
M
od

el
in

g 
an

d 
Si

m
ul

at
io

n

3

Modeling and Simulation
Band / Volume 2
ISBN 978-3-89336-884-6

Emergent Phenomena in Correlated Matter
Eva Pavarini, Erik Koch, and Ulrich Schollwöck (Eds.)

Em
er

ge
nt

 P
he

no
m

en
a 

in
 C

or
re

la
te

d 
M

at
te

r
Ev

a 
Pa

va
rin

i, 
Er

ik
 K

oc
h,

 a
nd

 U
lri

ch
 S

ch
ol

lw
öc

k 
(E

ds
.)



Schriften des Forschungszentrums Jülich
Reihe Modeling and Simulation Band / Volume 3



Forschungszentrum Jülich GmbH
Institute for Advanced Simulation

Emergent Phenomena in Correlated Matter

Autumn School organized by
the Forschungszentrum Jülich 
and the German Research School
for Simulation Sciences

at Forschungszentrum Jülich
23 – 27 September 2013

Schriften des Forschungszentrums Jülich
Reihe Modeling and Simulation Band / Volume 3

ISSN 2192-8525  ISBN 978-3-89336-884-6

German Research School for
Simulation Sciences GmbH

Lecture Notes of the Autumn School  
Correlated Electrons 2013

Eva Pavarini, Erik Koch, and Ulrich Schollwöck (Eds.)



Bibliographic information published by the Deutsche Nationalbibliothek.
The Deutsche Nationalbibliothek lists this publication in the Deutsche 
Nationalbibliografie; detailed bibliographic data are available in the 
Internet at http://dnb.d-nb.de.

Publisher: Forschungszentrum Jülich GmbH 
 Institute for Advanced Simulation
 
Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH

Printer: Druckerei Schloemer, Düren

Copyright: Forschungszentrum Jülich 2013

Distributor: Forschungszentrum Jülich  
 Zentralbibliothek, Verlag
 D-52425 Jülich
 Phone +49 (0)2461 61-5368 · Fax +49 (0)2461 61-6103
 e-mail: zb-publikation@fz-juelich.de
 Internet: http://www.fz-juelich.de

Schriften des Forschungszentrums Jülich
Reihe Modeling and Simulation     Band / Volume 3

ISSN 2192-8525
ISBN 978-3-89336-884-6

The complete volume ist freely available on the Internet on the Jülicher Open Access Server (JUWEL) at 
http://www.fz-juelich.de/zb/juwel

Neither this book nor any part of it may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, microfilming, and recording, or by any 
information storage and retrieval system, without permission in writing from the publisher.



Contents
Preface

Introduction

1. Density Functional Theory for Emergents
Robert O. Jones

2. Many-Electron States
Erik Koch

3. Magnetism: Models and Mechanisms
Eva Pavarini

4. The Variational Cluster Approximation
Robert Eder

5. Magnetism: From Stoner to Hubbard
Alexander I. Lichtenstein

6. Monte Carlo Methods with Applications to Spin Systems
Werner Krauth

7. Monte Carlo Simulations of Quantum Spin Models
Stefan Wessel

8. Quantum Theory of Molecular Magnetism
Jürgen Schnack

9. Recent Advances in Experimental Research on High-Temperature Superconductivity
Bernhard Keimer

10. Strongly Correlated Superconductivity
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Preface
Emergent phenomena are the hallmark of many-body systems, and yet to unravel their na-
ture remains one of the central challenges in condensed-matter physics. In order to advance
our understanding it is crucial to learn from the different manifestations of emergence as well
as from the interplay of different emergent phases, such as magnetism and superconductivity.
For addressing such problems, it is necessary to master a broad spectrum of techniques from
traditionally separate branches of research, ranging from ab-initio approaches based on density-
functional theory to advanced many-body methods, electron-lattice coupling and dynamics. In
these lecture notes we analyze emergence in some of its major manifestations in the solid-state
and compare methodologies used to address specific aspects. The aim of the school is to in-
troduce advanced graduate students and up to the essence of emergence and to the modern
approaches for modeling emergent properties of correlated matter.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation and the German Research School for Simulation Sciences at the Forschungszentrum
Jülich provided the funding and were vital for the organization of the school and the production
of this book. The Institute for Complex Adaptive Matter (ICAM) offered travel support for
international speakers and participants.

The nature of a school makes it desirable to have the lecture-notes available already during
the lectures. In this way the participants get the chance to work through the lectures thoroughly
while they are given. We are therefore extremely grateful to the lecturers that, despite a tight
schedule, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We thank Mrs. H. Lexis of the Forschungszentrum Jülich Verlag as well as Mr. D. Laufen-
berg and Mrs. C. Reisen of the Graphische Betriebe for providing their expert support in pro-
ducing the present volume on a tight schedule. We heartily thank our students and postdocs
that helped in proofreading the manuscripts, often on quite short notice: Michael Baumgärtel,
Khaldoon Ghanem, Evgeny Gorelov, Esmaeel Sarvestani, Amin Kiani Sheikhabadi, Joaquin
Miranda, German Ulm, Guoren Zhang, and in particular Hunter Sims.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the in-
numerable questions concerning the organization of such an endeavour and to Mrs. L. Snyders
and Mrs. E. George for expertly handling all practical issues.

Eva Pavarini, Erik Koch, and Ulrich Schollwöck

July 2013
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Emergent Phenomena in Correlated Matter
Modeling and Simulation Vol. 3
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1 Emergent phenomena

The concept of emergence arose in arguments about the biological basis of consciousness that
were sparked by Darwin’s theory of evolution. It was formalized by the philosopher George
Henry Lewes in his 1875 Problems of Life and Mind [1]. But John Stuart Mill, around whom
a successful school of British Emergentism developed, had already noted in his 1843 System of
Logic [2]

All organized bodies are composed of parts, similar to those composing inorganic
nature, and which have even themselves existed in an inorganic state; but the phe-
nomena of life, which result from the juxtaposition of those parts in a certain man-
ner, bear no analogy to any of the effects which would be produced by the action of
the component substances considered as mere physical agents. To whatever degree
we might imagine our knowledge of the properties of the several ingredients of a
living body to be extended and perfected, it is certain that no mere summing up of
the separate actions of those elements will ever amount to the action of the living
body itself.

While it was hotly debated whether the constitutive principles of biology are reducible to those
of physics and chemistry, the importance of emergence in physics was recognized only much
later. From the inception of their science, physicists have been fascinated most with finding the
ultimate laws of the universe. There is no doubt that our present understanding of the world
owes a lot to this reductionist approach. That one and the same force, gravitation, explains
how an apple falls and how the planets move around the sun is an astonishing discovery. Other
ideas such as the existence of atoms, a finite number of particles from which all normal matter
is made, revolutionized our worldview. The understanding of the differences between atoms,
which led to the periodic table, opened the path to quantum mechanics and gave chemistry a
microscopic basis. At the same time, the landscape grew more complex. It became clear that
atoms are not at all the fundamental particles, but that they are composed of yet more elementary
particles, electrons, neutrons, and protons. It was understood that a new force holds the nuclei
together, which was later still understood to be the consequence of a more fundamental force,
the strong force, between more elementary particles, the quarks. The stellar successes of the
reductionist approach led a large part of the scientific community to think that the new grand
challenge was to find the theory of everything, in which the ultimate elementary particles are
identified and where all known forces are unified. From this point of view, everything will
ultimately be explained in the same framework. Among the many successes of this approach,
the most striking and perhaps least celebrated revelation is, however, that every fundamental
theory hides a more fundamental one and that the target seems to elude us, today’s elementary
particles and fundamental forces becoming tomorrow’s bound states and effective interactions.
So the question is whether an ultimate fundamental theory of everything would solve all prob-
lems. A glimpse into the history of condensed-matter physics hints at the answer: not really. At
the theory layer of chemistry and solid-state phenomena, the fundamental particles and interac-
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tions have actually been known since the first quarter of the 20th century. Most of solid-state
physics and chemistry can indeed be described by the Schrödinger equation

i~
∂

∂t
|Ψ〉 = H|Ψ〉 (1)

where the Hamiltonian for a set of atomic nuclei {α} with atomic numbers {Zα} and masses
{Mα} and their accompanying electrons {i} is given, in atomic units, by

H = −1

2

∑
i

∇2
i −

∑
α

1

2Mα
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α −

∑
α,i

Zα
|ri −Rα|

+
1

2

∑
ii′

1

|ri − ri′ |
+

1

2

∑
αα′

ZαZα′

|Rα −Rα′|
.

As Laughlin and Pines pointed out [3], here we have the theory of (almost) everything (ToaE).
Why then are we still working on condensed-matter physics? The history of 20th century
condensed-matter physics is full of experimental discoveries showing genuinely novel behav-
iors that were not only unanticipated by theory, but took decades to fully clarify, even though,
in principle, the equations, the ToaE, were well known. Examples are magnetism, supercon-
ductivity, the Kondo effect, or the quantum-Hall effect in its integer and fractional forms. Some
of the mysteries discovered in the last century are still not or not fully clarified, such as high-
temperature superconductivity and heavy-fermion behavior; new ones will certainly come to
light in the years to come. The difficulties are not merely technical or computational, but fun-
damental. As P.W. Anderson pointed out in the now very famous article More is Different [4],
when many particles interact, even if we know the type of interaction, and even if the interac-
tion is as simple as a two-body term, totally surprising results can emerge: gold is made of gold
atoms; but a single atom of gold is neither a metal nor does it appear in a golden color. Like-
wise, an Fe atom is not ferromagnetic, nor does a Pb atom superconduct at low temperatures.
Perhaps it is easier to grasp the concept of emergence by going back to its origin. As Anderson
writes [5]

The idea of emergence began in biology, where it was realized that the course of
evolution is one long story of novel properties emerging out of the synergy of large
collections of simpler systems: cells from biomolecules, organisms from cells, soci-
eties from organisms. But that emergence could occur in physics was a novel idea.
Perhaps not totally novel: I heard the great evolutionist Ernst Mayr claiming that
30 or 40 years ago, when he described emergence to Niels Bohr, Bohr said; “but
we have that in physics as well! – physics is all emergent”, but at the time, as usual,
only Bohr knew what he meant.

