The Kondo Effect

Frithjof B. Anders

Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Autumn-School on Correlated Electrons 2012

1. Introduction

- a. History: resistance minimum
- b. Anderson model

2. Renormalization Group

- a. Poor man's scaling
- b. NRG-> see Ralf Bulla'
- c. exotic Kondo effects in metal

3. Kondo effect in Lattice systems

- a. Heavy Fermion materials
- b. Dynamical mean field theory
- c. impurity solver

4. Kondo effect in nano-device

- a. Kondo effect in single-electron transistors
- b. Charge Kondo effect

Frithjof Anders

Resistance minimum

de Haas, van der Berg 1936

Frithjof Anders

Resistance minimum

Frithjof Anders

3

Resistance minimum

Frithjof Anders

Resistance minimum

Frithjof Anders

3

Resistance minimum

Jun Kondo (1964) magnetic scattering: $H_K = J \vec{S}_{loc} \vec{s}_{band}$

Frithjof Anders

Resistance minimum

Frithjof Anders

Resistance minimum

Frithjof Anders

Correlated Electrons: From Models to Materials

4

Single level:
$$H_{imp} = \sum_{\sigma} \varepsilon^d d^{\dagger}_{\sigma} d_{\sigma} + U n_{\uparrow} n_{\downarrow}$$

Frithjof Anders

Single level:
$$H_{imp} = \sum_{\sigma} \varepsilon^{d} d_{\sigma}^{\dagger} d_{\sigma} + U n_{\uparrow} n_{\downarrow}$$

Eigenstates: $[0\rangle \qquad |\sigma\rangle \qquad |\varepsilon^{d} + U$

Frithjof Anders

Frithjof Anders

Single level:
$$H_{imp} = \sum_{\sigma} \varepsilon^{d} d_{\sigma}^{\dagger} d_{\sigma} + U n_{\uparrow} n_{\downarrow}$$

Eigenstates: $[0\rangle \qquad |\sigma\rangle \qquad |\varepsilon^{d} + U$ local moment formation: $T < 0$

charge fluctuations:

Frithjof Anders

[]

Frithjof Anders

hybridization:

$$H_{hyp} = \sum_{\sigma k} V(\sigma k) \left(d^{\dagger}_{\sigma} c_{k\sigma} + c^{\dagger}_{k\sigma} d_{\sigma} \right)$$

Frithjof Anders

Correlated Electrons: From Models to Materials

H_{imp}: artifical atom

 $|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |2\rangle$

 $|0\rangle, E_{\uparrow}, E_{\downarrow}, 2E + U$

Frithjof Anders

Correlated Electrons: From Models to Materials

7

Frithjof Anders

H_{imp}: artifical atom

Frithjof Anders

H_{imp}: artifical atom

technische universität dortmund multi-orbital Anderson Model

spin, charge and orbital fluctuations

$$H_{imp} = \sum_{i\sigma} \varepsilon_i^d n_{i\sigma}^d + \sum_{\substack{\sigma\sigma'\\mnpq}} U_{mnpq} d_{n\sigma}^{\dagger} d_{m\sigma'}^{\dagger} d_{p\sigma'} d_{n\sigma}$$

see R. Eder's lecture

Frithjof Anders

technische universität dortmund multi-orbital Anderson Model

spin, charge and orbital fluctuations

$$H_{imp} = \sum_{i\sigma} \varepsilon_i^d n_{i\sigma}^d + \sum_{\substack{\sigma\sigma'\\mnpq}} U_{mnpq} d_{n\sigma}^{\dagger} d_{m\sigma'}^{\dagger} d_{p\sigma'} d_{n\sigma}$$

U includes Hund's rule couplings see R. Eder's lecture

Frithjof Anders

8

technische universität dortmund multi-orbital Anderson Model

spin, charge and orbital fluctuations

$$H_{imp} = \sum_{i\sigma} \varepsilon_i^d n_{i\sigma}^d + \sum_{\substack{\sigma\sigma'\\mnpq}} U_{mnpq} d_{n\sigma}^{\dagger} d_{m\sigma'}^{\dagger} d_{p\sigma'} d_{n\sigma}$$

U includes Hund's rule couplings

see R. Eder's lecture

 $H_{hyp} = \sum V_{i,\nu}(\sigma k) \left(d_{i\sigma}^{\dagger} c_{k\nu\sigma} + c_{k\nu\sigma}^{\dagger} d_{i\sigma} \right)$ $i\sigma k.\nu$

