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Quantum Information and Quantum Many-Body Systems

« Aim: Understand the physics of quantum systems
composed of many particles

* In many cases, quantum correlations between particles
are not very relevant (mean field theory)

 Strong correlations involved
= entanglement becomes important

e Entanglement Theory:
- central part of quantum information theory
- how can we measure entanglement?
- what can we do with entanglement,
and what is impossible?

Can we use quantum information techniques
(in particular entanglement theory) to obtain a better
understanding of quantum many-body systems?
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Entanglement in Quantum Information

* two (and more) spins: entanglement

@ty = 2211004005 + [1)al 1) ]

« How much entanglement is in some state

e.g. [¢) = a[0)a|0)s + B|1)a[1)B ?

<> How much perfect entanglement |¥ 1) does iy/contain?

 reduced state of Alice pa := trp Iqb)(qu/
pa = |a|?|0)(0| + |B|*|1)(1]

* more entanglement <> more uncertainty in pa

e measure of uncertainty (entanglement): von Neumann entropy

S(pa) = —tr[palog,]
= provides quantitative measure of entanglement

entropy = entanglement




Quantum many-body systems

* We consider systems composed of many (N)

d-level spins [0),[1),...,|d — 1)

with a locality notion (— lattice geometry) h'.r, ;

M
e Local Hamiltonian H = ) h;
1=1

* H might be gapped: energy gap A(H) > 0 betw. ground and excited states

« Primary focus: ground state properties — H|¥o) = Eo|¥o)

... but we are also interested in thermal states p = e "

or the time evolution |¥(t)) = e |¥ (¢t = 0))

 Variational approach:
We seek for an explicit form of the wavefunction |V )



How hard is it to describe the ground state?

d
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M
N spins, H =) h;
=1

 can we describe the ground state | %) ?

* Problem for large N:
W) = Z Ciyoin |P15 -+ -5 IN) € (Cd)@’N — C(dN)

115 IN .
l \exmntlally large

Hilbert space C(@" )|

 But there is hope:

M
H = ) h; hasonly M « N parameters
=1

— |®o) lives in small region of Hilbert space

7

Can we find an efficient description of ground states
from which we can efficiently compute quantities of interest?
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A physical guideline: The area law

 Area law for ground states of gapped Hamiltonians:
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= entropy S(pr ) of a region scales as boundary
e Suprising: for random states, we expect S(pr) ~ Volume

» Even for gapless systems: S(p.) ~logL (1D)

* Quantum Information: entropy = entanglement
= entanglement located around the boundary
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— construct ansatz from entanglement between adjacent sites




An ansatz for states with an area law

 each site composed of two auxiliary particles (“virtual particles”)
forming max. entangled bonds |wp) := Zil 17, 2) (D: “bond dimension”)

- apply linear map (“projector’) P, : CP x cP — ¢

= ()= (P18 @Pn)lwn)®" ]

e satisfies area law by construction
- state characterized by Pu, .. .. Py — NdD? parameters

A £

« family of states: enlarged by increasing D



Formulation in terms of Matrix Products

tp.,

(Pr&P)lwn) =|| & Akl Blas|| $ AR iy dlen|f| Sk K se

PS — Z A([j]ﬁz| ><Oé

i, " BE; -
" ALY+ D x D matrices

Z',j,a!,é-

1,00, 3 JsY,90
= S A AR lis g (e dla B=7
1,70,

= > (AMEAZT) 504, )12, 8| ap

« iterate this for the whole state [¢)) = (P1 ® -+ - @ Pn)|wp )@

|p) = Z (A g[2]2

- ANN1li1, ..., iN) Matrix Product State (MPS)

— Zl,"‘,zN

(or [y = > (A AR AN G, i) for open boundaries)




Formulation in terms of Tensor Networks

1
. . |
3 Po= Y A a, B A = o4
isasﬁ
* Tensor Network notation:
’ %_ % p
. ] ; j | 6 |
zﬂﬁ = Q—A—ﬁ EAQBB = a— A By
B
iv iy i3 iN
| | | |
tr[Allli gl2hia, | gINLiN) o — rA[I] 2Ty Vo ) E— _JA,L[N]W
» Matrix Product States can be written as , ‘ ‘ ,
11 12 13 1IN
I |
Ciy,..nin

