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What is CT-QMC for?
Beyond DMFT

* DMFT is the best local approximation

* Going nonlocal means either cluster flavors of DMFT or expansion
around DMFT

* Collective excitations are essentially nonlocal

* Vertex parts (or, equally, many-particle Green's function) of the
impurity problem needed

Dual ladder diagram for magnons
Annals of Physics 327 1320 (2012)



Mathematics behind Monte-Carlo methods

In Monte-Carlo methods, statistical and(or) quantum average is
replaced with an average over Markov random walk
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Here random walk is performed over certain ensemble of auxiliary systems {K};
we should be able to calculate G, and prove the above equality.

For classical Metropolis Monte-Carlo {K} is an ensemble
of possible coordinates {x}.

For world-line Monte-Carlo {K} is an ensemble
of imaginary-time trajectories {x(7)}.

For Hirsch-Fye scheme {K} is an ensemble of auxiliary spins

Algorithms can differ in the ensemble {K}
and in the Markov matrix.



Mathematics behind Monte-Carlo methods
Optimal sampling

Averages are estimated stochastically
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Minimization of the variance
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The most known is so-called importance sampling
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Mathematics behind Monte-Carlo methods
Markov walk

Elementary moves satify

1) Detailed balance
(if one tries to go from K to K, he also tries moves from K’ to K)

2) Metropolis acceptance criterion

P
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Normally, K and K" are ""similar".
+ easy calculation of P i/
+ good acceptance rate

- autocorrelations
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. . CT-QMC algorithms
Interaction expansion I

can be any (G©)
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Consider the series with respect to W (in the interaction

representation)0 i
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The series always converges for a finite fermionic system at finite
temperature.

Idea of algorithm is
to perform a random walk in the space of {k, (arguments of integrals)} .

A.R., V. V. Savkin, and A. |. Lichtenstein,
Phys. Rev. B 72 035122 (2005).



. x s . CT-QMC algorithms
Optimizing the average sig I
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”Trivial” sign problem:

Idea of solution: o

Interact FOr real-time evolution, no solution of the sign (phase) |—it
problem is known 0




Random walk in K-space CT-QMC algorithms

Call state K the set
k-2 k+2

K=k t1..t,r1...7
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and perform a random walk k-1 k+1
with probability density '

p(K) X Zk = SDTWO(Tl,Tl)...Wo(Tk,Tk) N ..

Trace here can be explicitly calculated N . .
from the Wick theorem (H, is Gaussian!) .

< Tcgcl...czck = det ||g;;l|

It is possible to prove that for such an ensemble - | " |
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CT-QMC algorithms
Strong-coupling expansion

The idea is to expand in hybridization
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It's possible to sum up all the diagrams for a given operator set.
One obtaing, 1
Z =12y ) ET’F <C;|._(T)CO-(T,)...C;_I_,(T)CO./(T/)\ det[A(r—7)]
k=0 - ' at

P. Werner et al, Phys.Rev.Lett.97,076405(2006)



CT-QMC algorithms
Calculation with different CT-QMC schemes
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+  Weak Coupling Algorithon, measurement 1o wm
+  Weak Coupling Algorithin, measurement in -t
e Hyrdization Expansion, messurenment in T, 500 bins
— High frequency tail
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CT-QMC: tips and tricks

Optimum sampling
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Importance sampling
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Better take
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Speeding up:

Fast updates

(A+x-y) t=A"1

Krylov method

exp(Hat (5 — 75))

CT-QMC: tips and tricks
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Applications

DMFT phase diagram of Hubbard model
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Applications

DF calculation of "paramagnetic"
pseudogap in Hubbard model
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Applications

DF calculation of Fermi arcs in doped Hubbard model

b=80 U=2 t=0.25 t'=-0.3t doing 10%




Applications

Studies of a Kondo lattice model

(b) T'= 0 (02>

The single-particle excitation spectrum for ] = 0.3 and nc = 0.9 at
(@) T=0.25and (b) T = 0.0025

Otsuki, J., H. Kusunose, and Y. Kuramoto (2009),
Phys. Rev. Lett. 102 (1), 017202



Applications

Real materials, multiorbital models
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Momentum resolved spectral function calculated for BaFe2As2

Kutepov, A., K. Haule, S. Y. Savrasov, and G. Kotliar
(2010), Phys. Rev. B 82 (4), 045105



Applications

DF calculation of Fermi arcs in doped Hubbard model

b=80 U=2 t=0.25 t'=-0.3t doing 10%




Main problems at the moment:
- more effective multiorbital algorithms
- real-time CT-QMC

For a review:

E. Gull, A.J. Millis, A.l. Lichtensten, A.N. Rubtsov, M.Troyer, Ph. Werner
Continuous-time Monte Carlo methods for quantum impurity models
Reviews Of Modern Physics — 2011 — V.83 P.349