Frithjof Anders

Correlated Electrons: From Models to Materials

 $H_{imp} = \sum \varepsilon_i^d n_{i\sigma}^d + \sum U_{mnpq} d_{n\sigma}^{\dagger} d_{m\sigma'}^{\dagger} d_{p\sigma'} d_{n\sigma}$ $i\sigma$ $\sigma\sigma'$ mnpq

transition metal complex on a surface

Frithjof Anders

transition metal complex on a surface

D_{4h}/S₄ O_h Compressed Octahedral

Frithjof Anders

transition metal complex on a surface

Frithjof Anders

transition metal complex on a surface

Frithjof Anders

transition metal complex on a surface

transition metal complex on a surface

Frithjof Anders

Renormalization Group

Frithjof B Anders: The Kondo Effect

renormalization group

Frithjof Anders

renormalization group

three steps of renormalization:

Frithjof Anders

Correlated Electrons: From Models to Materials

Jülich, 4.9.2012

renormalization group

three steps of renormalization:

1.elimination of high energy modes

Frithjof Anders

Correlated Electrons: From Models to Materials

Jülich, 4.9.2012

three steps of renormalization:

elimination of high energy modes rescaling of all parameters

Frithjof Anders

three steps of renormalization:

1.elimination of high energy modes2.rescaling of all parameters3.rescaling of the quantum fields

Frithjof Anders

example: free electron gas

Frithjof Anders
example: free electron gas

Frithjof Anders

Frithjof Anders

Frithjof Anders

Frithjof Anders

Frithjof Anders

Frithjof Anders

Frithjof Anders

Correlated Electrons: From Models to Materials

12

example: free electron gas

Frithjof Anders

Correlated Electrons: From Models to Materials

12

example: free electron gas

Wednesday, September 5, 2012

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Projector onto low energy subspace: \hat{P}_L

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Projector onto low energy subspace: \hat{P}_L Projector onto high energy subspace: $\hat{P}_H = \hat{1} - \hat{P}_L$

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Projector onto low energy subspace: \hat{P}_L Projector onto high energy subspace: $\hat{P}_H = \hat{1} - \hat{P}_L$

Definitions:

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Projector onto low energy subspace: \hat{P}_L Projector onto high energy subspace: $\hat{P}_H = \hat{1} - \hat{P}_L$

Definitions:

$$\begin{aligned} H_d &= \hat{P}_L H \hat{P}_L + \hat{P}_H H \hat{P}_H \\ \lambda V &= \hat{P}_L H \hat{P}_H + \hat{P}_H H \hat{P}_L \end{aligned}$$

$$H = \begin{pmatrix} H_d^L & \lambda V \\ \hline \lambda V & H_d^H \end{pmatrix}$$

$$\frac{H_d^L}{D} = \hat{P}_L g \sum_{\alpha\beta} \int_{-1}^1 dx \int_{-1}^1 dx' c_{x\alpha}^{\dagger} c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \hat{P}_L$$
$$= g \sum_{\alpha\beta} \int_{-\frac{1}{s}}^{\frac{1}{s}} dx \int_{-\frac{1}{s}}^{\frac{1}{s}} dx' c_{x\alpha}^{\dagger} c_{x'\beta} [\vec{\sigma}]_{\alpha\beta}$$

$$\frac{H_d^L}{D} = \hat{P}_L g \sum_{\alpha\beta} \int_{-1}^1 dx \int_{-1}^1 dx' c_{x\alpha}^\dagger c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \hat{P}_L$$
$$= g \sum_{\alpha\beta} \int_{-\frac{1}{s}}^{\frac{1}{s}} dx \int_{-\frac{1}{s}}^{\frac{1}{s}} dx' c_{x\alpha}^\dagger c_{x'\beta} [\vec{\sigma}]_{\alpha\beta}$$

