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Control parameters 
•  Bandwidth  (U/W) 
•  Band filling 
•  Dimensionality  

Degrees of freedom 
•  Charge / Spin 
•  Orbital  
•  Lattice 

3d - 4f  
open shells  

materials 

U<<W 
Charge fluct. 

U>>W 
Spin fluct. 

•  Kondo 
•  Mott-Hubbard 
•  Heavy Fermions 
•  High-Tc SC 
•  Spin-charge order 
•  Colossal MR 
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Strongly Correlated Electron Systems 



-  How to incorporate atomic physics                  
  in the band structure ? 

-  How good is a local    
  approximation ? 

-  What is a best solution for atomic  
  problem in effective medium ? 

- What is different from one band    
  Hubbard model? 

-  How to solve a complicated    
  Quantum multiorbital problem ?  

-  What is the best Tight-Binding  
  scheme for realistic Many-Body  
  calculation for solids? 

From	
  Atom	
  to	
  Solids	
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DFT:	
  KS-­‐equa;on	
  (1965)	
  
Effective one-electron Schrödinger-like equation: 

Hartree potential: 

Energy Functional: 

Effective potential: 
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KS-kinetic energy: 
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Lev Landau 
!! DFT – bad for correlated electrons… 

–! Mott insulators, Heavy Fermions etc. 

!! DFT successful  approximations for extended states s, p, electrons… 

 Why it is so good? 
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Where is a small parameter? 
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R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989) 



Correlated	
  Electrons:	
  ARPES	
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Weak corr.  Strong corr.  



Correlation driven MIT 

U/W 

photoemission  
spectra (DOS) 
A. Fujimori et al.  



       What is the Mott transition? 
a correlation driven metal-insulator transition 
Mott ’49 

a 

cannot be obtained in band theory: 

not due to Slater AF (weak coupling effect): 

n n ~ 1/a3 ~ t 

t  

2a 

!"

       What is the Mott transition? 



Mott transition in V2O3 

McWhan et al 

T 

pressure or chemical substitution 



U 
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Correlated	
  Electrons:	
  Fluctua;ons	
  
E

M

Fluctuation of charge, spin and orbital degrees of freedom 
related with complex behavior of correlated electronic systems 



Metal-­‐Insulator	
  Transi;on	
  
1.14 Dieter Vollhardt

Fig. 6: Evolution of the spectral function (“density of states”) of the Hubbard model in the
paramagnetic phase at half filling. a) non-interacting case, b) for weak interactions there is only
little transfer of spectral weight away from the Fermi energy, c) for strong interactions a typical
three-peak structure consisting of coherent quasiparticle excitations close to the Fermi energy
and incoherent lower and upper Hubbard bands is clearly seen, d) above a critical interaction
the quasiparticle peak vanishes and the system is insulating, with two well-separated Hubbard
bands remaining; after Ref. [30].

5.1 The characteristic structure of the spectral function

The Mott-Hubbard MIT is monitored by the spectral function A(ω) = − 1
π
ImG(ω + i0+) of

the correlated electrons;7 here we follow the discussion of Refs. [55, 30]. The change of A(ω)
obtained within the DMFT for the one-band Hubbard model (4) at T = 0 and half filling
(n = 1) as a function of the Coulomb repulsion U (measured in units of the bandwidth W

of non-interacting electrons) is shown in Figs. 6 and 7. While Fig. 6 is a schematic picture of
the evolution of the spectrum when the interaction is increased, Fig. 7 shows actual numeri-
cal results obtained by the NRG [39, 56]. Here magnetic order is assumed to be suppressed
(“frustrated”).
While at smallU the system can be described by coherent quasiparticles whose DOS still resem-
bles that of the free electrons, the spectrum in the Mott insulator state consists of two separate
incoherent “Hubbard bands” whose centers are separated approximately by the energy U . The
latter originate from atomic-like excitations at the energies ±U/2 broadened by the hopping
of electrons away from the atom. At intermediate values of U the spectrum then has a char-
acteristic three-peak structure as in the single-impurity Anderson model, which includes both
the atomic features (i.e., Hubbard bands) and the narrow quasiparticle peak at low excitation
energies, near ω = 0. This corresponds to a strongly correlated metal. The structure of the

7In the following we only consider the paramagnetic phase.

G. Kotliar and D. Vollhardt,  
Physics Today 3, 53 (2004)  

Dynamical Mean-Field Approach for Strongly Correlated Materials 1.17

Fig. 9: Mott-Hubbard MIT phase diagram showing the metallic phase and the insulating phase,
respectively, at temperatures below the critical end point, as well as a coexistence region; from
Ref. [54].

than linearly with the temperature, the difference∆S = Smet−Sins eventually becomes positive,
whereby the slope also becomes positive at lower temperatures;8 this is indeed observed in
cluster DMFT calculations [60]. Since ∆S = 0 at T = 0 the phase boundary must terminate at
T = 0 with infinite slope.
At half filling and for bipartite lattices in dimensions d > 2 (in d = 2 only at T = 0), the
paramagnetic phase is unstable against antiferromagnetic long-range order. The metal-insulator
transition is then completely hidden by the antiferromagnetic insulating phase, as shown in
Fig. 10.

6 Electronic correlations in materials

6.1 LDA+DMFT

Although the Hubbard model is able to explain basic features of the phase diagram of correlated
electrons it cannot explain the physics of real materials in any detail. Clearly, realistic theories
must take into account the explicit electronic and lattice structure of the systems.
Until recently the electronic properties of solids were investigated by two essentially separate
communities, one using model Hamiltonians in conjunction with many-body techniques, the
other employing density functional theory (DFT) [62, 63]. DFT and its local density approxi-
mation (LDA) have the advantage of being ab initio approaches which do not require empirical

8Here we assume for simplicity that the metal remains a Fermi liquid, and the insulator stays paramagnetic,
down to the lowest temperatures. In fact, a Cooper pair instability will eventually occur in the metal, and the insu-
lator will become long-range ordered, too. In this case the slope dU/dT can change sign several times depending
on the value of the entropy of the two phases across the phase transition.

1.18 Dieter Vollhardt

Fig. 10: On bipartite lattices and for half filling (n = 1) the paramagnetic phase is unstable
against antiferromagnetism. The metal-insulator transition is then completely hidden by the
antiferromagnetic insulating phase; from Ref. [61].

parameters as input. Indeed, they are highly successful techniques for the calculation of the
electronic structure of real materials [64]. However, in practice DFT/LDA is seriously restricted
in its ability to describe strongly correlated materials where the on-site Coulomb interaction is
comparable with the band width. Here, the model Hamiltonian approach is more general and
powerful since there exist systematic theoretical techniques to investigate the many-electron
problem with increasing accuracy. Nevertheless, the uncertainty in the choice of the model
parameters and the technical complexity of the correlation problem itself prevent the model
Hamiltonian approach from being a flexible or reliable enough tool for studying real materials.
The two approaches are therefore complementary. In view of the individual power of DFT/LDA
and the model Hamiltonian approach, respectively, it had always been clear that a combination
of these techniques would be highly desirable for ab initio investigations of real materials, in-
cluding, e.g., f -electron systems and Mott insulators. One of the first successful attempts in this
direction was the LDA+U method [65, 66], which combines LDA with a basically static, i.e.,
Hartree-Fock-like, mean-field approximation for a multi-band Anderson lattice model (with in-
teracting and non-interacting orbitals). This method proved to be a very useful tool in the study
of long-range ordered, insulating states of transition metals and rare-earth compounds. How-
ever, the paramagnetic metallic phase of correlated electron systems such as high-temperature
superconductors and heavy-fermion systems clearly requires a treatment that goes beyond a
static mean-field approximation and includes dynamical effects, e.g., the frequency dependence
of the self-energy.

Here the recently developed LDA+DMFTmethod— a new computational scheme whichmerges
electronic band structure calculations and the dynamical mean-field theory [67–76, 30] — has
proved to be a breakthrough. Starting from conventional band structure calculations in the local
density approximation (LDA) the correlations are taken into account by the Hubbard interaction
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� ¼ � . Figure 28 shows the phase diagram of the two-
dimensional Hubbard model obtained in a detailed
CT-HYB study of the four-site CDMFT approximation
(Park et al., 2008a). It should be compared to Fig. 25 which
presents single-site DMFT results for the same model. The
interaction-driven transition was found to be first order, as in
the single-site case. However, not only is the critical interac-
tion strength much less than in the single-site approximation,
but the phase boundary bends in the opposite direction from
that found in the single-site calculation, indicating that in the
multisite approximation the insulating phase has lower en-
tropy than the metallic phase. The narrow band of in-gap
states whose appearance characterizes the Mott transition in
high dimension (Fisher et al., 1995; Kotliar et al., 2002) is
not found in cluster calculations for 2D systems.

Insight into the metal-insulator transition is enhanced by
the ability of CT-HYB to provide sector occupation statistics
(Haule, 2007). These are indicated in Fig. 28 by pie-chart
insets. The low temperature insulating phase was found to be
characterized by a strongly dominant occupation of one state,
corresponding to a singlet configuration of the four electrons
on the plaquette. This correlation was argued by Gull et al.
(2008b) to indicate that in the cluster dynamical mean-field
methods the metal-insulator transition was driven by the
appearance of strong short-ranged order (most likely related
to a columnar dimer phase). By contrast, the high temperature
‘‘bad insulator’’ state, which has entropy of the order of � � ð� Þ,
populates many states of the plaquette with significant
probability.

