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1 Introduction

These are the lecture notes for a talk in a Course on Correlated Electrons: From Models to
Materials held in Juelich in September, 2012. This lecture is intended to provide an introductory
description of standard density functional calculations, with emphasis on oxides. In the context
of the course it is a starting point for the advanced correlated methods that will be discussed in
the following lectures.
This chapter consists of two main parts. The first part is a very basic introduction to density
functional theory (DFT). The second part focuses on a particular aspect of transition metal oxide
physics, that is magnetism and the formation of magnetic moments illustrated by the example
of three rather different perovskite compounds, SrMnO3, SrTcO3 and SrRuO3.

2 Density functional theory in condensed matter physics

It is fair to say that DFT calculations play a central role in condensed matter theory and have
revolutionized the way we understand the physical properties of solids today. This chapter
discusses aspects of DFT in relation to correlated materials and its use in providing microscopic
understanding in diverse systems.
DFT, and the widely used local density approximation (LDA) to it, were formulated in the
1960’s in two seminal papers by Kohn, Hohenberg and Sham [1, 2] and started to be applied
to real solids in the 1970’s. Normally, when one uses approximations, one imagines that the
availability of better computers would mean that one could do better and use more exact theo-
ries. Computer speeds have followed Moore’s law from that time to the present, increasing by
approximately three orders of magnitude per decade, or by ∼109 from the ∼10 MFlop comput-
ers of the late 1970’s to the present state of the art of ∼10 PFlops as realized on the Fujitsu K
computer in 2011.
109 is a big number. A person with a dollar (or Euro) standing outside a McDonald’s can eat
at the most famous restaurant in the world. A billionaire has more options, and one should
take note if he chooses the dine at the same place. Today, DFT calculations based on the
LDA and the computationally similar generalized gradient approximations (GGAs) remain the
standard workhorse in condensed matter. This can perhaps be appreciated by noting some
citation statistics. As of this writing, the paper of Perdew, Burke and Ernzerhof [3], which lays
out one of the more commonly used generalized gradient approximations for solids has been
cited 21,557 times, including 4,056 times in 2011 alone, while that of Perdew and co-workers
laying out the so-called “PW91” functional [4], which is another common functional was cited
9,084 times, including 845 times in 2011. This reflects just how useful these approximations
are.
There are many reasons for the popularity and successes of DFT calculations. Two particularly
important ones are (1) the fact DFT calculations are based on the chemical compositions and
structures of materials without the use of intervening models and (2) the fact that such calcula-
tions, while approximate, are predictive.
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Condensed matter physics increasingly focuses on materials that are structurally and chem-
ically complex. This trend started with the 1986 discovery of cuprate superconductivity in
(La,Ba)2CuO4, which is a layered perovskite material. This was closely followed by discov-
eries in increasingly complex materials, YBa2Cu3O7−δ, Bi2SrCu2O8, and HgBa2Ca2Cu3O8+δ.
Approximate DFT calculations were helpful in establishing the large scale features of the elec-
tronic structure of these cuprates [5, 6]. In complex materials it is particularly difficult to sort
out the key structural features and how they relate to the physical properties. One may guess
the shape of the Fermi surface of Na metal without recourse to detailed calculations but it is
unlikely that one would correctly guess the complex multisheet Fermi surfaces of materials like
YBa2Cu3O7. A more recent example comes from the iron-pnictide superconductors, where
DFT calculations revealed a very non-oxide-like electronic structure and the presence of rela-
tively small disconnected multisheet Fermi surfaces that are of importance for understanding
the superconductivity [7, 8].
There have been many excellent reviews of DFT and DFT calculations, and so we do not attempt
to provide another one here. We simply mention a few relevant points and refer the reader to
the extensive literature on this subject for detailed discussions. Some excellent resources are
the books, Density Functional Theory of Atoms and Molecules, by Parr and Yang [9], Density
Functional Methods in Physics, by Dreizler and da Provincia [10], Density Functionals: Where
do the come from, why do they work?, by Ernzerhof, Burke and Perdew [11], Theory of the
Inhomogeneous Electron Gas, by Lundqvist and March [12], and the review article by Callaway
and March [13].
Finally, we note that while DFT is an exact theory, practical applications require tractable ap-
proximations to the DFT functional. The success of DFT really rests on the fact that relatively
simple and general approximate forms such as the LDA and GGAs yield very good descriptions
of the properties of diverse solid state and molecular systems. The remarkable success of simple
approximations, such as the local density approximation, in accurately describing the proper-
ties of condensed matter was hardly anticipated before detailed calculations were performed
starting in the 1970’s. There has been theoretical discussion of the reasons for the successes of
simple approximations like the LDA since then. However, it remains the case that approximate
DFT calculations are used to predict many properties of materials based mainly on the fact that
previous calculations have shown these properties to be in good agreement with experiment on
other materials. Put another way, the local density approximation is built around the many body
physics of the uniform electron gas. Nonetheless it is able to describe materials that have highly
inhomogeneous electron distributions that at first sight have nothing to do with the electron gas.
The success of these simple approximations in describing diverse properties of materials with-
out experimental input provides an explanation for the conundrum, posed above, i.e. the long
lived popularity of DFT methods.
A simple example is bcc Fe, which is a commonly known ferromagnet. Like Fe, the uniform
electron gas shows magnetism. However, the magnetism of the uniform electron gas only oc-
curs at densities of ∼1020 cm−3 and below [14]. In contrast the average electron density of bcc
Fe is 2.2x1024 cm−3 including all electrons and 6.8x1023 cm−3 if only the valence electrons are
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included. Thus Fe shows ferromagnetism at densities four orders of magnitude above where
the uniform electron gas does. So the non-uniform electron gas constituting Fe has very dif-
ferent properties than the uniform electron gas. Nonetheless, this non-uniform electron gas is
extremely well described by the local density approximation, with a moment that agrees within
∼3% of the experimental value, and a lattice parameter also in good agreement.
The point is that even though the LDA and GGAs are seemingly rather simple approximations
they have certain advantages. These are (1) that they are truly ab-initio, in the sense of not
requiring any input from experiment specific to the material being studied – this is key to making
predictions – and (2) they are often rather precise for properties of materials, including non-
trivial but important properties such as Fermi surfaces. In fact, the predictions made by simple
LDA and GGA calculations have been transformational in many areas of condensed matter, e.g.
the prediction of high pressure phases and their properties, complex Fermi surfaces of materials
such as the high Tc cuprate superconductors, and many other areas.
Clearly, as will be shown in subsequent lectures of this school, these simple approximations
have important deficiencies, especially in treating so-called strongly correlated systems. The
simplest example is the failure of these approximations to describe the insulating ground states
of Mott insulators, such NiO and the physics associated with the electron correlations that pro-
duce such ground states. In devising needed improvements to these approximations for treating
correlated materials it is perhaps helpful to keep in mind the features of the LDA that make it so
successful – absence of empirical or material specific parameters or tunable heuristics (i.e. mak-
ing choices based on knowledge of the material in question) and its ability to make predictions
based on the chemical composition and structure of a material and not much else.