‘Zb) — Z Cil,o--aiN‘ila'--;iN> with

“Tensor Network States”




Examples
e The AKLT state [Affleck, Kennedy, Lieb & Tasaki, '87]

D =2: @ 51 @ s-1
TP T’P P : projector onto S = 1 subspace

— rotationally invariant model
2 lau) g

- Exact ground state of H =) [38;- Siv1+ §(Si - Sip1)> + 3]

 H has a provable gap (< Haldane conj. on integer-spin Heisenberg model)

= MPS form a great analytical toolbox for correlated systems

 MPS < states which can be prepared with a sequential scheme,
e.g. a beam of atoms going through a cavity:

4----

O @)
0) 0)




When can we write state as MPS?

+ Every state can be written as an MPS: [¢)) = Y ¢, ixli1. ..., in)

'2']_ ?:2 . s w ?:N

- state with entropic area law”* S, (pr) < Smax
— efficient MPS approximation exists!

eCaSmax size N :linear scaling
@ (poly if Sihax ~ log N )

constant accuracy: D oc N1/

%) — IMPS(D))|| < const x

« Hastings '07: 1D gapped systems exhibit an area law!



A short wrap-up on MPS

» Matrix Product States: ansatz for 1D system of N d-level systems (Cd)®N
s=1,...,N :site index
A[S]’T‘ 1 =0,...,d—1 :physical system (physical index)
a,3=0,...,D—1 :left/right virtual system (“bond”)

» Matrix Product notation: |) = Ztr[A[I]""lA[Q]""‘Z o e AN G0, L iN)

1'1 3'-'JN
11 19 13 IN
I I I I
» Tensor Network notation: — AU 4R B AP — AN
: : P P Cle
e construction with bonds: D—1

T p, o= X5

D D
A i@ @ .- ¥ AU,
i3

« good approximation for ground states of 1D systems
* bond dimension D serves as a tuning parameter to enlarge class of states




Computing with MPS

- Given an MPS [¢), can we compute exp. values (1/|O|«) for local O ?
- N >

IE:=ZA*'®;I*' —

“transfer operator”

($10]9) = tr[EVEA. . .BY Eo BRI, . BN

» computing (1/|O[v) = multiplication of D*xD? matrices
— computation time o« IN + D® = poly(N)

» OBC scaling: D* [and if done properly, even D° (PBC) and D’ (OBC)]

» works also for correlation functions, string order parameters, etc.



Numerical simulations with MPS
- MPS as variational ansatz: find MPS [¢) = [[AY ..., AM)) (fixed D)
(Y[H|) (?/)\h 1)
(Y[v) Z ([v)

« Optimize one tensor A!*! —: X at a time

which minimizes E(|vy)) =

||
>.'<¢
S
<

X

WX H[$[X]) _ X -MX

— minimize E(X) = over X

WXWX]) X.NX

- generalized eigenvalue problem M X = ANX — efficiently solvable!

 DMRG algorithm: Repeatedly sweep through lattice & optimize
: [Density Matrix Renormalization Group — White, '92]
e converges very quickly

* does (typically) not get stuck in local minima [but hard instances exist!]
- approximation error for local observables: typ. ~ exp|[—D]



Wrap-up: Matrix Product States & simulations

. '3:1 ?:2 ’53 ’iN
« Matrix Product States (MPS): | N | 5 | |
efficient description of ground states i L —AN

of (gapped) 1D systems

» expectation values of local observables, correlation functions etc.
can be computed efficiently

e can be used to build variational method: DMRG

e relation to Wilson RG (NRQG):

NRG: keep D states with lowest DMRG: keep D states most important

energy for given block for ground state entanglement
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Projected Entangled Pair States

* Natural generalization of MPS to two dimensions:
O oC’

wp) = T 1910

[ Projected Entangled Pair States (PEPS)

« approximate ground/thermal states of local Hamiltonians well
* PEPS form a complete family with accuracy parameter D.

 PEPS appear as exact ground states of local Hamiltonians
— can be used to construct exactly solvable models




Computing expectation values for PEPS

« Can we compute expectation values (energy, correlation functions)?

| |W|7 » Use transfer operators ., Eo :

. < 14> ] ]
/ 7 A A
~ 1 14 D/;% ?}




Computing expectation values for PEPS

« Can we compute expectation values (energy, correlation functions)?

