LDA+U: a simple Hubbard correction for correlated ground states

Matteo Cococcioni

University of Minnesota

Outline

- Brief introduction to some of DFT most notable failures
- The Hubbard model
- DFT+U: formulation
- Breaking the symmetry
- Computing U from linear response
- LDA+U for metals: FLL and AMF flavors
- Band and Mott insulators: the LDA+U+V extension
- Magnetism and particle/hole localization
- Energy derivatives from the LDA+U ground state
- Summary

Density Functional Theory

Main advantage: using $\rho(\mathbf{r})$ instead of $\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ..., \mathbf{r}_N)$ electronic charge density
(3 space variable)N-electron wave function
(3N space variables)

W. Kohn, 1998 Nobel Laureate in Chemistry

• Hoenberg - Kohn: $V_{ext}(\mathbf{r}) \leftrightarrow \rho_{GS}(\mathbf{r}) \quad E[\rho(\mathbf{r})] = F[\rho(\mathbf{r})] + \int v_{ext}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}$

• Minimization of the *total energy* functional $(\int \rho(\mathbf{r})d\mathbf{r} = N)$

ground state

Density Functional Theory

Main advantage: using $\rho(\mathbf{r})$ instead of $\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ..., \mathbf{r}_N)$ electronic charge density
(3 space variable)N-electron wave function
(3N space variables)

- Minimization of the *total energy* functional $(\int \rho(\mathbf{r})d\mathbf{r} = N)$
- Mapping onto a non interacting system with the same density

$$E[\rho(\mathbf{r})] = T_0[\rho(\mathbf{r})] - e^2 \sum_I \int \frac{Z_I \rho(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_I|} d\mathbf{r} + \frac{e^2}{2} \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + E_{xc}[\rho(\mathbf{r})]$$

$$\rho(\mathbf{r}) = \sum_i f_i |\psi_i(\mathbf{r})|^2 \qquad \text{(from the mapping on to an independent electron)}$$

P. Hoenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

W. Kohn and L. J. Sham, *Phys. Rev* 140, A1133 (1965)

1998 Nobel Laureate

W. Kohn,

ground state

in Chemistry

system)

Density Functional Theory

Main advantage: using $\rho(\mathbf{r})$ instead of $\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ..., \mathbf{r}_N)$ electronic charge density
(3 space variable)N-electron wave function
(3N space variables)

W. Kohn, 1998 Nobel Laureate in Chemistry

ground state

• Hoenberg - Kohn: $V_{ext}(\mathbf{r}) \leftrightarrow \rho_{GS}(\mathbf{r}) \quad E[\rho(\mathbf{r})] = F[\rho(\mathbf{r})] + \int v_{ext}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}$

- Minimization of the *total energy* functional $(\int \rho(\mathbf{r})d\mathbf{r} = N)$
- Mapping onto a non interacting system with the same density

$$E[\rho(\mathbf{r})] = T_0[\rho(\mathbf{r})] - e^2 \sum_I \int \frac{Z_I \rho(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_I|} d\mathbf{r} + \frac{e^2}{2} \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' + E_{xc}[\rho(\mathbf{r})]$$

$$\rho(\mathbf{r}) = \sum_i f_i |\psi_i(\mathbf{r})|^2 \qquad \text{(from the mapping on to an independent electron system)}$$

P. Hoenberg and W. Kohn, *Phys. Rev.* 136, B864 (1964) • While exact in principle, actual implementations of DFT require <u>approximations</u> for E_{xc} LDA $E_{xc}[\rho] = \int \epsilon_{xc}(\rho(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r}$ $E_{xc}[\rho] = \int \epsilon_{xc}(\rho(\mathbf{r}); |\nabla\rho(\mathbf{r})|)\rho(\mathbf{r})d\mathbf{r}$

How well does DFT work?

S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001)

P. Giannozzi et al., Phys. Rev. B 43, 7231 (1991)

Problematic cases: TMOs

AFII ground state

Rhombohedral symmetry and (possible) distortions

INSULATORS

Mott localization of valence electrons on *d* states

Problematic cases: TMOs

AFII ground state

Rhombohedral symmetry and (possible) distortions

INSULATORS

Mott localization of valence electrons on *d* states

Approximate DFT (e.g., LDA or GGA):

- Rhombohedral distortion overestimated
- Poor estimate of structural properties
- FM ground state (FeO)
- Too small or no gap at all

- Magnetization underestimated
- Wrong ordering of states

Problematic cases: NiO and FeO

Problematic cases: NiO and FeO

The gap is underestimated O *p* states not at the to of valence band

No gap at all: metallic ground state

Let's consider the dissociation of H_2

Let's consider the dissociation of H_2

DFT:

Many possible ways to interpret these results:

- electronic self-interaction
- misrepresentation of exchange interactions
- single determinant wave function
- absence of potential discontinuity

- over-delocalization of electrons
- over-stabilization of metallic solutions
- inability to capture statistical ensembles

Many possible ways to interpret these results:

- electronic self-interaction
- misrepresentation of exchange interactions
- single determinant wave function
- absence of potential discontinuity

Misrepresentation of electronic localization — consequences for magnetism, mixed valence states, structural properties, etc

- over-delocalization of electrons
- over-stabilization of metallic solutions
- inability to capture statistical ensembles

Energy is expanded around the strongly-localized limit (on atomic orbitals):

t is the "hopping" amplitude; kinetic term: well represented in DFT

U is the effective repulsion between electrons *localized* on the same site; **not well represented in DFT**

A very simple idea:

let's describe localized d or f electrons using the Hubbard model. We need to <u>"embed"</u>
 <u>the Hubbard Hamiltonian in the DFT energy functional</u>
 V. I. Anisimov *et al.*, PRB 48, 16929 (1993)
 A. Liechtenstein *et al.* PRB 52, R 5467 (1995)

A very simple idea:

let's describe localized d or f electrons using the Hubbard model. We need to <u>"embed"</u>the Hubbard Hamiltonian in the DFT energy functionalV. I. Anisimov et al., PRB 48, 16929 (1993)A. Liechtenstein et al. PRB 52, R 5467 (1995)

We add the Hubbard functional, subtract its MF value....

 $E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + E_{Hub}[\{n_i\}] - E_{dc}[\{n_i\}]$

A very simple idea:

let's describe localized d or f electrons using the Hubbard model. We need to <u>"embed"</u>
 <u>the Hubbard Hamiltonian in the DFT energy functional</u>
 V. I. Anisimov *et al.*, PRB 48, 16929 (1993)
 A. Liechtenstein *et al.* PRB 52, R 5467 (1995)

We add the Hubbard functional, subtract its MF value....