2.1 Basics

Density functional theory itself is, as the name implies, an exact theorem. It states that the
ground state energy, E of an interacting system subject to an external potential, Vext(r) is a
functional of the density, E=E[ρ(r)], and furthermore that the actual density, ρ(r) is the den-
sity that minimizes this total energy functional. This means that the density ρ(r), which is a
non-negative function of the three spatial variables, can be used as the fundamental variable
in quantum mechanical descriptions of the correlated system, as opposed to the many-body
wavefunction, which is a function of 3N spatial variables for an N particle system.
As mentioned, while DFT is an exact theorem, the important aspect is that there are practical
approximations based on it that can be applied to a wide variety of materials with frequently
useful results. The first practical approximation to DFT was the local density approximation
(LDA), which was proposed by Kohn and Sham in the paper where they derived the so-called
Kohn-Sham equations [2]. They proceeded by observing that any density corresponding to an
interacting N electron density can be written as the density corresponding to some N electron
non-interacting wavefunction. Thus,

ρ(r) =
∑
i

ϕ∗i (r)ϕi(r); i = 1, 2, ..., N, (1)
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where the ϕi are the so-called Kohn-Sham orbitals and are orthonormalized functions. While
the density can be exactly written in this way, it is to be emphasized that a determinant of the
Kohn-Sham orbitals would typically be a very poor approximation to the true wavefunction,
and so in general the Kohn-Sham orbitals are quite distinct from the actual wavefunction of a
system.
Kohn and Sham then separated from the functional, E[ρ], some large terms that are readily
evaluated, leaving a presumably smaller remainder Exc[ρ] to be approximated.

E[ρ] = Ts[ρ] + Eext[ρ] + UHartree [ρ] + Exc[ρ], (2)

where Eext is the interaction with the external potential, UHartree is the Hartree energy,

UHartree [ρ] =
e2

2

∫
d3rd3r′

ρ(r)ρ(r′)

|r− r′|
. (3)

and Ts is the non-interacting kinetic energy of the Kohn-Sham orbitals (which is not the true
kinetic energy of the many-body system).
The Kohn-Sham equations can then be derived using the fact that the true density is the density
that minimizes E[ρ],

(
Ts + Vext + VHartree + Vxc

)
ϕi = εiϕi, (4)

where the εi are the Kohn-Sham eigenvalues, which are not equal to true excitation energies of
the system, Ts is the single particle kinetic energy operator and the various potential terms V
are functional derivatives of the corresponding energy terms with respect to ρ(r).
The local density approximation is obtained by writing,

Exc[ρ] =

∫
d3r ρ(r)εxc(ρ(r)), (5)

where εxc(ρ) is approximated by a local function of the density, usually that which reproduces
the known energy of the uniform electron gas.
To treat spin-polarized systems, a generalization to so-called spin-density functional theory
is needed to produce useful approximations. The generalization is straight-forward. For a
collinear magnetic system one replaces ρ by the two spin-densities, ρ↑ and ρ↓, so that the energy
becomes a functional of these two spin-densities, E[ρ↑, ρ↓], Exc[ρ↑, ρ↓], and Vxc[ρ↑, ρ↓] [15].
Replacing Exc by the exchange-correlation energy of the partially spin polarized electron gas
using the local spin densities yields the so-called local spin density approximation (LSDA),
which is a very popular and effective method at least as a starting point. In the more general non-
collinear case, the magnetization has both a magnitude and direction that vary with position, and
so the density takes four components, instead of two as in the collinear case. In this case, the
LSDA is formulated in terms of 2x2 density and potential matrices, ρ and V, which can be
expanded in terms of Pauli spin matrices, e.g. ρ = ρ1 + m · σ [15]. This formalism, with
a local approximation in which the exchange correlation term is again taken from the uniform
electron gas with the same local polarization magnitude and a direction for Vxc parallel to the
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local magnetization direction, yields a useful non-collinear version of the LSDA that has been
widely applied to non-collinear systems [16].
The generalized gradient approximations (GGAs) are the other commonly used class of density
functionals in solids. They use the local gradient as well as the density in order to incorporate
more information about the electron gas in question, i.e. εxc(ρ) is replaced by εxc(ρ, |∇ρ|).
These generalized gradient approximations, which originated in the work of Langreth and Mehl
[17] and Perdew and co-workers [4] are very different from gradient expansions, which lead to
greatly degraded results from the LDA.
Actually, considering how different the electron gas in solids is from the uniform electron gas,
it is perhaps not surprising that a Taylor expansion, which treats solids as a minor perturbation
of the homogeneous gas, would not work. The modern GGA’s are instead rather sophisticated
functionals build around sum rules and scaling relations for the exchange-correlation hole in the
general non-uniform electron gas.
The central relation is the adiabatic connection formula, which in Rydberg units is

Exc[n] =

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
(ḡ[n, r, r′]− 1) =

∫
d3r

∫
d3r′

n(r)n̄xc(r, r
′)

|r− r′|
, (6)

where ḡ is the coupling-constant average (from the non-interacting e2 = 0 value to the physical
value of e2) of the pair distribution function, n is the density as usual and n̄xc is defined by the
equation. This may be understood as the interaction energy of each electron with its exchange
correlation hole less the energy needed to “dig out” the hole. The latter includes contributions to
the kinetic energy beyond the single-particle level. The LDA then consists of the replacement
of n(r′)ḡ[n, r, r′] by n(r)ḡh(n(r), |r − r′|), where ḡh is the coupling constant averaged pair
distribution function of the homogeneous electron gas.
Modern GGA functionals are built using the adiabatic connection formula based on knowledge
of exact sum rules, scaling relations and limits for the exchange correlation hole in the general
non-uniform case. The simplest such sum rule is that the exchange correlation hole contains a
charge of exactly unity. This rule, which is satisfied by the LDA, and the spherical Coulombic
average in Eqn. 6 have been used to explain why such a simple approximation works as well as
it does (see especially, Ref. [12] for clear discussions of this).