» Use transfer operators £, Eo :

D2
S~ | |

* Need to keep track of all indices at the boundary
— contraction requires to store exponentially large tensor

» Contracting PEPS computationally hard (#P, the “counting version” of NP)
* Numerical calculations require approximation methods!




Approximate contraction of PEPS

 Solution: proceed column-wise and truncate the bond dimension

-« D* - D2 :either truncation
' or find best MPS approximation

~ | best MPS approximation:

A (0 s |0 ) = [P

DQ

linear in X | iterate as in DMRG

* Allows for approximate contraction of PEPS
 Error in approximation is known (and, in practice, very small)!
» Can be used to build variational algorithms for 2D systems

- Computational resources scale like D®




Simulation of time evolution with MPS

« Can we use MPS for simulating time evolution?

19 (t)) = et |+p(0)) , with initial state [¢(0)) MPS, and H = 3 h;

* Trotter expansion:

piHE [eiHﬁt] N

N
~ (expli & haot]expli - hiot] )

even

odd

eihgt

eih4t

eihlt

eih;gt

eihgt

eih4t

eihlt

* [terate: Evolve |y (t)) for 6t and approximate by MPS with original D :

eihlt eih;{i

o

u

¢

» Also useful for ground states (imag. time evol. e 7 |y) — [¥g) for B —0)




Entropy growth & alternative contraction
- State |1(t)) at all times described by an MPS

» Problem: Entropy in time evol. typically grows linearly (and D ~ exp|S] |).

e solution: contract in space direction, not in time direction!

time

A ~N
t=0 T HHTF @O
() | [ [
> _ i ||
c>> [ [ | } e tHL
Cé) | |
> |
t=T Y 0 =(®0k(1)
2 = i_} eHt
@) — || || i
>
t =0 - 14 (0))

> v

space



Thermal states, excited states

« Simulation of thermal states with MPS:

p= i, AN (1IN
7:1 7:2 7:3 ’iN
: J15--5JN l Q l 5 | l
with ¢; 77750 = - fll[l] ] oA ] S— e
| | |
Ji J2 J3 IN

“Matrix Product Density Operator” (MPDO)

« Write p = e PH/21e=PH/2 and proceed like for time evolution!

e Simulation of excited states with MPS:

- find ground state | V)
- minimize (¥ |H|¥) subj. to (¥o|¥); =0 (linear constraint)



Simulating fermionic systems

e can we use similar ideas to simulate fermionic systems?

* 1D: fermionic systems < spin systems (Jordan-Wigner transformation)

» 2D: construct fermionic PEPS (fPEPS):

P =) Auss(®)' (@) ()7 (@) (d)

@
fermionic of
modes P maps virtual fermionic modes
‘ &, B,7,0 to physical mode p
ot = (14 a’rbT)/ P has fixed parity

[fPEPS |\Il> — (Qvirtl(P X P X .- )(WT 0% wT X - - ')|Qvirt9 ﬂphys>]




Computing with fermionic tensor networks

 Calculations with fermionic tensor networks:
Need to keep track of anticommutation relations!

* |s efficient computation still possible? = Yes!

* E.g., introduce fermionic swap tensors:

&

“fermionic swap™:

‘ﬁ ] /—‘ﬁ ] /—‘ crossing & (-1) if
; both modes occupied
: /T /T

AR

» Contract PEPS as before, but keep track of any swap occuring.



Unitary networks: MERA

« can we also model scale-invariant critical systems using tensor networks?
0)

0} [0}
* 0} unitaries
.__,,i‘i ; ‘i

| 0@0@0@0

: .0.0.3.0.0.0 t.t.t.t.t.t.t.

Multi-scale entanglement renormalization ansatz (MERA)




Expectation values for MERA
0) [0)

(e} [8)] |0}
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Conclusions

» Matrix Product States (MPS) and Projected Entangled Pair States (PEPS)
approximate ground states of local Hamiltonians well

* MPS form the basis for an efficient variational algorithm (DMRG)
* beyond 1D (PEPS): variational method with controlled approximations
 extensions to time evolution, thermal states, excitations, infinite systems

 fermionic statistics can be naturally incorporated

- MERA (Multi-scale entanglement renormalization ansatz):
Tensor network ansatz for scale-invariant systems





