Entanglement in correlated quantum systems: A quantum information perspective

Norbert Schuch

Institute for Quantum Information RWTH Aachen

Quantum Information and Quantum Many-Body Systems

- Aim: Understand the physics of quantum systems composed of many particles
- In many cases, quantum correlations between particles are not very relevant (mean field theory)
- Strong correlations involved
 - ⇒ entanglement becomes important
- Entanglement Theory:
 - central part of quantum information theory
 - how can we measure entanglement?
 - what can we do with entanglement, and what is impossible?

Can we use quantum information techniques (in particular entanglement theory) to obtain a better understanding of quantum many-body systems?

Entanglement in Quantum Information

• two (and more) spins: entanglement

$$|\Psi^{+}
angle = rac{1}{\sqrt{2}} \Big[|0
angle_{A}|0
angle_{B} + |1
angle_{A}|1
angle_{B} \Big]$$

• How much entanglement is in some state

e.g.
$$|\phi\rangle=\alpha|0\rangle_{\!A}|0\rangle_{\!B}+\beta|1\rangle_{\!A}|1\rangle_{\!B}$$
 ?

• reduced state of Alice $\rho_A := \operatorname{tr}_B |\phi\rangle\langle\phi|$:

$$\rho_A = |\alpha|^2 |0\rangle\langle 0| + |\beta|^2 |1\rangle\langle 1|$$

- more entanglement \leftrightarrow more uncertainty in ρ_A
- measure of uncertainty (entanglement): von Neumann entropy

$$S(\rho_A) = -\mathrm{tr}[\rho_A \log_A]$$

⇒ provides quantitative measure of entanglement

entropy = entanglement

Quantum many-body systems

• We consider systems composed of many (N)

d-level spins
$$|0\rangle, |1\rangle, \dots, |d-1\rangle$$

with a **locality notion** (→ lattice geometry)

- Local Hamiltonian $H = \sum\limits_{i=1}^{M} h_i$
- H might be gapped: **energy gap** $\Delta(H) > 0$ betw. ground and excited states
- Primary focus: ground state properties $H|\Psi_0\rangle=E_0|\Psi_0\rangle$

... but we are also interested in **thermal states** $\rho = e^{-\beta H}$

or the time evolution $|\Psi(t)\rangle = e^{iHt}|\Psi(t=0)\rangle$

Variational approach:

We seek for an **explicit form** of the **wavefunction** $|\Psi_0\rangle$

How hard is it to describe the ground state?

•
$$N$$
 spins, $H = \sum_{i=1}^{M} h_i$

Problem for large N:

$$|\Psi_0\rangle = \sum_{i_1,...,i_N} c_{i_1...i_N} |i_1,...,i_N\rangle \in (\mathbb{C}^d)^{\otimes N} = \mathbb{C}^{(d^N)}$$
 exponentially large

Hilbert space $\mathbb{C}^{(d^N)}$!

• But there is hope:

$$H = \sum_{i=1}^{M} h_i$$
 has only $M \propto N$ parameters

 $\rightarrow |\Psi_0\rangle$ lives in **small region** of Hilbert space

Can we find an **efficient description of ground states** from which we can **efficiently compute quantities of interest**?

A physical guideline: The area law

Area law for ground states of gapped Hamiltonians:

- \Rightarrow entropy $S(\rho_L)$ of a region scales as boundary
- Suprising: for random states, we expect $S(\rho_L) \sim \text{Volume}$
- Even for gapless systems: $S(\rho_L) \sim \log L$ (1D)
- Quantum Information: entropy = entanglement
 - ⇒ entanglement located around the boundary

⇒ construct ansatz from **entanglement** between **adjacent sites**

An ansatz for states with an area law

- each site composed of two auxiliary particles ("virtual particles") forming max. entangled bonds $|\omega_D\rangle := \sum_{i=1}^D |i,i\rangle$ (D: "bond dimension")
- apply linear map ("projector") $\mathcal{P}_k : \mathbb{C}^D \times \mathbb{C}^D \to \mathbb{C}^d$

$$\Rightarrow [|\psi\rangle = (\mathcal{P}_1 \otimes \cdots \otimes \mathcal{P}_N) |\omega_D\rangle^{\otimes N}]$$

- satisfies area law by construction
- state characterized by $\mathcal{P}_1, \dots, \mathcal{P}_N \to NdD^2$ parameters
- ullet family of states: enlarged by increasing D