Thus the challenge in condensed-matter physics is to understand the behavior of complex sys-
tems, starting from the apparently simple underlying theory, the Schrödinger equation. This
is what Anderson defines the Complex Way, in contrast to the Glamor Way travelled by high-
energy physics in the search of the ultimate theory. Complexity is tamed by universality: it is
rather the consequence of many-body correlations – one particle influenced by all the others –
than of the specific type of interaction. New complex entities can then form under well defined



I.4 Eva Pavarini and Erik Koch

conditions, such as high pressure, low temperature, or in the presence of magnetic fields, of-
ten in radically different systems. These entities are stable in a certain regime, in which they
represent the fundamental “particles” – but actually are effective- or quasi-particles. They feel
effective interactions among themselves, yielding on a higher level yet other states of matter.
Can we predict such states without experimental facts, just from the equations? As Anderson
writes [5]

The structure of Nature is so completely hierarchical, built up from emergence upon
emergence, that the very concepts and categories on which the next stage can take
place are themselves arbitrary.

Remarkably, modern molecular biology has made enormous progress by identifying genes as
fundamental entities. Still, the evolutionary biologist Ernst Mayr rejects the reductionist ap-
proach that evolutionary pressure acts on single genes, arguing that it instead acts on organ-
isms, that genes influence each other, and that accounting for this influence is essential. Even if
we take genes as the fundamental entities, their definition might appear to the outsider as airy
as that of quasiparticles in physics or what we before called complex entities. It is clear that,
whatever they are, they are composite rather than fundamental objects; but it is also clear that
they are a better starting point than their more fundamental components. It would, e.g., not be
of much help for molecular biology to start from the Schrödinger equation. Returning to the
layer of electrons and nuclei, the message is that at a given energy scale new intermediate lay-
ers can form at which novel emergent behavior occurs. But, when dealing with systems made
of N ∼ 1023 particles, to predict novel emergent behavior is hardly possible. Again, quoting
Anderson [5]

How can you predict the result when you can’t predict what you will be measuring?

The classical path to discoveries of new states of matter is, with few precious exceptions, led by
experiment. It is the recognition of a paradox, an experimental result apparently contradicting
our well established theories, which leads to the identification of new phenomena; Nature has to
provide us some strong hint. And it is hardly the ab-initio path, from the ToaE to the real world,
that leads us to understanding the physics of the new phenomenon. It is rather the identification
of mechanisms, which often is based on simple models, apparently wild ideas, and a good
measure of approximation.
It is natural to ask ourselves how emergent phenomena arise. The formation of layers of physical
theory is best understood in terms of the idea of renormalization. The exact solution of the
Schrödinger equation involves phenomena at many energy scales. However, at low energy –
meaning the energy window on which we are focusing – high-energy states play a small role.
They can only be reached via virtual excitations, which have a time-scale proportional to ~/∆E,
where ∆E is the excitation energy. Thus it is not necessary to account for them in full detail.
It is more meaningful to downfold them and work in the subspace in which only low-energy
states and, if sizable, the low-energy effects of these virtual excitations are taken into account.
Between different branches of physics, this separation is quite clear-cut: in condensed-matter
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physics, we do not need quarks to describe atoms, not even neutrons and protons. Instead
we can simply talk about their bound states, the nuclei as immutable objects. In these cases,
the high-energy states are so far away that the only effect of the downfolding is the emergent
object, e.g., the atomic nucleus. For intermediate energy scales the scenario can become much
more complicated; the effect of the downfolding is to generate effective Hamiltonians, the new
effective theory in that energy window. The effective Hamiltonian is typically made of the
original Hamiltonian, however restricted to the low-energy Hilbert space and with renormalized
parameters, plus new interactions; in the smaller Hilbert space some degrees of freedom are
frozen, and the effective Hamiltonian typically can be rewritten in term of new entities, stable in
that subspace; examples are quasiparticles, Cooper pairs, or local spins. The major difficulty in
condensed-matter is that there is always a chance of crossing the boundaries between effective
theories, e.g., in a phase transition to a new state of matter. Still it is possible to identify
truly emergent regimes from their robustness or universality. Often the cooperative behavior
of a many-particle system is surprisingly independent of the details of their realization – their
substrate. The Kondo effect, for example, was initially found in diluted magnetic alloys and
ascribed to the antiferromagnetic exchange interaction of the localized impurity-spins with the
spin-density of the conduction electrons at the impurity site. But is has been realized in a
number of systems in which there are no local magnetic moments, such as in quantum dots or
in carbon nanotubes. Recently it has even been shown to be intimately related to the metal-
insulator transition of the Mott type, a connection that is at the core of the dynamical mean-field
theory approach (DMFT) [6, 7]. Another striking example is conventional superconductivity,
explained via the BCS theory. First observed in simple metals at very low temperatures, the
same kind of phenomena has been found in liquid 3He, which becomes superfluid below a
certain critical temperature and even in systems as exotic as neutron stars [8]. Returning to less
massive systems, the mechanism of the metal-insulator transition in transition-metal oxides is
typically described via the Hubbard model, which in recent years has also been employed to
model the behavior of very different systems: ultra-cold atoms in optical lattices.

But how do we go from the Schrödinger equation to emergent properties? It is certainly tempt-
ing to start from the exact many-body wave function, as we know a straightforward prescription
for calculating observables from it. But for what system should we calculate that exact wave
function? We are certainly not interested in the properties of just one particular sample with
its unique arrangement of atoms. What we are interested in are the properties of a material,
i.e., a class of samples that can be reproducibly manufactured. Any single one of these sam-
ples will be quite different from the others in terms of its microscopic details. So, even if we
could calculate them, the exact ground state wave functions for two such samples would, for all
practical purposes, be orthogonal. Chipping off an atom from a bulk of gold does not change
its characteristics. Thus, we are not really interested in the exact solution for some particular
situation, but in general properties. Emergent properties abstract from the idiosyncrasies of a
particular realization. A typical idealization is the thermodynamic limit, where we assume that
the number of particles N → ∞, even though any real sample can only be made of a finite
number of atoms. This lets us exploit the advantages of the continuum over discrete sets. Only
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in the thermodynamic limit can we define a phase transition where every actual sample shows a
mere crossover. Only in an infinite system can we speak of a continuum of excited states where
for every actual sample there is only a finite number of excitations with a distribution that de-
pends critically on its size. Another important idealization is the perfect-crystal approximation,
in which we assume that defects are of minor importance for the physical properties of inter-
est and where, in particular, we abstract from surface effects by introducing periodic boundary
conditions. It is of course crucial to keep in mind that these idealizations only make sense for
properties that can be transfered from the idealization to the real materials. Experimentally we
can, for all practical purposes, distinguish metals and insulator and observe phase transitions in
crystals. Thus the thermodynamic limit is a good starting point. Conversely, trying to describe
a bulk system with a finite number of atoms, we eventually get lost in irrelevant details. The
importance of getting rid of irrelevant details has been succinctly expressed by Lipkin [9]

On the other hand, the exact solution of a many-body problem is really irrelevant
since it includes a large mass of information about the system which although mea-
surable in principle is never measured in practice. In this respect, the quantum-
mechanical many-body problem resembles the corresponding problem in classical
statistical mechanics. Although it is possible in principle to solve Newton’s equa-
tions of motion and obtain the classical trajectories of all the particles in the system
for all times, only a small part of this information is relevant to anything that is
measurable in practice. Classical statistical mechanics uses a statistical descrip-
tion in which measurable macroscopic quantities such as temperature, pressure and
entropy play an important role. An incomplete description of the system is consid-
ered to be sufficient if these measurable quantities and their behavior are described
correctly.

Thus, approximate methods that grasp the essential details are bound to be more successful than
exact methods – if available [10] – since they shield us from all the irrelevant information. So
it is not the “Great Solid State Physics Dream Machine” [5] that we should be after, or in the
words of Wigner and Seitz [11]

If one had a great calculating machine, one might apply it to the problem of solving
the Schrödinger equation for each metal and obtain thereby the interesting physical
quantities, such as the cohesive energy, the lattice constant, and similar parame-
ters. It is not clear, however, that a great deal would be gained by this. Presumably
the results would agree with the experimentally determined quantities and nothing
vastly new would be learned from the calculation. It would be preferable instead
to have a vivid picture of the behavior of the wave functions, a simple description
of the essence of the factors which determine cohesion and an understanding of the
origins of variation in properties [. . . ].