$$\begin{aligned} \frac{H_d^L}{D} &= \hat{P}_L g \sum_{\alpha\beta} \int_{-1}^1 dx \int_{-1}^1 dx' \, c_{x\alpha}^\dagger c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \hat{P}_L \\ &= g \sum_{\alpha\beta} \int_{-\frac{1}{s}}^{\frac{1}{s}} dx \int_{-\frac{1}{s}}^{\frac{1}{s}} dx' \, c_{x\alpha}^\dagger c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \\ &= s^{-2} \, g \sum_{\alpha\beta} \int_{-1}^1 d\bar{x} \int_{1}^1 d\bar{x}' \, c_{x(\bar{x})\alpha}^\dagger c_{x'(\bar{x}')\beta} [\vec{\sigma}]_{\alpha\beta} \end{aligned}$$

$$\begin{aligned} \frac{H_d^L}{D} &= \hat{P}_L g \sum_{\alpha\beta} \int_{-1}^1 dx \int_{-1}^1 dx' \, c_{x\alpha}^\dagger c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \hat{P}_L \\ &= g \sum_{\alpha\beta} \int_{-\frac{1}{s}}^{\frac{1}{s}} dx \int_{-\frac{1}{s}}^{\frac{1}{s}} dx' \, c_{x\alpha}^\dagger c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \\ &= s^{-2} \, g \sum_{\alpha\beta} \int_{-1}^1 d\bar{x} \int_{1}^1 d\bar{x}' \, c_{x(\bar{x})\alpha}^\dagger c_{x'(\bar{x}')\beta} [\vec{\sigma}]_{\alpha\beta} \end{aligned}$$

rescale energies

$$\begin{aligned} \frac{H_d^L}{D} &= \hat{P}_L g \sum_{\alpha\beta} \int_{-1}^1 dx \int_{-1}^1 dx' c_{x\alpha}^{\dagger} c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \hat{P}_L \\ &= g \sum_{\alpha\beta} \int_{-\frac{1}{s}}^{\frac{1}{s}} dx \int_{-\frac{1}{s}}^{\frac{1}{s}} dx' c_{x\alpha}^{\dagger} c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \\ &= s^{-2} g \sum_{\alpha\beta} \int_{-1}^1 d\bar{x} \int_{1}^1 d\bar{x}' c_{x(\bar{x})\alpha}^{\dagger} c_{x'(\bar{x}')\beta} [\vec{\sigma}]_{\alpha\beta} \\ &= s^{-1} s^{-1+1} g \sum_{\alpha\beta} \int_{-1}^1 d\bar{x} \int_{1}^1 d\bar{x}' c_{\bar{x}\alpha}^{\dagger} c_{\bar{x}'\beta} [\vec{\sigma}]_{\alpha\beta} \end{aligned}$$

$$\frac{H_d^L}{D} = \hat{P}_L g \sum_{\alpha\beta} \int_{-1}^1 dx \int_{-1}^1 dx' c_{x\alpha}^{\dagger} c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \hat{P}_L$$

$$= g \sum_{\alpha\beta} \int_{-\frac{1}{s}}^{\frac{1}{s}} dx \int_{-\frac{1}{s}}^{\frac{1}{s}} dx' c_{x\alpha}^{\dagger} c_{x'\beta} [\vec{\sigma}]_{\alpha\beta}$$

$$= s^{-2} g \sum_{\alpha\beta} \int_{-1}^1 d\bar{x} \int_{1}^1 d\bar{x}' c_{x(\bar{x})\alpha}^{\dagger} c_{x'(\bar{x}')\beta} [\vec{\sigma}]_{\alpha\beta}$$

$$= s^{-1} s^{-1+1} g \sum_{\alpha\beta} \int_{-1}^1 d\bar{x} \int_{1}^1 d\bar{x}' c_{\bar{x}\alpha}^{\dagger} c_{\bar{x}'\beta} [\vec{\sigma}]_{\alpha\beta}$$

$$= s^{-1} s^{-1+1} g \sum_{\alpha\beta} \int_{-1}^{1} d\bar{x} \int_{1}^{1} d\bar{x}' c_{\bar{x}\alpha}^{\dagger} c_{\bar{x}'\beta} [\vec{\sigma}]_{\alpha\beta}$$