Further evidence of the importance of short-ranged order
was obtained from the electron spectral functions (Gull et al.,
2008b; Park et al., 2008a) computed by maximum-entropy
analytical continuation and shown in Fig. 29. The insulating
state has a gap. The dotted line gives the spectral function
calculated in a mean-field approximation based on a two

sublattice order; the strong similarity indicates that short-
ranged order is responsible for the insulating behavior.

The left panel of Fig. 30 presents the changes in the density
of states in the � ¼ ð � � !Þ � ð!� � Þ sector as electrons are
added. The curves are obtained by analytical continuation
of quantumMonte Carlo data. The Mott gap visible in Fig. 29
has filled in even at the lowest doping shown, but for the
lower dopings a small pseudogap (suppression of density of
states) appears near the Fermi level while for 	 ¼ � � � � the
value of the spectral function at the Fermi level approaches
that of the noninteracting model, indicating the restoration of
Fermi-liquid behavior, consistent with experiment and with
many previous theoretical results.

Examination of the sector statistics shown in the right panel
of Fig. 30 indicated that the transition from pseudogapped to
Fermi-liquid behavior occurred at the doping at which the
plaquette singlet state ceased to dominate the physics. An
intriguing and still open question concerns the degree towhich
the level crossing in sector statistics is related to the ‘‘avoided
criticality’’ discussed by Haule and Kotliar (2007a).

Recently CT-AUX methods were used to examine the
larger eight-site cluster shown in Fig. 31. The greater effi-
ciency of the CT-AUX method permitted a comprehensive
examination of the behavior as a function of interaction
strength, carrier concentration, second neighbor hopping,
and temperature (Gull et al., 2009; Werner et al., 2009a).
A striking new result is that both the interaction-dependent
and doping-dependent metal-insulator transitions are multi-
staged, where different regions of the Fermi surface are
successively gapped as carrier concentration or interaction
strength is varied. [Similar behavior was also found in a two-
site cluster with a clever choice of momentum-space patching
(Ferrero et al., 2009a)]. The phase diagram for the
interaction-driven transition is shown in the right-hand panel
of Fig. 31.

FIG. 28 (color online). Metal-insulator phase diagram of the
paramagnetic phase of the two-dimensional Hubbard model in the
plane of temperature � � � and interaction � � � measured relative to
the critical end-point value � 	 � 
 ¼ � � � � � in the 4-site CDMFT
cluster approximation. Band parameters are identical to those used
in Fig. 25. Inset: Pie-chart histogram of occupancy probability of the
two insulating states at low and high temperatures. From Park et al.,
2008a.
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FIG. 29 (color online). Solid line: On-site spectral function com-
puted for different momentum sectors by maximum-entropy ana-
lytical continuation of QMC data for � ¼ � � and doping 	 ¼ � .
Dashed line: Spectral function in the � ¼ ð� � !Þ � ð!� � Þ-momentum
sector. Dotted and dash-dotted lines: � ¼ ð � � !Þ� ð!� � Þ and local
spectral functions obtained by performing the DCA momentum
averages of the standard spin density wave (SDW) mean-field
expressions for the Green’s function, with gap ! ¼ � � � � . From
Gull et al., 2008b.
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Figure 1: Colour intensity map of the ‘degree of correlation’ (as measured by the quasiparticle

weight Z - right scale) for a Hubbard-Kanamori model with 3 orbitals appropriate to the description

of early transition-metal oxides with a partially occupied t2g shell. The vertical axis is the interaction

strength U normalized to the half-bandwidth D, and a finite Hund’s coupling J = 0.15U is taken

into account. The horizontal axis is the number of electrons per site - from 0 (empty shell) to

6 (full shell). Darker regions correspond to good metals and lighter regions to correlated metals.

The black bars signal the Mott-insulating phases for U > Uc. The arrows indicate the evolution of

Uc upon further increasing J , and emphasize the opposite trend between half-filling and a generic

filling. Crosses denote the values of Uc for J = 0. One notes that, among integer fillings, the

case of 2 electrons (2 holes) displays correlated behaviour in an extended range of coupling, with

‘spin-freezing’ above some low coherence scale. Specific materials are schematically placed on the

diagram. The materials denoted in black have been placed according to the experimental value of

�/�LDA. For detailed explanations, see Sec. 6. The DMFT calculations leading to a related plot in

Ref. [22] have been repeated here using a more realistic DOS for t2g states (inset).

Coulomb interactions in the multi-orbital context is provided. In Sec. 3 the influence of Hund’s

coupling on the intra-atomic charge gap and the Mott critical coupling is explained. Sec. 4 reviews

the influence of Hund’s coupling on the Kondo temperature of a multi-orbital impurity atom in

a metallic host. Sec. 5 briefly introduces dynamical mean-field theory, which provides a bridge

between single-atom physics and the full solid. Sec. 6 is the core part of this article, in which the

key e↵ects of the Hund’s rule coupling in the solid-state context are put together. Sec. 7 and Sec. 8

consider ruthenates and iron pnictides/chalcogenides, respectively, in the perspective of Hund’s

metals.

A. Georges et.al,   arXiv:1207.3033 
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1.4 Alexander Lichtenstein

2 Functional approach: Route to fluctuations

We introduce a general functional approach which will cover Density Functional (DFT), Dy-

namical Mean-Field (DMFT), and Baym-Kadanoff (BK) Theory [10]. Let us start from the full

many–body Hamiltonian describing electrons moving in the periodic external potential of ions

V (r), with chemical potential µ, and interacting via Coulomb law: U(r − r′) = 1/|r− r′|. We

use atomic units ! = m = e = 1. In the field-operator representation the Hamiltonian takes the

form

H =
∑

σ

∫

dr ψ̂†
σ(r)

(

−
1

2
∇2 + V (r)− µ

)

ψ̂σ(r) (1)

+
1

2

∑

σσ′

∫

dr

∫

dr′ ψ̂†
σ(r)ψ̂

†
σ′(r

′)U(r − r
′) ψ̂σ′(r

′)ψ̂σ(r).

We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,

with a full set of quantum numbers, e.g., site, orbital and spin index: n = (imσ) and expand

the fields in creation and annihilation operators

ψ̂(r) =
∑

n

φn(r)ĉn (2)

ψ̂†(r) =
∑

n

φ∗
n(r)ĉ

†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =

∫

D[c∗, c]e−S (3)

S =
∑

12

c∗1 (∂τ + t12) c2 +
1

4

∑

1234

c∗1c
∗
2 U1234 c4c3 , (4)

where the one- and two-electron matrix elements are defined as

t12 =

∫

drφ∗
1(r)

(

−
1

2
#2 + V (r)− µ

)

φ2(r) (5)

U1234 =

∫

dr

∫

dr′ φ∗
1(r)φ

∗
2(r

′)U(r− r
′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:

∑

1

... ≡
∑

im

∫

dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function

G12 = −〈c1c
∗
2〉S = −

1

Z

∫

D[c∗, c] c1c
∗
2 e

−S (7)

Atomic Units: 
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with a full set of quantum numbers, e.g., site, orbital and spin index: n = (imσ) and expand

the fields in creation and annihilation operators

ψ̂(r) =
∑

n

φn(r)ĉn (2)

ψ̂†(r) =
∑

n

φ∗
n(r)ĉ

†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =

∫

D[c∗, c]e−S (3)

S =
∑

12

c∗1 (∂τ + t12) c2 +
1

4

∑

1234

c∗1c
∗
2 U1234 c4c3 , (4)

where the one- and two-electron matrix elements are defined as

t12 =

∫

drφ∗
1(r)

(

−
1

2
#2 + V (r)− µ

)

φ2(r) (5)

U1234 =

∫

dr

∫

dr′ φ∗
1(r)φ

∗
2(r

′)U(r− r
′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:

∑

1

... ≡
∑

im

∫

dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function

G12 = −〈c1c
∗
2〉S = −

1

Z

∫

D[c∗, c] c1c
∗
2 e

−S (7)
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The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]

χ1234 = 〈c1c2c
∗
3c

∗
4〉S =

1

Z

∫

D[c∗, c] c1c2c
∗
3c

∗
4 e

−S , (8)

and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫

D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
1

Z[J ]

δZ[J ]

δJ12
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∣

∣

J=0

=
δF [J ]
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∣

∣

∣

J=0

. (12)

Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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2 Functional approach: Route to fluctuations
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the fields in creation and annihilation operators
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†
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Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =
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S =
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and we use the following short definition of the sum:
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1

... ≡
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The one-electron Green function is defined via a simplest non-zero correlation function
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1
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Fig. 3: Representation of the full two-particle Green function in terms single-particle Green

functions and the full vertex function Γ .

The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]

χ1234 = 〈c1c2c
∗
3c

∗
4〉S =

1

Z

∫

D[c∗, c] c1c2c
∗
3c

∗
4 e

−S , (8)

and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫

D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
1

Z[J ]

δZ[J ]

δJ12
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=
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑
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The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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functions. For example the two-particle Green function or generalized susceptibilities, χ, are
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In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
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c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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functions and the full vertex function Γ .

