated in Fig. 4. Due to the way they are constructed, these states are called

Projected Entangled Pair States (PEPS). Again, we can define five-index tensors A[s] = A
[s]
i,αβγδ,

where now

Ps =
∑

iαβγδ

A
[s]
i,αβγδ|i〉〈α, β, γ, δ| ,

and express the PEPS in Fig. 4 graphically as a tensor network

(where we have omitted the tensor labels). Similar to the result in one dimension, one can show

that PEPS approximate ground states of local Hamiltonians well as long as the density of states

grows at most polynomially with the energy [19, 20], and thereby provide a good variational

ansatz for two-dimensional systems. (Note, however, that it is not known whether all 2D states

which obey an area law are approximated well by PEPS.)
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3.2 Contraction of PEPS

Let us next consider what happens if we try to compute expectation values of local observables

for PEPS. For simplicity, we first discuss the evaluation of the normalization 〈Ψ|Ψ〉, which is

obtained by sandwiching the ket and bra tensor network of |Ψ〉,

〈Ψ|Ψ〉 = . (9)

This can again be expressed using transfer operators

(the E should be thought of as being “viewed from the top”), leaving us with the task of con-

tracting the network

.

[This easily generalizes to the computation of expectation values, where some of the E have to

be modified similarly to Eq. (8)]. Different from the case of MPS, there is no one-dimensional

structure which we can use to reduce this problem to matrix multiplication. In fact, it is easy to

see that independent of the contraction order we choose, the cluster of tensors we get (such as a

rectangle) will at some point have a boundary of a length comparable to the linear system size.

This is, we need to store an object with a number of indices proportional to
√
N – and thus an

exponential number of parameters – at some point during the contraction, making it impossible

to contract such a network efficiently. (Indeed, it can be proven that such a contraction is a

computationally hard problem [6].)

This means that if we want to use PEPS for variational calculations in two dimensions, we have

to make use of some approximate contraction scheme, which of course should have a small and

ideally controlled error. To this end, we proceed as follows [21]: Consider the contraction of a
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two-dimensional PEPS with open boundary conditions,

. (10)

Now consider the first two columns, and block the two tensors in each column into a new tensor

F (with vertical bond dimension D4):

. (11)

This way, we have reduced the number of columns in (10) by one. Of course, this came at the

cost of squaring the bond dimension of the first column, so this doesn’t help us yet. However,

what we do now is to approximate the right hand side of (11) by an MPS with a (fixed) bond

dimension αD2 for some α. We can then iterate this procedure column by column, thereby

contracting the whole PEPS, and at any point, the size of our tensors stays bounded. It remains

to be shown that the elementary step of approximating an MPS |Φ〉 [such as the r.h.s. of (11)]

by an MPS |Ψ〉 with smaller bond dimension can be done efficiently: To this end, it is sufficient

to note that the overlap 〈Φ|Ψ〉 is linear in each tensor A[s] of |Ψ〉, and thus, maximizing the

overlap
∣

∣〈Φ|Ψ〉
∣

∣

2

〈Ψ|Ψ〉
can again be reduced to solving a generalized eigenvalue problem, just as the energy minimiza-

tion for MPS in the one-dimensional variational method. Differently speaking, the approxi-

mate contraction scheme succeeds by reducing the two-dimensional contraction problem to a

sequence of one-dimensional contractions, i.e., it is based on a dimensional reduction of the

problem.

This shows that PEPS can be contracted approximately in an efficient way. The scaling in D

is naturally much less favorable than in one dimension, and for the most simple approach one

finds a scaling of D12 for open boundaries, which using several tricks can be improved down to

D8. Yet, the method is limited to much smaller D as compared to the MPS ansatz. It should be
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noted that the approximate contraction method we just described has a controlled error, as we

know the error made in in each approximation step. Indeed, the approximation is very accurate

as long as the system is short-range correlated, and the accuracy of the method is rather limited

by the D needed to obtain a good enough approximation of the ground state. Just as in one

dimension, we can use this approximate contraction method to build a variational method for

two-dimensional systems by successively optimizing over individual tensors [21].