Frithjof Anders

$$\begin{aligned} \frac{H_d^L}{D} &= \hat{P}_L g \sum_{\alpha\beta} \int_{-1}^1 dx \int_{-1}^1 dx' c_{x\alpha}^{\dagger} c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \hat{P}_L \\ &= g \sum_{\alpha\beta} \int_{-\frac{1}{s}}^{\frac{1}{s}} dx \int_{-\frac{1}{s}}^{\frac{1}{s}} dx' c_{x\alpha}^{\dagger} c_{x'\beta} [\vec{\sigma}]_{\alpha\beta} \\ &= s^{-2} g \sum_{\alpha\beta} \int_{-1}^1 d\bar{x} \int_{1}^1 d\bar{x}' c_{x(\bar{x})\alpha}^{\dagger} c_{x'(\bar{x}')\beta} [\vec{\sigma}]_{\alpha\beta} \\ &= s^{-1} s^{-1+1} g \sum_{\alpha\beta} \int_{-1}^1 d\bar{x} \int_{1}^1 d\bar{x}' c_{\bar{x}\alpha}^{\dagger} c_{\bar{x}'\beta} [\vec{\sigma}]_{\alpha\beta} \\ & \square D' = D/s \end{aligned}$$
Kondo interaction: marginal operator

Frithjof Anders

Correlated Electrons: From Models to Materials

Wednesday, September 5, 2012

$$\frac{H_C^L}{D} = \hat{P}_L u \sum_{\sigma\sigma'} \int_{-1}^1 dx_1 \int_{-1}^1 dx_2 \int_{-1}^1 dx_3 \int_{-1}^1 dx_4 c^{\dagger}_{x_1\sigma} c^{\dagger}_{x_2\sigma'} c_{x_3\sigma'} c_{x_4\sigma} \hat{P}_L$$
$$= s^{-4} u \sum_{\sigma\sigma'} \int_{-1}^1 d\bar{x}_1 \int_{-1}^1 d\bar{x}_2 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_4 c^{\dagger}_{x_1(\bar{x}_1)\sigma} c^{\dagger}_{x_2(\bar{x}_2)\sigma'} c_{x_3(\bar{x}_3)\sigma'} c_{x_4(\bar{x}_4)\sigma}$$

$$\frac{H_C^L}{D} = \hat{P}_L u \sum_{\sigma\sigma'} \int_{-1}^1 dx_1 \int_{-1}^1 dx_2 \int_{-1}^1 dx_3 \int_{-1}^1 dx_4 c^{\dagger}_{x_1\sigma} c^{\dagger}_{x_2\sigma'} c_{x_3\sigma'} c_{x_4\sigma} \hat{P}_L$$
$$= s^{-4} u \sum_{\sigma\sigma'} \int_{-1}^1 d\bar{x}_1 \int_{-1}^1 d\bar{x}_2 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_4 c^{\dagger}_{x_1(\bar{x}_1)\sigma} c^{\dagger}_{x_2(\bar{x}_2)\sigma'} c_{x_3(\bar{x}_3)\sigma'} c_{x_4(\bar{x}_4)\sigma}$$

rescale energies

$$\frac{H_C^L}{D} = \hat{P}_L u \sum_{\sigma\sigma'} \int_{-1}^1 dx_1 \int_{-1}^1 dx_2 \int_{-1}^1 dx_3 \int_{-1}^1 dx_4 c^{\dagger}_{x_1\sigma} c^{\dagger}_{x_2\sigma'} c_{x_3\sigma'} c_{x_4\sigma} \hat{P}_L$$

$$= s^{-4} u \sum_{\sigma\sigma'} \int_{-1}^1 d\bar{x}_1 \int_{-1}^1 d\bar{x}_2 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_4 c^{\dagger}_{x_1(\bar{x}_1)\sigma} c^{\dagger}_{x_2(\bar{x}_2)\sigma'} c_{x_3(\bar{x}_3)\sigma'} c_{x_4(\bar{x}_4)\sigma}$$

$$= s^{-1} s^{-3+2} u \sum_{\sigma\sigma'} \int_{-1}^1 d\bar{x}_1 \int_{-1}^1 d\bar{x}_2 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_4 c^{\dagger}_{\bar{x}_1\sigma} c^{\dagger}_{\bar{x}_2\sigma'} c_{\bar{x}_3\sigma'} c_{\bar{x}_4\sigma}$$

$$\frac{H_C^L}{D} = \hat{P}_L u \sum_{\sigma\sigma'} \int_{-1}^1 dx_1 \int_{-1}^1 dx_2 \int_{-1}^1 dx_3 \int_{-1}^1 dx_4 c^{\dagger}_{x_1\sigma} c^{\dagger}_{x_2\sigma'} c_{x_3\sigma'} c_{x_4\sigma} \hat{P}_L$$