The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]

χ1234 = 〈c1c2c
∗
3c

∗
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and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3
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In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫

D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫
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Variation of this source function gives all correlation functions, for example the Green function
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).

1.6 Alexander Lichtenstein

The Baym–Kadanoff functional can be obtained by Legendre transforming from J to G

F [G] = F [J ]− Tr(JG), (13)

We can use the standard decomposition of the free energy F into the single particle part and the

correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (14)

were Σ12 is single particle self-energy and Φ[G] is a correlated part of the Baym–Kadanoff

functional and is equal to the sum of all two-particle irreducible diagrams. At its stationary

point this functional gives the free energy of the system. One can use a different Legendre

transform and obtain functionals of the self-energy Σ [14], or complicated functionals of two

variables G and Γ [15], or a more simple functional of G and screened Coulomb interactions

W [10] which is useful in GW theory.

In practice, Φ[G] is not known for interacting electron systems, which is similar to the problem

of the unknown universal functional in density functional theory. Moreover, this general func-

tional approach reduces to the DFT theory, if one only uses the diagonal part in the space-time

representation of the Green function, which corresponds to the one-electron density

n1 = G12δ12 = 〈c∗1c1〉S, (15)

with the Kohn-Sham potential VKS = Vext+VH +Vxc playing the role of the“constrained field”

J . In this case we lose information about the non equal-time Green’s function, which gives the

single-particle excitation spectrum as well as the k-dependence of the spectral function, and we

restrict ourselves to only the ground state energy of the many-electron system. Moreover, we

also lose information about all collective excitations in solids, such as plasmons or magnons,

which can be obtained from a generalized susceptibility or from the second variation of the free

energy.

One can probably find the Baym-Kadanoff interacting potential Φ[G] for simple lattice models

using quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice simu-

lations, this numerically exact solution of electronic correlation problem is not possible. On

the other hand, one can obtain the solution of local interacting quantum problem in a general

fermionic bath, using a QMC scheme, which has no sign problem if it is diagonal in spin and

orbital space. Therefore, a reasonable approach to strongly correlated systems is to keep only a

local part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one

can obtain numerically the correlated part of the local functional. In this scheme we only use

the local part of the many-electron vertex and obtain, in a self-consistent way, an effective func-

tional of the local Green function. In the following section we discuss the general dual-fermion

(DF) transformations [16] which will help us to separate the local fluctuations in many-body

system and show a perturbative way to go beyond the DMFT approximations.
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Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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We can use the standard decomposition of the free energy F into the single particle part and the

correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (14)

were Σ12 is single particle self-energy and Φ[G] is a correlated part of the Baym–Kadanoff

functional and is equal to the sum of all two-particle irreducible diagrams. At its stationary

point this functional gives the free energy of the system. One can use a different Legendre

transform and obtain functionals of the self-energy Σ [14], or complicated functionals of two

variables G and Γ [15], or a more simple functional of G and screened Coulomb interactions

W [10] which is useful in GW theory.

In practice, Φ[G] is not known for interacting electron systems, which is similar to the problem

of the unknown universal functional in density functional theory. Moreover, this general func-

tional approach reduces to the DFT theory, if one only uses the diagonal part in the space-time

representation of the Green function, which corresponds to the one-electron density

n1 = G12δ12 = 〈c∗1c1〉S, (15)

with the Kohn-Sham potential VKS = Vext+VH +Vxc playing the role of the“constrained field”

J . In this case we lose information about the non equal-time Green’s function, which gives the

single-particle excitation spectrum as well as the k-dependence of the spectral function, and we

restrict ourselves to only the ground state energy of the many-electron system. Moreover, we

also lose information about all collective excitations in solids, such as plasmons or magnons,

which can be obtained from a generalized susceptibility or from the second variation of the free
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One can probably find the Baym-Kadanoff interacting potential Φ[G] for simple lattice models

using quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice simu-

lations, this numerically exact solution of electronic correlation problem is not possible. On

the other hand, one can obtain the solution of local interacting quantum problem in a general

fermionic bath, using a QMC scheme, which has no sign problem if it is diagonal in spin and

orbital space. Therefore, a reasonable approach to strongly correlated systems is to keep only a

local part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one

can obtain numerically the correlated part of the local functional. In this scheme we only use

the local part of the many-electron vertex and obtain, in a self-consistent way, an effective func-

tional of the local Green function. In the following section we discuss the general dual-fermion

(DF) transformations [16] which will help us to separate the local fluctuations in many-body

system and show a perturbative way to go beyond the DMFT approximations.

Decomposition into the single particle part and correlated part 

262 A. Dual Fermion Formalism: General Formulation

A.4.3 Determination of Combinatorial Prefactors
The determination of the combinatorial prefactors by counting the number of equiva-
lent pairings becomes difficult for diagrams at high orders. A closer analysis gives the
following general rules to determine these prefactors: First consider diagrams which
contains no equivalent lines (i.e. equally directed lines connecting the same or same
two vertices). This is the case for diagrams a) and e). The prefactor of such a diagram is
unity at any order of the perturbation theory. In order to see this, recall that the prefactor
of each vertex is 1/[(n/2)!]2, where n is the number of edges (see Sec. A.3). This is
exactly the number of possibilities to attach lines to the vertex. An additional factor
1/m! arises from the expansion of the exponential, where m is the perturbation order.
Attaching a label to each vertex of one sort (e.g. two-particle vertices) to make them
distinguishable, one sees that all m! permutations appear in a complete contraction. If
vertices of different sorts are present in a diagram, the factor corresponding to the per-
mutation of these vertices among themselves explicitly appears in the expansion (e.g.
2! for diagram c). Hence a diagram corresponds to the sum of 1/[(n/2)!]2m! diagrams
with the same value, so that the prefactor exactly cancels.

This only holds if all ways of attaching the lines or permuting the vertices yield
a different, distinguishable diagram. If for example two vertices are connected by k
equivalent lines, this reduces the number of distinguishable diagrams (pairings) by the
number of permutations of these lines, since a permutation yields the identical, distin-
guishable diagram. Hence the prefactor is cancelled only up to a factor 1/k! for each
set of k equivalent lines connecting the same two vertices. For example, there are two
equivalent lines going from left to right and three parallel lines from right to left in
diagram d). Hence the prefactor is 1/2! · 1/3! = 1/12. For the vacuum to vacuum dia-
grams contributing to the Luttinger-Ward functional Φ used in chapter 11 one needs to
account for additional symmetry factors. Noting that for the generic n-th order diagram
depicted in Fig. A.1, each of the 2n cyclic permutations of the sequences (1, 2, . . .n) and
(n, . . . , 2, 1) corresponds to the same distinguishable diagram, the prefactor of this dia-
gram is 1/(2n). The symmetry factor is obviously unity for self-energy diagrams. The
diagrammatic rules for the dual propagator are similar to those for Hugenholtz diagrams
[177].

Figure A.1: Generic n-th order ring diagram contributing to the Luttinger-Ward functional Φ.

1.6 Alexander Lichtenstein

The Baym–Kadanoff functional can be obtained by Legendre transforming from J to G

F [G] = F [J ]− Tr(JG), (13)

We can use the standard decomposition of the free energy F into the single particle part and the

correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (14)

were Σ12 is single particle self-energy and Φ[G] is a correlated part of the Baym–Kadanoff

functional and is equal to the sum of all two-particle irreducible diagrams. At its stationary

point this functional gives the free energy of the system. One can use a different Legendre

transform and obtain functionals of the self-energy Σ [14], or complicated functionals of two

variables G and Γ [15], or a more simple functional of G and screened Coulomb interactions

W [10] which is useful in GW theory.

In practice, Φ[G] is not known for interacting electron systems, which is similar to the problem

of the unknown universal functional in density functional theory. Moreover, this general func-

tional approach reduces to the DFT theory, if one only uses the diagonal part in the space-time

representation of the Green function, which corresponds to the one-electron density

n1 = G12δ12 = 〈c∗1c1〉S, (15)

with the Kohn-Sham potential VKS = Vext+VH +Vxc playing the role of the“constrained field”

J . In this case we lose information about the non equal-time Green’s function, which gives the

single-particle excitation spectrum as well as the k-dependence of the spectral function, and we

restrict ourselves to only the ground state energy of the many-electron system. Moreover, we

also lose information about all collective excitations in solids, such as plasmons or magnons,

which can be obtained from a generalized susceptibility or from the second variation of the free

energy.

One can probably find the Baym-Kadanoff interacting potential Φ[G] for simple lattice models

using quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice simu-

lations, this numerically exact solution of electronic correlation problem is not possible. On

the other hand, one can obtain the solution of local interacting quantum problem in a general

fermionic bath, using a QMC scheme, which has no sign problem if it is diagonal in spin and

orbital space. Therefore, a reasonable approach to strongly correlated systems is to keep only a

local part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one

can obtain numerically the correlated part of the local functional. In this scheme we only use

the local part of the many-electron vertex and obtain, in a self-consistent way, an effective func-

tional of the local Green function. In the following section we discuss the general dual-fermion

(DF) transformations [16] which will help us to separate the local fluctuations in many-body

system and show a perturbative way to go beyond the DMFT approximations.