3.3 Extensions of PEPS

The PEPS construction is not limited to square lattices, but can be adapted to other lattices,

higher dimensions, and even arbitrary interaction graphs. Clearly, the approximate contraction

scheme we just presented works for any two-dimensional lattice, and in fact for any planar

graph. In order to approximately contract systems in more than two dimensions, note that

the approximate contraction scheme is essentially a scheme for reducing the dimension of the

problem by one; thus, in order to contract e.g. three-dimensional systems we can nest two layers

of the scheme. In cases with a highly connected PEPS graph (e.g., when considering systems

with highly connected interaction graphs such as orbitals in a molecule), one can of course still

try to find a sequential contraction scheme, though other contraction methods might be more

promising.

The contraction method described in Section 3.2 is not the only contraction scheme for PEPS.

One alternative method is based on renormalization ideas [22–24]: There, one takes blocks of

e.g. 2 × 2 tensors and tries to approximate them by a tensor with lower bond dimension by the

appropriate truncation,

.

Finding the best truncation scheme requires exact knowledge of the environment, i.e., the con-

traction of the remaining tensor network. Since this is as hard as the original problem, heuristic

methods to approximate the environment (such as to only contract a small number of surrond-

ing tensors exactly, and imposing some boundary condition beyond that) have been introduced.

While these approximations are in principle less accurate and the error is less controlled, their

more favorable scaling allows for larger D and thus potentially better approximations of the

ground state.

Another approach to speed up PEPS contraction is using Monte Carlo sampling [25–27]: We

can always write
〈Ψ|O|Ψ〉
〈Ψ|Ψ〉 =

∑

i

p(i)
〈i|O|Ψ〉
〈i|Ψ〉 , (12)

where the sum runs over an orthonormal basis |i〉, and p(i) = |〈i|Ψ〉|2/〈Ψ|Ψ〉; in particular, we

want to consider the local spin basis i = (i1, . . . , iN). If we can compute 〈i|Ψ〉 and 〈i|O|Ψ〉
(where the latter reduces to the former if O is a local operator), then we can use Monte Carlo
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sampling to approximate the expectation value 〈Ψ|O|Ψ〉. In particular, for PEPS 〈i|Ψ〉 can

again be evaluated by contracting a two-dimension tensor network; however, this network now

has bond dimension D rather than D2. Thus, we can apply any of the approximate contraction

schemes described before, but we can go to much larger D with the same computational re-

sources; it should be noted, however, that the number of operations needs to be multiplied with

the number M of sample points taken, and that the accuracy of Monte Carlo sampling improves

as 1/
√
M .

4 Simulating time evolution and thermal states

Up to now, our discussion has been focused on ground states of many-body systems. How-

ever, the techniques described here can also be adapted to simulate thermal states as well as

time evolution of systems governed by local Hamiltonians. In the following, we will discuss

the implementation for one-dimensional systems; the generalization to to 2D and beyond is

straightforward.

Let us start by discussing how to simulate time evolutions. (This will also form the basis for

the simulation of thermal states.) We want to study how an initial MPS |Ψ〉 changes under the

evolution with eiHt; w.l.o.g., we consider H to be nearest neighbor. To this end, we perform a

Trotter decomposition

eiHt ≈
(

eiHevent/MeiHoddt/M
)M

where we split H = Heven+Hodd into even and odd terms (acting between sites 12, 34, . . . , and

23, 45, . . . , respectively), such that both Heven and Hodd are sums of non-overlapping terms.

For large M , the Trotter expansion becomes exact, with the error scaling like O(1/M). We can

now write

eiHevenτ =
⊗

i=1,3,5,...

eihi,i+1τ =

(with τ = t/M), and similarly for eiHoddτ . Thus, after one time step τ the initial MPS is

transformed into

.

Here, the lowest line is the initial MPS, and the next two lines the evolution by Heven and Hodd

for a time τ , respectively. We can proceed this way and find that the state after a time t is

described as the boundary of a two-dimensional tensor network. We can then use the same

procedure as for the approximate contraction of PEPS (proceeding row by row) to obtain an

MPS description of the state at time t [5]. A caveat of this method is that this only works well

as long as the state has low entanglement at all times, since only then, a good MPS approx-

imation of the state exists [4, 28]. While this holds for low-lying excited states with a small

number of quasiparticles, this is not true after a quench, i.e., a sudden change of the overall
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Hamiltonian of the system [29, 30]. However, this does not necessarily rule out the possibil-

ity to simulate time evolution using tensor networks, since in order to compute an expectation

value 〈Ψ|e−iHtOeiHt|Ψ〉, one only needs to contract a two-dimensional tensor network with no

boundary, which can not only be done along the time direction (row-wise) but also along the

space direction (column-wise), where such bounds on the correlations do not necessarily hold;

indeed, much longer simulations times have be obtained this way [31].