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + E_{Hub}[\{n_i\}] - E_{dc}[\{n_i\}]$$

Original formulation:

$$E_{Hub} = \frac{U}{2} \sum_{i \neq j} n_i n_j$$

$$E_{dc} = rac{U}{2}N(N-1)$$

A very simple idea:

let's describe localized d or f electrons using the Hubbard model. We need to <u>"embed"</u>
 <u>the Hubbard Hamiltonian in the DFT energy functional</u>
 V. I. Anisimov *et al.*, PRB 48, 16929 (1993)
 A. Liechtenstein *et al.* PRB 52, R 5467 (1995)

We add the Hubbard functional, subtract its MF value....

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + E_{Hub}[\{n_i\}] - E_{dc}[\{n_i\}]$$

Original formulation:

$$E_{Hub} = \frac{U}{2} \sum_{i \neq j} n_i n_j \qquad \qquad E_{dc} = \frac{U}{2} N(N-1)$$

The Hubbard correction acts selectively on localized states:

$$E_U = E_{Hub} - E_{dc} = E_U[\{n_i\}]$$

$$n_{i} = \sum_{kv} f_{kv} \langle \phi_{i} | \psi_{kv} \rangle \langle \psi_{kv} | \phi_{i} \rangle$$

DFT+U: rotationally invariant formulation

The expression of the corrective "+U" functional should be independent from the specific choice of localized states

$$\begin{split} E_{Hub}[\{n_{mm'}^{I}\}] &= \frac{1}{2} \sum_{\{m\},\sigma,I} \{\langle m, m'' | V_{ee} | m', m''' \rangle n_{mm'}^{I\sigma} n_{m''m'''}^{I-\sigma} \\ &+ (\langle m, m'' | V_{ee} | m', m''' \rangle - \langle m, m'' | V_{ee} | m''', m' \rangle) n_{mm'}^{I\sigma} n_{m''m'''}^{I\sigma} \} \end{split}$$

$$E_{dc}[\{n_{mm'}^I\}] = \sum_{I} \{\frac{U^I}{2} n^I (n^I - 1) - \frac{J^I}{2} [n^{I\uparrow} (n^{I\uparrow} - 1) + n^{I\downarrow} (n^{I\downarrow} - 1)]\}$$

A. Liechtenstein *et al.* PRB 52, R 5467 (1995)

where:

$$n_{mm'}^{I\sigma} = \sum_{i} f_i \langle \psi_i^{\sigma} | \phi_{m'}^{I} \rangle \langle \phi_m^{I} | \psi_i^{\sigma} \rangle \qquad n^{I\sigma} = \sum_{m} n_{mm}^{I\sigma} \qquad n^{I} = \sum_{\sigma} n^{I\sigma}$$

are Kohn-Sham states

are *localized* atomic orbitals (*d* or *f*)

A simpler formulation

Effective interactions:

$$\langle m, m'' | V_{ee} | m', m''' \rangle = \sum_{k} a_{k}(m, m', m''') F^{k}$$
$$F^{k} = \int d\mathbf{r} \int d\mathbf{r}' \phi_{lm}^{*}(\mathbf{r}) \phi_{lm'}(\mathbf{r}) \frac{r_{<}^{k}}{r_{>}^{k+1}} \phi_{lm''}^{*}(\mathbf{r}') \phi_{lm'''}(\mathbf{r}') \quad a_{k}(m, m', m'', m''') = \frac{4\pi}{2k+1} \sum_{q=-k}^{k} \langle lm | Y_{kq} | lm' \rangle \langle lm'' | Y_{kq}^{*} | lm''' \rangle$$

Let's neglect interaction anisotropy:

$$U = F^0 \neq 0$$

 $J = \frac{F^2 + F^4}{14} = 0$

After some algebra....

Dudarev *et al.*, PRB 57, 1505 (1998)

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma} \right) \right]$$

How does it work?

Because of the rotational invariance we can use a diagonal representation:

$$E_U = E_{Hub} - E_{dc} = \sum_{I} \frac{U^I}{2} \sum_{m,\sigma} \left[\lambda_m^{I\sigma} (1 - \lambda_m^{I\sigma}) \right]$$

where:

$$\mathbf{n}^{I\sigma}\mathbf{v}_m = \lambda_m^{I\sigma}\mathbf{v}_m \qquad \qquad \lambda_m^{I\sigma} = \sum_{k,v} f_{kv} \langle \psi_{kv}^{\sigma} | \phi_m^{I} \rangle \langle \phi_m^{I} | \psi_{kv}^{\sigma} \rangle$$

Potential:

$$V_{U}|\psi_{kv}^{\sigma}\rangle = \frac{\delta E_{U}}{\delta(\psi_{kv}^{\sigma})^{*}} = \sum_{I} \frac{U^{I}}{2} \sum_{m,\sigma} \left(1 - 2\lambda_{m}^{I\sigma}\right) |\phi_{m}^{I}\rangle \langle \phi_{m}^{I}|\psi_{kv}^{\sigma}\rangle$$

$$\lambda_{m}^{I\sigma} > \frac{1}{2} \Rightarrow V_{U} < 0$$

$$\left(\begin{array}{c} \text{Partial occupations of atomic states} \\ \text{are discouraged} \end{array}\right)$$

Potential discontinuity re-established A gap opens: $E_g \approx U$

 $\lambda_m^{I\sigma} < \frac{1}{2} \Rightarrow V_U > 0$

LDA+U NiO

M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)

LDA+U NiO

M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)

FeO: DFT and DFT+U

M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)

FeO: DFT and DFT+U

DFT

M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)

Symmetry and degeneracy of *d* states

In an isolated atom all the *d* states are all degenerate

In a cubic crystal (highest possible symmetry) they split in two group

Cubic

Cubic

Cubic

Cubic

Rhombohedral

5.0

-5.0

Energy (eV)

0.0

-5.0 0.0 Energy (eV)

FeO: which insulating state?

FeO: which insulating state?

Total energy: $E_1 > E_2$

FeO: which insulating state?

Total energy: $E_1 > E_2$

Structural distortion under pressure

What about U?

$$E_{DFT+U}[
ho(\mathbf{r})] = E_{DFT}[
ho(\mathbf{r})] + \sum_{I,\sigma} rac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1}-\mathbf{n}^{I\sigma}
ight)
ight]$$

Many possible ways to interpret the "+U" correction:

- Additive correction shaped on the Hubbard model
- Linearization of the total energy wrt n

What about U?

$$E_{DFT+U}[
ho(\mathbf{r})] = E_{DFT}[
ho(\mathbf{r})] + \sum_{I,\sigma} rac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1}-\mathbf{n}^{I\sigma}
ight)
ight]$$

Many possible ways to interpret the "+U" correction:

- Additive correction shaped on the Hubbard model
- Linearization of the total energy wrt n

Open system in contact with a charge reservoir:

- Energy should be linear between integer N
- Potential should be discontinuous at integer N
- Discontinuity of 1st derivative: <u>fundamental gap</u>

$$\Delta\left(\frac{dE}{dN}\right) = I - A$$

The DFT + Hubbard U approach

 $E_{exact} \neq E_{DFT}$

The (approximate) DFT energy has an *unphysical curvature*

The exact solution is piecewise linear

U and rotationally-invariant U: V.I. Anisimov and coworkers PRB (1991), PRB (1995); Dudarev, and coworkers PRB (1995)