Correlated Electrons 1.7

3 Local correlations and beyond

We will only consider the local, but multiobital, interaction vertex U i
mm′m′′m′′′ . Sometimes we

will omit all orbital indices for simplicity. All equations will be written in matrix form, giving

the idea of how to generalize a dual-fermion (DF) scheme to the multi-orbital case [17,18]. The

general strategy to separate the local and non-local correlations effects is associated with the

introduction of auxiliary fermionic fields which will couple separated local correlated impurities

models back to the lattice [16]. In order to include the smaller non-local part of the Coulomb

interactions one can use a more general approach using auxiliary fermionic and bosonic fields

[19].

We rewrite corresponding original action, Eq. (3), in Matsubara space as a sum of the non-local

one-electron contribution with t12 and the local interaction part U

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[

(iω + µ)1− tmm′

kσ

]

cωkσm′ +
∑

i

SU[c
∗
i , ci]. (16)

The index i labels the lattice sites, m refers to different orbitals, σ is the spin projection and

the k-vectors are quasi-momenta. In order to keep the notation simple, it is useful to introduce

the combined index α ≡ {m, σ}. Translational invariance is assumed for simplicity in the

following, although a real space formulation is straightforward. The local part of the action, SU,

may contain any type of local multi-orbital interaction.

In order to formulate an expansion around the best possible auxiliary local action, a quantum

impurity problem is introduced

Sloc[c
∗, c] = −

∑

ω αβ

c∗ωα
[

(iω + µ)1−∆αβ
ω

]

cωβ + SU[c
∗, c], (17)

where ∆ω is the effective hybridization matrix describing the coupling of the impurity to an

auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a

quantum impurity model is that such a reference system can be solved numerically exactly for

an arbitrary hybridization function using the CT-QMC methods [20]. Using the locality of the

hybridization function ∆ω, the lattice action (16) can be rewritten exactly in terms of individual

impurity models and the effective one-electron coupling (tij−∆ω) between different impurities

S[c∗, c] =
∑

i

Sloc[c
∗
i , ci] +

∑

ωkαβ

c∗ωkα

(

tαβ
k

−∆αβ
ω

)

cωkβ. (18)

We will find the condition for the optimal choice of the hybridization function later. Although

we can solve the individual impurity model exactly, the effect of spatial correlations due to

the second term in Eq. (18) is very hard to treat, even perturbatively, since the impurity ac-

tion is non-Gaussian and one cannot use the Wick theorem. The main idea of a dual-fermion

transformation is the change of variables from (c∗, c) to weakly correlated Grassmann fields

(f ∗, f) in the path integral representation of the partition function, Eq. (3), followed by a sim-

ple perturbative treatment. The new variables are introduced through the Hubbard-Stratonovich
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Fig. 8: Construction of the dual fermion approximation: In a first step, the original lattice

problem (left) with bonds (blue lines) is replaced by a collection of decoupled impurities exerted

to an electronic bath, as indicated by the blue spheres (right). From the Ref. [14].
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Fig. 8: Construction of the dual fermion approximation: In a first step, the original lattice

problem (left) with bonds (blue lines) is replaced by a collection of decoupled impurities exerted

to an electronic bath, as indicated by the blue spheres (right). From the Ref. [14].
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Fig. 9: Illustration of the dual fermion approach. Spatial correlations in the original lattice

problem are mediated between the impurities of Fig. 8 through dual fermions, which in turn

interact via n-particle interactions. From the Ref. [14].
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problem are mediated between the impurities of Fig. 8 through dual fermions, which in turn

interact via n-particle interactions. From the Ref. [14].
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Basic diagrams for dual self-energy 

Lines  - dual Green’s function.  
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Correlated Electrons 1.7

3 Local correlations and beyond

We will only consider the local, but multiobital, interaction vertex U i
mm′m′′m′′′ . Sometimes we

will omit all orbital indices for simplicity. All equations will be written in matrix form, giving

the idea of how to generalize a dual-fermion (DF) scheme to the multi-orbital case [17,18]. The

general strategy to separate the local and non-local correlations effects is associated with the

introduction of auxiliary fermionic � elds which will couple separated local correlated impurities

models back to the lattice [16]. In order to include the smaller non-local part of the Coulomb

interactions one can use a more general approach using auxiliary fermionic and bosonic � elds

[19].

We rewrite corresponding original action, Eq. (3), in Matsubara space as a sum of the non-local

one-electron contribution with t12 and the local interaction part U

S[c∗ ; c] = −
∑

ωkσmm′

c∗ωkσm

[

(iω + � )1− tmm′

kσ

]

cωkσm′ +
∑

i

SU[c
∗
i ; ci]: (16)

The index i labels the lattice sites, m refers to different orbitals, σ is the spin projection and

the k-vectors are quasi-momenta. In order to keep the notation simple, it is useful to introduce

the combined index α ≡ f m; σ g . Translational invariance is assumed for simplicity in the

following, although a real space formulation is straightforward. The local part of the action, SU,

may contain any type of local multi-orbital interaction.

In order to formulate an expansion around the best possible auxiliary local action, a quantum

impurity problem is introduced

Sloc[c
∗ ; c] = −

∑

ω αβ

c∗ωα
[

(iω + � )1−∆αβ
ω

]

cωβ + SU[c
∗ ; c]; (17)

where ∆ω is the effective hybridization matrix describing the coupling of the impurity to an

auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a

quantum impurity model is that such a reference system can be solved numerically exactly for

an arbitrary hybridization function using the CT-QMC methods [20]. Using the locality of the

hybridization function ∆ω, the lattice action (16) can be rewritten exactly in terms of individual

impurity models and the effective one-electron coupling (tij−∆ω) between different impurities

S[c∗ ; c] =
∑

i

Sloc[c
∗
i ; ci] +

∑

ωkαβ

c∗ωkα

(

tαβ
k

−∆αβ
ω

)

cωkβ : (18)

We will � nd the condition for the optimal choice of the hybridization function later. Although

we can solve the individual impurity model exactly, the effect of spatial correlations due to

the second term in Eq. (18) is very hard to treat, even perturbatively, since the impurity ac-

tion is non-Gaussian and one cannot use the Wick theorem. The main idea of a dual-fermion

transformation is the change of variables from (c∗ ; c) to weakly correlated Grassmann � elds

(f ∗ ; f) in the path integral representation of the partition function, Eq. (3), followed by a sim-

ple perturbative treatment. The new variables are introduced through the Hubbard-Stratonovich
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Fig. 4: From the lattice model (left) via real-space DMFT (middle) to the non-local dual-

fermion perturbation (right).

transformation

exp
(

c∗αbα(M
−1)αβbβcβ

)

=
1

detM

∫

D[f ∗ ; f ] exp
(

−f ∗
αMαβfβ − c∗αbαfα − f ∗

βbβcβ
)

: (19)

In order to transform the exponential of the bilinear term in (18), we choose the matrices Mαβ ,

and scaling function bα (if we assume for simplicity that the local Green' s function is diagonal

in orbital and spin space) in accordance with Refs. [16] as

M = g−1
ω (∆ω − tk)

−1
g−1
ω ; b = g−1

ω ; (20)

where gω is the local, interacting Green function of the impurity problem

g12 = −〈c1c
∗
2〉loc = −

1

Zloc

∫

D[c∗ ; c]c1c
∗
2 exp

(

− Sloc[c
∗ ; c]
)

: (21)

With this choice, the lattice action transforms to

S[c∗ ; c; f ∗ ; f ] =
∑

i

Si
site +

∑

ωkαβ

f ∗
ωkα[g

−1
ω (∆ω − tk)

−1 g−1
ω ]αβfωkβ : (22)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Si
site[c

∗
i ; ci ; f

∗
i ; fi] = Sloc[c

∗
i ; ci] +

∑

αβ

f ∗
ωiα g−1

ω αβcωiβ + c∗ωiα g−1
ω αβfωiβ : (23)

Since gω is local, the sum over all states labeled by k can be replaced by a summation over

all sites by a change of basis in the second term. The crucial point is that the coupling to the

auxiliary fermions is purely local and Ssite decomposes into a sum of local terms. The lattice

fermions can therefore be integrated-out from Ssite for each site i separately. This completes the

change of variables

∫

D[c∗ ; c] exp (−Ssite[c
∗
i ; ci ; f

∗
i ; fi]) = Zloc exp

(

−
∑

ω αβ

f ∗
ωiα g−1

ω αβfωiβ − Vi[f
∗
i ; fi]

)

: (24)
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The above equation may be viewed as the de� ning equation for the dual potential V [f ∗ ; f ].

The choice of matrices (20) ensures a particularly simple form of this potential. An explicit

expression is found by expanding both sides of Eq. (24) and equating the resulting expressions

order by order. Formally this can be done to all orders and in this sense the transformation to

the dual-fermions is exact. For most applications, the dual potential is approximated by the � rst

non-trivial interaction vertex

V [f ∗ ; f ] =
1

4
γ1234 f

∗
1 f

∗
2 f4f3 ; (25)

where the combined index 1 ≡ f ωα g comprises frequency, spin and orbital degrees of freedom.

γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity

problem. It is given by

γ1234 = g−1
11′g

−1
22′

[

χ1′2′3′4′ − χ0
1′2′3′4′

]

g−1
3′3g

−1
4′4 ; (26)

with the two-particle Green function of the impurity being de� ned as

χ1234 = 〈c1c2c
∗
3c

∗
4〉loc =

1

Zloc

∫

D[c∗ ; c] c1c2c
∗
3c

∗
4 e

−Sloc[c∗ ; c] : (27)

The disconnected part reads

χ0
1234 = g14g23 − g13g24 : (28)

The single- and two-particle Green functions can be calculated using the CT-QMC [20]. After

integrating-out the lattice fermions, the dual action depends only on the new variables

~S[f ∗ ; f ] = −
∑

ωkαβ

f ∗
ωkα[ ~G

0
ω(k)]

−1
αβfωkβ +

∑

i

Vi[f
∗
i ; fi]: (29)

and the bare dual Green function involves the local Green function gω of the impurity model

~G0
ω(k) =

[

g−1
ω +∆ω − tk

]−1
− gω : (30)

Up to now, Eqs. (29) and (30) are mere reformulations of the original problem. In practice,

approximate solutions are constructed by treating the dual problem perturbatively. Several di-

agrams contributing to the dual self-energy are shown in Fig. 5. These are constructed from

the impurity vertices and dual Green functions. The � rst diagram is purely local, while higher
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The above equation may be viewed as the de� ning equation for the dual potential V [f ∗ ; f ].

The choice of matrices (20) ensures a particularly simple form of this potential. An explicit

expression is found by expanding both sides of Eq. (24) and equating the resulting expressions

order by order. Formally this can be done to all orders and in this sense the transformation to

the dual-fermions is exact. For most applications, the dual potential is approximated by the � rst
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4
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∗
1 f

∗
2 f4f3 ; (25)

where the combined index 1 ≡ f ωα g comprises frequency, spin and orbital degrees of freedom.

γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity

problem. It is given by
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−1
4′4 ; (26)

with the two-particle Green function of the impurity being de� ned as

χ1234 = 〈c1c2c
∗
3c

∗
4〉loc =

1

Zloc

∫

D[c∗ ; c] c1c2c
∗
3c

∗
4 e

−Sloc[c∗ ; c] : (27)

The disconnected part reads
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The single- and two-particle Green functions can be calculated using the CT-QMC [20]. After

integrating-out the lattice fermions, the dual action depends only on the new variables
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i

Vi[f
∗
i ; fi]: (29)

and the bare dual Green function involves the local Green function gω of the impurity model
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− gω : (30)

Up to now, Eqs. (29) and (30) are mere reformulations of the original problem. In practice,

approximate solutions are constructed by treating the dual problem perturbatively. Several di-

agrams contributing to the dual self-energy are shown in Fig. 5. These are constructed from

the impurity vertices and dual Green functions. The � rst diagram is purely local, while higher
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,
which defines the local self-energy matrix for our 2× 2 super-site:

ΣI ; J (iω) =











Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0











For a generalN ×N super-site impurity model (simp) the partition function can be written as a
functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :
Z =

∫

D[c∗ ; c]e−Ssimp ; (6)

where

Ssimp = −
N
∑

I ; J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[

G−1
σ (τ − τ ′)

]

IJ
cJσ(τ

′)

+
N
∑

I=1

∫ β

0

dτUnI ; ↑(τ)nI ; ↓(τ) ;

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.
The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to
obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space
GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular
DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following
prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the
standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K ; iω) ; (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.
Next we can write the matrix equation for the bath Green function matrix G, which describes the
effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,
which allowed us to account for double-counting corrections for the local self-energy matrix:
the bath Green function is not supposed to have any local self-energy contribution, since it
comes later from the solution of the effective super-impurity problem (7). Therefore one needs
to subtract the local self-energy contribution, which is equivalent to a solution of the following
impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the
”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) ; (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).
We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity

What is a best scheme? 
Quantum Monte Carlo ! 



Imputity solver: miracle of CT-QMC  

 Interaction expansion CT-INT:  A. Rubtsov et al, JETP Lett (2004) 

Hybridization expansion CT-HYB: P. Werner et al, PRL (2006)  

E. Gull, et al, RMP 83, 349 (2011) 

Efficient Krylov scheme:  A. Läuchli and P. Werner, PRB (2009)  
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CT-QMC review:E. Gull et al. RMP (2011) 
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Fig. 6: Schematic representations of initial lattice model (left) and the local DMFT approach

with orbital and spin fluctuations (right).

by adjusting the hybridization function iteratively. This corresponds to eliminating an infinite

partial series of all local diagrams, starting from the first term in Fig. 5. These contributions are

effectively absorbed into the impurity problem. Note that such an expansion is not one around

DMFT, but rather around an optimized impurity problem.

The only difference between a DMFT and a DF calculation are the diagrammatic corrections

which are included into the dual Green function. To this end, the local impurity vertex γ has to

be calculated in addition to the Green function in the impurity solver step.

It is an important consequence of the exact transformation (19) that for a theory, which is con-

serving in terms of dual fermions, the result is also conserving in terms of lattice fermions [25].

This allows to construct general conserving approximations within the dual fermion approach.

Numerically, the self-energy is obtained in terms of skeleton diagrams by performing a self-

consistent renormalization as described below. Once an approximate dual self-energy is found,

the result may be transformed back to a physical result in terms of lattice fermions using exact

relations.

The action (29) allows for a Feynman-type diagrammatic expansion in powers of the dual po-

tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [26].

Extension of these rules to include generic n-particle interaction vertices is straightforward.

Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-

tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As

simplest example we can write schematically the first self-energy correction of the diagram in

Fig. 5, which contains a single closed loop

Σ̃
(1)
12 = −T

∑

34

γ1324 G̃
loc
43 (34)

where G̃loc = (1/Nk)
∑

k
G̃(k) denotes the local part of the dual Green function. The second-

order contribution represented in Fig. 5 contains two equivalent lines and one closed loop, and

1.12 Alexander Lichtenstein

hence is k-dependent

Σ̃
(2)
12 (k) = −

1

2

(

T

Nk

)2
∑

k1k2

∑

345678

γ1345 G̃57(k1) G̃83(k2) G̃46(k+ k2 − k1) γ6728 . (35)

In practice, it is more efficient to evaluate the lowest-order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform. After calculating the best possible

series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function

matrix for the original fermions using the following simple transformations [19]

Gω(k) =

[

(

gω + gωΣ̃ω(k)gω
)−1

+∆ω − tk

]−1

(36)

which is a useful generalization of the DMFT Green’s function (see Eq. (32)) to include non-

local correlation effects.

The progress of the DMFT approach strongly depends on the development of efficient numerical

solvers for an effective quantum impurity model.

4 Solving multiorbital quantum impurity problems

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution

of the underlying Anderson impurity model remains a formidable quantum many-body problem,

which requires accurate solvers. Recently a new class of solvers has emerged, the continuous-

time quantum impurity solvers. These are based on stochastic Monte-Carlo methods and mainly

come in two different flavors: The weak and strong-coupling approach.

The weak-coupling or interaction expansion continuous-time (CT-INT) quantum Monte Carlo

algorithm for fermions was originally introduced by Aleksei Rubtsov [27]. There are two main

previous attempts: the first work by Nikolay Prokof’ev et. al [29], who devised a continuous-

time scheme to sample the infinite series of Feynman diagrams for bosons, and a second work

by Natalie Jachowicz and co-workers [30], who developed a continous-time lattice Monte Carlo

algorithm using the Hubbard-Stratonovich decomposition. The power of new CT-QMC scheme

is that it represents just the integration of the complex path integral without any transformation

to effective non-interacting models and can be used for any compacted electron-electron vertex.

We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-

purity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multiorbital

case can be found in Ref. [20]. First, the action of the Anderson impurity model is divided into

a Gaussian part S0 and an interaction part SU as follows:

S0 =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ) [∂τ − µ+∆(τ − τ ′) + Uα−σ(τ)δ(τ − τ ′)] cσ(τ
′) , (37)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)] [c
∗
↓(τ)c↓(τ)− α↓(τ)] . (38)
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Hubbard-Stratanovich transformation: 

Relation between Green functions: 

1.12 Alexander Lichtenstein
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Σ̃
(2)
12 (k) = −

1

2

(

T

Nk

)2
∑

k1k2

∑

345678
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In practice, it is more efficient to evaluate the lowest-order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform. After calculating the best possible

series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function

matrix for the original fermions using the following simple transformations [19]

Gω(k) =

[

(

gω + gωΣ̃ω(k)gω
)−1

+∆ω − tk

]−1

(36)

which is a useful generalization of the DMFT Green’s function (see Eq. (32)) to include non-

local correlation effects.

The progress of the DMFT approach strongly depends on the development of efficient numerical

solvers for an effective quantum impurity model.