Lipkin concludes that it is actually misleading to think that our job is to find approximations to
the exact solution of the Schrödinger equation [9]

In fact, many treatments of the quantum-mechanical many-body problem give the
misleading impression that they are indeed methods for obtaining approximations
to the exact solution of the Schrödinger equation.
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A better approach is to develop approximate schemes for calculating, for idealized systems,
reduced quantities that do not provide complete information of the system but still allow us to
calculate experimentally accessible quantities, such as Green functions or response functions.
This route is successfully taken by density-functional theory (DFT) [12], which uses the many-
body electron density as a variable, or by the dynamical mean-field theory, which is based
instead on Green functions. The great success of DFT is that, via the Kohn-Sham equation,
the problem of finding the electron density of the original many-electron system is reduced to
that of calculating it for an auxiliary one-electron problem, whose Hamiltonian has to be de-
termined self-consistently. The electrons in the auxiliary problem feel a one-electron potential
whose strength and shape is determined not only by the nuclei which define the lattice but also
by all the other electrons – which is why self-consistency is needed. Of course, even though
DFT is in principle an exact ground-state theory, we know only approximate forms of the DFT
potential, such as the local-density approximation (LDA) and its extension. Nevertheless, if the
approximate form is good enough, we can perform ab-initio calculations, i.e., calculate many
properties of a system specified only by the atomic positions and the type of atoms. In an emer-
gent world, it would, however, be very surprising if the LDA always worked. The reason is a
fundamental one. If objects qualitatively different from the quasi-electrons, on which the LDA
is built, can form, this approach is bound to fail even qualitatively. This is what happens in
strongly correlated materials. Remarkably, however, the LDA is so successful that DFT can be
considered the standard model of solid state physics that is used to understand and even predict
the properties of whole classes of materials. Strongly correlated systems are not only charac-
terized by the fact that the LDA fails to describe them. More importantly, their properties are
very sensitive to small changes in external fields or doping, and hence they are characterized by
surprisingly large effects, such as colossal magneto-resistance, high-temperature superconduc-
tivity, and the like. This suggests that a variety of different layers can easily form in which new
fundamental entities exist and interact. Hence, for strongly correlated systems, it is particularly
unlikely that a single approximation can be sufficient for explaining all phenomena.
One exemplary failure of the LDA is the Mott metal-insulator transition. Within the LDA,
metals have partially filled bands while insulators are characterized by a band gap. The latter
can also arise because of long-range magnetic order. The same concept of metal and insulator
remains in place if we use approaches in which many-body effects are taken into account on a
static mean-field level such as the Hartree-Fock (HF) method. Thus the existence of materials
with partially filled bands that are paramagnetic insulators is a paradox in the context of LDA
or HF. It can, however, be understood using a simple model, the Hubbard model

H = −t
∑
σ

∑
〈ii′〉

c†iσci′σ + U
∑
i

ni↑ni↓ . (2)

In this model, the metal-insulator transition at half-filling is a consequence of a large t/U ratio,
i.e., an on-site Coulomb repulsion which is large with respect to the band-width, determined
by the hopping t. Although the mechanism behind the paramagnetic insulating phase had been
proposed about 60 years ago by Nevil Mott, it is only recently, through the dynamical mean-
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field theory [6, 7], that we can indeed describe that physics quantitatively. DMFT yields an
approximate solution of the Hubbard model in which spatial correlations are neglected and only
dynamical effects are taken into account. The DMFT solution of the Hubbard model shows
that with increasing t/U the quasiparticle masses increase and eventually diverge; the Mott
transition is associated with the corresponding divergence of the real part of the self energy.
It is remarkable that a model as simple as the Hubbard model, bare of all the complications or
details of the real material, can be of any relevance for systems as different as NiO, LaTiO3

and KCuF3. LDA-based studies on weakly correlated materials suggest that this cannot pos-
sibly be the case. When the LDA works, we typically need the full details of the electronic
structure to explain the structure of the Fermi surfaces, the lattice, or the chemical bond. In
fact, model Hamiltonians might grasp the substance of a phenomenon, such as the nature of the
Mott transition, but they are not sufficient to account for the varieties of its manifestations, and
eventually will fail in explaining new paradoxes that are found when this variety is explored.
The Mott mechanism can explain the existence of Mott insulators, but it does not tell us why
SrVO3 is metallic while the very similar YTiO3 and LaTiO3, are insulators, or why the gap is
much larger in YTiO3 than in LaTiO3, although they have a similar LDA band width. Even if
we know that Mott physics is the right starting point, we have to augment the simple Hubbard
model to describe reality. But how? If we could solve it, the original Hamiltonian contains all
details, but, as we have discussed, they are too many, and thus they tell us nothing. The crucial
point is to disentangle the important features from all the irrelevant details. This is the true chal-
lenge in condensed-matter physics. In the case of SrVO3, YTiO3 and LaTiO3, it turns out that
structural distortions and a tiny crystal field splitting of t2g levels play the crucial role [13]. Not
surprisingly, there is no systematic way of determining which details do matter for explaining a
certain behavior in a given system. This process relies on our intuition about the mechanisms,
and it brings the work of a physicist rather close to that of an artist, requiring proper taste and
judgement. The good news is that for Mott-like system the DMFT method turns out to be a very
flexible approach. It has been combined with DFT in the LDA+DMFT approach [14], whose
steady development in the last ten years allows us to solve more and more realistic Hubbard-like
models and thus to test ideas and approximation in a realistic context. And it is not difficult to
imagine that in the next 20 years LDA+DMFT codes will probably become as flexible and ver-
satile as modern DFT codes. We have to keep in mind that, although this constitutes impressive
progress, as in the case of the LDA, it is very unlikely that a single approximation will solve all
the paradoxes. New ones will certainly be found, and will require us to extend the theory, to
think differently, to go away from the well known path, to look for new mechanisms. The end
of physics is unlikely to come any time soon.

2 Paradigmatic cases

At the focus of this year’s school are two paradigmatic examples of emergent phenomena,
antiferromagnetism and electron-phonon driven superconductivity. We briefly reconstruct the
main steps that led to the unraveling of their mystery and discuss their emergent aspects.
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2.1 Antiferromagnetism

At the beginning of the 20th century, magnetism was the subject of intense debate. The theoret-
ical scenario was dominated by the ingenious concept of Weiss’ molecular field theory of fer-
romagnetism [15]. Of course magnetic moments in matter could only be understood quantum
mechanically and it was Heisenberg, who proposed that the ferromagnetic coupling between
magnetic moments is due to the Coulomb exchange between electrons [16]. The latter yields an
interaction of the form

H =
Γ

2

∑
ii′

Si · Si′ , (3)

with Γ < 0. Néel [17] extended Weiss’ theory to the case of a site-dependent molecular field
and found the antiferromagnetic state as the mean-field solution of the Γ > 0 Heisenberg model
below a critical temperature, TN. Antiferromagnetism is one of the precious exceptions to the
rule that condensed-matter physics is essentially led by experiment: The experimental proof of
the existence of antiferromagnetism came only much later, in 1951, when Shull and Smart mea-
sured via elastic neutron scattering sharp new Bragg peaks below a critical temperature in the
transition-metal oxide MnO [18]. Even in the case in which they are actually predicted, how-
ever, emergent phenomena are rarely as simple as in the original theoretical proposal. The para-
dox at the time was that the exact solution of the antiferromagnetic one-dimensional Heisenberg
chain, obtained by Bethe, yields a ground state with total-spin zero, a condition not satisfied by
the Néel antiferromagnetic state. Later on, this paradox was solved by the observation of An-
derson that, in a perfect antiferromagnet, quantum fluctuations would restore the symmetry, but
in a real system weak perturbations, defects, or an external magnetic field can suppress them;
these quantum fluctuations however imply the existence of cooperative excitations, spin waves.
This is a consequence of the Goldstone theorem, which states that soft bosonic excitations have
to be present whenever a continuous symmetry is broken. Antiferromagnetism turns out to
be, indeed, a representative example of a so-called broken symmetry state, a state in which the
electrons choose not to have the same symmetry of the Hamiltonian that govern their behavior,
in this specific case the continuous spin-rotation symmetry of the Heisenberg model Eq. (3).
Remarkably, some of the ideas developed in the context of broken symmetry, such as Gold-
stone bosons, were taken over by high-energy physics [5], and have driven the search for the
Higgs boson [19]. It is worth pointing out another emergent aspect associated with the Heisen-
berg model that brings us back to the basics of quantum mechanics. Where do the local spins
Si come from? There are apparently no such local spins in the orginal Schrödinger Hamilto-
nian, the ToaE of solid-state physics. The existence of local spins becomes immediately clear,
however, if we consider an idealized atom described by the Hamiltonian

H = Un↑n↓ .
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This Hamiltonian has four eigenstates, which can be labeled as |N,S, Sz〉, where N is the total
number of electrons and Sz, the z component of the total spin,

|0, 0, 0〉 = |0〉
|1, 1

2
, ↑〉 = c†↑|0〉

|1, 1
2
, ↓〉 = c†↓|0〉

|2, 0, 0〉 = c†↑c
†
↓|0〉

These states result from the electron-electron interaction and the Pauli principle. In this simple
example the energy of the atomic states depends only on the total number of electrons; thus we
label it with E(N), with E(0) = 0, E(1) = 0, and E(2) = U . If the atom is full or empty, its
total spin is zero; if instead the idealized atom is occupied by one electron, it behaves as a local
S = 1/2. Let us consider now a half-filled system described by the one-band Hubbard model,
Eq. (2), in which a set of idealized atoms of the type just discussed form a lattice. In this model
the electrons can, in principle, hop from site to site, gaining kinetic energy ∝ −t; each hopping
process will, however, cost the Coulomb energy

E(2) + E(0)− 2E(1) = U .

If the ratio between kinetic energy gain and Coulomb energy loss, ∝ t/U , is small enough
double-occupations are unlikely and each site is filled on average with∼ 1 electron. Then spins
remain stable in the crystal, and the overall effect of the virtual excitations to N = 0 and N = 2

states is an effective exchange interaction between the spins. We can calculate the effective
exchange coupling by downfolding the N = 0 and N = 2 high-energy states; if we follow this
procedure [20] we find an effective antiferromagnetic Heisenberg interaction with

Γ = −4t2

U
.