In the same way as real time evolution, we can also implement imaginary time evolution; and

since e−βH acting on a random initial state approximates the ground state for β → ∞, this can

be used as an alternative algorithm for obtaining MPS approximations of ground states.

In order to simulate thermal states, we use Matrix Product Density Operators (MPDOs) [32]

ρ =
∑

i1,...,iN
j1,...,jN

tr[A
[1]
i1,j1 · · ·A

[N ]
iN ,jN

]|i1, . . . , iN〉〈j1, . . . , jN |

= ,

where each tensor A[s] now has two physical indices, one for the ket and one for the bra layer.

We can then write the thermal state as

e−βH = e−βH/211e−βH/2

and use imaginary time evolution (starting from the maximally mixed state 11 which has a triv-

ial tensor network description) and the Trotter decomposition to obtain a tensor network for

e−βH , which can again be transformed into an MPDO with bounded bond dimension using

approximate contraction [32].

5 Other tensor network ansatzes

There is a number of other entanglement based ansatzes beyond MPS and PEPS for interacting

quantum systems, some of which we will briefly sketch in the following.

Firstly, there is the Multiscale Entanglement Renormalization Ansatz (MERA) [33], which is an

ansatz for scale invariant systems (these are systems at a critical point where the Hamiltonian

is gapless, and which have algebraically decaying correlation functions), and which incorpo-

rates the scale-invariance in the ansatz. A first step towards a scale-invariant ansatz would be

to choose a tree-like tensor network. However, such an ansatz will not have sufficient entangle-

ment between different blocks. Thus, one adds additional disentanglers which serve to remove

the entanglement between different blocks, which gives rise to the tensor network shown in

Fig. 5. In order to obtain an efficiently contractible tensor network, one chooses the tensors to

be unitaries/isometries in vertical direction, such that each tensor cancels with its adjoint. It is

easy to see that this way for any local O, in the tensor network for 〈Ψ|O|Ψ〉 most tensors cancel,

and one only has to evaluate a tensor network of the size of the depth of the MERA, which is
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Fig. 5: The Multi-Scale Entanglement Renormalization Ansatz (MERA) in 1D. (The left and

right boundary are connected.)

logarithmic in its length [33]. The MERA ansatz is not restricted to one dimension and can also

be used to simulate critical system in 2D and beyond [34].

A different variational class is obtained by studying states for which expectation values can be

computed efficiently using Monte Carlo sampling. Following Eq. (12), this requires (for local

quantities O) that we can compute 〈i|Ψ〉 efficiently for all i = (i1, . . . , iN). One class of states

for which this holds is formed by MPS, which implies that we can evaluate expectation values

for MPS using Monte Carlo sampling [26, 25] (note that the scaling in D is more favorable

since 〈i|Ψ〉 can be computed in time ∝ ND2). This can be extended to the case where 〈i|Ψ〉
is a product of efficiently computable objects, such as products of MPS coefficients defined

on subsets of spins: We can arrange overlapping one-dimensional strings in a 2D geometry

and associate to each of them an MPS, yielding a class known as string-bond states [25, 35],

which combines a flexible geometry with the favorable scaling of MPS-based methods. We

can also consider 〈i|Ψ〉 to be a product of coefficients each of which only depends on the spins

ik supported on a small plaquette, and where the lattice is covered with overlapping plaquettes,

yielding a family of states known as Entangled Plaquette States (EPS) [36] or Correlator Product

States (CPS) [37], which again yields an efficient algorithm with flexible geometries. In all of

these ansatzes, the energy is minimized by using a gradient method, which is considerably

facilitated by the fact that the gradient can be sampled directly without the need to first compute

the energy landscape.

In order to simulate infinite lattices, it is possible to extend MPS and PEPS to work for infinite

systems: iMPS and iPEPS. The underlying idea is to describe the system by an infinite MPS

and PEPS with a periodic pattern of tensors such as ABABAB. . . (which allows the system to

break translational symmetry and makes the optimization more well-behaved). Then, one fixes

all tensors except for one and minimizes the energy as a function of that tensor until convergence

is reached. For the optimization, one needs to determine the dependence of the energy on the
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selected tensor, which can be accomplished in various ways, such as using the fixed point of

the transfer operator, renormalization methods (cf. Section 3.3), or the corner transfer matrix

approach. For more information, see, e.g., [38–40].