2.2 DFT, Jellium and Hartree-Fock

In thinking about DFT and approximations, it is helpful to remember what it is not, particularly
when considering what one might do to improve such approximations to DFT. Sometimes it is
said that LDA or GGA calculations represent either a jellium or a Hartree-Fock approximation
to the many-body system. One purpose of this section is to emphasize that this is not really
correct.
Hartree-Fock, unlike approximate DFT methods, is a variational method based on the exact
Hamiltonian. The Hartree-Fock energy is always higher than the true energy. Hartree-Fock
consists of restricting the wavefunctions to Slater determinants. This gives an exact exchange
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description with no correlation. Hartree-Fock generally overestimates the band gaps of semi-
conductors and insulators, opposite to standard approximate DFT methods, such as the LDA.
Furthermore, importantly, unlike DFT, Hartree-Fock cannot describe metals, since all metals
are unstable in this approximation. Thus it is incorrect to consider a starting description of a
metal within e.g. the LSDA as representing a Hartree-Fock description to which one may add
correlations as if none were present in this starting point. Also, it should be noted that approx-
imate DFT because of its uncontrolled approximations is not self-interaction free. Specifically,
while the exact exchange correlation hole has a charge of exactly unity, this is not the case for
e.g. the LDA in a non-uniform electron gas. Hartree-Fock on the other hand has an exchange
hole that does contain a charge of exactly unity and therefore is self-interaction free.
The distinction between Hartree Fock and approximate DFT is also important from a historical
point of view. Several approximations similar to the LSDA had been proposed and widely used
prior to the development of Kohn-Sham DFT. The Xα method of Slater and co-workers is the
most widely known such method [18]. However, while the formalism of the Xα method is very
similar in appearance to that of the LSDA, from a conceptual point of view it is very different.
In particular, the Xα method was viewed as a simplification of the Hartree-Fock method, i.e. an
approach for fast approximate Hartree-Fock calculations. As such, it was typically parametrized
to reproduce Hartree-Fock as well as possible, often taking the band gap as a quantity that
should be fit. When used in this way it gave many interesting and useful results, e.g. the body
of work produced by J.C. Slater and his group, but did not approach the predictive capabilities
of modern approximate DFT methods. The key point is that approximate DFT methods, like the
modern LDA, are approximations to an exact theory that has density and energy as fundamental
quantities, and which does not reproduce band gaps. This new view led to the use of the energy
of the uniform electron gas in the LDA, rather than a functional form that comes from the
high density exchange, and is what underlies the much better predictive power of the modern
approximate DFT methods.
We now turn to jellium. Jellium is the uniform electron gas that forms the basis of the LDA.
It is a metal that at densities appropriate to solids is far from magnetism. It is also a gas and
as such has no shear strength. In solid state physics, perhaps the simple materials closest to
jellium are the alkali metals, e.g. K or Cs, which are indeed very soft metals that are far from
magnetism. Also, like jellium, they have nearly spherical Fermi surfaces. In any case, the
implication of regarding the LDA as a jellium model is that one adopts a view in which solids
that are well described by the LDA are essentially well described as a uniform electron gas
with weak perturbation by pseudopotentials representing the atomic cores. However, while
LDA and GGA calculations do provide a reasonable description of K and Cs, they provide an
equally good description of materials like diamond and Al2O3, which are insulators and not
only support shear modes, but in fact are among the stiffest known materials.
The point is that solids are not like blueberry muffins (a kind of small cake with embedded
berries that is popular in the United States). The characteristic of blueberry muffins is that they
taste roughly the same independent of the exact number or distribution of the blueberries inside
them. Solids are not at all like that. Instead they show a tremendous diversity of properties
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YBa2Cu3O7 LaFeAsO YNi2B2C 

Fig. 1: The Fermi surfaces of three superconductors, YBa2Cu3O7 (left, following Ref. [6]),
YNi2B2C (middle, following Ref. [19]) and LaFeAsO (right, following Ref. [7]).

depending on the exact type and arrangement of the atoms making them up. Many of the
diverse observed behaviors of materials are in fact rather well described by approximate DFT
calculations. The fact that the properties of Cs appear to be like those of jellium, while those of
diamond appear to be very different does not imply that diamond is a more strongly correlated
material than Cs but is simply a reflection of the fact that the properties of non-uniform electron
gasses, are different from those of the uniform electron gas. This emphasizes the fact that LDA
and GGA approximations do not represent some kind of slowly varying approximation for the
electron gas and so they are often well able to describe the highly non-uniform electron gasses
that comprise condensed matter.

Related to this, in solid state physics it is very useful to start with simple models in order to
understand phenomena. For metals, jellium is a very useful pedagogical starting point, and
because of this many common formulas for metals are written in text books for the case of a
spherical Fermi surface. On the other hand the Fermi surfaces of real metals are often very
complex, as shown for three superconductors in Fig. 1.

All three of these superconductors show multiple sheets, with no obvious relationship to a
simple sphere. However, these Fermi surfaces from LDA calculations agree remarkably well
with experiment. This was perhaps particularly surprising in the case of the high Tc cuprate,
YBa2Cu3O7, since like the other cuprates it is in close proximity to undoped phases (YBa2Cu3O6

in this case) that are Mott insulators and are not even qualitatively described by standard LSDA
calculations.

In any case, the Fermi surface plays the central role in setting the low energy properties of
a metal. Also, superconductivity is fundamentally an instability of the Fermi surface, and so
knowledge of the Fermi surface can reveal a lot about the nature of the superconductivity in a
given compound. For example, all three materials shown in Fig. 1 have crystal structures that
may be described as layered. However, as shown, the Fermi surfaces of the boro-carbides and
boro-nitrides (LuNi2B2C, YNi2B2C, etc.) are clearly three dimensional and in particular do not
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take the form of cylinders. This was one of the first indications following their discovery that
the superconductivity of these materials is unrelated to that of the high Tc cuprates [20]. It is
also an illustration of why approximate DFT has become so widely used – DFT calculations
predicted the three dimensionality of the Fermi surfaces and some other important aspects well
in advance of experimental measurements.