4 Solving multiorbital quantum impurity problems

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution

of the underlying Anderson impurity model remains a formidable quantum many-body problem,

which requires accurate solvers. Recently a new class of solvers has emerged, the continuous-

time quantum impurity solvers. These are based on stochastic Monte-Carlo methods and mainly

come in two different flavors: The weak and strong-coupling approach.

The weak-coupling or interaction expansion continuous-time (CT-INT) quantum Monte Carlo

algorithm for fermions was originally introduced by Aleksei Rubtsov [27]. There are two main

previous attempts: the first work by Nikolay Prokof’ev et. al [29], who devised a continuous-

time scheme to sample the infinite series of Feynman diagrams for bosons, and a second work

by Natalie Jachowicz and co-workers [30], who developed a continous-time lattice Monte Carlo

algorithm using the Hubbard-Stratonovich decomposition. The power of new CT-QMC scheme

is that it represents just the integration of the complex path integral without any transformation

to effective non-interacting models and can be used for any compacted electron-electron vertex.

We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-

purity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multiorbital

case can be found in Ref. [20]. First, the action of the Anderson impurity model is divided into

a Gaussian part S0 and an interaction part SU as follows:

S0 =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ) [∂τ − µ+∆(τ − τ ′) + Uα−σ(τ)δ(τ − τ ′)] cσ(τ
′) , (37)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)] [c
∗
↓(τ)c↓(τ)− α↓(τ)] . (38)

T-matrix like relations via dual self-energy 
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Fig. 13: Bethe-Salpeter equation for the dual vertex in the electron-hole channel with a local

approximation Γirr = γ to the irreducible vertex. The solution Γ contains the sum of all ladder

diagrams up to infinite order in γ.
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Fig. 14: Diagrammatic representation of the susceptibility, Eqs. (71), (72).

5.4 Calculation of susceptibilities

For the calculation of the dual susceptibility, the dual vertex function is first calculated by means

of a Bethe-Salpeter equation [37,38] (in the following we write the equations for a single-orbital

model for simplicity)

Γα
ωω′Ω(q) = γα

ωω′Ω −
T

N

∑

ω′′

∑

k

γα
ωω′′ΩG̃ω′′(k)G̃ω′′+Ω(k+ q)Γ α

ω′′ω′Ω(q). (69)

This equation is depicted diagrammatically in Fig. 13. Here the irreducible vertex is ap-

proximated by the local irreducible interaction of dual fermions to lowest-order and is hence

given by the reducible vertex of the impurity model γ (the index ’(4)’ is omitted in what fol-

lows). Here α = d,m stands for the density (d) and magnetic (m) electron-hole channels:

Γ d = Γ ↑↑↑↑ + Γ ↑↑↓↓, Γm = Γ ↑↑↑↑ − Γ ↑↑↓↓. The physical content of the BSE is repeated scatter-

ing of particle-hole pairs. In the two channels the particle-hole pair has a definite total spin S

and spin projection Sz. The density channel corresponds to the S = 0, Sz = 0 singlet channel,

while Γm is the vertex in the S = 1, Sz = 0 triplet channel. In the magnetic channel, the collec-

tive excitations are magnons. The vertex Γ ↑↓↓↑ (Γ ↓↑↑↓) which corresponds to the Sz = +1(−1)

spin projection of the S = 1 channel must be equal to Γm in the paramagnetic state (longitudinal

and transverse modes cannot be distinguished).

The BSE may be solved iteratively, starting from the approximation Γ (0) ≈ γ. Inserting this

into the right-hand-side of Eq. (69) yields a new approximation Γ (1). Repeating this step suc-

cessively generates a sum of all ladder diagrams with 1, . . . , n + 1 irreducible rungs in the
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Double Counting in LDA+DMFT – The Example of NiO
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An intrinsic issue of the LDA+DMFT approach is the so called double counting of interaction
terms. How to choose the double-counting potential in a manner that is both physically sound
and consistent is unknown. We have conducted an extensive study of the charge transfer system
NiO in the LDA+DMFT framework using quantum Monte Carlo and exact diagonalization as
impurity solvers. By explicitly treating the double-counting correction as an adjustable parameter
we systematically investigated the effects of different choices for the double counting on the spectral
function. Different methods for fixing the double counting can drive the result from Mott insulating
to almost metallic. We propose a reasonable scheme for the determination of double-counting
corrections for insulating systems.

I. INTRODUCTION

The combination of the density functional theory
(DFT/LDA), a model Hamiltonian and the dynami-
cal mean field approximation (DMFT)1, a methodology
commonly referred to as LDA+DMFT, is to date one
of the best approaches for the realistic description of
strongly correlated electron systems2,3. While density
functional theory does not include all the interactions
between strongly correlated d or f electrons, it captures
some portion of them through the Hartree and exchange-
correlation terms. By introduction of a model Hamilto-
nian into the calculations one tries to account for as much
of the interactions as possible through the Coulomb in-
teraction matrix of the impurity model. This ultimately
leads to the problem that some contributions to the inter-
action are included twice. This has to be explicitly com-
pensated by adding a shift in the chemical potential of
the correlated orbitals to the Hamiltonian, leading to the
prominent issue of double counting. The LDA+DMFT
Hamiltonian can be written as follows

H = HLDA −Hdc +

+ 1
2

∑

i,σσ′,mm′m′′m′′′

Umm′m′′m′′′c†imσc
†
im′σ′cim′′′σcim′′σ

where HLDA is the LDA Hamiltonian, c†imσ creates a
particle with spin σ in a localized orbital m at site i
and Umm′m′′m′′′ is the Coulomb interaction matrix be-
tween localized orbitals. Above Hamiltonian contains the
double-counting correction

Hdc = µdc

∑

m,σ

nm,σ,

where nm,σ = c†mσcmσ and µdc is the double-counting
potential. How to choose the double-counting potential
in a manner that is physically sound and consistent is
unknown and systematic investigations of the effects of

Figure 1: Schematic illustration of the effect of the Coulomb
interaction on the energy levels in a Mott-Hubbard (a) and a
charge transfer insulator (b). Figure from8.

the double counting in LDA+DMFT on the spectrum
are seldom performed. In the work presented here we at-
tempt to shed some light on the double-counting problem
using the example of nickel oxide (NiO). In recent years
a number of authors applied the LDA+DMFT method
in different flavors to this system generating a body of
promising results4–7.

II. NIO – A CHARGE TRANSFER SYSTEM

Nickel oxide is a strongly correlated transition metal
oxide that is a prototypic member of the class of charge
transfer insulators. According to Zaanen, Sawatzky and
Allen transition metal oxides can exhibit a behavior dif-
ferent to the classic Mott-Hubbard picture9. In a Mott-
Hubbard insulator the charge gap opens through splitting
of the d band by the Hubbard U . In the charge-transfer
system the gap typically opens between hybridized lig-
and p and transition metal d states and the upper Hub-
bard band corresponding to the d states of the transition
metal. Thus, it is not only the Hubbard U, but also the
so called charge transfer energy ∆ = |εd − εp| that de-
termines the size of the gap. In the scheme by Zaanen,
Sawatzky and Allen materials can be classified by their
respective values of U and ∆10. For ∆ > U the system
is a Mott-Hubbard insulator, whereas for ∆ < U it be-
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terms. How to choose the double-counting potential in a manner that is both physically sound
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function. Different methods for fixing the double counting can drive the result from Mott insulating
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corrections for insulating systems.

I. INTRODUCTION

The combination of the density functional theory
(DFT/LDA), a model Hamiltonian and the dynami-
cal mean field approximation (DMFT)1, a methodology
commonly referred to as LDA+DMFT, is to date one
of the best approaches for the realistic description of
strongly correlated electron systems2,3. While density
functional theory does not include all the interactions
between strongly correlated d or f electrons, it captures
some portion of them through the Hartree and exchange-
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the double counting in LDA+DMFT on the spectrum
are seldom performed. In the work presented here we at-
tempt to shed some light on the double-counting problem
using the example of nickel oxide (NiO). In recent years
a number of authors applied the LDA+DMFT method
in different flavors to this system generating a body of
promising results4–7.

II. NIO – A CHARGE TRANSFER SYSTEM

Nickel oxide is a strongly correlated transition metal
oxide that is a prototypic member of the class of charge
transfer insulators. According to Zaanen, Sawatzky and
Allen transition metal oxides can exhibit a behavior dif-
ferent to the classic Mott-Hubbard picture9. In a Mott-
Hubbard insulator the charge gap opens through splitting
of the d band by the Hubbard U . In the charge-transfer
system the gap typically opens between hybridized lig-
and p and transition metal d states and the upper Hub-
bard band corresponding to the d states of the transition
metal. Thus, it is not only the Hubbard U, but also the
so called charge transfer energy ∆ = |εd − εp| that de-
termines the size of the gap. In the scheme by Zaanen,
Sawatzky and Allen materials can be classified by their
respective values of U and ∆10. For ∆ > U the system
is a Mott-Hubbard insulator, whereas for ∆ < U it be-
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Figure 4: k-resolved spectral functions A(k,ω) along the line Γ—X in the Brillouin zone for different values of the double
counting µdc obtained using LDA+DMFT (QMC).

