Density Functional Theory and Applications to Transition Metal Oxides David J. Singh Oak Ridge National Laboratory

Julich, Germany

September 3, 2012

Blueberry Muffins

The blueberries change the taste, but the muffin is still basically a muffin.

The taste does not depend much on the distribution of berries.

Pre-History

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations that are much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation."

Westminster Abbey, London

 \mathcal{D}

P.A.M. Dirac, *Proc. Roy. Soc. (Lond)* **123**, 714 (1929).

 $H\psi = E\psi$: Many Body Problem, with correlated manybody wavefunctions \rightarrow Too hard.

Wigner and Seitz (1955)

"If one had a great calculating machine, one might apply it to the problem of solving the Schrodinger equation for each metal and obtain thereby the interesting physical quantities, such as cohesive energy, the lattice constant, and similar parameters. Presumably, the results would agree with experimentally determined quantities and nothing vastly new would be gained from the calculation. It would be preferable, instead, to have a vivid picture of the behavior of the wave functions, a simple description of the essence of the factors which determine cohesion, and an understanding of the origins ... "

E.P. Wigner and F. Seitz, Solid State Physics, Vol. 1 (1955).

The Electron Gas

bcc Fe: $n_{av} = 2.2 \times 10^{24} \text{ e/cm}^3$ (total); $n_{av} = 6.8 \times 10^{23} \text{ e/cm}^3$ (valence)

Nothing Interesting Happens in the Uniform Electron Gas at Densities of Solids

The Electron Gas Now With Nuclei

1	Hydrogen 1.007 94 Group 1 3 Li Lithium 6.941	Group 2 4 Bee Beryllum 9.012 182		Key: C		6 C rbon .0107	— Atomic number — Symbol — Name — Average atomic mass		Metals Alkali metals Alkali metals Alkaline-earth metals Transition metals Other metals Hydrogen Semiconductors Halogens Noble gases Other nonmetals Group 10 Group 11 Group 12			Group 13 5 B Boron 10.811	Group 14 6 C Carbon 12.0107	Group 15 7 N Ntrogen 14.006 74	Group 16 8 O Oxygen 15.9994	Group 17 9 F Fluorine 18.998 4032	Group 18 2 He Helium 4.002 602 10 Nee Neon 20.1797	
3	Na sodum 22.989 770	Mg Magnesium 24.3050	Group 3	Group 4	Group 5	Group 6 Group 7 Group 8 Group 9						Aluminum 26.981 538	Silkon 28.0855	P Phosphorus 30,973 761	Sulfur 32.066	Cl Chiorine 35.4527	Ar Argon 39.948	
4	19 K Potassium 39.0983	20 Ca Calcium 40.078	21 Sc Scandium 44.955 910	22 Ti TRanium 47.867	23 V Vanadium 50.9415	24 Cr Chromium 51.9961	25 Mn Manganese 54.938 049	26 Fe Iron 55.845	27 Co Cobalt 58.933 200	28 Ni Nickel 58.6934	29 Cu Copper 63.546	30 Zn Zinc 65.39	31 Ga Gallum 69.723	32 Ge Germanium 72.61	33 As Arsenic 74.921 60	34 Se Selentum 78.96	35 Br Bromine 79.904	36 Kr Krypton 83.80
5	37 Rb Rubidium 85.4678	Strontlum 87.62	39 Y Yttrium 88.905 85	40 Zr Zirconium 91.224	41 Nb Nicolium 92.906 38	42 Mo Molybdenum 96.94	43 Tc Technetium (98)	Ruthenium 101.07	45 Rh Rhodium 102.905 50	46 Pd Palladium 106.42	47 Ag Silver 107.8682	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn Tin 118.710	51 Sb Antimony 121.760	52 Te Tellurium 127.60	53 I Iodine 126.904 47	54 Xe Xenon 131.29
6	55 Cs Cesium 132.905 45	56 Ba Barkum 137.327	57 La Lanthanum 138.9055	72 Hf Hafnlum 178.49	73 Ta Tantalum 180.9479	74 W Tungsten 183.84	75 Re Rhentum 186.207	76 Os Osmium 190.23	77 Ir Iridium 192.217	78 Pt Platinum 195.078	79 Au Gold 196.966 55	80 Hg Mercury 200.59	81 T I Thailium 204.3833	82 Pb Lead 207.2	83 Bi Bismuth 208.990 38	84 Po Polonium (209)	85 At Astatine (210)	B6 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (263)	107 Bh Botrium (264)	108 Hs Hasslum (265) ¹	109 Mt Meitnerium (268) [†]	110 Uum* Ununnilium (269) [†]	111 Uuu* Unununium (272) [†]	112 Uub* Ununbium (277) [†]		114 Uuq* Ununquadium (285) [†]				
A team at Lawrence Berkeley National reported the discovery of elements 116 an in June 1999. The same team retracted the discovery in July 2001. The discovery / ment 114 has been reported but not confirmed.									and 118 ary of ele-									
 † Estimated from currently available IUPAC data. * The systematic names and symbols for elements greater than 109 will be used until the approval of trivial names by IUPAC. 				58 Ce Cerium 140.116	59 Pr Praseodymium 140.907 65	60 Nd Neodymlum 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.964	64 Gd Gadolinium 157.25	65 Tb Terbium 158.925 34	66 Dy Dysproslum 162.50	67 Ho Holmium 164.930 32	68 Er Erblum 167.26	69 Tm Thullum 168.934 21	70 Yb Ytterbium 173.04	71 Lu Lutetlum 174.967	
				90 Th Thorium 232.0381	91 Pa Protactinium 231.035 88	92 U Uranium 238.0289	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curlum (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrenclum (262)	
-	ITaa	1.		4 0 1	7					The atomic m parentheses a the text, how	asses listed in t are those of the ever, atomic ma	this table reflect element's mo	t the precision st stable or mo n rounded to t	of current me st common iso wo places to th	asurements. (V stope.) In calco ne right of the o	alues listed in ulations througi decimal.	hout	