Returning to the jellium model, in characterizing the nature of correlations in a material, the fact
that experiment may show that a certain metal cannot be described by spherical Fermi surface
formulas, does not in itself mean that it cannot be described by detailed DFT calculations, nor
does it in itself imply that a material is strongly correlated (although it may be). In other words,
unconventional behavior in relation to simple jellium based models could be a consequence of
strong correlations, or it could alternatively be a consequence of a non-trivial electronic structure
that is, however, still well described by approximate DFT calculations. It is important to sort
this out in each case. Also, there is sometimes confusion that arises from the simplifications in
spherical Fermi surface models. For example, in a metal the bands and their dispersions at the
Fermi energy EF play a central role in the low energy physics.

The band velocity, vk = ∇kε(k), where ε(k) are the band energies, is an important quantity
both for transport and thermodynamic properties. Within Boltzmann theory the conductivity is
essentially related to the velocity, σxx ∼ N(EF )〈v2x〉τ , where τ is an inverse scattering rate, 〈 〉
denotes the Fermi surface average, and N(EF ) is the density of states at EF . The square of
the Drude plasma frequency, which can be measured from infrared optics, is given by a similar
factor,N(EF )〈v2x〉. However, for a parabolic band (spherical Fermi surface) system this can also
be written as n/m, where m is the effective mass, and n is the carrier density (volume of the
Fermi surface), and similarly one can also eliminate n in favor of the Fermi energy, EF relative
to the band edge. However, it is to be emphasized that infrared optics does not measure EF nor
does it measure n or m (and obviously considering the excitation energy it cannot be sensitive
to such high energy properties), but only a certain integral over the actual Fermi surface.

The bottom line is that extraction of high energy quantities such as Fermi energy and band
filling from experiments such as transport, infrared optics, superconducting properties etc., is
generally model dependent and simple conclusions about high energy properties based on such
measurements should be carefully considered. One exception is the extraction of the Fermi sur-
face volume in layered materials from Hall data, which has been shown to be exact, independent
of the detailed band dispersions and Fermi surface shape provided that the Fermi surfaces are
all open (e.g. cylinders) in the third dimension [21].

3 Aspects of magnetism in oxides

In this section we illustrate some aspects of magnetism in oxides using three compounds, cubic
perovskite SrMnO3, perovskite SrTcO3 and the ferromagnetic perovskite metal SrRuO3.
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3.1 SrMnO3

Manganites attracted much attention because of the colossal magnetoresistance effect (CMR)
and novel exchange couplings in materials like (La,Ca)MnO3 and (La,Sr)MnO3. starting in the
1950’s [22–25] and then again following the rediscovery and enhancement of the CMR effect
the 1990’s [26, 27]. The basic features of the electronic structure from point of view of band
theory have been extensively elucidated by many authors. (see e.g. [28]). Here we focus on the
end-point compound SrMnO3.

SrMnO3 has both hexagonal and cubic polytypes, with hexagonal being the ground state. Here
we consider the cubic polytype, which is an antiferromagnet with Neel temperature, TN=240 K
[29]. The related, and more studied compound, CaMnO3 has an orthorhombic structure, char-
acterized by tilts of the MnO6 octahedra, up to Ts ∼ 720 K, above which it takes a different
rhombohedral structure. The ground state is a G-type antiferromagnet (nearest neighbor anti-
ferromagnetism) with a Neel temperature TN=124 K. Importantly, the resistivity is insulating
both above and below TN , which is a characteristic of a correlated (i.e. Mott type) insula-
tor [30,31]. Interestingly, there is a metal-insulator transition at the structural transition, Ts, and
in the rhombohedral phase CaMnO3 is metallic.

Standard DFT calculations for CaMnO3 predict a G-type antiferromagnetic insulator with a
small band gap [28]. Like CaMnO3, standard DFT calculations (without U ) yield a small band
gap insulator for SrMnO3 (see Fig. 2) with G-type AFM order. In contrast, if ferromagnetic
order is imposed, SrMnO3 is predicted to be a metal. Here we discuss some calculations, which
were done with the LAPW method using the standard PBE GGA functional at the experimental
cubic lattice parameter (a=3.808 Å), and are basically the same as previously reported results.
Integration of the spin density within the Mn LAPW spheres, radius 1.9 Bohr, yields moments
within the spheres of 2.52 µB for the ferromagnetic (corresponding to 3 µB per formula unit for
the whole cell), and a similar value of 2.41 µB for the ground state antiferromagnetic structure.
This weak dependence of the moment on the ordering means that even at the level of standard
band calculations, SrMnO3 behaves like a local moment magnet.

From an experimental point of view SrMnO3 is a borderline material. It is clearly insulating
both above and below TN , although very small perturbations make it metallic [30]. In any case,
it illustrates some important features of the band description of correlated oxides.

First of all, there can be some ambiguity, because band calculations can yield an insulating
state and so it can in some cases be difficult to decide if a material is a band insulator or a
true Mott-Hubbard system. In a Mott system, one expects insulating behavior independent of
magnetic order, one manifestation is that the resistivity shows similar insulating behavior both
above and below TN . In contrast the band picture in a material like SrMnO3 implies that the
conductivity should increase when the AFM order is destroyed above TN since it relates to the
specific magnetic order. Also, in strongly correlated transition metal oxides, the gaps predicted
by standard DFT calculations are often very small in comparison with experiment, for example
tenths of an eV in materials that have several eV band gaps, such as NiO. Essentially, while
there can be a band gap for such materials in standard band calculations, the description of the
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Fig. 2: Electronic density of states of cubic perovskite SrMnO3 as obtained with the PBE GGA.
The calculations were done using the LAPW method and the projections are onto the Mn LAPW
spheres of radius 1.9 Bohr. Majority spin is shown above the horizontal axis, and minority
below. The left panel shows the result for the G-type antiferromagnetic ground state, while the
right panel is for ferromagnetic order.

electronic structure and the true nature of the gap is qualitatively incorrect. Cases like SrMnO3

are less clear. This is because there is not a clear experiment showing the magnitude of the
gap in the paramagnetic phase for this material, and because very tiny dopings produce metallic
conduction about TN suggesting that the material is almost metallic [30]. In general, care is
needed in deciding the extent and nature of correlations in materials.