The dimension of the problem of the double counting
becomes apparent if the parameter space of the overall
chemical potential µ and the double-counting potential
µdc versus the total particle number in the system N is
examined. The result is shown in Fig.(5) with the particle
number color coded. The picture shows that in princi-
ple any combination of µ and µdc that yields a point in
the green plateau, corresponding to the desired particle
numberN = 14 a priori describes the system equivalently
good. The problem that arises here is that convention-
ally fixing the total chemical potential µ in the middle
of the gap still leaves one the freedom of choosing differ-
ent values for µdc. An additional condition is required to
completely determine the systems position in the (µ, µdc)
parameter space and thus in the end its spectral prop-
erties. As we have argued above this choice is of crucial
relevance for the results of the LDA+DMFT simulation
and not just an unimportant technicality.
Since other, related approaches, like the LDA+U

method, also include a double counting the problem is
not new. Over the years different analytic methods to fix
µdc have been devised. Two prominent examples are the
around mean-field (AMF)27 approximation and the fully
localized or atomic limit (FLL)28. The AMF is based
on the conjecture that LDA corresponds to a mean-field
solution of the many-body problem, as was argued by
Anisimov et al.27. The resulting double-counting poten-
tial is

µAMF
dc =

∑

m′

Umm′n0 +
∑

m′,m′ !=m

(Umm′ − Jmm′)n0, (1)

where n0 = 1
2(2l+1)

∑

m,σ nmσ is the average occupancy.
We use the global average and not the spin dependent
version proposed in Ref.28, since we were performing
paramagnetic calculations in which both spin compo-
nents are equally occupied. One assumes all orbitals
belonging to a certain value of the angular momentum
l to be equally occupied and subtracts a corresponding
mean-field energy. This is, however, incorrect, since LDA
contains the crystal field splitting explicitly and will in
general not produce equally occupied orbitals even for
weakly correlated systems. The result for the case of NiO

using self-consistent occupancies from the DMFT loop is
shown in Fig.(5) labeled (SC)AMF. The value obtained
with the formal occupancies given above ((F)AMF) lies
outside of the considered part of the parameter space
at 20.4eV. In both cases the solution corresponds in our
case to a Mott-Hubbard insulator as shown in Fig.(3(a)).
The AMF functional is known to produce unsatisfactory
results for strongly correlated systems, which led to the
development of another method, the so called FLL.
The FLL functional takes the converse approach to

the AMF and begins with the atomic limit. It has been
shown, that this new potential can be written as a cor-
rection of the AMF solution (1) in the following form28

µFLL
dc = µAMF

dc + (U − J)(n0 − 1
2 ).

This addition to the AMF potential has the effect of a
shift of the centroid of the level depending on its occupa-
tion. An empty level is raised in energy by 1

2 (U −J) and
the converse happens to a fully occupied level. The form
of the functional is based on the property of the exact

density functional that the one electron potential should
jump discontinuously at integer electron number29, which
is not fulfilled in LDA or GGA. Ultimately the FLL leads
to a stronger trend towards integer occupancies and lo-
calization. The result of the FLL, as shown in Fig.(5),
constitutes a substantial improvement over AMF, yet still
produces too low values. The general problem with an-
alytic expressions like the ones presented is that their
scope is limited to certain classes of systems that ful-
fill the assumptions made in the derivation process. The
AMF for example might give good results for weakly cor-
related systems, but it certainly fails for the strongly cor-
related ones. The FLL improves the situation for insula-
tors, but it is still based on ad-hoc assumptions. Addi-
tionally a certain degree of ambiguity is inherent, since
one can compute the corrections using the formal occu-
pancies given above, occupancies obtained from LDA or
from the self-consistent DMFT loop. Other analytical
formulas for the double-counting correction have been
proposed for the case of NiO, see e.g. the work by Ko-
rotin et al.7 and Kuneš et al.5. Despite giving reasonable
resulting spectral functions analytical approaches to the
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µdc versus the total particle number in the system N is
examined. The result is shown in Fig.(5) with the particle
number color coded. The picture shows that in princi-
ple any combination of µ and µdc that yields a point in
the green plateau, corresponding to the desired particle
numberN = 14 a priori describes the system equivalently
good. The problem that arises here is that convention-
ally fixing the total chemical potential µ in the middle
of the gap still leaves one the freedom of choosing differ-
ent values for µdc. An additional condition is required to
completely determine the systems position in the (µ, µdc)
parameter space and thus in the end its spectral prop-
erties. As we have argued above this choice is of crucial
relevance for the results of the LDA+DMFT simulation
and not just an unimportant technicality.

Since other, related approaches, like the LDA+U
method, also include a double counting the problem is
not new. Over the years different analytic methods to fix
µdc have been devised. Two prominent examples are the
around mean-field (AMF)27 approximation and the fully
localized or atomic limit (FLL)28. The AMF is based
on the conjecture that LDA corresponds to a mean-field
solution of the many-body problem, as was argued by
Anisimov et al.27. The resulting double-counting poten-
tial is

µAMF
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(Umm′ − Jmm′)n0, (1)

where n0 = 1
2(2l+1)

∑

m,σ nmσ is the average occupancy.
We use the global average and not the spin dependent
version proposed in Ref.28, since we were performing
paramagnetic calculations in which both spin compo-
nents are equally occupied. One assumes all orbitals
belonging to a certain value of the angular momentum
l to be equally occupied and subtracts a corresponding
mean-field energy. This is, however, incorrect, since LDA
contains the crystal field splitting explicitly and will in
general not produce equally occupied orbitals even for
weakly correlated systems. The result for the case of NiO

using self-consistent occupancies from the DMFT loop is
shown in Fig.(5) labeled (SC)AMF. The value obtained
with the formal occupancies given above ((F)AMF) lies
outside of the considered part of the parameter space
at 20.4eV. In both cases the solution corresponds in our
case to a Mott-Hubbard insulator as shown in Fig.(3(a)).
The AMF functional is known to produce unsatisfactory
results for strongly correlated systems, which led to the
development of another method, the so called FLL.

The FLL functional takes the converse approach to
the AMF and begins with the atomic limit. It has been
shown, that this new potential can be written as a cor-
rection of the AMF solution (1) in the following form28

µFLL
dc = µAMF

dc + (U − J)(n0 − 1
2 ).

This addition to the AMF potential has the effect of a
shift of the centroid of the level depending on its occupa-
tion. An empty level is raised in energy by 1
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the converse happens to a fully occupied level. The form
of the functional is based on the property of the exact

density functional that the one electron potential should
jump discontinuously at integer electron number29, which
is not fulfilled in LDA or GGA. Ultimately the FLL leads
to a stronger trend towards integer occupancies and lo-
calization. The result of the FLL, as shown in Fig.(5),
constitutes a substantial improvement over AMF, yet still
produces too low values. The general problem with an-
alytic expressions like the ones presented is that their
scope is limited to certain classes of systems that ful-
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AMF for example might give good results for weakly cor-
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FIG. 43 Momentum resolved spectral function A(k; ω) cal-
culated for BaFe2As2. Gray inset: ARPES intensity from
Ref. (Brouet et al., 2010). From Ref. (Kutepov et al., 2010).

ing. The quasiparticle velocities are renormalized relative
to the band theory result (not shown) by factors of 2 for
x2 − y2 and 3z2 − r2 orbitals and 3 for the xy, xz, yz
orbitals. The momentum space positions of the Fermi
surface crossings are in good agreement with photoemis-
sion results, as the renormalized velocities. Comparison
of these sorts of calculations to the rapidly growing body
of experimental data are enabling a comprehensive un-
derstanding of the physics of novel materials.

XIII. APPLICATIONS III: NANOSCIENCE

A. Transport through quantum dots: linear response and
quantum phase transitions

One important application of quantum impurity mod-
els is as representations of \ single molecule" conductors
and other nano-devices (Hanson et al., 2007). Much of
the attention in the nanoscience community has been
focused on weakly interacting systems or on simple
Hubbard-like dots. Standard perturbative or Hirsh-Fye
QMC methods suffice for these situations, although CT-
QMC methods have been used, e.g. in a study of the
accuracy of the GW approximation (Wang et al., 2008).
As the � eld moves towards consideration of quantum dots
with richer physics, other approaches including CT-QMC
methods are likely to become important.
An example is provided by the two-level two lead

quantum dot system uncovered by Yacoby et al.

(Yacoby et al., 1995). Golosov and Gefen (2006) sug-
gested that this system could display a quantum phase
transition between two different relative occupancies as
level energies were varied. This issue was investigated
using the CT-HYB method by Wang and Millis (2010).
In the general case of the model presented by Gefen the
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FIG. 44 Imaginary time density-density correlation function
W of two-level, two-lead model evaluated using CT-HYB at
midpoint of imaginary time interval and normalized to value
at T = 0 : 01t, as function of interaction strength with level
energies tuned to be equal. Weak T and τ dependence is seen
in non-Fermi-liquid phase (U = 0 : 4 ; 0 : 6) and strong T and τ
dependence in Fermi liquid phase (U = 0 ; 0 : 2). For details
see Ref. (Wang and Millis, 2010).

imaginary part of the hybridization function (giving de-
cay of the dot electrons into the leads) does not commute
with the combination of the level Hamiltonian and the
real part of the hybridization function (giving the renor-
malization of the dot energies). This causes a severe sign
problem, which prevented any useful simulations in the
general case. Wang and Millis argued that the univer-
sal behavior at a quantum critical point (if one existed)
could be described by a sign problem-free model (essen-
tially because at the critical point the combination of
the dot Hamiltonian and real part of the hybridization
function becomes the unit matrix).