He: liquid at 0 K W: melts at 3695 K

If you do not ask questions, I will. (corollary) If you do not contradict me, I will.

Property Prediction and Surprises

VOLUME 26, NUMBER 10

Theory of static structural properties, crystal stability, and phase transformations: Application to Si and Ge

M. T. Yin* and Marvin L. Cohen

Department of Physics, University of California, Berkeley, California 94720 and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

(Received 29 March 1982)

TABLE II. Comparison of calculated and measured static properties of Si and Ge.

	Lattice constant (Å)	Cohesive energy (eV/atom)	Bulk modulus (Mbar)
Si	<u>, , , , , , , , , , , , , , , , , , , </u>		
Calculation	5.451	4.84	0.98
Experiment	5.429 ^a	4.63 ^b	0.99 ^c
Ge		•	
Calculation	5.655	4.26	0.73
Experiment	5.652 ^a	3.85 ^b	0.77°

One of many early works of this type.

High-T_c Electronic Structures are 2D

Pickett, Cohen, Krakauer, Singh

$Bi_2Sr_2(Ca_xY_{1-x})Cu_2O_{8+5}$

NEWS: 1994 (Nagarajan, PRL; Cava, Nature)

A new family of superconductors with T_c up to 23K

Is 23K the tip of the iceberg?

Ni₂B₂

$La_{3}Ni_{2}B_{2}N_{3}$ (12K SC)

ANSWER: 1994 (Pickett and Singh, PRL) NO!