U and rotationally-invariant U: V.I. Anisimov and coworkers PRB (1991), PRB (1995); Dudarev, and coworkers PRB (1995)

U and rotationally-invariant U: V.I. Anisimov and coworkers PRB (1991), PRB (1995); Dudarev, and coworkers PRB (1995) LRT U: M. Cococcioni PhD (2002), and M. Cococcioni and S. de Gironcoli. PRB (2005)

 $\frac{d^2 E_{DFT}}{dn^2}$

• U is to be evaluated from the same ground state we aim to correct

$$U = \frac{d^2 E^{DFT}}{dn^2}$$

- U is to be evaluated from the same ground state we aim to correct
- A free-electron contribution (due to re-hybridization) must be subtracted:

$$U = \frac{d^2 E^{DFT}}{dn^2} - \frac{d^2 E_0^{DFT}}{dn^2}$$

- U is to be evaluated from the same ground state we aim to correct
- A free-electron contribution (due to re-hybridization) must be subtracted:

- U is to be evaluated from the same ground state we aim to correct
- A free-electron contribution (due to re-hybridization) must be subtracted:

Second derivatives

- Second derivatives can not be directly obtained from DFT calculations
- Legendre transforms can help us:

Let's apply a shift to the potential acting on localized states:

$$E[\{\alpha^I\}] = \min_{\rho} \left\{ E[\rho(\mathbf{r})] + \sum_{I} \alpha^I n^I \right\}$$

A functional of the atomic occupations can be defined as:

$$E[\{n^I\}] = E[\{\alpha^I\}] - \sum_I \alpha^I n^I_{min}$$

First and second derivatives can be easily obtained:

$$\frac{dE[\{n^I\}]}{dn^I} = -\alpha^I(\{n^J\}) \qquad \qquad \frac{d^2E[\{n^J\}]}{d(n^I)^2} = -\frac{d\alpha^I(\{n^J\})}{dn^I}$$

M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)

Linear response

Apply a perturbation to the potential acting on the localized states of each Hubbard atom and compute the response of the occupations

$$V_{tot}|\psi_{kv}^{\sigma}\rangle = V_{KS}|\psi_{kv}^{\sigma}\rangle + \alpha^{I}\sum_{m}|\phi_{m}^{I}\rangle\langle\phi_{m}^{I}|\psi_{kv}^{\sigma}\rangle \implies \Delta n^{I}$$

Response matrices:

$$\chi^{IJ} = \frac{dn^{I}}{d\alpha^{J}} \qquad \qquad \chi^{IJ}_{0} = \frac{dn^{I}_{0}}{d\alpha^{J}}$$

Effective interactions:

$$U^{I} = \left(\chi_{0}^{-1} - \chi^{-1}\right)_{II}$$

M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005)

Expression of U

Expression of U

Let's use a more general perturbing potential (*i* runs over all atomic states):

 $V_{tot}|\psi_{kv}^{\sigma}\rangle = V_{KS}|\psi_{kv}^{\sigma}\rangle + \alpha_{ij}|\phi_i\rangle\langle\phi_j|\psi_{kv}^{\sigma}\rangle$

Expression of U

Let's use a more general perturbing potential (*i* runs over all atomic states):

$$V_{tot}|\psi_{kv}^{\sigma}\rangle = V_{KS}|\psi_{kv}^{\sigma}\rangle + \alpha_{ij}|\phi_i\rangle\langle\phi_j|\psi_{kv}^{\sigma}\rangle$$

Using linear-response theory and the definitions given in the previous slides, one obtains:

$$U_{ijkl} = \int \int \phi_i(\mathbf{r})^* \phi_j(\mathbf{r}) \left[\frac{1}{|\mathbf{r} - \mathbf{r}'|} + \frac{\delta v_{xc}(\mathbf{r})}{\delta \rho(\mathbf{r}')} \right] \phi_k(\mathbf{r}')^* \phi_l(\mathbf{r}') \ d\mathbf{r} \ d\mathbf{r}'$$

The U^I actually computed is a "renormalized" atomically-averaged quantity. The renormalization is due to other (non-localized) states.

• Fully ab initio estimation of the effective interaction (no guess or semiempirical evaluation needed

• Fully ab initio estimation of the effective interaction (no guess or semiempirical evaluation needed

• Consistency of the effective interaction with the definition of the energy functional and of the on-site occupations Other localized basis sets can be equivalently used: gaussian, wannier functions, etc

• Fully ab initio estimation of the effective interaction (no guess or semiempirical evaluation needed

• Consistency of the effective interaction with the definition of the energy functional and of the on-site occupations Other localized basis sets can be equivalently used: gaussian, wannier functions, etc

• Consistency with the DFT approximation

• Fully ab initio estimation of the effective interaction (no guess or semiempirical evaluation needed

• Consistency of the effective interaction with the definition of the energy functional and of the on-site occupations Other localized basis sets can be equivalently used: gaussian, wannier functions, etc

• Consistency with the DFT approximation

• Easy implementation in different computational schemes.

• Fully ab initio estimation of the effective interaction (no guess or semiempirical evaluation needed

• Consistency of the effective interaction with the definition of the energy functional and of the on-site occupations Other localized basis sets can be equivalently used: gaussian, wannier functions, etc

- Consistency with the DFT approximation
- Easy implementation in different computational schemes.

 \bullet Captures the variation of U with species, spin, crystal structure, volume and symmetry

Energy (#V)

Energy (#V)

Li-ion battery materials: redox potential and voltage

F. Zhou *et al.*, PRB (2004), F. Zhou *et al.*, Elec. Comm. (2004)

Energy (eV)

F. Zhou *et al.*, PRB (2004), F. Zhou *et al.*, Elec. Comm. (2004)

Li-ion battery materials: redox

potential and voltage

MO₆ octahedra

MO₆ octahedra

-2

-1

P.e

LDA+U_{scf}: computing U from a LDA+U ground state

LDA and LDA+U ground states can be qualitatively different.