Formulation in terms of Matrix Products

$$\mathcal{P}_s = \sum_{i, lpha, eta} A^{[s],i}_{lphaeta}|i
angle\langle lpha, eta|$$
 $A^{[s],i}: D imes D$ matrices

$$(\mathcal{P}_{1} \otimes \mathcal{P}_{2})|\omega_{D}\rangle = \left[\sum_{i,\alpha,\beta} A_{\alpha\beta}^{[1],i}|i\rangle_{1}\langle\alpha,\beta|_{AB}\right] \left[\sum_{j,\gamma,\delta} A_{\gamma\delta}^{[2],j}|j\rangle_{2}\langle\gamma,\delta|_{CD}\right] \left[\sum_{k}|k,k\rangle_{BC}\right]$$

$$= \sum_{i,j,\alpha,\delta} \left[\sum_{\beta} A_{\alpha\beta}^{[1],i}A_{\beta\delta}^{[2],j}\right]|i,j\rangle_{12}\langle\alpha,\delta|_{AD} \qquad \beta = \gamma$$

$$= \sum_{i,j,\alpha,\delta} (A^{[1],i}A^{2,j})_{\alpha\delta}|i,j\rangle_{12}\langle\alpha,\delta|_{AD}$$

• iterate this for the whole state $|\psi\rangle=(\mathcal{P}_1\otimes\cdots\otimes\mathcal{P}_N)|\omega_D\rangle^{\otimes N}$:

$$|\psi
angle = \sum_{i_1,...,i_N} [A^{[1],i_1}A^{[2],i_2}\cdots A^{N,i_N}]|i_1,\ldots,i_N
angle \;\; ext{Matrix Product State (MPS)}$$

(or
$$|\psi\rangle = \sum_{i_1,\dots,i_N} \langle l|A^{[1],i_1}A^{[2],i_2}\cdots A^{[N],i_N}|r\rangle|i_1,\dots,i_N\rangle$$
 for open boundaries)

Formulation in terms of Tensor Networks

$$\mathcal{P}_s = \sum_{i,\alpha,\beta} A_{\alpha,\beta}^{[s],i} |i\rangle\langle\alpha,\beta|$$

$$\mathcal{P}_{s} = \sum_{i} A_{\alpha,\beta}^{[s],i} |i\rangle\langle\alpha,\beta| \qquad A_{\alpha\beta}^{[s],i} \equiv \alpha - A_{\alpha\beta}^{[s]} - \beta$$

Tensor Network notation:

$$A^i_{\alpha\beta} \; \equiv \; \alpha - \boxed{A} - \beta \qquad \qquad \sum_{\beta} A^i_{\alpha\beta} B^j_{\beta\gamma} \; \equiv \; \alpha - \boxed{A} - \boxed{B} - \gamma$$

$$\operatorname{tr}[A^{[1],i_1}A^{[2],i_2}\cdots A^{[N],i_N}] = A^{[1]} \alpha A^{[2]} \beta A^{[3]} - \cdots$$

Matrix Product States can be written as

$$|\psi\rangle = \sum_{i_1,\dots,i_N} c_{i_1,\dots,i_N} |i_1,\dots,i_N\rangle$$
 with

"Tensor Network States"

Examples

• The AKLT state [Affleck, Kennedy, Lieb & Tasaki, '87]

 \mathcal{P} : projector onto S=1 subspace

→ rotationally invariant model

- Exact ground state of $H=\sum\left[\frac{1}{2}m{S}_i\cdot m{S}_{i+1}+\frac{1}{6}(m{S}_i\cdot m{S}_{i+1})^2+\frac{1}{3}\right]$
- H has a **provable gap** (\leftrightarrow Haldane conj. on integer-spin Heisenberg model)
 - ⇒ MPS form a great **analytical toolbox** for correlated systems
 - MPS

 → states which can be prepared with a sequential scheme,
 e.g. a beam of atoms going through a cavity:

When can we write state as MPS?

• Every state can be written as an MPS: $|\psi
angle = \sum c_{i_1...i_N} |i_1,\ldots,i_N
angle$

- state with entropic area law* $S_{lpha}(
 ho_L) \leq S_{
 m max}$
 - → efficient MPS approximation exists!

$$\||\Psi\rangle - |\mathrm{MPS}(D)\rangle\| \leq \mathrm{const} \times \underbrace{\begin{array}{c} \boldsymbol{N} \ e^{\boldsymbol{c_{\alpha}} \boldsymbol{S_{\max}}} \\ \boldsymbol{D^{\boldsymbol{c_{\alpha}}}} \end{array}}_{\text{constant accuracy: } D \propto N^{1/c_{\alpha}}$$

Hastings '07: 1D gapped systems exhibit an area law!