Fermi Surface of YNi_2B_2C (T_c=16K)

- Electronic structures are very three dimensional
- Due to strong B-C bonds
- Large electron phonon coupling is responsible for superconductivity (conventional mechanism).
- NOT THE BASIS OF A NEW FAMILY OF HIGH TEMPERATURE SUPERCONDUCTORS

Density Functional Theory

Standard approach: properties are governed by a wavefunction:

 $\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$; $H\Psi=E\Psi$

Given the Hamiltonian, we focus on solving for the wavefunction and extract observables as expectation values of operators with this wavefunction – for N electrons this is a 3N dimensional problem.

Density Functional Theory: Hohenberg-Kohn theorem tells us

- Energy and other observables of the ground state are given as functionals of the density $\rho(\mathbf{r})$ which exists in 3 dimensions only.
- The ground state density is unique and is the density that minimizes this functional.

$$E = E[\rho]; \rho = \min_{E[\rho]} \{\rho\}$$

The functional *E* is proven to exist, but is not given by the theorem.

Kohn-Sham Approach

Any density *N* electron density can be written as the density corresponding to an *N* electron Slater determinant (never mind that the true wavefunction cannot).

$$\rho(\mathbf{r}) = \Sigma \ \varphi_i(\mathbf{r})^* \varphi_i(\mathbf{r}) \ ; i=1,2,\ldots,N$$

Where the $\varphi_i(\mathbf{r})$ are the Kohn-Sham orbitals \rightarrow variational principle for ρ yields a variational principle for the $\varphi_i(\mathbf{r})$.

Kohn and Sham then separated terms that should be large in the functional leaving a (hopefully) small remainder as the unknown functional.

$$E[\rho] = T_s[\rho] + E_{ext}[\rho] + U_{Hartree}[\rho] + E_{xc}[\rho]$$

where, like E, E_{xc} is unknown. E_{xc} is defined by this equation.

Kohn-Sham Equations

Use the variational principle to write single particle equations for the Kohn-Sham orbitals.

$$\{T_s + V_{ext} + V_{Hartree} + V_{xc}\}\phi_i = \varepsilon_i\phi_i$$
$$\rho(\mathbf{r}) = \Sigma \phi_i(\mathbf{r})^*\phi_i(\mathbf{r}) ; i=1,2,...,N$$

Here, V_{hartree} and V_{xc} are functionals of the density (functional derivatives of the energy terms with respect to density), so generally these equations must be solved self-consistently.

This is straightforwardly generalizable to magnetic systems via spindensity functional theory where instead of a single function one has spindensities, $\rho_{\uparrow}(\mathbf{r})$ and $\rho_{\downarrow}(\mathbf{r})$ for the collinear case and a four component spinor for non-collinear.

The Local Density Approximation

Generally one may write

 $E[\rho] = \int \rho(\mathbf{r}) \, \varepsilon_{xc}[\rho](\mathbf{r}) \, \mathrm{d}^3 \mathbf{r}$

The local (spin) density approximation consists of taking $\varepsilon_{xc}[\rho]$ at each point **r** as the value for the uniform electron gas at the density for this **r**.

This exceedingly simple approximation works remarkably well, especially considering that the electron gasses of solids are nothing close to the uniform electron gas.

Hartree-Fock vs. Approximate DFT

- Hartree-Fock is a controlled approximation. Approximate DFT is not.
 - We can systematically improve Hartree-Fock, but with DFT we always have to "guess" about what is / is not already included. LDA+x need not be better than LDA (but it may very well be). *Be Judicious.*
- Hartree-Fock gives poor results for materials. Modern approximate DFT is typically excellent for structures, energies etc.
- There are no metals, no stable Fermi surfaces and no Fermi liquids in Hartree-Fock. There are in DFT, perhaps too many.
- **Never equate DFT calculations with Hartree-Fock.**

Modern Density Functionals

 $E[\rho] = \int \rho(\mathbf{r}) \, \varepsilon_{xc}[\rho](\mathbf{r}) \, \mathrm{d}^3 \mathbf{r}$

(1) Local (spin) density approximation: $\varepsilon_{xc}[\rho](\mathbf{r}) = \varepsilon_{local}(\rho(\mathbf{r}))$

• Widely used, especially for metals.