U cab be calculated as the curvature of the DFT part of the energy corresponding to a LDA+U ground state

$$E[\{\alpha_I\}] = \min_{\rho} \left\{ E_{DFT}[\rho(\mathbf{r})] + E_U[\{n^I\}] + \sum_I \alpha^I n^I \right\}$$

In the perturbed run we keep the Hubbard potential "frozen" (we construct it with the same n^{I} of the unperturbed scf calculation

U is recomputed until consistent with the one used in the expression of E_U

LDA+U_{scf} results

ΔE_a	Forward Reaction			Back Reaction		
	GGA	GGA+U	$\operatorname{CCSD}(\mathrm{T})$	GGA	GGA+U	$\operatorname{CCSD}(T)$
$TS-1^4$	0.39	0.22	0.25	1.43	1.64	1.60
$TS-1^6$	0.99	0.96	1.03	1.60	2.02	1.99
$TS-2^4$	0.54	0.13	0.19	1.34	2.15	2.01
$TS-2^6$	1.22	0.82	1.11	2.01	3.01	2.98
		(1.16)				

H. J. Kulik et al. PRL 97, 103001 (2006)

H. Hsu et al. PRL 106, 118501 (2011)

150 0

A-HS; B-LS

P (GPa)

(c) GGA+U (U=4)

100

150

-HS; B-HS

50

A-HS; B-LS

100

(b) GGA+Usc

HS: B-HS

P (GPa)

50

0

LDA+U for metals: FLL vs AMF limits

Fully Localized Limit (FLL)

$$E_{DFT+U}[
ho(\mathbf{r})] = E_{DFT}[
ho(\mathbf{r})] + \sum_{I,\sigma} rac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1}-\mathbf{n}^{I\sigma}
ight)
ight]$$

Favors integer occupations

V. I. Anisimov et al., PRB 48, 16929 (1993)

A. Liechtenstein et al. PRB 52, R 5467 (1995)

V. I. Anisimov et al., J. Phys. Condens. Matter 9, 767 (1997)

Around Mean-Field (AMF)

S. L. Dudarev et al., PRB 57, 1505 (1998)

$$E_{DFT+U} = E_{DFT} + \sum_{I} \frac{U^{I}}{2} Tr(\mathbf{n}^{I} - \langle n^{I} \rangle)^{2}$$

Energy costs of fluctuations around even distribution of electrons

V. I. Anisimov *et al.* PRB 44, 943 (1991)

V. I. Anisimov et al., J. Phys. Condens. Matter 19, 106206 (2007)

M. T. Czyzyk et al. PRB 49, 14211 (1994)

A. G. Petukhov et al., PRB 67, 153106 (2003)
End of the first part

Questions?

Magnetic Shape Memory Alloys (Heusler): magnetism and phase transformation

Ni₂MnGa

Austenite Martensite (non modulated)

Martensitic transitions

High T: austenite cubic (FCC)

Low T: martensite (modulated tetragonal)

Magnetic Shape Memory Alloys (Heusler): magnetism and phase transformation

Ni₂MnGa

Austenite

Martensite (non modulated)

Martensitic transitions

High T: austenite cubic (FCC)

Low T: martensite (modulated tetragonal)