A short wrap-up on MPS

• Matrix Product States: ansatz for 1D system of N d-level systems $(\mathbb{C}^d)^{\otimes N}$

$$\begin{array}{ll} \boldsymbol{A}^{\boldsymbol{[s],i}} & s=1,\ldots,N \text{ : site index} \\ & i=0,\ldots,d-1 \text{ : physical system (physical index)} \\ & \alpha,\beta=0,\ldots,D-1 \text{ : left/right virtual system ("bond")} \\ \end{array}$$

- Tensor Network notation:

construction with bonds:

- good approximation for ground states of 1D systems
- ullet bond dimension D serves as a tuning parameter to enlarge class of states

Computing with MPS

• Given an MPS $|\psi\rangle$, can we compute exp. values $\langle\psi|O|\psi\rangle$ for local O?

$$\langle \psi | O | \psi
angle = \operatorname{tr} [\mathbb{E}^{[1]} \mathbb{E}^{[2]} \cdots \mathbb{E}^{[k-1]} \ \mathbb{E}_O \ \mathbb{E}^{[k+2]} \cdots \mathbb{E}^{[N]}]$$

- computing $\langle \psi | O | \psi \rangle$ = multiplication of $D^2 \times D^2$ matrices \rightarrow computation time $\propto {\bf N} \cdot {\bf D^6} = {\rm poly}(N)$
- OBC scaling: D^4 [and if done properly, even D^5 (PBC) and D^3 (OBC)]
- works also for correlation functions, string order parameters, etc.

Numerical simulations with MPS

• MPS as variational ansatz: find MPS $|\psi\rangle \equiv |\psi[A^{[1]},\dots,A^{[N]}]\rangle$ (fixed D)

which minimizes
$$E(|\psi\rangle) = \frac{\langle \psi|H|\psi\rangle}{\langle \psi|\psi\rangle} = \sum_i \frac{\langle \psi|h_i|\psi\rangle}{\langle \psi|\psi\rangle}$$

• Optimize one tensor $A^{[s]} =: X$ at a time

$$\rightarrow \text{minimize } \boldsymbol{E}(\boldsymbol{X}) = \frac{\langle \psi[X]|H|\psi[X]\rangle}{\langle \psi[X]|\psi[X]\rangle} = \frac{\vec{\boldsymbol{X}} \cdot \boldsymbol{M}\vec{\boldsymbol{X}}}{\vec{\boldsymbol{X}} \cdot \boldsymbol{N}\vec{\boldsymbol{X}}} \quad \text{over } X$$

- generalized eigenvalue problem $M\vec{X} = \lambda N\vec{X} \rightarrow$ efficiently solvable!
- DMRG algorithm: Repeatedly sweep through lattice & optimize

[Density Matrix Renormalization Group – White, '92]

- converges very quickly
- does (typically) not get stuck in local minima [but hard instances exist!]
- approximation error for local observables: typ. $\sim \exp[-D]$

Wrap-up: Matrix Product States & simulations

Matrix Product States (MPS):
 efficient description of ground states
 of (gapped) 1D systems

- expectation values of local observables, correlation functions etc.
 can be computed efficiently
- can be used to build variational method: DMRG
- relation to Wilson RG (NRG):

NRG: keep D states with lowest energy for given block

 $\underline{\mathsf{DMRG}}$: keep D states most important for ground state entanglement

Projected Entangled Pair States

Natural generalization of MPS to two dimensions:

Projected Entangled Pair States (PEPS)

- approximate ground/thermal states of local Hamiltonians well
- PEPS form a **complete family** with accuracy parameter D.
- PEPS appear as exact ground states of local Hamiltonians
 - → can be used to construct exactly solvable models

Computing expectation values for PEPS

• Can we compute expectation values (energy, correlation functions)?

• Use transfer operators \mathbb{E} , \mathbb{E}_{O} :

Computing expectation values for PEPS

• Can we compute expectation values (energy, correlation functions)?

- Need to keep track of all indices at the boundary
 - → contraction requires to store exponentially large tensor
- Contracting PEPS computationally hard (#P, the "counting version" of NP)
- Numerical calculations require approximation methods!