(2) Generalized gradient approximations (GGA, Langreth, Perdew): $\varepsilon_{xc}[\rho](\mathbf{r}) = \varepsilon_{gga}(\rho(\mathbf{r}), |\nabla \rho(\mathbf{r})|)$

- Much improved binding energies compared to LDA (chemical accuracy).
- Not gradient expansions, but sophisticated functionals based on exact scaling relations for the inhomogeneous electron gas (electron gas in solids is very non-uniform – can't use gradient expansions).
- New versions, e.g. PBE-SOL, Wu-Cohen, give almost uniform improvement over LDA in structural properties.

Modern Density Functionals

(3) Hybrid functionals (Becke and others):

- Mixture of GGA and Hartree-Fock exchange on the Kohn-Sham orbitals.
- Common in chemistry and semiconductor physics (band gaps are better than standard LDA or GGA's).
- (4) Van der Waal's Functionals (Langreth, Lundqvist):
 - Non-local functionals that incorporate dispersion interactions.
 - Surface science, molecular systems, water, DNA, carbon materials, etc.

Fermi Surfaces

American Association for the Advancement of Science

3 JANUARY 1992 Vol. 255 - Pages 1–132

Based on Kohn-Sham eigenvalues, which are not fundamentally related to excitation energies in exact DFT – but this is known to be predictive and useful based on experience.

Band Structures

5 5 5

D.H Lu (2009)

Band Structure Related Quantities

- Optical properties.
- Excitation energies.
- Electronic transport.
- Electron-Phonon interactions.
- etc.

None of these are fundamental in DFT, but they are often quite accurate, and the inaccuracies are well established from much experience.

This is very useful because DFT is tractable, microscopic and predictive.

CRYSTAL FIELD AND JAHN-TELLER DISTORTIONS

The d Orbitals

From Vinobalan Durairaj web site

The O p Orbitals

From wikipedia

- One of these (p_{σ}) points at the center of the octahedron.
- The other two (p_{π}) are perpendicular.

The Octahedral Crystal Field

In transition metal oxides crystal field is due (mostly) to hybridization

Jahn-Teller Effect

For a sufficiently narrow level with partial occupation, we expect a splitting to lower the energy. How does this happen (i.e. what is ΔH)?

Large band-width works against this.

Jahn-Teller Effect

A kind of orbital ordering.

The same thing works for t_{2g} orbitals but the effect is (much) smaller because these are involved in weak π bonds instead of strong σ bonds

Jahn-Teller is long range – corresponding zone boundary modes have long coherence length (zone center also possible – ferroelastic)

Geometric Considerations (O and B-site)

Cubic structure:

- O O distance is $a/\sqrt{2}$ (can have direct hopping)
- B B distance is a (too far for much direct hopping).
- Metal bands are formed via hopping through O.

1D linear chains along Cartesian directions → 1D and 2D bands.

Geometric Considerations (O and B-site)

Flat bands

Planar Fermi surfaces (e.g. cubes rather than spheres).

Cubic SrRuO₃

High-T_c Electronic Structures are 2D

Pickett, Cohen, Krakauer, Singh

Hopping Through O

O $p_{x}p_{y}p_{z}$ point along Cartesian directions (90 degrees apart): Cubic: Tilted:

- Maximum $pd\sigma$ hopping.
- Wide e_g bands.
- *Tilts reduce band width but do not reduce hybridization (i.e. crystal field).*

- Reduced $pd\sigma$ hopping.
- Narrower e_g bands.
- Additional splittings due to symmetry lowering.
- Can broaden t_{2g} bands depending on details.
- Direct m-m hopping.