Experiments

Alloy Ni Mn 1 50.7 28.4 7.685 5M 2 50.7 28.3 7.681 5M 3 50.7 27.8 7.661 5M 4 50.6 28.5 7.682 5M 5 50.0 29.8 7.692 5M 6 50.0 28.9 7.656 5M 7 49.9 29.9 7.660 5M 8 49.7 29.1 7.643 5M 9 49.6 29.2 7.640 5M 10 49.2 30.6 7.665 5M 11 49.1 30.7 7.665 5M 12 49.0 30.3 7.607 5M 14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 18 54.9 23.8			Content (at %)	e/a	Phase
1 50.7 28.4 7.685 $5M$ 2 50.7 28.3 7.681 $5M$ 3 50.7 27.8 7.661 $5M$ 4 50.6 28.5 7.682 $5M$ 5 50.0 29.8 7.692 $5M$ 6 50.0 28.9 7.656 $5M$ 7 49.9 29.9 7.690 $5M$ 8 49.7 29.1 7.643 $5M$ 10 49.2 30.6 7.668 $5M$ 11 49.1 30.7 7.665 $5M$ 12 49.0 30.3 7.642 $5M$ 13 48.5 30.3 7.677 $5M$ 14 51.0 28.5 7.710 $7M$ 15 50.5 29.4 7.711 $7M$ 16 49.5 30.3 7.672 $7M$ 18	Alloy	Ni	Mn	_	
2 50.7 28.3 7.681 $5M$ 3 50.7 27.8 7.661 $5M$ 4 50.6 28.5 7.682 $5M$ 5 50.0 29.8 7.692 $5M$ 6 50.0 28.9 7.656 $5M$ 7 49.9 29.9 7.690 $5M$ 8 49.7 29.1 7.643 $5M$ 9 49.6 29.2 7.640 $5M$ 10 49.2 30.6 7.668 $5M$ 11 49.1 30.7 7.665 $5M$ 12 49.0 30.3 7.642 $5M$ 13 48.5 30.3 7.607 $5M$ 14 51.0 28.5 7.710 $7M$ 15 50.5 29.4 7.711 $7M$ 16 49.5 30.3 7.677 $7M$ 17 48.8 31.4 7.672 $7M$ 18 54.9 23.8 7.795 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.6 7.692 NM 26 52.4 25.6 7.677 NM 28 51.7 27.4 7.757 NM 29 51.5 27.4 7.68 NM </td <td>1</td> <td>50.7</td> <td>28.4</td> <td>7.685</td> <td>5M</td>	1	50.7	28.4	7.685	5M
3 50.7 27.8 7.661 $5M$ 4 50.6 28.5 7.682 $5M$ 5 50.0 29.8 7.692 $5M$ 6 50.0 28.9 7.656 $5M$ 7 49.9 29.9 7.690 $5M$ 8 49.7 29.1 7.643 $5M$ 9 49.6 29.2 7.640 $5M$ 10 49.2 30.6 7.668 $5M$ 11 49.1 30.7 7.665 $5M$ 12 49.0 30.3 7.642 $5M$ 13 48.5 30.3 7.607 $5M$ 14 51.0 28.5 7.710 $7M$ 15 50.5 29.4 7.711 $7M$ 16 49.5 30.3 7.677 $7M$ 17 48.8 31.4 7.672 $7M$ 18 <td< td=""><td>2</td><td>50.7</td><td>28.3</td><td>7.681</td><td>5M</td></td<>	2	50.7	28.3	7.681	5M
4 50.6 28.5 7.682 5M 5 50.0 29.8 7.692 5M 6 50.0 28.9 7.656 5M 7 49.9 29.9 7.690 5M 8 49.7 29.1 7.643 5M 9 49.6 29.2 7.640 5M 10 49.2 30.6 7.665 5M 11 49.1 30.7 7.665 5M 12 49.0 30.3 7.642 5M 13 48.5 30.3 7.607 5M 14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 20 53.9 24.4 7.749 NM	3	50.7	27.8	7.661	5M
5 50.0 29.8 7.692 5M 6 50.0 28.9 7.656 5M 7 49.9 29.9 7.690 5M 8 49.7 29.1 7.643 5M 9 49.6 29.2 7.640 5M 10 49.2 30.6 7.665 5M 11 49.1 30.7 7.665 5M 12 49.0 30.3 7.642 5M 13 48.5 30.3 7.607 5M 14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 <	4	50.6	28.5	7.682	5M
6 50.0 28.9 7.656 $5M$ 7 49.9 29.9 7.690 $5M$ 8 49.7 29.1 7.643 $5M$ 9 49.6 29.2 7.640 $5M$ 10 49.2 30.6 7.668 $5M$ 11 49.1 30.7 7.665 $5M$ 12 49.0 30.3 7.642 $5M$ 13 48.5 30.3 7.607 $5M$ 14 51.0 28.5 7.710 $7M$ 15 50.5 29.4 7.711 $7M$ 16 49.5 30.3 7.677 $7M$ 17 48.8 31.4 7.672 $7M$ 18 54.9 23.8 7.795 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM	5	50.0	29.8	7.692	5M
7 49.9 29.9 7.690 5M 8 49.7 29.1 7.643 5M 9 49.6 29.2 7.640 5M 10 49.2 30.6 7.665 5M 11 49.1 30.7 7.665 5M 12 49.0 30.3 7.642 5M 13 48.5 30.3 7.607 5M 14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24	6	50.0	28.9	7.656	5M
8 49.7 29.1 7.643 5M 9 49.6 29.2 7.640 5M 10 49.2 30.6 7.665 5M 11 49.1 30.7 7.665 5M 12 49.0 30.3 7.642 5M 13 48.5 30.3 7.607 5M 14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25	7	49.9	29.9	7.690	5M
9 49.6 29.2 7.640 5M 10 49.2 30.6 7.668 5M 11 49.1 30.7 7.665 5M 12 49.0 30.3 7.642 5M 13 48.5 30.3 7.607 5M 14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.757 NM 26	8	49.7	29.1	7.643	5M
10 49.2 30.6 7.668 $5M$ 11 49.1 30.7 7.665 $5M$ 12 49.0 30.3 7.642 $5M$ 13 48.5 30.3 7.607 $5M$ 14 51.0 28.5 7.710 $7M$ 15 50.5 29.4 7.711 $7M$ 16 49.5 30.3 7.677 $7M$ 17 48.8 31.4 7.672 $7M$ 18 54.9 23.8 7.795 NM 19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 26 52.4 25.6 7.677 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	9	49.6	29.2	7.640	5M
11 49.1 30.7 7.665 5M 12 49.0 30.3 7.642 5M 13 48.5 30.3 7.607 5M 14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.757 NM 26 52.4 25.6 7.692 NM 27	10	49.2	30.6	7.668	5M
12 49.0 30.3 7.642 $5M$ 13 48.5 30.3 7.607 $5M$ 14 51.0 28.5 7.710 $7M$ 15 50.5 29.4 7.711 $7M$ 16 49.5 30.3 7.677 $7M$ 16 49.5 30.3 7.672 $7M$ 17 48.8 31.4 7.672 $7M$ 18 54.9 23.8 7.795 NM 19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	11	49.1	30.7	7.665	5M
13 48.5 30.3 7.607 SM 14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30	12	49.0	30.3	7.642	5M
14 51.0 28.5 7.710 7M 15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.799 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 30 51.2 27.4 7.68 NM 31	13	48.5	30.3	7.607	5M
15 50.5 29.4 7.711 7M 16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.799 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32	14	51.0	28.5	7.710	7M
16 49.5 30.3 7.677 7M 17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33	15	50.5	29.4	7.711	7M
17 48.8 31.4 7.672 7M 18 54.9 23.8 7.795 NM 19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.795 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33	16	49.5	30.3	7.677	7M
18 54.9 23.8 7.795 NM 19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.757 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	17	48.8	31.4	7.672	7M
19 54.0 24.7 7.768 NM 20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.703 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	18	54.9	23.8	7.795	NM
20 53.9 24.4 7.749 NM 21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.703 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	19	54.0	24.7	7.768	NM
21 53.7 26.4 7.815 NM 22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	20	53.9	24.4	7.749	NM
22 53.3 24.6 7.715 NM 23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.799 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	21	53.7	26.4	7.815	NM
23 52.9 25.0 7.703 NM 24 52.8 25.7 7.724 NM 25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	22	53.3	24.6	7.715	NM
24 52.8 25.7 7.724 NM 25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	23	52.9	25.0	7.703	NM
25 52.7 26.0 7.729 NM 26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	24	52.8	25.7	7.724	NM
26 52.4 25.6 7.692 NM 27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	25	52.7	26.0	7.729	NM
27 52.3 27.4 7.757 NM 28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	26	52.4	25.6	7.692	NM
28 51.7 27.7 7.726 NM 29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	27	52.3	27.4	7.757	NM
29 51.5 26.8 7.677 NM 30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	28	51.7	27.7	7.726	NM
30 51.2 27.4 7.68 NM 31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	29	51.5	26.8	7.677	NM
31 51.0 28.7 7.721 NM 32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	30	51.2	27.4	7.68	NM
32 50.5 30.4 7.751 NM 33 47.0 33.1 7.614 NM	31	51.0	28.7	7.721	NM
33 47.0 33.1 7.614 NM	32	50.5	30.4	7.751	NM
	33	47.0	33.1	7.614	NM

Lanska et al., J. Appl. Phys. 95, 8074 (2004)

Magnetic Shape Memory Alloys (Heusler): magnetism and phase transformation

Ni₂MnGa

Calculations: A and non modulated M

Zayak et. al. J. Phys. Condens. Matter 15, 159 (2003)

Ni₂MnGa: localization and structural stability

Ni₂MnGa: localization and structural stability _{GGA}

Ni₂MnGa: localization and structural stability _{GGA}

Mn: magnetism

Ni: metallic character

Ni₂MnGa: localization and structural stability GGA

Mn: magnetism

Ni: metallic character

The d states of Mn are localized: +U correction needed?

Ni₂MnGa: localization and structural stability GGA

Ni₂MnGa: localization and structural stability GGA

Mn: magnetism

Ni: metallic character

The d states of Mn are localized: +U correction needed?

E [eV]

a_0 (Å)	$\mu_{Mn}(\mu_B)$	$\mu_{Ni}(\mu_B)$	$\mu_{Ga}(\mu_B)$	$\mu_{tot} (\mu_B/cell)$
5.83	3.67	0.34	-0.13	4.22

A more pronounced electronic localization destabilizes the non-modulated martensite

What is the underlying mechanism?