This is an example of the kinetic exchange mechanism. It plays an important role in the physics
of transition-metal oxides. We are now in the position to discuss emergence at work. The first
lesson is that spins are by themselves emergent objects. They are the result of the interplay of the
Pauli principle and Coulomb repulsion. Furthermore, within the kinetic exchange mechanism,
they interact because of virtual excitations to high-energy states, in this case those with N = 2

and N = 0. Then, below a certain temperature TN, because of the interactions between these
emergent entities, a new cooperative emergent state, the antiferromagnetic Néel state, arises; an
example of emergence built on emergence. Finally, spins only “live” on certain energy scales.
At energy scales comparable with t/U excitations to empty and doubly occupied states (charge
fluctuations) become likely and it is no longer possible to describe the system by a simple
Heisenberg model; this happens, for example, when we want to study the Hubbard bands in
photoemission spectra. Thus, increasing the energy or the temperature we cross the boundary
to a different layer and change the effective theory. In the higher layer of theory the spins are the
fundamental particles and the Heisenberg model becomes an effective theory of everything. In
the lower layer we have to account for the charge degrees of freedom, and the effective theory
of everything is the Hubbard model.
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2.2 Superconductivity

The discovery of metals with infinite conductivity [21] by Kamerlingh Onnes in 1911 came as a
genuine surprise. It took almost 60 years to find an explanation, years in which brilliant minds
tried hard to solve the riddle and yet failed. This failure by itself is a strong indication that
superconductivity is an emergent phenomenon. Many experimental facts were added along the
way; we just mention two of the most significant. The first was the Meissner effect in 1933 [22],
the spontaneous expulsion of a magnetic field, somewhat similar to perfect diamagnetism. The
most crucial observation was perhaps the discovery of the isotope effect in 1950 [23]. From
the theory side, the decisive development was the concept of electron pairs as developed by
Leon Cooper in late 1956 [24]. Cooper realized that, in the presence of an arbitrarily weak
electron-electron attraction, −V , two electrons with energy just above the Fermi surface of a
metal will form a bound-state that could destabilize the Fermi surface itself. Cooper’s pair
creation operator is defined as

b†CP =
∑
k

λkc
†
k↓c
†
−k↑.

Since a Cooper pair is, to first approximation, a boson, Cooper pairs can in principle all occupy
the same state, as it happens in Bose-Einstein condensation. Based on these ideas, Bardeen,
Cooper and Schrieffer elaborated the theory of superconductivity. They identified the super-
conducting state as a coherent state, the eigenstate of Cooper’s pair annihilation operator bCP.
In Fock space such state can be easily written in product form

|ΨBCS〉 = eb
†
CP|0〉 =

∏
k

(
1 + λkc

†
k↑c
†
−k↓

)
|0〉,

where |0〉 is the electron vacuum. The microscopic mechanism that leads to the pairing in
conventional superconductors is the electron-phonon coupling; for electrons right above the
Fermi surface the resulting electron-electron coupling is attractive. The BCS Hamiltonian has
then the form

HBCS =
∑
kσ

εknkσ +
∑
kk′

Vk,k′c†k↑c
†
−k↓ck′↓c−k′↑ ,

where εk is the dispersion of the electrons, and Vk,k′ the electron-electron interaction. In the
simplest version of the BCS theory one can assume that the coupling Vk,k′ is isotropic. Thus we
can make the following approximation

Vk,k′ ∼

 −V for |εk|, |εk′| < εD

0 otherwise

where εD defines the small energy window in which the potential is attractive. The supercon-
ducting gap ∆(T ) is then given by the solution of the BCS gap equation; at T = 0

∆(0) = 2εDe
−1/ρσ(εF )V , (4)
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where ρσ(εF ) is the density of states per spin at the Fermi level, and ρ↑(εF ) = ρ↓(εF ). There is
a universal relation between the gap and the critical temperature,

2∆(0)

Tc
≈ 3.528.

In superconductivity the continuous symmetry that is broken is the gauge symmetry related
to the conservation of charge; in the broken symmetry state the phase of the wavefunction is
the new physical parameter. The Cooper pairs are emergent objects, which interact to form a
macroscopic condensate: the superconducting state.

Nowadays, we call superconductors that can be explained within the BCS theory and its sim-
ple extensions conventional superconductors. This does, however, not mean that they do not
hold surprises. The discovery of MgB2 in 2001 [25], with a Tc as high as 40 K, was totally
unanticipated, in particular in such a comparatively simple binary compound. It immediately
sparked an intense search for similar conventional materials with perhaps even higher Tc. Re-
markably, MgB2 is not an exotic material; at the time of the discovery it was available to many
laboratories. In principle we did, once more, have the theory – we could have predicted it. But
again, nobody thought in advance that MgB2 could be such a remarkable system. And even if
we had used our theoretical tools, would we have predicted that MgB2 is a high-Tc conventional
superconductor? Probably not: it turns out that MgB2 is less simple then one might think. To
understand it we have to account for multiple bands and gap anisotropies, typically neglected in
the standard version of the theory of conventional superconductors. Thus this is a case in which
details that are usually negligible play an essential role.

Another, totally different surprise had arrived earlier, in 1986, with the discovery of supercon-
ductivity with Tc = 40 K in La2CuO4. The finding was so unexpected that the title of the
paper [26] that won Bednorz and Müller a Nobel prize conveys the author’s doubts: Possi-
ble high Tc superconductivity in the Ba-La-Cu-O system. In a relatively short time, an entire
family of CuO2-layered superconducting materials was identified, the high-temperature super-
conducting cuprates (HTSCs). Within the HTCS family, the maximum value of Tc rose rapidly
to ∼ 130 K. It quickly became clear that these new materials differ substantially from conven-
tional superconductors and the mechanism for high-temperature superconductivity remains a
puzzle. There is no doubt, however, that the pairing has d-wave symmetry. More recently, in
2006, superconductivity was discovered in LaOFeP [27], and many other iron-based supercon-
ductors were quickly identified. Once more, a different class of superconductors, iron pnictides,
had been experimentally found, and new puzzles have to be solved; within iron pnictides a Tc
as high as 57 K has been reached.

The lesson that emerges is that a superconducting state can manifest itself in very different
systems, ranging from superfluid 3He, to MgB2, high-temperature superconducting cuprates,
and neutron stars. While the phenomenon itself is in all cases similar, its microscopic origin,
i.e., the lower layer of the theory, varies strongly from case to case. The challenge is to identify
in each case the proper connection between these layers of theory.
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3 Overview of the school

This year’s school aims to give a broad introduction to the physics of emergent phenomena in
condensed matter and to the modern approaches to dealing with them. We focus primarily on
the two paradigmatic manifestations of emergence that we have just discussed, magnetism and
superconductivity. In order to understand these phenomena, we start with the fundamentals. The
lecture of Bob Jones discusses density-functional theory from a historical perspective, stressing
the aspects relevant to the study of emergence. The lecture of Erik Koch extends the scope to
many-electron states, from introducing the formalism of second quantization to discussing the
Mott- and BCS-states. The fundamental aspects of magnetism and exchange phenomena in a
model context are presented in the lecture of Eva Pavarini. Robert Eder then introduces the vari-
ational cluster approximation to the spectral properties of the Hubbard model, the drosophila of
strong correlation physics, using a self-energy functional.
Reflecting our focus on magnetism, a group of lectures is dedicated to magnetism in real mate-
rials and to numerical methods to solve complex spin models. The lecture of Sasha Lichtenstein
retraces the path from Stoner to Hubbard models of magnetism, emphasizing modern DMFT-
based approaches to understanding real materials. Treating extended magnetic systems requires
highly efficient methods for successful finite-size extrapolations. Werner Krauth introduces the
Monte Carlo approach and discusses methods for determining and reducing correlation times.
The lecture of Stefan Wessel shows how to use Monte Carlo techniques for simulating quantum
spin models. Turning to finite systems, Jürgen Schnack illustrates the state-of-the-art in describ-
ing and designing molecular magnets, intriguing systems that could become crucial building
blocks for future quantum computers.
A school on emergent phenomena in condensed matter systems would not be complete without
the view from experiment. Bridging magnetism and superconductivity, Bernhard Keimer took
the challenging task to cover recent advances and open problems in our understanding of the
high-temperature superconducting cuprates, with a special focus on the role of spin fluctuations.
The next group of lectures is dedicated to the various aspects of conventional and unconven-
tional superconductivity, the second focus of our school. The lecture of André-Marie Tremblay
illustrates theoretical progress on the theory of strongly correlated superconductivity. Warren
Pickett then explains the challenges in designing real superconducting materials, highlighting
some of the puzzles they pose or have posed. Two lectures are dedicated to the theory of conven-
tional superconductors. Rolf Heid discusses the mechanism of conventional superconductivity
and shows how to calculate the electron-phonon coupling ab initio using density functional per-
turbation theory. These results are the input to Eliashberg theory, which is introduced in the
lecture of Giovanni Ummarino. The case of superfluidity is discussed in the lecture of David
Ceperley, introducing the path-integral picture of degenerate quantum systems.
The final group of lectures focuses on wave function based methods. Shiwei Zhang shows us
how to study models and real materials using the auxiliary-field quantum Monte Carlo approach.
Ulrich Schollwöck gives an introduction to the density-matrix renormalization group approach,
while Jens Eisert explains how to analyze ground states using concepts of quantum information.
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1 Introduction

The “reductionist” view of science implies focus on simpler and simpler causes and finally on
the ultimate constituents of matter. This belief—that our understanding of Nature will follow if
we solve this “fundamental” problem—has a vigorous opponent in Philip Anderson, who has
emphasized the “emergent” view over many years [1, 2]:

“What really is the problem is called ‘broken symmetry’: the underlying laws have a cer-

tain symmetry and simplicity that is not manifest in the consequences of these laws. To

put it crudely, a simple atom of gold cannot be shiny and yellow and conduct electricity:

Metallicity is a property with meaning only for a macroscopic sample. . . . ”

Qualitatively different phenomena can occur as the level of complexity increases, and this
school is devoted to understanding some of them, particularly new features that arise in “strongly
correlated” systems.
A practical definition of “strongly correlated” systems covers those that are not described well
by density functional (DF) theory. Many seminars and publications on “strongly correlated”
mention at the outset the widespread use of density functional (DF) theory in materials science
and chemistry and the physical insight that often results. The second sentence, however, often
lists the systems where DF results are disastrous (an insulator is found to conduct, almost any-
thing to do with rare earth elements, . . . ), emphasizing the importance of describing strongly
correlated materials correctly.1 DF theory is nevertheless an essential part of this workshop.
The approach is used widely in materials science and chemistry and provides useful results
for many systems for which the exact wave function cannot be computed. We should have a
feel for the areas where physical insight can be obtained and why approximations used in DF
calculations can give sensible answers far from their regions of obvious validity.
The origins of DF theory go back to the early years of quantum mechanics in the late 1920’s.
Thomas [4] and Fermi [5] recognized the electron density as a basic variable, and Dirac [6]
showed already in 1930 that the state of an atom can be determined completely by its density;
it is not necessary to specify the wave function. We follow here the history of density-related
methods to the single-particle equations of Kohn and Sham in 1965 and beyond. In its modern
form, the DF formalism shows that ground state properties of a system of electrons in an external
field can be determined from a knowledge of the density distribution n(r) alone. Much of the
work in materials science and chemistry focuses on a property for which DF calculations are
particularly valuable: the total energy E of a system of electrons in the presence of ions located
at RI, which determines structural and cohesive properties.
Accurate calculations of the entire energy surfaceE(RI) are possible only for systems with very
few atoms, and this function generally has vast numbers of maxima and minima at unknown
locations. The lowest energy, however, corresponds to the ground state structure, and paths

1An example can be found in the Preface of the 2012 Autumn School [3]: “Density functional theory (DFT) is
considered the Standard Model of solid state physics. The state-of-the-art approximations to DFT, the local-density
approximation (LDA) or its simple extensions, fail, however, even qualitatively, for strongly correlated systems.”
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between minima are essential to our studies of chemical reactions, including their activation
energies. When I read the autobiography of Francis Crick [7], I was taken by his observation

“If you want to study function, study structure.”