$$= s^{-4} u \sum_{\sigma\sigma'} \int_{-1}^1 d\bar{x}_1 \int_{-1}^1 d\bar{x}_2 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_4 c^{\dagger}_{x_1(\bar{x}_1)\sigma} c^{\dagger}_{x_2(\bar{x}_2)\sigma'} c_{x_3(\bar{x}_3)\sigma'} c_{x_4(\bar{x}_4)\sigma}$$

$$= s^{-1} s^{-3+2} u \sum_{\sigma\sigma'} \int_{-1}^1 d\bar{x}_1 \int_{-1}^1 d\bar{x}_2 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_4 c^{\dagger}_{\bar{x}_1\sigma} c^{\dagger}_{\bar{x}_2\sigma'} c_{\bar{x}_3\sigma'} c_{\bar{x}_4\sigma}$$

$$\begin{array}{c} u' = s^{-1} u \end{array}$$

$$\frac{H_C^L}{D} = \hat{P}_L u \sum_{\sigma\sigma'} \int_{-1}^1 dx_1 \int_{-1}^1 dx_2 \int_{-1}^1 dx_3 \int_{-1}^1 dx_4 c^{\dagger}_{x_1\sigma} c^{\dagger}_{x_2\sigma'} c_{x_3\sigma'} c_{x_4\sigma} \hat{P}_L$$

$$= s^{-4} u \sum_{\sigma\sigma'} \int_{-1}^1 d\bar{x}_1 \int_{-1}^1 d\bar{x}_2 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_4 c^{\dagger}_{x_1(\bar{x}_1)\sigma} c^{\dagger}_{x_2(\bar{x}_2)\sigma'} c_{x_3(\bar{x}_3)\sigma'} c_{x_4(\bar{x}_4)\sigma}$$

$$= s^{-1} s^{-3+2} u \sum_{\sigma\sigma'} \int_{-1}^1 d\bar{x}_1 \int_{-1}^1 d\bar{x}_2 \int_{-1}^1 d\bar{x}_3 \int_{-1}^1 d\bar{x}_4 c^{\dagger}_{\bar{x}_1\sigma} c^{\dagger}_{\bar{x}_2\sigma'} c_{\bar{x}_3\sigma'} c_{\bar{x}_4\sigma}$$

$$u' = s^{-1} u \quad \text{irrelevant interaction}$$

Frithjof Anders

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Transformation: elimination of modes

$$\hat{H}' = \hat{U}^{\dagger} H \hat{U} = e^{\lambda \hat{S}} \hat{H} e^{-\lambda \hat{S}} = \hat{H}_d + \lambda \hat{V} + \lambda [\hat{S}, \hat{H}_d] + \lambda^2 [\hat{S}, \hat{V}] + \sum_{n=2} \frac{\lambda^n}{n!} [\hat{S}, \hat{H}]_n$$

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Transformation: elimination of modes

$$\hat{H}' = \hat{U}^{\dagger} H \hat{U} = e^{\lambda \hat{S}} \hat{H} e^{-\lambda \hat{S}} = \hat{H}_d + \lambda \hat{V} + \lambda [\hat{S}, \hat{H}_d] + \lambda^2 [\hat{S}, \hat{V}] + \sum_{n=2} \frac{\lambda^n}{n!} [\hat{S}, \hat{H}]_n$$

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Transformation: elimination of modes

$$\hat{H}' = \hat{U}^{\dagger} H \hat{U} = e^{\lambda \hat{S}} \hat{H} e^{-\lambda \hat{S}} = \hat{H}_d + \lambda \hat{V} + \lambda [\hat{S}, \hat{H}_d] + \lambda^2 [\hat{S}, \hat{V}] + \sum_{n=2} \frac{\lambda^n}{n!} [\hat{S}, \hat{H}]_n$$
$$\hat{V} + [\hat{S}, \hat{H}_d] = 0$$