Tilts and Hopping Through O

Sr content x

MAGNETISM: Moment Formation

Local Atomic Moments (Hund's Rules)

- 1. For a given electron configuration, the term with maximum multiplicity (maximum *S*) has the lowest energy (exchange / Coulomb correlation).
- 2. For a given multiplicity, the term with the largest value of *L* has the lowest energy (Coulomb correlation).
- 3. For a given term, in an atom with outermost sub-shell half-filled or less, the level with the lowest value of *J* lies lowest in energy. If the outermost shell is more than half-filled, the level with highest value of *J* is lowest in energy (spin-orbit).

1st Rule:

In solids levels broaden into bands. If band width, $W > \Delta$ this may not work (\rightarrow low spin).

Stoner Model (Itinerant Magnets)

Band structure effects can lead to high degeneracy near $E_F \rightarrow$ magnetic instability and energy lowering. Stoner Criterion: $N(E_F)I > 1$ $I \sim 0.7 - 0.9$ eV for d elements.

Perovskite (orthorhombic) SrRuO₃

Perovskite SrMnO₃

Question:

How Does the Spectrum (DOS) Look Above the Ordering Temperature?

Interaction Between Moments (Exchange)

- Moment formation by itself is not magnetism. Ordering is required, and therefore interactions between moments on different sites are what underlie magnetism.
- Some Mechanisms:
 - Direct exchange two atoms are touching (or very close) so that their wavefunctions overlap. The interaction is like that which gives rise to Hund's first rule. It can be positive or negative depending on the separation of the atoms, but it falls off very strongly with distance.
 - Super Exchange coupling of spins through spin dependent overlap typically involving other atoms.
 - Conduction electron mediated exchange: e.g. RKKY, magnetic semiconductors ... Moments interact with conduction electrons which mediate the coupling.

Conduction Electron Mediated Exchange

In weak interacting limit medium has some response, $\chi(\mathbf{q})$, which defines the interaction through $\chi(\mathbf{r}_i - \mathbf{r}_j)$. More generally the response may differ for strong interactions at short range but at long distance would still take RKKY type form in a metal.

Super Exchange and Related

Consider two magnetic ions which interact via O and consider parallel and anti-parallel alignments of the moments:

Band Formation

In the absence of spin orbit and non-collinear structures hopping is separate for spin up and spin down.

Parallel Case:

Parallel Case with hopping:

Band Formation

In the absence of spin orbit and non-collinear structures hopping is separate for spin up and spin down.

Antiferromagnetic Super Exchange

Anti-parallel with hopping:

Average energy of *occupied states* is lowered. Favors antiferromagnetic alignment (super exchange)

Ferromagnetic Exchange

Global Spin Direction

Average energy of *occupied states* is lowered. Favors ferromagnetic alignment (super exchange).

This is the nature of the double exchange in manganites: It competes with Jahn-Teller, which would split the e_g level.

What Favors Strong Super Exchange?

1.High spin state.

- 2.Bond angles that favor M O M hopping (i.e. 180° for e_g).
- 3.Strong hybridization with O.
 - Large orbitals that overlap strongly with O (e_g much better than t_{2g}).
 - Short M-O neighbor distances.
 - *d*-states that are close in energy to the O *p* states (e.g. high metal valence states like Cu²⁺).

 In perovskites the interaction proceeds through O.

Example: Cuprate Superconductors (Spin 1/2)

Covalency favors strong superexchange. Disfavors moment formation. High $T_N > 1000$ K from a balance.

ferromagnetic and has high anisotropy even though it is almost cubic.

An Example (R₂NiMnO₆) Double Perovskite

Azuma et al., Oratani et al., Mater et al., DJS et al.

Mn⁴⁺ (d³ r=0.67Å) Ni²⁺ (d⁸ r=0.83Å)

A ferromagnet via standard Anderson super exchange.