The second point is the connection between structure and correlations. CaMnO3 is a much more
clear case of a Mott insulator that SrMnO3, which from an experimental point of view is more
borderline. The principal difference between the two materials is structural, i.e. that in CaMnO3

the MnO6 octahedra are rotated yielding an orthorhombic structure. Such a structural distortion
will generally narrow the bands (especially the eg band) in a perovskite, favoring a correlated
state. The Mott transition is typically first order and is frequently strongly coupled to structure.
Thus properties of a metal near a Mott transition, as in the cuprate superconductors, can be very
different from those of the nearby Mott insulator. The presence of the Mott phase in materials
like cuprates shows the importance of the interactions that give rise to it on both sides of the
metal-insulator transition, but the manifestation of these interactions in the physical properties
can be very different in these different phases. An interesting note is that, even though standard
band calculations yield completely wrong descriptions of the Mott phases, many aspects of the
nearby conducting phases, such as the Fermi surfaces of YBa2Cu3O7, can be well described.
While, as will be discussed in other chapters in this volume, there has been significant recent
progress, it remains challenging to add the essential effect of the missing correlations to DFT
calculations, without destroying the good features of those calculations, or changing from a first
principles approach to an approach based on model parameters.
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Fig. 3: The octahedral crystal field splitting in transition metal oxides such as SrMnO3.

3.2 Crystal fields, moment formation and ordering

In order to continue with our discussion of SrMnO3, it is useful to first overview some aspects
of magnetism in perovskite oxides. In the cubic perovskite ABO3 structure the B-site ions are
separated by the lattice parameter a, typically ∼4 Å in oxides, while the bond lengths along
B-site – O – B-site paths are a/2. Thus the main interactions both for forming the electronic
structure and for magnetism are through the oxygen ions, specifically the O 2p orbitals. These
orbitals are px, py and pz.
These orbitals mix with the transition metal d orbitals. The Pauling electronegativity of O is
3.44, which is higher than that of any transition element. Therefore the center of the transition
metal d bands lies above the center of the O p bands in almost any such material (for this purpose
ZnO, CdO and HgO with their full d shells are not regarded as transition metal oxides). In a
cubic environment, the five d orbitals are separated by symmetry into a two-fold degenerate (per
spin) eg and a three-fold degenerate t2g set.
The eg orbitals, labeled x2−y2 and z2, have lobes that point towards the O ions in an octahedral
environment, while the t2g orbitals, xy, xz and zy point in between the O ions. If one adopts
a local frame in which the pz orbital points to the B-site ion and the px and py are oriented
perpendicular to this bond, one sees that there is a strong σ bonding interaction between the pz
the eg d orbitals on the B-site and a weaker π bonding between the O px, py orbitals and the
t2g d B-site orbitals. This explains the crystal field scheme in perovskites. The metal bands are
formally metal d – O p antibonding combinations. The t2g bands are more weakly antibonding
than the eg bands, and therefore occur lower in energy. This is shown in Fig. 3. Also it follows
that in perovskites absent structure distortions, the t2g bands are generally narrower than the
corresponding eg bands and also that the eg bands have a more mixed metal d – O p character
than the t2g bands. Importantly, the crystal field splittings in the d bands of transition metal
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E 

Fig. 4: Band structure depiction of the superexchange mechanism for interaction between two
transition metal ions.

oxides are primarily due to hybridization and covalency with the p states of the neighboring O
as opposed to non-spherical electrostatic potentials. As such, large crystal field splittings are an
indicator of strong hybridization.
Within a local moment picture, which as mentioned is a good starting point for SrMnO3, mag-
netism generally has two aspects: (1) Moment formation and (2) coupling of the moments at
different sites to produce ordering. In most materials these two processes can be considered
separately. The moment formation is driven by the on-site Hund’s coupling in open shell ions,
while the magnetic interactions are through the band formation, i.e. hopping between sites,
which for the reasons discussed above in perovskites is expected to involve O.
For magnetic ordering, large inter-site interactions, i.e. large effective Heisenberg parameters
J , or more generally large hopping integrals, should lead to high ordering temperatures. On the
other hand, strong hopping implies both covalency between theB-site and O orbitals, which will
reduce the on-site Hund’s coupling through mixing of the orbitals and also large band width. If
the band width becomes comparable to the Hund’s coupling, one may expect the moments (and
therefore magnetism) to be lost.
Superexchange is by far the most commonly discussed exchange mechanism in oxides. The
theory for this interaction was formulated by P.W. Anderson [32] and further elucidated by
Goodenough [33] and Kanamori [34]. Here we describe it within a band structure framework.
The left panel of Fig. 4 shows an energy level scheme for two ions with their spins aligned anti-
parallel (i.e. anti-ferromagnetically, so that the majority spin is in the global spin-up direction
on one site and in the opposite spin-down global direction on the other site). Allowing hopping
through O mixes orbitals on different atoms within the same global spin direction. For anti-
parallel alignment this means that the majority spin on one atom mixes with the minority spin



2.14 David J. Singh

on the next, and vice versa. The result is that the lower lying majority states will be pushed down
in energy and the minority spin states pushed up. If the Fermi level is placed so that the majority
levels are occupied, while the minority are unoccupied, the result will be a net energy lowering.
On the other hand, if the spins are aligned ferromagnetically, then the majority spin on one atom
mixes with the majority spin on the neighboring atom, and if this level is completely occupied
there will be no gain from this and similarly for the fully unoccupied minority spin channel.
Thus one has an energy gain for antiferromagnetic alignment but not for ferromagnetic. This
constitutes the superexchange interaction.

So, what favors strong superexchange from a chemical point of view? Superexchange arises due
to hopping between sites via O. This means that strong hopping favors strong superexchange.
Cases where this can be expected are (1) transition metal atoms in high valence states such as
in the cuprate superconductors (because in that case the d levels will be low in energy, i.e. close
to the O 2p levels); (2) cases involving eg orbitals, i.e. systems with an empty eg in the minority
spin and a full eg in the majority spin (since eg orbitals participate in strong σ bonds with O
2p orbitals); (3) straight bonds for the eg case, since the hopping will be strongest in that case;
(4) structures with short metal – O distances; and (5) heavier 4d and 5d elements to the extent
that they can have moments as in SrTcO3, which we discuss below (these have larger d orbitals
with more covalency than 3d elements) [35]. With the exception of straight bonds, these are the
same factors that lead to large crystal field splittings.