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Transformation: elimination of modes

$$\hat{H}' = \hat{U}^{\dagger} H \hat{U} = e^{\lambda \hat{S}} \hat{H} e^{-\lambda \hat{S}} = \hat{H}_d + \lambda \hat{V} + \lambda [\hat{S}, \hat{H}_d] + \lambda^2 [\hat{S}, \hat{V}] + \sum_{n=2} \frac{\lambda^n}{n!} [\hat{S}, \hat{H}]_n$$
$$\hat{V} + [\hat{S}, \hat{H}_d] = 0$$

determines S

$$\frac{H}{D} = \sum_{\sigma} \int_{-1}^{1} dx \; x c_{x\sigma}^{\dagger} c_{x\sigma} + g \int_{-1}^{1} dx \int_{-1}^{1} dx' \sum_{\alpha\beta} c_{x\alpha}^{\dagger} \vec{\sigma} c_{x'\beta} \vec{S}_{imp}$$

Transformation: elimination of modes

$$\hat{H}' = \hat{U}^{\dagger} H \hat{U} = e^{\lambda \hat{S}} \hat{H} e^{-\lambda \hat{S}} = \hat{H}_d + \lambda \hat{V} + \lambda [\hat{S}, \hat{H}_d] + \lambda^2 [\hat{S}, \hat{V}] + \sum_{n=2} \frac{\lambda^n}{n!} [\hat{S}, \hat{H}]_n$$
$$\hat{V} + [\hat{S}, \hat{H}_d] = 0$$
$$H' = H_d + \frac{\lambda^2}{2} [S, V] + O(\lambda^3)$$
determines S

Schrieffer-Wolff transformation

Frithjof Anders

Frithjof Anders

Frithjof Anders

RG Flow

Frithjof Anders

Correlated Electrons: From Models to Materials

technische universität dortmund

RG Flow

$$\frac{dg_{\perp}}{d\ln\mathcal{D}} = -2g_{\perp}g^z \quad ; \quad \frac{dg^z}{d\ln\mathcal{D}} = -2g_{\perp}^2$$

Frithjof Anders

technische universität dortmund

RG Flow

Frithjof Anders

Correlated Electrons: From Models to Materials

Frithjof Anders

Correlated Electrons: From Models to Materials

Frithjof Anders

Correlated Electrons: From Models to Materials

technische universität dortmund

RG Flow

 $S' = S_{loc} - 1/2$

under-screened Kondo:

- residual entropy: log(S')
- singular Fermi liquid: free local spin+strong coupling fixed point

Exotic Kondo effects

over-screened Kondo

- residual entropy: log(2)/2
- non Fermi liquid

NRG calculations

Frithjof Anders

Correlated Electrons: From Models to Materials

Jülich, 4.9.2012 23

NRG calculations

NRG calculations

Frithjof Anders

Correlated Electrons: From Models to Materials

Jülich, 4.9.2012 23

NRG calculations

Frithjof Anders

NRG calculations

Frithjof Anders

NRG calculations

Frithjof Anders

Kondo effect in Lattice systems

Frithjof B Anders: The Kondo Effect

technische universität

dortmund

technische universität dortmund

Ce,Yb or Uranium based alloys

technische universität dortmund

Heavy Fermions

- Ce,Yb or Uranium based alloys
- Iocalized 4f or 5f electrons:

Frithjof Anders

J technische universität dortmund

Heavy Fermions

- Ce,Yb or Uranium based alloys
- Iocalized 4f or 5f electrons:
- RKKY interaction mediates magnetic phase

technische universität

Heavy Fermions

Ce,Yb or Uranium based alloys

dortmund

- localized 4f or 5f electrons:
- **RKKY** interaction mediates magnetic phase
- HF superconductivity: heavy quasiparticle form the condensate

U technische universität dortmund

Heavy Fermions

- Ce,Yb or Uranium based alloys
- Iocalized 4f or 5f electrons:
- RKKY interaction mediates magnetic phase
- HF superconductivity: heavy quasiparticle form the condensate
- unconventional order
 parameter

technische universität dortmund

Heavy Fermions

- Ce,Yb or Uranium based alloys
- Iocalized 4f or 5f electrons:
- RKKY interaction mediates magnetic phase
- HF superconductivity: heavy quasiparticle form the condensate
- unconventional order
 parameter
- quantum phase transition

U technische universität dortmund

Heavy Fermions

Frithjof Anders

effective site: impurity problem f-electrons coupled to a bath

Frithjof Anders

effective site: impurity problem impurity $\sum^{f}(\omega) = \text{lattice } \sum^{f}(\omega)$ f-electrons coupled to a bath