To investigate the criticality, the authors of
Ref. (Wang and Millis, 2010) considered the imaginary-
time dependence of correlation functions of variables
de� ned on the quantum dot. Fig. 44 shows a change
in behavior from the T 2 dependence expected at times
∼ β = 2 for a Fermi liquid to a power law at the critical
point to a constant long time behavior in the non-Fermi
liquid phase was found. However, impurity problems
may be characterized by exponentially small scales such
as the Kondo effect. Distinguishing a very small scale
from a true phase transition is numerically challenging.
The ability of CT-HYB to access very low temperatures
∼ 10−3t provides reasonable evidence of a critical
point. However, for problems such as this where the
key question concerns the asymptotic low energy behav-
ior, quasi-analytical functional renormalization group
methods (Karrasch et al., 2006) and NRG approaches
(Bulla et al., 2008; Karrasch et al., 2007) may be more
powerful.
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perconductors. The correlated electrons reside mainly
on d-orbitals associated with the Fe site and it appears
to be necessary to retain all 5 of the states in the d-
multiplet and to treat carefully both the effects of the U
interaction which constrains charge 
 uctuations and the
J-type interactions which select different states at � xed
total charge. Because the couplings are neither extremely
large nor extremely small, approximate methods may not
be reliable: the full interacting problem must be treated
by a numerically exact method. The low point symme-
try of each Fe site means that ligand � eld effects com-
pete non-trivially with the interaction effects while the
hybridization function is complicated, and must be de-
termined using band theory input. From the dynamical
mean � eld side the complexity of the problem is such that
only single-site DMFT calculations have been attempted,
sometimes with a further restriction to density-density
interactions.
In order to investigate the correlation effects in

such complicated compounds it is important to have
consistent one-electron and many-body parts of the
LDA+DMFT Hamiltonian. For example, Aichhorn and
collaborators studied the material LaO1−xFxFeAs using
an optimized basis of the localized dpp Wannier functions
which was constructed from the 22 Bloch bands, corre-
sponding to the 10 Fe-3d, 6 As-p and 6 O-p states (note
each unit cell contains two formula units and the point
symmetry of the two Fe is the same) (Aichhorn et al.,
2009). The Green' s function and hybridization function
are constructed from the matrix elements of the Kohn-
Sham Hamiltonian in the Wannier basis, while matrix
elements of the Coulomb interactions were calculated
from the static limit of a constrained random phase ap-
proximation. The dynamical mean � eld theory was con-
structed by retaining the on-site intra-d interactions and
projecting the k-integrated Green function onto the sub-
space of d Wannier functions. Other groups use slightly
different procedures; for example Kutepov et al. used
a self consistent GW procedure to compute the interac-
tion and an orbital-based procedure rather than a Wan-
nier function-based procedure to de� ne the basis of local
states (Kutepov et al., 2010).
Aichhorn et al. then used CT-HYB simulations (but

with only density-density interactions) at room tempera-
ture to obtain the full local spectral function for the dpp
Hamiltonian corresponding to the experimental crystal
structure of LaFeAsO and the realistic Coulomb matrix
elements (Aichhorn et al., 2009). Results are shown in
Fig. 41: The LDA+DMFT DOS near the Fermi level
displays characteristic features of a metal in an interme-
diate range of correlations. Both occupied and empty
states are shifted towards the Fermi level due to the
Fermi-liquid renormalizations. No high-energy features
that would correspond to lower or upper Hubbard bands
can be seen in this LDA+DMFT electronic structure.
In untangling the physics of the materials the abil-
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FIG. 42 Histogram of occupation probabilities for each 3d
atomic state in DMFT calculation for BaFe2As2 at T =
150K. The states are sorted by total d occupancy and
within each manifold of � xed occupancy by energy. From
Ref. (Kutepov et al., 2010).

ity of the CT-HYB method to provide the components
of the local density matrix, in particular the probabil-
ity that any one of the atomic states of the iron 3d or-
bital is occupied, is important. This is plotted for the
material BaFe2As2in the atomic histogram in Fig. 42
(Kutepov et al., 2010). Even the most probable atomic
states have a probability of only a few percent, hence
a naive strong correlation atomic limit is qualitatively
wrong for this compound. The wide spread of energies
within a given submanifold is a consequence of the addi-
tional \ J-like" interactions.

Figure 43 shows a false-color representation of the mo-
mentum resolved spectral function

∑

L A(k ; ω)LL in the
near-fermi-surface energy range (Kutepov et al., 2010).
Near the Fermi level the quasiparticle bands are well
de� ned, while at higher energies the structures become
blurred, re
 ecting the increased phase space for scatter-

Full rotational-invariant U matrix with 5-orbitals LDA+DMFT calculations 

Spectral function vs. ARPES 
A. Kutepov et al PRB (2010) 

BaFe2As2 Occupation probabilities 

Superconductivity related with non-local spin-fluctuations:  
How to calculate non-local correlations effects - EDMFT? 
BUT: there is a problem with conservation low:  
NEED: more elaborate “non-local” scheme!  

A.N. Rubtsov et al. / Annals of Physics 327 (2012) 1320–1335 1329

i.e. in the situation when the single-bubble approximation becomes incorrect. It is considered in the
next sections.

The diagrams shown in Figs. 3–5 form the minimal consistent set beyond the RPA to describe the
formation of collective modes with electron–boson coupling taken into account explicitly.

6. Charge conservation

So far, we did not consider whether the constructed approximations conserve particle number,
total spin, etc. However, the conservation laws are particularly important for bosonic excitations. For
example, the charge (particle number) conservation resulting in the equation ⌦2h⇢⇢i⌦K = K 2hjji⌦K
immediately leads to the requirement h⇢⇢iK=0 = 0 at any finite frequency (provided that the
current–current correlator hjji⌦,K=0 is finite). For 3D systems with Coulomb interaction the long-
wavelength asymptotic behavior for the density–density correlator should be h⇢⇢i!,K!0 / K2

⌦2+⌦2
p
,

where ⌦p is the plasma frequency. The RPA for free electrons is proven to obey this property, since
X0

⌦,K!0 vanishes with G = (i!�"k)
�1, but this is not true for the renormalized Green’s function [35].

Indeed, following the standard proof [18,19] one writes X0
⌦K = �P

k! G!kG!+⌦k+K as

X0
⌦K = �

X

!k

✓
1

i! � "k � ⌃!

� 1
i(! + ⌦) � "k+K � ⌃!+⌦

◆
1

i⌦ + ⌃! � ⌃!+⌦

. (26)

For free electrons of dispersionless ⌃ (that is, in static mean-field) the summation over ! produces a
difference of occupation numbers, nk � nk+K , in the nominator, that vanishes at K = 0. However this
reasoning clearly breaks down for the frequency-dependent⌃! inDMFT approximation. Itwas known
for a long time that the neglection of vertex corrections together with the use of renormalized Green’s
functions, violate charge and spin conservations [35–37]. We found that X0 with the DMFT Green’s
function does not vanish at small K and therefore it follows form Eq. (25) that EDMFT + GW is not a
valid description of plasmons. All the more, plasmons do not appear in simple EDMFT, as one can easily
observe from the second line of Eq. (4): the local quantity ��1

⌦ + ⇤⌦ cannot behave like ⌦2K 2. This
is the reason why the GW approach is normally used only for calculating the single-particle Green’s
function,while any two-particle properties are investigatedwithin the Bethe–Salpeter equations [38].
Nevertheless, such a scheme cannot describe self-consistent effects of collective excitations on the
single-particle spectral function.

To construct a conserving approximation, it is useful to consider the following reformulation of the
theory. Let us return to the initial lattice action (1) and do the Hubbard–Stratonovich decoupling for
the bosonic variables only. It will give an analogue of Eq. (10) with the action

S = SF [c, cÑ] + ⇢⇤↵b⌘ + ⌘⇤↵b⇢ � ⌘⇤↵b(⇤ � V )�1↵b⌘,

SF =
X

r

Sat [cÑr , cr ] +
X

r,R6=0,!,�

"RcÑr!� cr+R!� +
X

r,⌦

⇤⌦⇢⇤
r⌦⇢r⌦ .

(27)

Physically, SF describes a lattice with the interaction being local in space but retarded. Now we
formally integrate over the fermionic variables. The Gaussian approximation in dual bosons for such
a theory corresponds to the expression

X⌦K = 1
�
XF

⌦K

��1 + ⇤⌦ � VK

, (28)

where XF is an exact K -dependent two-particle correlator for the lattice problem SF . Formally, the
calculation of XF

K ,⌦ corresponds to a summation of all parts of the diagrams with fermionic lines in
series for Eq. (11). Comparing Eqs. (19) and (28) we obtain

⇧̃⌦K = ��1
⌦ XF

⌦K��1
⌦ � ��1

⌦ . (29)
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