$\mu_{Mn}(\mu_B)$	$\mu_{Ni}(\mu_B)$	$\mu_{Ga}(\mu_B)$	$\mu_{tot} (\mu_B/cell)$
4.52	0.16	-0.13	4.80

E [eV]

0

-2

Austenite

2

Magnetic interaction energy

Heisenberg map for the energy

$$H_{mag} = \sum_{\langle i,j \rangle} J_{i,j} S_i \cdot S_j$$

B. Himmetoglu V. M. Katukuri and M. Cococcioni, J. Phys. Condens. Matter 24, 185501 (2012)

Magnetic interaction energy

Heisenberg map for the energy

$$H_{mag} = \sum_{\langle i,j \rangle} J_{i,j} S_i \cdot S_j$$

B. Himmetoglu V. M. Katukuri and M. Cococcioni, J. Phys. Condens. Matter 24, 185501 (2012)

Mn atoms: Anderson magnetic impurities in Ni *d* and Ga *p* conduction electrons

Mn atoms: Anderson magnetic impurities in Ni *d* and Ga *p* conduction electrons

Mn atoms: Anderson magnetic impurities in Ni *d* and Ga *p* conduction electrons

Anderson model \longrightarrow RKKY magnetic interactions (J) $J_{d \mathbf{k}} \simeq \frac{2 |V_{d \mathbf{k}}|^2 U}{|E| (U - |E|)}$

Mn atoms: Anderson magnetic impurities in Ni *d* and Ga *p* conduction electrons

Anderson model \longrightarrow RKKY magnetic interactions (J) $J_{d \mathbf{k}} \simeq \frac{2 |V_{d \mathbf{k}}|^2 U}{|E| (U - |E|)}$

Super-exchange couplings and magnetization

$$J_{d\,d} \sim m \, k_F^4 \, |J_{d\,\mathbf{k}}|^2$$
 (FM)

$$\mu_{\mathbf{k}} \simeq \frac{1}{2} |V_{d\,\mathbf{k}}|^2 \frac{d\rho}{d\epsilon} \ln\left[\frac{E^2 + \Delta^2}{(E+U)^2 + \Delta^2}\right]$$

Mn atoms: Anderson magnetic impurities in Ni *d* and Ga *p* conduction electrons

Anderson model \longrightarrow RKKY magnetic interactions (J) $J_{d \mathbf{k}} \simeq \frac{2 |V_{d \mathbf{k}}|^2 U}{|E| (U - |E|)}$

Super-exchange couplings and magnetization

$$J_{d\,d} \sim m \, k_F^4 \, |J_{d\,\mathbf{k}}|^2 \quad \text{(FM)}$$

$$\mu_{\mathbf{k}} \simeq \frac{1}{2} |V_{d\,\mathbf{k}}|^2 \frac{d\rho}{d\epsilon} \ln\left[\frac{E^2 + \Delta^2}{(E+U)^2 + \Delta^2}\right]$$

Electronic localization essential for magnetism: "+U" functional needed to capture this behavior

Ni₂MnGa: predicting the effect of doping

The fundamental gap problem

If computed as the second derivative of the energy, U re-establishes energy discontinuities: the **fundamental band gap**:

$$egin{aligned} \Delta &= \Delta_{KS} + \Delta_{xc} \ E_{DFT+U}[
ho(\mathbf{r})] = E_{DFT}[
ho(\mathbf{r})] + \sum_{I,\sigma} rac{U^I}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1}-\mathbf{n}^{I\sigma}
ight)
ight] \end{aligned}$$

Can the "+U" functional improve the band gap of band semiconductors?

Can the "+U" functional improve the band gap of band semiconductors?

	Si			GaAs		
	a (A)	B (GPa)	Eg (eV)	a (A)	B (GPa)	Eg (eV)
GGA	5.48	83.0	0.64	5.77	58.4	0.19
GGA+U	5.36	93.9	0.39	5.74	52.6	0.00
Exp	5.43	98.0	1.12	5.65	75.3	I.42

Can the "+U" functional improve the band gap of band semiconductors?

	Si			GaAs		
	a (A)	B (GPa)	Eg (eV)	a (A)	B (GPa)	Eg (eV)
GGA	5.48	83.0	0.64	5.77	58.4	0.19
GGA+U	5.36	93.9	0.39	5.74	52.6	0.00
Exp	5.43	98.0	1.12	5.65	75.3	I.42

Unfortunately not: inter-site hybridization suppressed by U

DFT+U energy functional

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right]$$

DFT+U energy functional

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right]$$

DFT+U+V energy functional

$$E_{DFT+U+V}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right] - \sum_{I,J,\sigma} \frac{V^{IJ}}{2} Tr\left[\mathbf{n}^{IJ\sigma}\mathbf{n}^{JI\sigma}\right]$$

DFT+U energy functional

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma} \right) \right]$$

DFT+U+V energy functional

$$E_{DFT+U+V}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma} \right) \right] - \sum_{I,J,\sigma} \frac{V^{IJ}}{2} Tr \left[\mathbf{n}^{IJ\sigma} \mathbf{n}^{JI\sigma} \right]$$

DFT+U energy functional

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right]$$

DFT+U+V energy functional

$$E_{DFT+U+V}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma} \right) \right] - \sum_{I,J,\sigma} \frac{V^{IJ}}{2} Tr \left[\mathbf{n}^{IJ\sigma} \mathbf{n}^{JI\sigma} \right]$$

U is the *on-site* interaction, V is the *inter-site* one; they are **in competition**

DFT+U energy functional

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right]$$

DFT+U+V energy functional

$$E_{DFT+U+V}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right] - \sum_{I,J,\sigma} \frac{V^{IJ}}{2} Tr\left[\mathbf{n}^{IJ\sigma} \mathbf{n}^{JI\sigma}\right]$$

U is the *on-site* interaction, V is the *inter-site* one; they are **in competition**

<u>U and V can be computed simultaneously (and with no extra cost):</u>

$$U^{I} = (\chi_{0}^{-1} - \chi^{-1})_{II} \qquad V^{IJ} = (\chi_{0}^{-1} - \chi^{-1})_{IJ}$$

DFT+U energy functional

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right]$$

DFT+U+V energy functional

$$E_{DFT+U+V}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right] - \sum_{I,J,\sigma} \frac{V^{IJ}}{2} Tr\left[\mathbf{n}^{IJ\sigma} \mathbf{n}^{JI\sigma}\right]$$

U is the *on-site* interaction, V is the *inter-site* one; they are **in competition**

<u>U and V can be computed simultaneously (and with no extra cost):</u>

$$U^{I} = (\chi_{0}^{-1} - \chi^{-1})_{II} \qquad V^{IJ} = (\chi_{0}^{-1} - \chi^{-1})_{IJ}$$

Generalized occupations:

$$n_{mm'}^{IJ\sigma} = \sum_{i} f_i \langle \psi_i^\sigma | \phi_{m'}^J
angle \langle \phi_m^I | \psi_i^\sigma
angle$$

DFT+U energy functional

$$E_{DFT+U}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr \left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right]$$

DFT+U+V energy functional

$$E_{DFT+U+V}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma} \left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right] - \sum_{I,J,\sigma} \frac{V^{IJ}}{2} Tr\left[\mathbf{n}^{IJ\sigma} \mathbf{n}^{JI\sigma}\right]$$

U is the *on-site* interaction, V is the *inter-site* one; they are **in competition**