Frithjof Anders

$$G_{\sigma}(k,z) = [z - \varepsilon_{k} - \frac{v}{z - \varepsilon_{f} - \Sigma^{f}(z)}]^{-1}$$
effective site:

$$F_{\sigma}(k,z) = [z - \varepsilon_{f} - \Sigma^{f}(z) - \frac{V^{2}}{z - \varepsilon_{k}}]^{-1}$$
impurity $\sum f(\omega)$ = lattice $\sum f(\omega)$ f-electrons coupled to a bath

Frithjof Anders

local approximation, two approaches:

local approximation, two approaches:

 lattice non-crossing approximation (L-NCA) (Grewe 1987)

local approximation, two approaches:

- lattice non-crossing approximation (L-NCA) (Grewe 1987)
- eXtended-NCA: Kuramoto 1985-1990

local approximation, two approaches:

- lattice non-crossing approximation (L-NCA) (Grewe 1987)
- eXtended-NCA: Kuramoto 1985-1990 today: DMFT(NCA)

Frithjof Anders

local approximation, two approaches:

- lattice non-crossing approximation (L-NCA) (Grewe 1987)
- eXtended-NCA: Kuramoto 1985-1990 today: DMFT(NCA)

Metzner/Vollhardt, Müller-Hartmann: (1989) lokal approximation exact in the limit $d \rightarrow \infty$

Frithjof Anders

technische universität dortmund

Heavy Fermions

local f-density of states

Frithjof Anders

J technische universität dortmund

Heavy Fermions

local f-density of states

 $\rho_{\sigma}(\omega,\varepsilon_k)$

renormalized band structure

technische universität dortmund

Frithjof Anders

Frithjof Anders

effective Anderson impurity problem

Frithjof Anders

Electron reservoir

effective Anderson impurity problem

I. perturbation theory (IPT)

- I. perturbation theory (IPT)
- 2. NCA/Post-NCA

- I. perturbation theory (IPT)
- 2. NCA/Post-NCA
- 3. Quantum Monte Carlo (Hirsch-Fye, Continuous time)

- I. perturbation theory (IPT)
- 2. NCA/Post-NCA
- 3. Quantum Monte Carlo (Hirsch-Fye, Continuous time)
- 4. NRG (Ralf Bulla's lecture)

- I. perturbation theory (IPT)
- 2. NCA/Post-NCA
- 3. Quantum Monte Carlo (Hirsch-Fye, Continuous time)
- 4. NRG (Ralf Bulla's lecture)
- 5. DMRG (T=0)

- I. perturbation theory (IPT)
- 2. NCA/Post-NCA
- 3. Quantum Monte Carlo (Hirsch-Fye, Continuous time)
- 4. NRG (Ralf Bulla's lecture)
- 5. DMRG (T=0)
- 6. Gutzwiller ansatz

- I. perturbation theory (IPT)
- 2. NCA/Post-NCA
- 3. Quantum Monte Carlo (Hirsch-Fye, Continuous time)
- 4. NRG (Ralf Bulla's lecture)
- 5. DMRG (T=0)
- 6. Gutzwiller ansatz
- 7. exact diagonalization (ED)

Kondo effect in nano-devices

Frithjof B Anders: The Kondo Effect

Wednesday, September 5, 2012

D. Goldhaber-Gordon, Nature 1998

Kastner, RMP 64, 849(1992)