This may be self-evident to molecular biologists, but it is also true in many other areas. The
DF approach allows us to calculate E(RI), and hence the structure and many related proper-
ties, without using experimental input. If you are more interested in “real materials” than in
mathematical models, this is a crucial advantage for strongly correlated materials as well.
Olle Gunnarsson and I reviewed the density functional formalism, its history, and its prospects
in 1989 [8], and I reread the original literature some years ago. My changed perspective is
reflected here, where I trace DF history from the late 1920’s to the present day.

2 The density as basic variable

The recent books by Gino Segrè [9] and Graham Farmelo [10] give fascinating accounts of the
development of quantum mechanics in the years following 1926. Methods for finding approx-
imate solutions of the Schrödinger equations followed soon after the equations were published
and have had a profound effect on chemistry and condensed matter physics ever since.
The “Hartree approximation” to the many-electron wave function is a product of single-particle
functions [11],

Ψ(r1, r2, ...) = ψ1(r1).......ψN(rN) (1)

where each ψi(ri) satisfies a one-electron Schrödinger equation with a potential term arising
from the average field of the other electrons. Hartree [11] introduced the idea of a “self-
consistent field”, with specific reference to the core and valence electrons, but his papers do
not mention the approximation (1). Slater [12] and Fock [13] recognized immediately that the
product wave function (1) in conjunction with the variational principle led to a generalization
of the method that would apply to systems more complex than atoms. They showed that replac-
ing (1) by a determinant of such functions [12, 13] led to equations that were not much more
complicated than those of Hartree, while satisfying the Pauli exclusion principle. These deter-
minantal functions, which had been used in discussions of atoms [14] and ferromagnetism [15],
are known today as “Slater determinants”, and the resulting “Hartree-Fock equations” have
formed the basis of most discussions of atomic and molecular structure since.
In 1929 Dirac wrote [16]:

“The general theory of quantum mechanics is now almost complete, . . . The underlying

physical laws necessary for the mathematical theory of a large part of physics and the whole

of chemistry are thus completely known, and the difficulty is only that the exact application

of these laws leads to equations much too complicated to be soluble. It therefore becomes

desirable that approximate practical methods of applying quantum mechanics should be de-

veloped, which can lead to an explanation of the main features of complex atomic systems

without too much computation.”
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I cannot think of a better short description of density functional theory than an “approximate
practical method of applying quantum mechanics” to explain complex systems.
Dirac [16] also sought to improve the model of Thomas [4] and Fermi [5] for calculating atomic
properties based purely on the electron density n(r). In the first “density functional theory”,
Thomas and Fermi assumed that the electrons form a homogeneous electron gas satisfying
Fermi statistics and the kinetic energy has a simple dependence on the density n(r). The TF
equations are:

5

3
Ckn(r)

2
3 + e2

∫
dr′

n(r′)

|r− r′|
+ Vext(r) + λ = 0 , (2)

where Ck = 3~2(3π2)
2
3/(10m), Vext is the external potential, and λ is the Lagrange multiplier

related to the constraint of constant particle number. Dirac noted the necessity of incorporating
“exchange” phenomena, as in the Hartree-Fock approach [16], and he included these effects in
the “Thomas atom” [6] by means of the potential

V Dirac
x = −

(
1

π

)(
3π2n(r)

) 1
3 . (3)

This term was derived for a homogeneous gas of density n and should be valid for weak spatial
variations of n(r).2 The modified TF equation is often referred to as the “Thomas-Fermi-Dirac”
equation.
The Thomas-Fermi method and its extensions give rough descriptions of the charge density and
the electrostatic potential of atoms, and its mathematical properties have attracted considerable
attention [17, 18]. However, it has severe deficiencies. The charge density is infinite at the
nucleus and decays as r−6, not exponentially, far from it. Teller [19] and others also showed
that TF theory does not bind atoms to form molecules or solids, which rules out its use in
chemistry or materials science. There is also no shell structure in the TF atom, so that the
periodic variation of many properties with changing atomic number Z cannot be reproduced,
nor can ferromagnetism [8]. Moreover, atoms shrink with increasing Z (as Z−1/3) [20].
One point made by Dirac [6], however, has been emphasized by many advocates of the DF
method over the years, even if we were unaware of his words of over 80 years ago:

“ Each three-dimensional wave function will give rise to a certain electric density. This

electric density is really a matrix, like all dynamical variables in the quantum theory. By

adding the electric densities from all the wave functions we can obtain the total electric

density for the atom. If we adopt the equations of the self-consistent field as amended for

exchange, then this total electric density (the matrix) has one important property, namely,

if the value of the total electric density at any time is given, then its value at any later time

is determined by the equations of motion. This means that the whole state of the atom is

completely determined by this electric density; it is not necessary to specify the individual

three-dimensional wave functions that make up the total electric density. Thus one can deal

with any number of electrons by working with just one matrix density function.”

2The exchange energy in a homogeneous electron gas had been derived by Bloch [15] in 1929
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Fig. 1: Logarithm of spherical average of density in ground state of C atom as a function of the
distance from the nucleus (atomic units) [8].

The italics are in the original. The derivation is based on the “self-consistent field” or Hartree-
Fock approximation, but the observation that the density follows the equations of motion is
much in the spirit of Ehrenfest’s theorem [21], which has wider validity. Ehrenfest had proved
in 1927 what I have seen referred to as the “time-dependent Hellmann-Feynman theorem”,
namely that the acceleration of a quantum wave packet that does not spread satisfied Newton’s
equations of motion.
The central role played by the density means that we must understand its nature in real systems.
Figure 1 shows that the spherically averaged density in the ground state of the carbon atom falls
monotonically from the nucleus and does not show the radial oscillations that occur if we plot
r2n(r). The charge density in small molecules is also relatively featureless, with maxima at the
nuclei, saddle points along the bonds, and a generally monotonic decay from both. The electron
density in molecules and solids also shows relatively small departures from the overlapped den-
sities of the constituent atoms. Energy differences, including binding, ionization, and cohesive
energies, are the focus of much DF work and result from subtle changes in relatively featureless
density distributions. It really is amazing that this suffices to determine ground state properties.

3 An “approximate practical method”

The basis of a quantum theory of atoms, molecules, and solids was in place at the beginning
of the 1930’s. Linear combinations of atomic orbitals formed molecular orbitals, from which
determinantal functions could be constructed, and linear combinations of determinants (“con-
figuration interaction”) would provide approximations to the complete wave function. Dirac
had noted already, however, that this procedure could not be implemented in practice, so that
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Fig. 2: Probability that electrons in Na metal with parallel spins are r/d′ apart (d′3 = V0/(3π
2),

V0 is the atomic volume). After Wigner and Seitz [22].

approximations are essential. Furthermore, numerical techniques for solving the Schrödinger
equation in extended systems needed to be developed.
Wigner and Seitz [22] developed a method for treating the self-consistent problems in crystals,
and the “Wigner-Seitz cell” is known to all condensed matter physicists. The first application to
metallic sodium used a pseudopotential for the Na ion, and calculations of the lattice constant,
cohesive energy, and compressibility gave satisfactory results. Of particular interest for our
purposes, however, is the calculation of the probability of finding electrons with parallel spins
a distance r apart (Fig. 2). This function obtains its half-value for r = 1.79 d′ or 0.460 d for a
body-centred cubic lattice with cube edge d, which is close to the radius of the “Wigner-Seitz
sphere” ( 3

8π
)
1
3 d = 0.492 d. The exclusion principle means then that two electrons with parallel

pins will very rarely be at the same ion. This argument does not depend significantly on the
potential and should apply to a Fermi gas subject to periodic boundary conditions [22]. The
corresponding curves for spin up and spin down electrons, as well as for both spins combined,
were discussed in the 1934 review article of Slater [23].
The picture that results is simple and appealing: the exclusion principle means that an elec-
tron with a given spin produces a surrounding region where there is a deficiency of charge
of the same spin. This region contains unit charge and is referred to as the “Fermi” [22] or
“exchange” hole [24]. In the Hartree-Fock scheme, the exchange hole is different for each elec-
tronic function, but Slater [24] developed a simplified “exchange potential” that depended only
on the density:

V Slater
x = −

(
3

2π

)(
3π2n(r)

) 1
3 . (4)

The Slater approximation (4) was proposed at the time that electronic computers were becoming
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available for electronic structure calculations and proved to be very useful in practice. Meth-
ods for solving the Schrödinger equation had been developed around this time, including the
augmented plane wave (APW) [25] and Korringa-Kohn-Rostoker approaches [26, 27].
The exchange potential of Slater (4) is 3/2 times that derived by Dirac and Bloch (3) for a
homogeneous electron gas, but Slater [28] pointed out that an effective potential proportional
to the cube root of the density could be obtained by arguments based on the exchange hole
that do not depend on the free electron gas arguments used in the original derivation [24]. The
exchange hole discussed above for a spin up electron contains a single electron. If we assume
that it can be approximated by a sphere of radius R↑, then(

4π

3

)
R3
↑n↑ = 1 ; R↑ =

(
3

4πn↑

) 1
3

(5)

where n↑ is the density of spin up electrons. Since the electrostatic potential at the centre of
such a spherical charge is proportional to 1/R↑, the exchange potential will be proportional to

n
1
3
↑ . This argument was used by Slater to counter a (still widespread) misconception that local

density approximations are only appropriate if the electron density is nearly homogeneous.
In 1954, Gáspár [29] questioned the prefactor of the effective exchange potential (Eq. 4). If
one varies the spin orbitals to minimize the total energy in the Thomas-Fermi-Dirac form, one
obtains a coefficient just 2

3
as large. Gáspár applied this approximation to the Cu+ ion and

found good agreement with Hartree-Fock eigenfunctions and eigenvalues. Slater noted that
Gáspár’s method was “more reasonable than mine” [30], but the larger value was used in most
calculations in the following years.