3.3 SrMnO3 revisited

Returning to SrMnO3 (Fig. 2), one has both substantial crystal field and exchange splittings of
the d bands. From electron counting, there are three d electrons in Mn4+, and so this should
normally lead to a fully occupied majority spin t2g manifold, with the other d bands empty, and
a spin moment of 3 µB/Mn, consistent with the calculated and experimental results. The main
O 2p bands occur in the energy range from 0 eV (top of the valence band) to ∼ 6 eV binding
energy (-6 eV), with the pσ in the bottom 3 eV. Focusing on the G-AFM (left panel) the minority
spin shows a crystal field splitting of ∼ 2 eV between well defined t2g and eg manifolds. In the
majority spin the occupied t2g manifold overlaps the top of the O 2p bands due to the exchange
splitting, which is a little smaller than 3 eV.

A closer examination shows Mn eg character at the bottom of the valence bands (i.e. the bonding
O pσ - Mn eg combination) in both spin channels but much more strongly in the majority spin.
The reason for the spin dependence is that the d bands are lower in energy in the majority
channel, which favors covalency through a smaller energy denominator. Thus the hybridization
in SrMnO3 is very spin dependent, with clearly stronger hybridization for the majority spin eg
than for the minority spin. This is important for the metallicity of the ferromagnetic ordering,
and also as it is generic to perovskite manganites, it is important for the band formation of those
compounds in general.
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Fig. 5: Electronic density of states of SrTcO3 as obtained within the LSDA following Ref. [35].
The Tc d projections are onto the LAPW spheres of radii 2.1 Bohr.

3.4 SrTcO3

Tc is the element directly below Mn in the periodic table, i.e. it is the 4d analogue of the 3d
element Mn. Tc is in general chemically similar to Mn, but as is generally the case in going from
the 3d element to a 4d element, it has a lower Hund’s coupling and more extended d orbitals,
with the result that Tc has less tendency to form high spin compounds and has a tendency to
be more covalent in compounds. Finally, Tc is larger than Mn in the sense that its Shannon
ionic radii are larger than those of Mn. Structural distortions in ABO3 perovskites are often
understood in terms of a tolerance factor, t = (rA+rO)/(

√
2(rB+rO)), where rA, rB and rO are

the ionic radii of the A, B and O ions. Thus the tolerance factor of SrTcO3 is smaller than that
of SrMnO3, which from a structural point of view makes it more analogous to CaMnO3, and in
accord with this SrTcO3 forms in an orthorhombic distorted perovskite structure characterized
by tilts of the TcO6 octahedra.
As mentioned, the Neel temperature of CaMnO3 is lower by approximately a factor of two than
that of SrMnO3. In contrast, SrTcO3 has received recent attention because of its extremely high
TN > 1000 K [35]. Similar to CaMnO3 and SrMnO3, the ground state of SrTcO3 is a G-type
antiferromagnet.
The density of states for the ground state magnetic structure as obtained within the LSDA
is shown in Fig. 5. As may be seen, again similar to SrMnO3, a small band gap insulator
is predicted. However, the electronic density of states (DOS) is qualitatively different. The
projections show very strong covalency between O and Tc even for the nominal t2g manifold
(Tc t2g – O p π antibonding combinations; recall that for SrMnO3 the t2g hybridization was
weak and it was only the direct σ bonding eg states that showed large hybridization). Because
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of this strong covalency, the Tc d character as measured by the weight inside the 2.1 Bohr
LAPW sphere amounts to only ∼60% of the total N(EF ). Furthermore, the Hund’s coupling
on the 4d Tc atoms is smaller than that on 3d atoms because of the more extended orbitals in
this case. One can see this in the smaller exchange splitting in the Tc compound, as compared
to the Mn analogue (note the exchange splitting of the t2g states, ∼ 1 eV).
As in SrMnO3, the G-type ground state state can be understood in a simple chemical bonding
picture. Hybridization occurs between states of the same global spin direction and yields the
best energy lowering when occupied states mix with unoccupied states to leave bonding combi-
nations occupied and antibonding combinations unoccupied. With G-type order, the occupied
majority spin states on a given site hybridize with unoccupied minority states on each of the
six neighboring sites, which is most favorable. However, unlike SrMnO3, SrTcO3 does not
show local moment behavior at the DFT level. For example, it was found that the moments
collapse to zero for ferromagnetic ordering. Rodriguez and co-workers also considered other
orderings [35]. These were a so-called A-type ordering, consisting of ferromagnetic sheets of
Tc stacked antiferromagnetically, a C-type arrangement with sheets of nearest neighbor antifer-
romagnetic Tc stacked to give ferromagnetic chains along the stacking direction, and a G-type
nearest neighbor antiferromagnetic arrangement. They found that the A-type arrangement had
no stable moments, similar to the ferromagnetic, while the C-type showed a very weak mag-
netic solution, with moments in the Tc LAPW spheres of 0.44 µB and an energy lower than the
NSP state by only 0.4 meV / Tc. In contrast a very robust solution was found for the G-type
ordering. Therefore, at the LSDA level, SrTcO3 should be described not as a local moment
system, but as being closer to the itinerant limit.
In standard oxide magnets there are two energy scales. The first is a scale set by intra-atomic
Coulomb repulsions, particularly the Hund’s coupling, which drive moment formation. This
is typically a high energy scale and leads to stable moments at all solid state temperatures.
The second scale controls the ordering temperature, and is that associated with the relative
orientation of moments on neighboring sites. This is determined by inter-atomic hopping, as
for example in the superexchange mechanism. In perovskites it arises from the hybridization
between transition metal d orbitals and oxygen p orbitals. Importantly, the ordering temperature
is set by the energy differences between different configurations of the moments, and these
differences in turn are related to metal oxygen covalency and details of the bonding topology.
In SrTcO3 the larger extent of the Tc 4d orbitals relative to e.g. the 3d orbitals of Mn lowers
the on-site interactions that underlie moment formation, but strongly increases the amount of
covalency as seen in the DOS projections. The result is that the two energy scales become
comparable and moment formation and ordering are intertwined. This type of situation is often
described as itinerant magnetism. This term should however be used with caution, since the
moments are not small, and as a result there is a rearrangement of the DOS not only near EF
but over most of the ∼3 eV wide t2g manifold.
There are two important differences between SrMnO3 and SrTcO3 that imply high ordering
temperature in the Tc compound. First of all, the energy scale is increased because of the greater
hybridization and the smaller energy splitting between minority and minority spin orbitals (this
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enters in the denominator). Secondly, because the moment formation is intimately connected to
the magnetic order, competing states, as exemplified by the C-type pattern are suppressed: with
two of the six neighboring Tc flipped the moment is strongly reduced, so that even though four
neighbors are oppositely aligned for a net favorable alignment of two neighbors, the energy that
might have been gained is lost because the moment collapses. This is related to the physics that
leads to high ordering temperatures in low moment itinerant magnets such as Cr and Ni. In any
case, these two facts provide a qualitative explanation for the high observed Neel temperature.
Turning to the connection of approximate DFT results with experiment, we note that in the
Mott case the insulating state is incorrectly described. The band prediction for SrTcO3 would
be that it has a metal-insulator transition associated with magnetic order, i.e. that it becomes
conducting above TN . It is not known at present what happens in SrTcO3 from an experimental
point of view. However, the 5d analogue, NaOsO3, which shows many features in common
with SrTcO3, except that TN=410 K is lower, is reported to have a metal-insulator transition
associated with magnetic ordering [36].