D. Goldhaber-Gordon, Nature 1998

weak coupling(1)</td

 $E = \frac{e^2}{2C} \left(\hat{N} - N_g \right)^2$ charging energy

Frithjof Anders

Wednesday, September 5, 2012

D. Goldhaber-Gordon, Nature 1998

on resonance

$$E = \frac{e^2}{2C} \left(\hat{N} - N_g \right)^2$$

charging energy

Frithjof Anders

Correlated Electrons: From Models to Materials

Jülich, 4.9.2012

Single-electron transistor

Frithjof Anders

Correlated Electrons: From Models to Materials

Jülich, 4.9.2012

34

Wednesday, September 5, 2012

Single-electron transistor

Frithjof Anders

Correlated Electrons: From Models to Materials

Jülich, 4.9.2012

34

Wednesday, September 5, 2012

Potok et al. Nature

Frithjof Anders

Potok et al. Nature

Correlated Electrons: From Models to Materials

Charging energy of a capacitor

 $E = \frac{1}{2C}Q^2 - QV_g$

Wednesday, September 5, 2012

Potok et al. Nature

Frithjof Anders

Correlated Electrons: From Models to Materials

Charging energy of a capacitor

 $E = \frac{1}{2C}Q^2 - QV_g = \frac{e^2}{2C}\left(\hat{N} - N_g\right)^2$

Potok et al. Nature

Frithjof Anders

Correlated Electrons: From Models to Materials

Charging energy of a capacitor

 $E = \frac{1}{2C}Q^2 - QV_g = \frac{e^2}{2C}\left(\hat{N} - N_g\right)^2$

Charging energy of a capacitor

 $E = \frac{1}{2C}Q^2 - QV_g = \frac{e^2}{2C}\left(\hat{N} - N_g\right)^2$

technische universität

dortmund

Potok et al. Nature

Frithjof Anders

Correlated Electrons: From Models to Materials

Charging energy of a capacitor

 $E = \frac{1}{2C}Q^2 - QV_g = \frac{e^2}{2C}\left(\hat{N} - N_g\right)^2$

charge degeneracy

technische universität

dortmund

Potok et al. Nature

Frithjof Anders

Charge Kondo effect

Frithjof Anders

Charge Kondo effect

Potok et al. Nature

Frithjof Anders

Charge Kondo effect

Potok et al. Nature

Correlated Electrons: From Models to Materials

Two channel Kondo effect?

Potok et al, Nature 446, 167 (2007)

Two channel Kondo effect?

Potok et al, Nature 446, 167 (2007)

Two channel Kondo effect?

Potok et al, Nature 446, 167 (2007)

Two channel Kondo effect?

Potok et al, Nature 446, 167 (2007)

Two channel Kondo effect?

Potok et al, Nature 446, 167 (2007)

Two channel Kondo effect?

Potok et al, Nature 446, 167 (2007)

Two channel Kondo effect?

Wednesday, September 5, 2012

Frithjof B Anders: The Kondo Effect

Wednesday, September 5, 2012

Kondo effect

Frithjof Anders

Kondo effect

1. occurs in a variety of different physics contexts

Frithjof Anders

Kondo effect

occurs in a variety of different physics contexts
(i) scattering of electrons on magnetic impurities

Kondo effect

- 1. occurs in a variety of different physics contexts
 - (i) scattering of electrons on magnetic impurities
 - (ii) Kondo lattice and HF systems

Kondo effect

- (i) scattering of electrons on magnetic impurities
- (ii) Kondo lattice and HF systems
- (iii) effective site of the DMFT

Kondo effect

- (i) scattering of electrons on magnetic impurities
- (ii) Kondo lattice and HF systems
- (iii) effective site of the DMFT
- (iv) single-electron transistors

Kondo effect

- (i) scattering of electrons on magnetic impurities
- (ii) Kondo lattice and HF systems
- (iii) effective site of the DMFT
- (iv) single-electron transistors
- 2. contains an infrared divergent problem

Kondo effect

- (i) scattering of electrons on magnetic impurities
- (ii) Kondo lattice and HF systems
- (iii) effective site of the DMFT
- (iv) single-electron transistors
- 2. contains an infrared divergent problem
 - (i) ground state changes; orthogonal to Fermi sea;

Kondo effect

- (i) scattering of electrons on magnetic impurities
- (ii) Kondo lattice and HF systems
- (iii) effective site of the DMFT
- (iv) single-electron transistors
- 2. contains an infrared divergent problem
 - (i) ground state changes; orthogonal to Fermi sea;
 - (ii) effective moment is screened (partially or perfectly)

Kondo effect

- (i) scattering of electrons on magnetic impurities
- (ii) Kondo lattice and HF systems
- (iii) effective site of the DMFT
- (iv) single-electron transistors
- 2. contains an infrared divergent problem
 - (i) ground state changes; orthogonal to Fermi sea;
 - (ii) effective moment is screened (partially or perfectly) (iii) new energy scale: T_{K}

Kondo effect

- (i) scattering of electrons on magnetic impurities
- (ii) Kondo lattice and HF systems
- (iii) effective site of the DMFT
- (iv) single-electron transistors
- 2. contains an infrared divergent problem
 - (i) ground state changes; orthogonal to Fermi sea;
 - (ii) effective moment is screened (partially or perfectly)
 - (iii) new energy scale: T_K
 - (iv) new fixed points: RG type methods required