<u>U and V can be computed simultaneously (and with no extra cost):</u>

$$U^{I} = (\chi_{0}^{-1} - \chi^{-1})_{II} \qquad V^{IJ} = (\chi_{0}^{-1} - \chi^{-1})_{IJ}$$

Generalized occupations: $n_{mm'}^{IJ\sigma} = \sum f_i \langle \psi_i^{\sigma} | \phi_{m'}^J \rangle \langle \phi_m^I | \psi_i^{\sigma} \rangle$ V. L. Campo Jr and M. Cococcioni, J. Phys.^{*i*}: Condens Matter 22 055602 (2010)

NiO

Typical TMO:

- Rock-salt structure
- AFII: rhombohedral symmetry
- Mott or Charge transfer insulator

NiO

Typical TMO:

- Rock-salt structure
- AFII: rhombohedral symmetry
- Mott or Charge transfer insulator

NiO

Typical TMO:

- Rock-salt structure
- AFII: rhombohedral symmetry
- Mott or Charge transfer insulator

	NiO				
	a (bohr)	B (GPa)	Eg (eV)		
GGA	7.93	188	0.6		
GGA+U	8.07	181	3.2		
GGA+U+V	8.03 I	189	3.6		
GGA+U+V _{sc}	7.99	197	3.2		
Exp	7.89	166-208	3.1-4.3		
Band semiconductors: sp³ hybridization

U and *V* computed and used on *p* and *s* states

Band semiconductors: sp³ hybridization

U and V computed and used on p and s states

	U_{ss}	U_{sb}	U_{bs}	U_{bb}	V_{ss}	V_{sb}	V_{bs}	V_{bb}
Si-Si	2.82	3.18	3.18	3.65	1.34	1.36	1.36	1.40
Ga-Ga	3.14	3.56	3.56	4.17				
As-As	4.24	4.38	4.38	4.63				
$\operatorname{Ga-As}$					1.72	1.68	1.76	1.75

Band semiconductors: sp³ hybridization

U and V computed and used on p and s states

	U_{ss}	U_{sb}	U_{bs}	U_{bb}	V_{ss}	V_{sb}	V_{bs}	V_{bb}
Si-Si	2.82	3.18	3.18	3.65	1.34	1.36	1.36	1.40
Ga-Ga	3.14	3.56	3.56	4.17				
As-As	4.24	4.38	4.38	4.63				
Ga-As					1.72	1.68	1.76	1.75

V. L. Campo Jr and M. Cococcioni, J. Phys.: Condens Matter 22 055602 (2010)

DFT+U+V band structure of Si and GaAs

DFT+U+V band structure of Si and GaAs

V. L. Campo Jr and M. Cococcioni, J. Phys.: Condens Matter 22 055602 (2010)

Structural properties of Si and GaAs

	Si			GaAs			
	a (A)	B (GPa)	Eg (eV)	a (A)	B (GPa)	Eg (eV)	
GGA	5.48	83.0	0.64	5.77	58.4	0.19	
GGA+U	5.36	93.9	0.39	5.74	52.6	0.00	
GGA+U+V	5.37	102.5	1.36	5.65	67.5	0.90	
Exp*	5.43	98.0	1.12	5.65	75.3	I.42	

* from http://www.ioffe.ru/SVA/NSM/Semicond/

V. Leiria Campo Jr and M. Cococcioni, J. Phys.: Condens Matter 22 055602 (2010)

Cu₂O: a case for on-site V

Cu-d

Expectation:

- *d* states full
- bonding between Cu s and O p
- GGA+U over-stabilizes *d* states of Cu

On-site V between dand s needed correct the composition of the occupied manifold

	a_0	k_0	E_g
GGA	4.37 Å	93.6 GPa	$0.5 \ \mathrm{eV}$
GGA+U	4.58 Å	59.5 GPa	$1.5 \ \mathrm{eV}$
GGA+U+V	4.48 Å	80.3 GPa	$2.0 \ \mathrm{eV}$
Exp	4.27 Å	112 GPa	$2.17 \ \mathrm{eV}$

CuO: a "strange" transition-metal oxide

CuO: a "strange" transition-metal oxide

Why studying the cubic structure?

- proxy material of HTSC
- role of electron-phonon 👗
- structural distortion: Jahn-Teller?

CuO: a "strange" transition-metal oxide

Why studying the cubic structure?

- proxy material of HTSC
- role of electron-phonon
- structural distortion: Jahn-Teller?

Is the cubic (c/a = 1) phase really metallic?

P. Grant, J. Phys. Conf. Ser., 129, 012042 (2008)

Cu: 9 *d*

Non-magnetic, cubic phase

Non-magnetic, cubic phase

Occupations: Cu d states: 9.68 e-; O p states: 4.94 e-

Non-magnetic, cubic phase

Occupations: Cu d states: 9.68 e-; O p states: 4.94 e-

Non-magnetic, cubic phase

Occupations: Cu d states: 9.68 e-; O p states: 4.94 e-

B. Himmetoglu R. M. Wentzcovitch and M. Cococcioni, *Phys Rev B* (2011)

CuO: broken symmetry

triclinic cell: the equivalence of e_g states is broken

CuO is insulator (cubic phase)

CuO: broken symmetry

triclinic cell: the equivalence of e_g states is broken

CuO is insulator (cubic phase)

However, U_p on O p states is needed

CuO: broken symmetry

triclinic cell: the equivalence of e_g states is broken

CuO is insulator (cubic phase)

However, U_p on O p states is needed

 $U_p = 0 \implies$ non magnetic state ==> cubic symmetry ==> metallic state

A competition exists between two tendencies: filling up the *d* shell, and magnetism

A better description of magnetic interactions on *d* states is necessary

DFT+U energy functional

$$E_{DFT+U}[
ho(\mathbf{r})] = E_{DFT}[
ho(\mathbf{r})] + \sum_{I,\sigma} rac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1} - \mathbf{n}^{I\sigma}
ight)
ight]$$

DFT+U energy functional

$$E_{DFT+U}[
ho(\mathbf{r})] = E_{DFT}[
ho(\mathbf{r})] + \sum_{I,\sigma} rac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1} - \mathbf{n}^{I\sigma}
ight)
ight]$$

Explicit magnetic interactions: DFT+U+J energy functional

$$E_{DFT+U+J}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I} - J^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right] + \sum_{I,\sigma} \frac{J^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\mathbf{n}^{I-\sigma}\right]$$

DFT+U energy functional

$$E_{DFT+U}[
ho(\mathbf{r})] = E_{DFT}[
ho(\mathbf{r})] + \sum_{I,\sigma} rac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1}-\mathbf{n}^{I\sigma}
ight)
ight]$$

Explicit magnetic interactions: DFT+U+J energy functional

$$E_{DFT+U+J}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I} - J^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right] + \sum_{I,\sigma} \frac{J^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\mathbf{n}^{I-\sigma}\right]$$

The "+J" term improves the description of magnetic interactions between localized electrons and leads to the localization of hole on Cu d states

