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I) Introduction

1. Model for an H
2
-molecule: 

energies:

: Coulomb interaction (intra-atomic)

(spin:           )

t

t

t t

basis:

matrix element for transitions: 

t



  

1.1. Perspective of elementary quantum mechanics: 

ground state:

matrix

(ground-state energy)



  

1.2. Perspective of solid-state theory

ground state:

('molecular orbitals': 'bonding' & 'anti-bonding')

first: solve the 'single-particle problem' (           ) :

ground state is 'single-particle product state'



  

Effective single-particle ('Hartree-Fock') theory:

Idea: find the single-particle product state with the lowest

energy

Problems: 

('correct' spin symmetry: eigenstate of      with eigenvalue          ) 

energy

Hartree-Fock ground state breaks

i) for            ,         is never a single-particle product state 

ii) the HF ground state with the 'correct' spin symmetry is

iii)

spin-symmetry for            :



  

1.3. Perspective of many-particle theory

(operator for double occupancies)

 with increasing    , double occupancies are more 

and more suppressed in the ground state
Gutzwiller's idea:

Gutzwiller wave function: M. C. Gutzwiller 
PRL 10, 159 (1963) ( )

compare:

proper choice of the variational parameter

reproduces the exact ground state



  

2. Transition metals and their compounds

partially filled d-shell: with and

2.1. Transition-metal atoms

in cubic environment:
orbitals

orbitals



  

with the local 'atomic' Hamiltonian:

('multi-band Hubbard models”)

combined spin-orbital index

2.2. Lattice models

Hamiltonian for transition metals with partially filled d-shells:

local Coulomb interaction 

orbital energies

('single-band Hubbard model')



  

Local Hamiltonian for d-orbitals in cubic environment: 

with 10 independent parameters

in spherical approximation: 3 Racah parameters

use mean values
alternatively:

and



  

3d wave functions are rather localised

in solids, the local Coulomb interaction and the band-width 
are of the same order of magnitude

- magnetism

- metal-insulator transitions

- magneto-resistance ('giant', 'colossal')

- orbital order

- high-temperature superconductivity 

Experiment:

Theory: effective single-particle theories often fail 

simplest example: fcc nickel

2.3. Interaction effects in transition-metal compounds

(Hartree-Fock or local density approximation in density-
functional theory)



  

1. Gutzwiller wave functions

for the single-band Hubbard model

one defines: (Gutzwiller wave function)

mit i)          arbitrary single-particle product wave function 

ii)

alternative formulation:

with 'atomic' eigenstates

and variational parameters      :

1.1 Definitions

und

II) Gutzwiller variational theory



  

multi-band Hubbard models

: atomic eigenstates with energies

e.g.: 3d-shell: dimensional local Hilbert space

10 spin-orbitals

with

generalised Gutzwiller wave function:

: matrix of variational parameters  (in this lecture                        )

problem: is still a complicated many-particle wave function 

cannot be evaluated in general

mit



  

1.2. Evaluation: Diagrammatic expansion

We need to calculate

          is a single-particle product wave function 

Wick theorem applies, e.g.,



  

Diagrammatic representation of all terms, e.g.,

with lines



  

1.3. Simplifications in infinite dimensions 

A) Diagrams with three or more lines

Kinetic energy per site on a D-dimensional lattice:

for

(only n.n. hopping)



  

B) Diagrams with two lines

Idea: make sure that all these diagrams cancel each other

This is achieved by the (local) constraints

C) Disconnected diagrams are cancelled by the norm



  

Conclusion: All diagrams with internal vertices vanish

The remaining evaluation is rather straightforward:

='renormalisation matrix'

with



  

1.4. Summary: energy functional in infinite spatial dimensions

(effective hopping parameters)

in the limit of infinite dimensions leads to 

and are analytic functions of

and

Evaluation of

Remaining numerical problem:

Minimisation of         with respect to      and



  

1.5. Minimisation of the energy functional

We consider         as a function of      and of the non-interacting

density matrix     with the elements

'non-interacting'

Minimisation with respect to    leads to the effective single

particle equation

bands are i) mixed (      ) and shifted (       )  

ii) renormalised (      )

with



  

2. Ferromagnetism in two-band models

16 local states:

local Hamiltonian:

-orbitals:

and

1 2

orbital

           2-particle states energy Sym.