3.5 SrRuO3 and itinerant ferromagnetism

As mentioned, the half-filled t2g band is important for the G-type antiferromagnetism in SrTcO3;
with G-type order, one has a majority spin band of bonding character that is filled, and a cor-
responding minority spin band of antibonding character that is empty. Thus one may expect
interesting behavior with doping.
Ru is the element next to Tc in the periodic table. Thus SrRuO3 can be roughly viewed as
an electron doped SrTcO3. Like SrTcO3, SrRuO3 has an orthorhombic distorted perovskite
structure characterized by octahedral tilts. The ground state is metallic and ferromagnetic, with
a total spin moment of ∼1.6 µB on a per Ru basis (this is distributed between Ru and O,
however) and a Curie temperature, Tc=160 K [37–39, 41]. The material is of interest in its
own right as a rare example of a 4d ferromagnet, and also because many of the related ruthenate
phases show very unusual physical behavior, much of it related to magnetism and electron
correlations. Notably, the layered perovskite, Sr2RuO4, which has the same Ru valence and
coordination as ferromagnetic SrRuO3, is an apparently triplet superconductor [42, 43], while
Ca2RuO4 is a Mott insulator [44]. The bilayer perovskite Ca3Ru2O7 is a metamagnetic metal
and is ferromagnetic within its bilayers, but with very slight alloying by Ti, becomes a G-type
antiferromagnetic Mott insulator [45], again showing borderline behavior in ruthenates.
DFT calculations for SrRuO3 show a clear ferromagnetic instability, with parameters (such as
moments) that are in accord with experimental measurements. Also, like SrTcO3, but in contrast
to SrMnO3, the moments are highly dependent on the magnetic order; in SrRuO3 the moments
are suppressed for G-type order. Also, there is a strong dependence on structure. Without the
octahedral tilting, i.e. with the cubic perovskite structure the moment is reduced from 1.59 µB
per formula unit to 1.17 µB in the LSDA [40]. CaRuO3, which differs structurally from the Sr
compound in having larger tilts due to the smaller ionic radius of Ca, is paramagnetic although
highly enhanced (i.e. very near ferromagnetism) according to experiment. This is in accord with
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Fig. 6: Electronic density of states of SrRuO3 as obtained within the LSDA (see Ref. [40]) on a
per formula unit basis. The Ru d projections are onto the LAPW spheres of radii 2.0 Bohr.

LSDA calculations [46], although within the LSDA CaRuO3 is closer to ferromagnetism than in
experiment. This may be a sign of renormalization due to quantum spin fluctuations associated
with the proximity to the ferromagnetic state. Such renormalizations are not described by stan-
dard approximate DFT calculations, because the electron gas upon which these approximations
are based is at densities that place the uniform electron gas far from magnetism [47–49]. In any
case, the strong dependence of the moments on the ordering as well as on the structure indicate
an itinerant aspect to the magnetism.

The interplay between moment formation and magnetic order discussed above for SrTcO3 and
SrRuO3 is a characteristic common to many 4d and 5d magnetic oxides. Essentially, compared
to 3d magnets, (1) the Coulomb interactions, including the exchange interactions are relatively
weaker since they depend on Slater integrals, which are smaller for more extended orbitals and
(2) the hopping and covalency involving the d orbitals is stronger, as these larger orbitals overlap
more strongly with orbitals on neighboring O atoms. These two characteristics are generic to
such materials.

Another aspect that is important is that because of the heavier atoms involved, spin orbit can
play a more important role. Although we do not discuss this in detail here, we note that it has
received recent attention both in terms of correlation effects in materials such as iridates [50],
and in providing mechanisms for high magnetocrystalline anisotropies and magneto-optical
coefficients. This may be important from a practical point of view especially in ferromagnetic
(or ferrimagnetic) materials with heavy element moments and Curie temperatures above room
temperature, such as double perovskites (e.g. Sr2CrReO6 [51]).

Fig. 6 shows the calculated density of states of orthorhombic SrRuO3 in its ferromagnetic
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ground state as obtained within the LSDA (this is a new calculation, done similarly to that
reported in Ref. [40] but with a better converged zone sampling; the moment of 1.55 µB in
this calculation is slightly lower than in the reference, 1.59 µB). The electronic structure shows
exchange split bands that are otherwise similar between the majority and minority spin. The
region near the Fermi energy is derived primarily from Ru t2g states as expected. However, even
in the π bonding t2g manifold strong hybridization with O is evident. This can be seen clearly
in the DOS via the Ru d bonding contributions to the nominal O 2p bands.
SrRuO3 provides an example of itinerant magnetism. In its simplest form it arises from an
instability of the Fermi surface, but in general the moments are finite and states away from the
Fermi surface are important as well. In any case, in the simplest picture, if the density of states
at the Fermi energy, N(EF ) is high then a system may lower its energy by an exchange splitting
where the majority spin states move to higher binding energy (lower absolute energy) relative to
the minority spin and accordingly charge is transferred from the minority to the majority channel
as seen in the DOS. This instability is described by Stoner theory [52], and was generalized to
the case of finite moments in the so-called extended Stoner theory [53] (ref. [46] discusses
ruthenates from this point of view).
Within Stoner theory, the bare Pauli susceptibility (χ0 = N(EF ), with suitable units) is en-
hanced by a factor (1-N(EF )I)−1, whereN(EF ) is expressed on a per spin basis. An instability
towards ferromagnetism occurs when the Stoner parameter, N(EF )I exceeds unity. The physi-
cal origin of I is in the exchange interaction, i.e. through the Coulomb repulsion, and therefore
more compact orbitals lead to larger I , while covalency reduces I . The Stoner criterion amounts
to a criterion that the gain in exchange energy from polarizing the bands exceeds the loss in ki-
netic energy due to the unequal occupation. Typical values of I for 3d transition elements are in
the range 0.7-0.8 eV, and so a Stoner instability can be anticipated if N(EF ) for a 3d transition
atom exceeds∼1.3 eV−1 on a per spin per atom basis. Values for various elements can be found
in Ref. [54]. However, it should be noted that while these values are useful for understanding
the type of magnetic behavior that is expected in a given material, in practice the precise value
of I varies from material to material and one would not use the tabulated values of I , but would
directly obtain the susceptibility and magnetic behavior from self-consistent calculations.
Actually, the Stoner enhancement, above, is a special case of the RPA enhancement, which can
be written,