6 Simulation of fermionic sytems

Up to now, we have considered the simulation of spin systems using tensor networks. On

the other hand, in many cases of interest, such as for the Hubbard model or the simulation of

molecules, the underlying systems are fermionic in nature. In the following, we will discuss

how tensor network methods such as MPS, PEPS, or MERA can be extended to the simulation

of fermionic systems.

In order to obtain a natural description of fermionic systems, the idea is to replace each object

(i.e., tensor) in the construction of MPS, PEPS, or MERA by fermionic operators [41–43]. This

is, in the construction of MPS and PEPS, Fig. 3 and Fig. 4, both the maximally entangled bonds

and the Ps are now built from fermionic operators and need to preserve parity; equally, in the

MERA construction, Fig. 5, all unitaries and isometries are fermionic in nature. The resulting

states are called fermionic PEPS (fPEPS) and fermionic MERA (fMERA).

Let us now have a closer look at a fermionic tensor network, and discuss how to compute

expectation values for those states. E.g., the fPEPS construction yields a state

(P1 ⊗ P2 ⊗ · · · )(ω1 ⊗ ω2 ⊗ · · · )|Ω〉 ,

where |Ω〉 is the vacuum state, the ωi create entangled fermionic states between the correspond-

ing auxiliary modes, and the Ps map the auxiliary fermionic modes to the physical fermionic

modes at site s (leaving the auxiliary modes in the vacuum). While the product of the ωi contains

only auxiliary mode operators in a given order, the product of the Ps contains the physical and

auxiliary operators for each site grouped together. To compute expectation values, on the other

hand, we need to move all the physical operators to the left and the virtual operators to the right

in the product of the Ps; additionally, the virtual operators have to be arranged such that they

cancel with the ones arising from the product of the ωi. Due to the fermionic anti-commutation

relations, this reordering of fermionic operators results in an additional complication which

was not present for spin systems. Fortunately, it turns out that there are various ways how to

take care of the ordering of fermionic operators at no extra computational cost: One can use

a Jordan-Wigner transformation to transform the fermionic system to a spin system [41, 43];

one can map the fPEPS to a normal PEPS with one additional bond which takes care of the

fermionic anticommutation relations [42]; or one can replace the fermionic tensor network by

a planar spin tensor network with parity preserving tensors, where each crossing of lines [note

that a planar embedding of a network such as the 2D expectation value in Eq. (9) gives rise to

crossings of lines, which corresponds to the reordering of fermionic operators] is replaced by a

tensor which takes care of the anticommutation rules [44, 45].
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7 Summary

In this lecture, we have given an overview over entanglement-based ansatzes for the descrip-

tion and simulation of quantum many-body systems. We started by discussing the area law for

the entanglement entropy which is obeyed by ground states of local interactions, and used this

to derive the Matrix Product State (MPS) ansatz which is well suited to describe the physics

of such systems. We showed that the one-dimensional structure of MPS allows for the effi-

cient evaluation of expectation values, and that this can be used to build a variational algorithm

for the simulation of one-dimensional systems. We have then discussed Projected Entangled

Pair States (PEPS), which naturally generalize MPS and are well suited for the description of

two-dimensional systems, and we have shown how approximation methods can be used to im-

plement efficient PEPS based simulation. We have also demonstrated that MPS and PEPS can

be used to simulate the time evolution and thermal states of systems governed by local Hamil-

tonians. Finally, we have discussed other tensor network based approaches, such as MERA for

scale-invariant systems or iMPS and iPEPS for infinite sytems, and concluded with a discussion

on how to apply tensor network methods to fermionic systems.

At the end, let us note that while we have focused on Tensor Networks in the context of nu-

merical simulations, these ansatzes also serve as powerful analytical tools. To name just a few,

MPS and PEPS can be used to build exactly solvable models (most prominently, the AKLT

model [46]), where a given MPS or PEPS arises as the exact ground state of a local Hamil-

tonian [9, 47, 48], and they serve as a framework to understand entanglement properties of

quantum states and thus to classify quantum phases, such as topological phases [49] and sym-

metry protected phases [50–53], thereby going beyond the framework of Landau theory which

can be understood using product states, i.e., MPS with D = 1.
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