DFT+U energy functional

$$E_{DFT+U}[
ho(\mathbf{r})] = E_{DFT}[
ho(\mathbf{r})] + \sum_{I,\sigma} rac{U^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1} - \mathbf{n}^{I\sigma}
ight)
ight]$$

Explicit magnetic interactions: DFT+U+J energy functional

$$E_{DFT+U+J}[\rho(\mathbf{r})] = E_{DFT}[\rho(\mathbf{r})] + \sum_{I,\sigma} \frac{U^{I} - J^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\left(\mathbf{1} - \mathbf{n}^{I\sigma}\right)\right] + \sum_{I,\sigma} \frac{J^{I}}{2} Tr\left[\mathbf{n}^{I\sigma}\mathbf{n}^{I-\sigma}\right]$$

The "+J" term improves the description of magnetic interactions between localized electrons and leads to the localization of hole on Cu d states

B. Himmetoglu R. M. Wentzcovitch and M. Cococcioni, Phys Rev B (2011)

CuO: DFT+U+J ground state

B. Himmetoglu R. M. Wentzcovitch and M. Cococcioni, Phys Rev B (2011)

Hellmann-Feynman theorem:

$$\frac{dE_{\lambda}}{d\lambda} = \langle \Psi_{\lambda} | \frac{dH(\lambda)}{d\lambda} | \Psi_{\lambda} \rangle$$

Hellmann-Feynman theorem:

$$\frac{dE_{\lambda}}{d\lambda} = \langle \Psi_{\lambda} | \frac{dH(\lambda)}{d\lambda} | \Psi_{\lambda} \rangle$$

Forces:

 $F_{I\alpha}^U$

$$\mathbf{F}_{I} = -\int \rho_{\mathbf{R}}(\mathbf{r}) \frac{dV_{\mathbf{R}}(\mathbf{r})}{d\mathbf{R}_{I}} d\mathbf{r} - \frac{dE_{N}(\mathbf{R})}{d\mathbf{R}_{I}}$$
$$= -\frac{\partial E_{U}}{\partial \tau_{\alpha i}} = -\sum_{J,m,m',\sigma} \frac{dE_{U}}{dn_{m,m'}^{J\sigma}} \frac{\partial n_{m,m'}^{I\sigma}}{\partial \tau_{I\alpha}} = -\frac{U}{2} \sum_{J,m,m',\sigma} (\delta_{mm'} - 2n_{m'm}^{J\sigma}) \frac{\partial n_{m,m'}^{J\sigma}}{\partial \tau_{I\alpha}}$$

Hellmann-Feynman theorem:

$$\frac{dE_{\lambda}}{d\lambda} = \langle \Psi_{\lambda} | \frac{dH(\lambda)}{d\lambda} | \Psi_{\lambda} \rangle$$

Forces:

$$\mathbf{F}_{I} = -\int \rho_{\mathbf{R}}(\mathbf{r}) \frac{dV_{\mathbf{R}}(\mathbf{r})}{d\mathbf{R}_{I}} d\mathbf{r} - \frac{dE_{N}(\mathbf{R})}{d\mathbf{R}_{I}}$$
$$F_{I\alpha}^{U} = -\frac{\partial E_{U}}{\partial \tau_{\alpha i}} = -\sum_{J,m,m',\sigma} \frac{dE_{U}}{dn_{m,m'}^{J\sigma}} \frac{\partial n_{m,m'}^{I\sigma}}{\partial \tau_{I\alpha}} = -\frac{U}{2} \sum_{J,m,m',\sigma} (\delta_{mm'} - 2n_{m'm}^{J\sigma}) \frac{\partial n_{m,m'}^{J\sigma}}{\partial \tau_{I\alpha}}$$

Stresses:

$$\sigma_{\alpha\beta} = -\frac{1}{\Omega} \frac{dE_{tot}}{d\epsilon_{\alpha\beta}}$$

Second derivatives: phonons

Matrix of force constants:

$$D_{I\alpha J\beta} = -\frac{d^2 E(\mathbf{R})}{d\mathbf{R}^I_{\alpha} d\mathbf{R}^J_{\beta}} = \frac{dF_{I\alpha}}{d\mathbf{R}^J_{\beta}} = \frac{dF_{J\beta}}{d\mathbf{R}^I_{\alpha}}$$

Contribution from the Hubbard potential:

$$\Delta^{\mu}(\partial^{\lambda}E_{\mathrm{Hub}}) = \sum_{I\sigma mm'} U^{I} \left[\frac{\delta_{m}m'}{2} - n_{mm'}^{I\sigma} \right] \Delta^{\mu} \left(\partial^{\lambda}n_{mm'}^{I\sigma} \right) - \sum_{I\sigma mm'} U^{I}\Delta^{\mu}n_{mm'}^{I\sigma} \partial^{\lambda}n_{mm'}^{I\sigma}$$

Variation of the occupations:

$$\begin{split} \Delta n_{m_1m_2}^{I\sigma} &= \sum_{i}^{occ} \{ \langle \psi_i^{\sigma} | \Delta \phi_{m_1}^{I} \rangle \langle \phi_{m_2}^{I} | \psi_i^{\sigma} \rangle + \langle \psi_i^{\sigma} | \phi_{m_1}^{I} \rangle \langle \Delta \phi_{m_2}^{I} | \psi_i^{\sigma} \rangle \} \\ &+ \sum_{i}^{occ} \{ \langle \Delta \psi_i^{\sigma} | \phi_{m_1}^{I} \rangle \langle \phi_{m_2}^{I} | \psi_i^{\sigma} \rangle + \langle \psi_i^{\sigma} | \phi_{m_1}^{I} \rangle \langle \phi_{m_2}^{I} | \Delta \psi_i^{\sigma} \rangle \} \\ \text{A. Floris, S. de Gironcoli, E. K. U. Gross, and M. Cococcioni, PRB 84, 161102 (2011)} \end{split}$$

Vibrational properties of TM oxides from DFPT+U

A. Floris, S. de Gironcoli, E. K. U. Gross, and M. Cococcioni, PRB 84, 161102 (2011)

Summary

- DFT+U: a simple correction for ground state properties
- Ab-initio LDA+U: linear response calculation of U
- Broken-symmetry solution for degenerate ground states
- LDA+U for metals: FLL vs AMF flavors
- Localized states in metals: the case of Ni₂MnGa
- Band and Mott insulators: Si, GaAs, NiO and Cu₂O from the extended LDA+U+V
- Hole localization in CuO from the LDA+U+J correction
- Phonon spectra of NiO and MnO from their LDA+U ground state

Acknowledgements

Collaborators

US NSF - EAR and DMR

Minnesota Supercomputing Institute

UNIVERSITY OF MINNESOTA SUPERCOMPUTING INSTITUTE

Quantum-Espresso team <u>www.quantum</u>-espresso.org

Q U A N T U M E S P R E S S O

The End

Questions?