χ(q) = χ0(q)/(1− I(q)χ0(q)), (7)

where χ0 is the bare Lindhard susceptibility, and I(q) is an interaction term that is now q-
dependent. As in the case of ferromagnetism, an instability occurs when the product I(q)χ0(q)

reaches unity, in this case towards a spin density wave at the nesting vector, q. Details and
interesting discussion about itinerant magnetism from a band structure point of view can be
found in the book of Kubler [55].
Returning to SrRuO3, one sees a substantial peak in the DOS, which is what drives the magnetic
instability. Because this peak is derived from hybridized bands rather than pure d bands a rigid
splitting will result in a magnetization density that reflects this character, i.e. the character of
the band states near the Fermi energy. In the case of SrRuO3 this is approximately 2/3 from
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Ru t2g states and 1/3 from O 2p states (note that there is always ambiguity in defining where
contributions to states come from as there is no unique physical decomposition of the charge
density into atomic contributions). In SrRuO3 the t2g bands do in fact exchange split rather
rigidly as can be seen by comparing the majority and minority DOS, and similarly for the Ru
d projection of the DOS. The reason why the bands exchange-split rigidly in this way is that
the energy cost associated with breaking the Ru - O hybridization is high in this material. In
any case, the consequence is the prediction of substantial moments on the O sites amounting in
aggregate to ∼1/3 of the total magnetization. This has been confirmed by neutron diffraction
measurements.
Another consequence of the induced spin-polarization on O is that not only the pπ states of O
that are hybridized with the polarized Ru t2g orbitals are exchange-split, but as seen in the DOS,
the entire O 2p manifold is exchange-split. This includes the lower part that comes from the pσ
orbitals.
As was discussed in Ref. [46], the ferromagnetic ground state of SrRuO3 can be analyzed us-
ing extended Stoner theory. Extended Stoner analysis helps shed some additional light on the
general features of the magnetic instabilities in ruthenates. The key parameter in this theory
is N(EF )I , where the Stoner I is a normally atomic-like quantity giving the local exchange
enhancement. Generally, I is determined by the density distribution on an ion, and is larger
for more compact orbitals, as in 3d ions relative to 4d ions. In compounds, I is replaced by a
material dependent average I . The appropriate averaging for calculating the energetics is with
the decomposed DOS, I = IAn

2
A + IBn

2
B, for two components, A and B, where IA and IB

are the Stoner I for atoms A and B, and nA and nB are the fractional weights of A and B in
N(EF ) (normalized to nA + nB = 1). The O2− ion is highly polarizable (it does not exist
outside crystals) and because of this the value of IO may be expected to be material dependent.
Nonetheless, O2− is a small ion and so IO may also be large. Mazin and Singh got IRu=0.7 eV
and IO = 1.6 eV for SrRuO3, yielding I = 0.38 eV including O and I = 0.31 eV without the O
contribution. The O contribution to I is generic to perovskite derived ruthenates, as it simply
reflects the hybridization of the t2g orbitals of nominally tetravalent octahedrally coordinated
Ru with O. This provides a ferromagnetic interaction between Ru ions connected by a common
O. The interaction comes about because for a ferromagnetic arrangement the O polarizes, and
this contributes to the energy, while for a strictly antiferromagnetic arrangement, O does not
polarize by symmetry, and so in this case there is no O contribution to the magnetic energy.
This is local physics and so this contribution to the paramagnetic susceptibility, while peaked at
the zone center, is smooth in reciprocal space.
This ferromagnetic tendency, which is generic to all the ruthenates, competes with an antiferro-
magnetic nesting related tendency in the layered perovskite Sr2RuO4, which is a superconduc-
tor. In that compound, spin-fluctuation theory predicts that the ferromagnetic tendency provides
an interaction that can stabilize the triplet state [56, 57]. It is not clear what the role of the anti-
ferromagnetic tendency is in the superconductivity, but one possibility is that it competes with
the ferromagnetic tendency, moving the system away from magnetic ordering and thus allowing
triplet superconductivity to appear as the ground state.
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3.6 Summary

There are a wide variety of oxide magnets, including many useful materials. In spite of many
decades of productive research on these, entirely new systems and new physics continue to be
discovered in oxides. The above represents a narrow selection of three materials that illustrate
some concepts (and leaves out other very important topics, e.g. orbital ordering). Nonetheless,
I hope that it is useful.

4 Concluding remarks

Life would be much less interesting (and perhaps not existent at all) in a universe where all
substances had roughly the same properties, e.g. a world where all solids had the mechanical
properties of Jello. Fortunately for us this is not the case, and instead condensed matter displays
a richly varied diversity of properties. According to density functional theory, all of this variety
is fundamentally associated with the different charge-density distributions in materials. If one
considers that the valence charge-density is most important, it is remarkable to observe that the
average valence-density in a material like diamond is not so much different from that in iron or
BaTiO3 even though the properties of those substances are very different. As mentioned, solids
are not like blueberry muffins. From this point of view it is most remarkable that approximate
DFT methods, such as the LDA, effectively describe many of these differences even though it
would seem at least superficially to be based on a description adapted from the uniform electron
gas. This success, which is reflected in the widespread use of approximate DFT in condensed
matter physics, chemistry and materials science, often provides a very useful starting point for
understanding correlated materials and their properties.
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