Another Example PbVO₃

- Perovskite, polar tetragonal structure *P4mm*; extreme $c/a \sim 1.23$. Shpanchenko (2004), Belik (2005), Uratani (2005), DJS (2006). Ionic model: Pb²⁺V⁴⁺(O²⁻)₃
- Two stereochemically active ions:
- Pb²⁺ on A-site
- V⁴⁺ on B-site (also magnetic)
- No transition with T up to 570K
- Tetragonal to Cubic transition at *P*~2 GPa.

V⁴⁺ in Oxides

Two normal configurations:

Moment Formation in PbVO₃

- •LDA Calculations with LAPW method, c.f. Shpanchenko, Uratani.
- •Stable local moments on V ($m_s = 1 \mu_B$).
- •Ground state is AF C-type.

0

The Vanadyl Bond

MAGNETOELASTIC COUPLINGS

Why is Magnetism Coupled to the Lattice?

- 1. Moment formation affects bonding.
 - Difference in size of high spin and low spin ions (Shannon).
 - Moment formation competes with bonding (bonds have paired electrons in normal cases) -- Invar
- 2. Exchange interactions depend on structure through hopping integrals and on-site terms (relative shifts in levels).
- 3. Relativistic effects (spin orbit and Dzyaloshinsky-Moria) couple spin directions to the lattice magnetostriction, moment canting.

How Does It Work?

Heisenberg Model $J \sim t^2/\Delta E$

$$\mathcal{H} = -\sum_{i,j} \mathcal{J}_{ij} ec{s_i} \cdot ec{s_j}$$

But both ΔE and *t* depend on position – The hopping *t* is from wave function overlap, which is very strongly dependent on distance (exponential) and bond angles. $J \rightarrow J(\mathbf{r}_i - \mathbf{r}_j, \theta)$

Can accomplish the same thing with M - O - M bond angles in perovskites or by lattice strain (e.g. MnO).

How Do We Know What is What

Note: An expansion in radial functions times spherical harmonics is complete \rightarrow Expansion about more than one site is over-complete (ambiguous).

An Example: Two Titanium Oxides TiO₂ Ti_2O_3

Both have Ti octahedrally coordinated by O.

A Chemist's View

Electronegativity:

Ti: 1.54 O: 3.44 Large difference means O is O²⁻ and therefore we have Ti⁴⁺ and Ti³⁺ respectively. These are known common valence states of Ti.

Things are not always so simple:

- Smaller electronegativity differences (e.g. BaFe₂As₂).
- Metals (e.g. PdCoO₂).
- Multiple mixed valence ions (e.g. MnFe₂O₄ – Mn²⁺Fe³⁺; Mn⁴⁺Fe²⁺ etc.).

Density of States for TiO₂

LAPW calculation with r_{Ti} =2.0 bohr, r_0 =1.6 bohr

Density of States for Ti₂O₃

LAPW calculation with r_{Ti} =2.0 bohr, r_0 =1.6 bohr

Comparison of Ti d Projections

Ti d Projections with 3 eV Shift

Ti d DOS per Ti

Deep Core Level Positions

- Reflect the Coulomb potential, which should vary with valence.
- Experimentally accessible quantities.
- Absolute position is arbitrary in a solid state calculation: Need to look either at differences or relative to some physical reference, e.g. Fermi level.

O
$$1s - Ti \ 1s$$
 (PBE GGA).
TiO₂: 4357.73 eV
Ti₂O_{3:} 4356.09 eV

- Difference is > 1 eV and can be used to characterize valence. However, the differences in non-oxides/halides are smaller, and this is indirect (relies on reference compounds).
- Higher binding energy for metal ion means higher valence.
- Can be misleading for hypothetical crystal structures.

What Can Be Done for TiO₂ / Ti₂O₃

• Do DFT calculations; find band characters and then count.

12 O *p* bands occupied (24 *e*) per cell (Ti_2O_4), no occupied *d* bands \rightarrow Ti^{4+} 18 O *p* bands occupied (36 *e*) per cell (Ti₄O₆), 2 occupied *d* bands \rightarrow Ti³⁺

Questions?