4 Density functional formalism

The variational principle on the energy was the basis of the formulation of the density functional
formalism given by Hohenberg and Kohn [31]. The ground state (GS) properties of a system
of electrons in an external field can be expressed as functionals of the GS electron density, i.e.
they are determined by a knowledge of the density alone. The total energy E can be expressed
in terms of such a functional, and E[n] satisfies a variational principle. These theorems were
proved by Hohenberg and Kohn [31] for densities that can be derived from the ground state of
some external potential Veff (“V -representable”). A simpler and more general proof for (“N -
representable”) densities that can be derived from some antisymmetric wave function was given
by Levy [32, 33]. Of course, these proofs do not provide practical prescriptions for writing the
functional relationship between energy E and density n.

4.1 Single-particle description of a many-electron system.

The task of finding good approximations to the energy functional E(n) is simplified greatly if
we use the decomposition introduced by Kohn and Sham [34],

E[n] = T0[n] +

∫
dr n(r)

(
Vext(r) +

1

2
Φ(r)

)
+ Exc[n] . (6)
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T0 is the kinetic energy that a system with density n would have if there were no electron-
electron interactions, Φ is the classical Coulomb potential for electrons, and Exc defines the
exchange-correlation energy. T0 is not the true kinetic energy T , but it is of comparable mag-
nitude and is treated here without approximation. This removes many of the deficiencies of the
Thomas-Fermi approach, such as the lack of a shell structure of atoms or the absence of chem-
ical bonding in molecules and solids. In the expression (6) all terms other than the exchange-
correlation energy Exc can be evaluated exactly, so that approximations for this term are crucial
in density functional applications.
The variational principle applied to (6) yields

δE[n]

δn(r)
=

δT0

δn(r)
+ Vext(r) + Φ(r) +

δExc[n]

δn(r)
= µ , (7)

where µ is the Lagrange multiplier associated with the requirement of constant particle number.
If we compare this with the corresponding equation for a system with an effective potential
V (r) but without electron-electron interactions,

δE[n]

δn(r)
=

δT0

δn(r)
+ V (r) = µ , (8)

we see that the mathematical problems are identical, provided that

V (r) = Vext(r) + Φ(r) +
δExc[n]

δn(r)
. (9)

The solution of (Eq. 8) can be found by solving the Schrödinger equation for non-interacting
particles, (

− 1

2
∇2 + V (r)

)
ψi(r) = εiψi(r) , (10)

yielding

n(r) =
N∑
i=1

|ψi(r)|2 (11)

The condition (9) can be satisfied in a self-consistent procedure.
The solution of this system of equations leads to the energy and density of the lowest state, and
all quantities derivable from them. The formalism can be generalized to the lowest state with
a given symmetry [35]. Instead of seeking these quantities by determining the wave function
of the system of interacting electrons, the DF method reduces the problem to the solution of a
single-particle equation of Hartree form. In contrast to the Hartree-Fock potential,

VHF ψ(r) =

∫
dr′ VHF(r, r

′)ψ(r′) , (12)

the effective potential, V (r) is local.
The numerical advantages of solving the Kohn-Sham equations [34] are obvious. Efficient
methods exist for solving single-particle Schrödinger-like equations with a local effective po-
tential, and there is no restriction to small systems. With a local approximation to Exc, the
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equations can be solved as readily as the Hartree equations. Unlike the Thomas-Fermi method,
where the large kinetic energy term is approximated, the valence kinetic energy and the core-
valence and valence-valence electrostatic interactions are treated exactly. However, Exc is the
difference between the exact energy and terms we can evaluate exactly, and approximations are
unavoidable.

4.2 Exchange-correlation energy Exc and the xc-hole

Kohn and Sham [34] proposed using the “local density (LD) approximation”

ELD
xc =

∫
dr n(r) εxc[n(r)] , (13)

where εxc[n] is the exchange and correlation energy per particle of a homogeneous electron gas
with density n. This approximation is exact in the limits of slowly varying densities and very
high densities. The authors noted that this approximation “has no validity” at the “surface” of
atoms and in the overlap regions of molecules and concluded [34]:

“We do not expect an accurate description of chemical bonding.”

The generalization to spin-polarized systems is

ELSD
xc =

∫
dr n(r) εxc[n↑(r), n↓(r)] , (14)

where εxc[n↑, n↓] is the exchange and correlation energy per particle of a homogeneous, spin-
polarized electron gas with spin-up and spin-down densities n↑ and n↓, respectively.3 The “Xα”
approximation

EXα
x = −3

2
αC

∫
dr
(
(n↑(r))

4/3 + (n↓(r))
4/3
)
, (15)

where C = 3(3/4π)1/3 was used in numerous calculations in the late 1960’s and 1970’s. The
α-dependence of energy differences for a given atom or molecule is weak for values near 2/3,
the value of Dirac [6], Bloch [15], Gáspár [29] and Kohn and Sham [34]. We have noted
that the electron density in molecules and solids is generally far from that of a homogeneous
electron gas, and the validity of calculations based on properties of a gas of constant density has
often been questioned. We now discuss some general properties of Exc using arguments closely
related to the “exchange hole” picture of Wigner and Seitz [22] and Slater [24, 28].
The crucial simplification in the density functional scheme is the relationship between the inter-
acting system, whose energy and density we seek, and the fictitious, non-interacting system for
which we solve (Eq. 10, 11). This can be studied by considering the interaction λ/|r− r′| and
varying λ from 0 (non-interacting system) to 1 (physical system). This is done in the presence
of an external potential Vλ, [36] such that the ground state of the Hamiltonian

Hλ = −
1

2
∇2 + Vext(r) + Vλ + λVee (16)

3The calculation by Bloch [15] in 1929 of ferromagnetism in a free-electron model of a metal was the first
where the exchange energy was expressed as the sum of terms proportional to n

4/3
↑ and n

4/3
↓ .
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has density n(r) for all λ. The exchange-correlation energy of the interacting system can then
be expressed as an integral over the coupling constant λ [35]:

Exc =
1

2

∫
dr n(r)

∫
dr′

1

|r− r′|
nxc(r, r

′ − r) , (17)

with

nxc(r, r
′ − r) ≡ n(r′)

∫ 1

0

dλ
(
g(r, r′, λ)− 1

)
. (18)

The function g(r, r′, λ) is the pair correlation function of the system with density n(r) and
Coulomb interaction λVee. The exchange-correlation hole, nxc, describes the fact that an elec-
tron at point r reduces the probability of finding one at r′, and Exc is simply the energy resulting
from the interaction between an electron and its exchange-correlation hole. This is a straight-
forward generalization of the work of Wigner and Seitz [22] and Slater [24] discussed above.
Second, the isotropic nature of the Coulomb interaction Vee has important consequences. A
variable substitution R ≡ r′ − r in (17) yields

Exc =
1

2

∫
dr n(r)

∫ ∞
0

dR R2 1

R

∫
dΩ nxc(r,R) . (19)

Equation (19) shows that the xc-energy depends only on the spherical average of nxc(r,R), so
that approximations for Exc can give an exact value, even if the description of the non-spherical
parts of nxc is arbitrarily inaccurate. Thirdly, the definition of the pair-correlation function leads
to a sum-rule requiring that the xc-hole contains one electron, i.e. for all r,∫

dr′ nxc(r, r
′ − r) = −1 . (20)

This means that we can consider −nxc(r, r
′ − r) as a normalized weight factor, and define

locally the radius of the xc-hole,〈
1

R

〉
r

= −
∫
dr

nxc(r,R)

|R|
. (21)

This leads to

Exc = −
1

2

∫
dr n(r)

〈
1

R

〉
r

. (22)

Provided Equation (20) is satisfied, Exc is determined by the first moment of a function whose
second moment we know exactly and depends only weakly on the details of nxc [35]. Ap-
proximations to Exc can then lead to good total energies (and structures), even if the details of
the exchange-correlation hole are described very poorly. This is shown in Figure 3, where the
exchange hole in a nitrogen atom is shown for a representative value of r for both the local
density and exact (Hartree-Fock) cases. The holes are qualitatively different: The LD hole is
spherically symmetric and centred on the electron, while the exact hole has a large weight at
the nucleus and is very asymmetric. Nevertheless, the spherical averages are very similar, and
the exchange energies differ by only a few percent.
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Fig. 3: Exact (solid) and LSD (dashed) exchange holes nxc(r, r
′ − r) for spin up electron in N

atom for r = 0.13 a.u. Upper: hole along line through nucleus (arrow) and electron (r− r′ =
0). Lower: spherical averages of holes, and 〈1/R〉 (21) [8].