Approximate contraction of PEPS

Solution: proceed column-wise and truncate the bond dimension

• $D^4 o D^2_{\rm max}$: either truncation or find best MPS approximation

- Allows for approximate contraction of PEPS
- Error in approximation is known (and, in practice, very small)!
- Can be used to build variational algorithms for 2D systems
- Computational resources scale like D^8

Simulation of time evolution with MPS

Can we use MPS for simulating time evolution?

$$|\psi(t)\rangle=e^{iHt}|\psi(0)\rangle$$
 , with initial state $|\psi(0)\rangle$ MPS, and $H=\sum h_i$

Trotter expansion:

$$e^{iHt} = [e^{iH\delta t}]^{N}$$

$$\approx \left(\exp\left[i\sum_{\text{even}} h_{i}\delta t\right] \exp\left[i\sum_{\text{odd}} h_{i}\delta t\right]\right)^{N}$$

$$e^{ih_{1}t} e^{ih_{3}t}$$

$$e^{ih_{4}t}$$

$$e^{ih_{1}t} e^{ih_{3}t}$$

• Iterate: Evolve $|\psi(t)\rangle$ for δt and approximate by MPS with original D:

$$= -$$

• Also useful for ground states (imag. time evol. $e^{-\beta H}|\chi\rangle \to |\Psi_0\rangle$ for $\beta \to 0$)

Entropy growth & alternative contraction

- State $|\psi(t)\rangle$ at all times described by an MPS
- Problem: **Entropy** in time evol. typically **grows linearly** (and $D \sim \exp[S]$!).
- solution: contract in space direction, not in time direction!

Thermal states, excited states

Simulation of thermal states with MPS:

$$\rho = \sum_{i_1,\dots,i_N} c_{i_1,\dots,i_N}^{j_1,\dots,j_N} |i_1,\dots,i_N\rangle\langle j_1,\dots,j_N|$$

"Matrix Product Density Operator" (MPDO)

- Write $\rho = e^{-\beta H/2} \mathbb{1} e^{-\beta H/2}$ and proceed like for time evolution!
- Simulation of excited states with MPS:
 - find ground state $|\Psi_0\rangle$
 - minimize $\langle \Psi_1|H|\Psi_1\rangle$ subj. to $\langle \Psi_0|\Psi\rangle_1=0$ (linear constraint)

Simulating fermionic systems

- can we use similar ideas to simulate fermionic systems?
- 1D: fermionic systems ↔ spin systems (Jordan-Wigner transformation)
- 2D: construct fermionic PEPS (fPEPS):

$$\mathcal{P} = \sum A^{i}_{\alpha\beta\gamma\delta}(\hat{p}^{\dagger})^{i}(\hat{a})^{\alpha}(\hat{b})^{\beta}(\hat{c})^{\gamma}(\hat{d})^{\delta}$$

 \mathcal{P} maps virtual fermionic modes $\hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\delta}$ to physical mode \hat{p}

 \mathcal{P} has fixed parity

 $\mathsf{fPEPS:} \ket{\Psi} = \langle \Omega_{\mathrm{virt}} | (\mathcal{P} \otimes \mathcal{P} \otimes \cdots) (\omega^\dagger \otimes \omega^\dagger \otimes \cdots) | \Omega_{\mathrm{virt}}, \Omega_{\mathrm{phys}} \rangle$

Computing with fermionic tensor networks

- Calculations with fermionic tensor networks:
 Need to keep track of anticommutation relations!
- Is efficient computation still possible? ⇒ Yes!
- E.g., introduce fermionic swap tensors:

"fermionic swap": crossing & (-1) if both modes occupied

• Contract PEPS as before, but keep track of any swap occuring.

Unitary networks: MERA

• can we also model scale-invariant critical systems using tensor networks?

Multi-scale entanglement renormalization ansatz (MERA)

Conclusions

- Matrix Product States (MPS) and Projected Entangled Pair States (PEPS)
 approximate ground states of local Hamiltonians well
- MPS form the basis for an **efficient variational algorithm** (DMRG)
- beyond 1D (PEPS): variational method with controlled approximations
- extensions to time evolution, thermal states, excitations, infinite systems
- fermionic statistics can be naturally incorporated
- MERA (Multi-scale entanglement renormalization ansatz):

Tensor network ansatz for scale-invariant systems