  

-orbitals on a  simple cubic 3-dimensional lattice 

density of states:Gutzwiller wave function:

i) no multiplet coupling

ii) spin-polarised
Fermi sea

:

Known: ferromagnetism is hardly found in single-band models

requires pathological densities of states and/or

very large Coulomb parameters

orbital degeneracy is an essential ingredient

therefore, we consider:

 with hopping to nearest and next-nearest neighbours 



  

Results:

phase diagramMagnetisation (               )



  

condensation energy

i) Orbital degeneracy and exchange
interaction are essential for
ferromagnetic order

ii) Single-particle approaches are
insufficient

size of the local spin



  

3. Magnetic order in LaFeAsO 

3.1 Electronic structure of LaFeAsO

i) Metal with conductivity mainly in FeAs layers

ii) AF ground state with a magnetic moment of                       

Y. Kamihara et al., J. Am. Chem. Soc 130,
3296 (2008) 

(K. Ishida et al. J. Phys. Soc. Jpn. 78, 062001 (2009)) 
( )

(DFT:                   )



  

3.2 LDA band-structure and effective tight-binding models

Eight-band model Five-band model:

Three-band model:

O. K Andersen and L. Boeri, 
Ann. Physik 523, 8 (2011)( )

(S. Zhou et al., PRL 105, 096401 (2010)) 

(S. Graser et al., New J. Phys. 11,  025016 (2009)) 



  

3.3 Magnetic order in three-band models 

Without spin-flip terms:

(S. Zhou et al., PRL 105, 096401 (2010)) 

With spin-flip terms:

Hartree-Fock: Conclusion (?):

Gutzwiller theory yields a reasonable 
magnetic moment without fine-tuning
of model parameters



  

 3.4 Five-band model

A) Hartree-Fock:



  

Conclusions:

- small magnetic moments appear only in a small range of 
  correlation parameters

- no orbital order (in contrast to Hartree-Fock)

still no satisfactory explanation for the magnetic order
observed in LaFeAsO  

T. Schickling et al., PRL 106, 156402 (2011) ( ) 3.4 Five-band model



  

3.5 Electronic properties of LaAsFeO (eight-band model)

Phase diagram: Magnetic moment:

Reasonable values of the magnetic moment over a
large range of Coulomb parameters

T. Schickling et al., PRL 108, 036406 (2012) ( )



  

III) The Gutzwiller Density Functional Theory

1. Remainder: The Densitiy Functional Theory

Electronic Hamiltonian in solid-state physics

Hohenberg-Kohn theorem:

Existence of a universal functional              of the density        such that 

has its minimum at the exact ground-state density          of 

('universal' = independent of          )



  

One usually writes

with :    'kinetic energy functional'

:    'exchange correlation functional'

common approximations:
free electron gas

free electron gas

HF approximation for



  

Kohn-Sham scheme:

Instead of        , consider the effective single-particle Hamiltonian 

with the 'Kohn-Sham potential'  
Kinetic energy of non-interacting

particles

and have the same ground-state density



  

Kohn-Sham equations: 

We introduce a basis of local orbitals 



  

2. The Gutzwiller Kohn-Sham equations

We distinguish 'localised' (         )  and 'delocalised' orbitals (          )

where and

are now functionals of the density

Problem: Coulomb interaction is counted twice in the localised

orbitals 'double-counting problem'



  

Density in the Gutzwiller ground state

depends on       and 

Gutzwiller-DFT energy functional:



  

Minimisation

leads to 'Gutzwiller Kohn-Sham equations' with

and

for( )



  

Correlation-induced changes of         :

i)

differs from the DFT expression

ii) Correlated bands are shifted (via      )

change of change of

iii) Correlated bands are renormalised in        

change of     and       in

change of



  

Problems:

1. The local Coulomb interactions                     are usually

considered as adjustable parameters

'ab-initio' character is partially lost

2. Double-counting problem:

Coulomb interaction appears in                     and in  

One possible solution: subtract

from 



  

3. Example: Lattice parameters of iron pnictides

Interlayer distance             and (average) band renormalisation 

from G. Wang et. al, Phys. Rev. Lett. 104, 047002 (2010)



  

Elastic constants:

softening of the corresponding phonon mode

in agreement with experiment



  

1. Superconductivity: beyond the Gutzwiller approximation

1.1 Diagrammatic expansion

In the single-band case we need to calculate

Procedure:

A) Proper choice of the expansion parameter 

B)  Use of Wick's theorem and the linked-cluster theorem 

Diagrammatic representation

C) Numerical evaluation in real space

i)

ii)

iii)

J. Bünemann et al., EPL 98, 27006 (2012) ( )

IV) Further developments



  

This fixes three parameters      and it remains only one (     or    )  

A) Proper choice of the expansion parameter

Main idea: Choose  parameters      such that 

with
!