5 DF theory to 1990

5.1 Condensed matter

Condensed matter physicists were generally pleased to have justification for the “local density”
calculations they had been performing for years, and numerous electronic structure theorists
moved seamlessly from performing “Xα” or “Hartree-Fock-Slater” calculations into the den-
sity functional world. However, Fig. 4 shows that there was remarkably little impact of DF
calculations prior to 1990. Volker Heine, a prominent condensed matter theorist, looked back
on the 1960’s in this way [37]:

“ Of course at the beginning of the 1960s the big event was the Kohn Hohenberg Sham

reformulation of quantum mechanics in terms of density functional theory (DFT). Well, we

recognize it now as a big event, but it did not seem so at the time. That was the second

big mistake of my life, not to see its importance, but then neither did the authors judging

from the talks they gave, nor anyone else. Did you ever wonder why they never did any

calculations with it?”
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There were also prominent critics of density functional and related computational techniques,
and one of the best known solid state theoreticians, Philip Anderson, made devastating com-
ments in 1980 [38]:

“ There is a school which essentially accepts the idea that nothing further is to be learned

in terms of genuine fundamentals and all that is left for us to do is calculate. . . . One is left,

in order to explain any phenomenon occurring in ordinary matter, only with the problem of

doing sufficiently accurate calculations. This is then the idea that I call “The Great Solid

State Physics Dream Machine” . . . This attitude is closely associated with work in a second

field called quantum chemistry.”

Anderson associated the “Dream Machine” with the name of John Slater and described the DF
method as a “simplified rather mechanical kind of apparatus” that “shows disturbing signs of
become a victim of the “Dream Machine” syndrome” [38]. While noting that DF calculations
can be particularly valuable in some contexts, he continued:

“ . . . a great deal of the physics is concealed inside the machinery of the technique, and that

very often once one has the answers that these techniques provide, one is not exactly clear

what the source of these answers is. In other words the better the machinery, the more likely

it is to conceal the workings of nature, in the sense that it simply gives you the experimental

answer without telling you why the experimental answer is true.”

While some may find these words a little harsh, his comments did apply to some electronic
structure calculations at the time. They may indeed have had prophetic character, as I discuss in
Sec. 7. The increasing availability of computing resources made possible calculations that had
previously been inaccessible, and not all users of the method were critical of the approximations
involved.

5.2 Chemistry

It took many years for DF calculations to be taken seriously by most chemists, and the reasons
were often convincing: (1) Unlike the TF theory, the Kohn-Sham expression for the energy is
not really a “functional” of the density, since the kinetic energy term is treated exactly and is de-
fined by an effective potential that leads to the density, (2) the original functional of Hohenberg
and Kohn is not even defined for all n, because not all densities can be derived from the ground
state of some single-particle potential [33], (3) approximations to the exchange-correlation en-
ergy are unavoidable, and their usefulness can be assessed only by trying them out, and (4) there
is no systematic way to approach the exact solution of the Schrödinger equation and, of course,
the exact energy.
This last point was emphasized by many. In principle, the Hartree-Fock method could be ex-
tended to multiple determinants (“configuration interaction”) and, coupled with a large basis set,
lead to the exact wave function and all properties obtainable from it. This is a very attractive
proposition, and the dramatic improvements in computing power (three orders of magnitude per



Density Functional Theory for Emergents 1.13

1980 1990 2000 2010
Year

0

2000

4000

6000

8000

10000

12000

14000

Pu
bl

ic
at

io
ns

 / 
Ye

ar

1985 1990
0

500

1000

Fig. 4: Number of publications per year (1975-2012) on topics “density functional” or “DFT”,
according to Web of Knowledge (May 2013). Inset shows data near 1990 on an expanded
scale [39].

decade) might make the reservations of Dirac [16] less formidable. It was often emphasized that
solutions of the Schrödinger equation led to the “right answer for the right reason.” Neverthe-
less, obtaining numerically exact total energies from calculations of the wave function remains
a major challenge to this day, and it is not surprising that several groups looked at alternatives.

Hartree-Fock-Slater calculations on small molecules were carried out in the early 1970’s, par-
ticularly by Evert Jan Baerends and collaborators in Amsterdam, and some of the first DF cal-
culations on small molecules were performed by Olle Gunnarsson [35]. John Harris and I had
not expected that the local density approximations would give reasonable results for molecules,
and we (with Olle) developed a full-potential LMTO code for small molecules and clusters [40].
These calculations led to good geometries and reasonable binding energies in most cases. In
spite of the shortcomings of the local density description of Exc, it was now possible to perform
calculations without adjustable parameters on families of molecules and small clusters that had
previously been inaccessible. I was almost unprepared for so many really exciting results, my
own examples including the trends in the binding energies of group 2 dimers [41, 42] and the
structures of small phosphorus clusters [43]. Most condensed matter physicists were either
not surprised or not interested, but theoretical chemists remained sceptical or critical, and this
situation continued throughout the 1980’s and into the 1990’s.

The Seventh International Congress of Quantum Chemistry, held in Menton, France, from 2-
5 July 1991, marks for me a major turning point in the fortunes of DF methods in chemistry.
Density-related methods were discussed in detail, and communication between their proponents
and the sceptics improved. Becke described his development of a non-local exchange functional
that promised improvements over local approximations [44], and this approximation was tested
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for the atomization energies of small molecules immediately after the meeting. Many will have
been surprised by the results [45]:

“ In summary, these initial results indicate that DFT is a promising means of obtaining

quantum mechanical atomization energies; here, the DFT methods B-VWN and B-LYP

outperformed correlated ab initio methods, which are computationally more expensive.”

and [46]

“ The density functional vibration frequencies compare favorably with the ab initio results,

while for atomization energies two of the DFT methods give excellent agreement with

experiment and are clearly superior to all other methods considered.”

The ab initio methods mentioned were Hartree-Fock, second order Møller-Plesset (MP2), and
quadratic configuration interaction with single and double substitutions (QCISD). In addition to
the growing body of results on molecules and clusters that were beyond the scope of calculations
of correlated wave functions, this change in attitude by one of the most prominent theoretical
chemists led to a dramatically new attitude towards the DF method in chemistry.

5.3 Progress to 1990

The number of citations to density functional theory and related topics was very small prior to
1990 and exploded thereafter (see Figure 4). However, work was already in place by 1990 that
has proved to be crucial to the ultimate acceptance of the method, and I now outline some of it.
More details can be found elsewhere [8, 47].
The generalizations to finite temperatures and to spin systems were carried out soon after the
original work of Hohenberg and Kohn [31]. The former was provided by Mermin [48], who
showed that, in a grand canonical ensemble at given temperature T and chemical potential
µ, the equilibrium density is determined by the external potential Vext, and the equilibrium
density minimizes the grand potential. Single-particle equations can be derived for a fictitious
system with kinetic energy T0 and entropy S0, with Exc replaced by the exchange-correlation
contribution to the free energy.
The extension to spin systems [49] or an external magnetic field requires the introduction of the
spin indices α of the one-electron operators ψα(r) and replacing Vext by V αβ

ext (r), and the charge
density n(r) by the density matrix ραβ(r) = 〈Ψ |ψ+

β (r)ψα(r)|Ψ〉. All ground state properties are
functionals of ραβ , and E is stationary with respect to variations in ραβ . The expression for the
energy Exc is analogous to Equations (17,18). A current- and spin density functional theory of
electronic systems in strong magnetic fields was formulated by Vignale and Rasolt [50]. Time-
dependent density functional theory, which has proved to be valuable in discussing excited
states, was described by Runge and Gross [51].
Most of the early DF calculations on small clusters and molecules used the LD and/or LSD
approximations. Although the results were generally encouraging, it was soon clear that local
density calculations can lead to unacceptable errors. Examples were the exchange energy differ-
ence between states with different nodal structures [52], including the s-p promotion energies
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in first-row atoms, particularly O and F. Dispersion forces – the weak, non-local interactions
between closed shells systems – are a particular problem for such approximations. The long-
range interaction between separated atoms or molecules is absent, and yet the LD approximation
overestimates the binding energy in many such systems, e.g. He2 [41]. It is not surprising that
new approximations were developed, and corrections involving density gradients were soon
available for the correlation [53, 54] and exchange energies [44]. The semi-empirical exchange
energy approximation of Becke [44] had the correct asymptotic behaviour for atoms.
The combination of DF calculations with molecular dynamics (Car-Parrinello method) [55]
made simulations of bulk systems at elevated temperatures possible, and simulated annealing
techniques could be used to study the energy surfaces of molecules and clusters. My 1991
article [56] showed that unexpected structures could result. An essential part of DF work prior
to 1990 was, of course, the gradual generation of a data base of results for molecules and
clusters.

6 After the breakthrough

There have been over 134,000 publications on the topics “density functional” and “DFT” be-
tween 1990 and May 2013 (Figure 4), and I leave detailed surveys of this vast literature to
others. I mention here some aspects that should be of general interest and give an example of
the possibilities provided by the combination of DF calculations with molecular dynamics.

6.1 Progress and problems

One of the first signs of growing acceptance of DF methods in chemistry was the incorporation
of such calculations into popular ab initio program packages, with Gaussian leading the way. It
seems that Michael Frisch, first author of that package, was a willing convert. At the end of a
talk at the ACS National Meeting in San Francisco (13 April 1997) on “Ab initio calculations
of vibrational circular dichroism and infrared spectra using SCF, MP2, and density functional
theories for a series of molecules,” an unknown (to me) member of the audience asked:

“ What about Hartree-Fock?”

I wrote his answer down without delay:

“ It does not matter what you want to calculate, and it does not matter what functional you

use; density functional results are always better than Hartree-Fock.”