Main advantage of the HF-operators: no 'Hartree bubbles' 

e.g.:

with

In contrast:

(Wick's theorem)

,



  

The missing of Hartree bubbles has two consequences:

i) Number of diagrams is significantly reduced, e.g. 

Diagrams are fairly localised and the power series in   
converges rapidly (can be tested for            )

ii) Each line is                      (        number of spatial dimensions) 

This suggests the following strategy:

i) Calculate 

in momentum space (i.e., with negligible numerical error) 

ii) Calculate all diagrams (power series in   ) in real space up

iii) Minimise the energy with respect to

to a certain order in 



  

1.2 The one-dimensional Hubbard model

In one dimension one can evaluate Gutzwiller wave functions exactly 
[W. Metzner and D. Vollhardt, PRL 59, 121 (1987)] 

convergence of our approach can be tested

With the exact results we may calculate analytically each order of 
double occupancy             and the kinetic energy              :  

i) Double occupancy ii) Kinetic energy



  

1.3 Fermi-surface deformations in two dimensions

The Gutzwiller wave function 

,

contains as variational objects the parameters      (i.e.,    ) and the 
wave function         . Without breaking translational or spin-
Symmetry the only remaining degree of freedom in a one-band model
 is the shape of the Fermi surface:  

Only constraint:

(particle number conservation)

Minimisation with respect to    :   

with

,



  

Pomeranchuk instabilities

According to fRG calculations it may happen that the Fermi surface 
spontaneously breaks the rotational symmetry of the system at finite   
 ('Pomeranchuk instability').

But:

i) fRG is a perturbative approach

ii) Little is know quantitatively, in particular
    for larger values of    .

Obvious question:

Do we find a Pomeranchuk instability
in our approach?



  

1.4 Hamiltonian with only nearest-neighbor hopping 

'Normal' Fermi surface:



  

Pomeranchuk phase:



  

1.5 Superconductivity in two-dimensional Hubbard models

Pairing beyond         is relevant

collaboration with J. Kaczmarczyk, Krakow ( )



  

Consequence 1: enhancement of stability region



  

Consequence 2: gap-structure



  

Phase diagram  (         )



  

with

“Kubo formula”:

 

(Fourier transformation)

2.1 Two-particle excitations: linear response theory 

Aim: calculate the density matrix    with the elements

with

 equation of motion

2. The time-dependent Gutzwiller theory



  

2.2 Time-dependent Hartree-Fock Theory (RPA):

Equation of motion

Approximation:

 decouples (Wick's theorem) 

 is a closed set of differential equations for

In linear order with respect to        this leads to the RPA result 

with and

with

is assumed to be a single-particle wave function



  

2.3 The time-dependent Gutzwiller theory G. Seibold und J. Lorenzana 
PRL 86, 2605 (2001) ( )

Comparison:

RPA Time-dep. Gutzwiller theory



  

 

“Stoner continuum”

Spin-flip-excitation in the  
“exchange field”

Stoner criterion:  ferromagnetism 

 finite exchange interaction

with

2.4 RPA for the spin susceptibility of a single-band model



  

2.5 Spin excitations in single-band models

A) Hypercubic lattices in infinite dimensions

i) simple cubic (sc) ii) half cubic (hc)

 

densities of states

 



  

Two-particle response functions in large dimensions only depend on the 
real parameter

  

 

i) Phase diagram of the hc-lattice:

instability of the paramagnet: spin-wave stability

(F. Günther et al., PRL 98, 176404 (2007)) 

(DMFT: G. Uhrig, PRL 77, 3629 (1996)) 



  

instability of the paramagnet:

 

stability of the ferromagnet:

ii) Phase diagram of an sc lattice:

stable
spin waves

(DMFT: Obermeier et al., PRB 56, 8479 (1997)) 

2.6 Spin excitations in a two-band model

Hartree-Fock phase diagrams:



  

Gutzwiller phase diagrams:



  

V) Conclusions

1. The Gutzwiller variational approach provides with us a numerically

'Cheap' way to study multi-band Hubbard models for transition

metals and their compounds. 

2. The modest numerical efforts of this method make it particularly  

suitable for a self-consistent merger with the DFT.

3. Apart from ground-state properties the method allows us to

calculate quasi-particle excitations and two-particle response 

functions.

4. Systematic improvements of the infinite D limit are possible and 

sometimes necessary to study, e.g., correlation-induced forms of

superconductivity.
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