The availability of such codes and the possibility of comparing the results of different types of
calculation were important to establishing the credentials of DF calculations in chemistry.
There has been progress in all the above areas. Time-dependent DF theory has become a stan-
dard way to calculate excited states and is an option in most DF program packages. The num-
ber of publications in a year that use the Car-Parrinello method has grown nearly linearly from
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almost zero in 1990 to 1400 in 2012 [39]. The combination of DF calculations for a chem-
ically active region with classical molecular dynamics for the surrounds (the “QM/MM ap-
proach”) [57] has found applications in many systems in biology, as well as organic and solid
state chemistry [58]. Classical force fields that lead to simulations with near-DF accuracy can
be developed by a neural network representation of the results of (many) DF calculations on
small systems [59]. There are lengthy reviews of orbital-dependent (and other) density func-
tionals [60] and constrained density functional theory [61]. The random phase approximation
(RPA) is being tested in various contexts [62, 63].
These and other developments are very welcome, but they do not hide the fact that the most
contentious issue has been the development of approximations to the exchange-correlation en-
ergy that overcome the weaknesses of the local density approximations. The LD (Eq. (13)) and
LSD (Eq. (14)) approximations lead to overbinding of many molecules, poor exchange energy
differences if the nodal structures of the orbitals change, and the Kohn-Sham eigenvalues often
underestimate measured optical band gaps. Nevertheless, calculations that used them provided
insight into many physical problems, and the reasons for the errors (and ways to assess their
magnitude) became clear. However, if insight is not enough and reliable numbers are needed,
improved approximations are necessary.
The first generalized gradient approximations [44, 53, 54] did lead to better results, and hybrid
functionals including exact exchange were introduced by Becke in 1993 [64]. This form of Ex

has three parameters, and its combination with Ec of Lee, Yang, and Parr [54] (B3LYP) is still
the most common approximation used in chemical applications [65]. Many other empirical and
hybrid functionals have been developed since, with parameters usually fit to thermochemical
data for particular groups of molecules. The use of experimental data for fitting functional
forms is understandable [66]. The additional parameters led to improvement over the LD and
LSD results, and the use of “training sets” of atomic and molecular systems to optimize the
parameters improved the calculated results for particular sets of molecules [67].
An alternative path has been followed by others, particular Perdew and collaborators, who de-
veloped a sequence (“Jacob’s ladder”) of approximations without experimental input, where
each “rung” built on the experience of lower level and satisfies particular physical constraints.
The gradient corrected form of Perdew, Burke, and Ernzerhof [68] (PBE) incorporates the LSD
form below it, and the “meta-GGA” form of Tao, Perdew, Staroverov, and Scuseria (TPSS) [69],
where n↑ and n↓ are joined by their gradients and the kinetic energy density of the occupied
Kohn-Sham orbitals, built on both. The agreement with experiment improves (and the com-
plexity of the calculations increases) as one climbs the “ladder” [70].
Two areas have remained particular challenges for DF calculations. The first are the weak
dispersion or van der Waals forces mentioned above, where there has been substantial progress
during recent years. The development of a functional that changes seamlessly on going from
weakly interacting units to a combined system has been a goal of many, and one successful
project has been that of Langreth and coworkers [71]. Their functional incorporates results
for electron gas slabs and the electron gas itself, is free of experimental input, and has been
implemented in several program packages. An empirical correction to DF results has been
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Fig. 5: Crystallization in GST alloy at 600 K. (a) Amorphous structure after 215 ps, (b) crys-
talline structure after 1045 ps. Green: Ge, purple: Sb, Orange: Te.

made by Grimme [72], and an alternative has been suggested by Tkatchenko and Scheffler [73].

“Strongly correlated” systems are those where the interaction energy dominates over the kinetic
energy and often involve transition element or rare earth atoms. Local density approximations
can give qualitatively incorrect descriptions of these materials, and the use of model Hamilto-
nians has been a popular way to avoid them. A common approach has been to add an on-site
Coulomb repulsion (“Hubbard U”) in the “LSD+U” scheme [74, 75]. The parameter U can be
estimated within a DF framework [75, 76] or fit to experiment.

There are developments in the quantum Monte Carlo (QMC) studies of interacting electron
systems that could be relevant for future DF work. The full configuration interaction (FCI)
implementation of QMC has been applied recently to the homogeneous electron gas [77] and to
simple solids [78]. Condensed matter scientists have much experience with periodic boundary
conditions and plane wave orbital expansions, and this should aid the implementation of the
method in extended systems. Another example is the reformulation of the constrained search
approach in DF theory [32, 33] in terms of the density and the (N − 1)-conditional probability
density, which can be treated by ground state path integral QMC [79]. It remains to be seen
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whether the computational demands usually associated with QMC can be reduced.
The terms “ab initio” and “first principles” are used differently in the “chemical” and “materi-
als” worlds. For most chemists, the expressions means solutions of the Schrödinger equation
for the system of interacting electrons (e.g. by QMC), for materials scientists it can be a DF
calculation without (or even with) adjustable parameters. I carry out “density functional” cal-
culations and describe them as such, and I am happy to use the term “ab initio” for solutions of
the Schrödinger equation, as done by chemists.

6.2 An application

The results of one DF simulation in materials science using the PBE functional [68] show the
scale of DF simulations that are possible today. Phase change (PC) materials are alloys of
chalcogens (group 16 elements) that are ubiquitous in the world of rewritable optical storage
media, examples being the digital versatile disk (DVD-RW) and Blu-ray Disc. Nanosized bits
in a thin polycrystalline layer are switched reversibly and extremely rapidly between amor-
phous and crystalline states, and the state can be identified by changes in resistivity or optical
properties. Crystallization of the amorphous bit is the rate-limiting step in the write/erase cy-
cle, and much attention has been focused on this process. Alloys of Ge, Sb, and Te are often
used in PC materials, and 460-atom simulations have been carried out at 600 K on amorphous
Ge2Sb2Te5 [80] (Fig. 5). Crystallization takes place in just over 1 ns, and it is possible to mon-
itor changes in the distribution of the cavities, the diffusion of atoms of the different elements,
and percolation of crystalline units in the sample. These calculations involve over 400,000 (!)
self-consistent DF calculations of structure, energies, and forces for a 460-atom sample. The
steady (and essential) improvement in numerical algorithms has played an important role, but
such calculations also require computers of the highest performance class.

7 Summary and outlook

The astonishing growth of density functional calculations since 1990 resulted in the award of the
1998 Nobel Prize for Chemistry to Walter Kohn. Although he noted that “very deep problems”
remain, Philip Anderson felt that this award may indicate that [81]

“the labours and controversies . . . in understanding the chemical binding in materials had

finally come to a resolution in favour of ‘LDA’ and the modern computer”,

The LD and LSD approximations have well documented drawbacks, and the resulting numbers
(binding energies, band gaps, . . . ) should be treated with caution. However, the approximations
satisfy important physical criteria, such as the sum rule on the exchange-correlation hole, and
our long experience with them helps us to judge when the results may be wrong and by how
much. The bonding patterns are correct in most cases, which is no doubt one reason why LD
approximations and their modifications are still in widespread use. They make possible the si-
multaneous study of numerous related systems, such as families of molecules or materials, with
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the computational resources needed to determine the wave function of a single much smaller
system.
This pragmatic approach seems to be giving way to the search for schemes that produce better
numbers automatically, preferably without having to worry about the nature of the system or
the bonding mechanism involved. The long and growing list of approximate functionals and
countless publications comparing their predictions with each other and with experiment have
led to a chaotic situation. A newcomer to the field must despair of understanding why one
approximation should be favoured over another or the real physical reasons behind a particular
result. Are DF calculations in chemistry now following the “Dream Machine” scenario foreseen
for the solid state world by Anderson in 1980? [38]. Furthermore, a comparison of the band
gaps in LiH and four alkali halides, four oxides, and solid Ne and Ar (gaps between 0.2 and 20
eV) with the predictions of many popular functionals [82] showed that the identification of the
“best” functional depends on the choice of statistical measure (mean error, mean absolute error,
variance, . . . )!
Density functional theory deserves better than to be a background justification for empirical
curve fitting, which clearly implies a lack of confidence in the theory, or the development of a
never ending chain of approximations seeking the “right” numbers, with less concern for their
physical origin. It is a wonderful development with a long and fascinating history involving
some of the best known names in physics. It may not provide precise answers to some ques-
tions using simple descriptions of the exchange-correlation energy, but its ability to outperform
methods that seek exact solutions of the Schrödinger equation is not threatened. We shall con-
tinue to obtain insight into all sorts of problems that we cannot imagine today.
I end with a note of caution for the “strongly correlated” community. Few theoretical chemists
thought that DF calculations were relevant to understanding the electronic structure of molecules,
but local density approximations (and their modifications) have given far better results than any-
one expected. It was shown afterwards (see, for example, Sec. 4.2) why approximations to Exc

could give good results for density distributions far from those where they are obviously valid.
Perhaps DF theory has some real surprises in store for the “strongly correlated” world.
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http://www.cond-mat.de/events/correl12

[4] L.H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927)

[5] E. Fermi, Z. Physik 48, 73 (1928)

[6] P.A.M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930)

[7] F.H.C. Crick, What mad pursuit (Penguin, London, 1988), p. 150

[8] R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)
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[78] G.H. Booth, A. Grüneis, G. Kresse, A. Alavi, Nature 453, 365 (2013)

[79] L. Delle Site, L.M. Ghiringhelli, D.M. Ceperley, Int. J. Quantum Chem. 113, 155 (2013)

[80] J. Kalikka, J. Akola, J. Larrucea, R.O. Jones, Phys. Rev. B 86, 144113 (2012),
and (to be published)

[81] P.W. Anderson, Ref. [2], pp. 120-130

[82] B. Civalleri, D. Presti, R. Dovesi, A. Savin, Chem. Modell. 9, 168 (2012)





2 Many-Electron States

Erik Koch
Computational Materials Science
German Research School for Simulation Sciences

Contents
1 Indistinguishable particles 2

1.1 Symmetric and antisymmetric wave functions . . . . . . . . . . . . . . . . . . 4

2 Reduced density matrices 6

3 Slater determinants 8
3.1 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Second quantization 12
4.1 Creation and annihilation operators . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Representation of Slater determinants . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Representation of n-body operators . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Vacuum state and electron-hole transformation . . . . . . . . . . . . . . . . . 18

5 Many-body states 20
5.1 Hubbard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 BCS state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusions 24

E. Pavarini, E. Koch, and U. Schollwöck
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1 Indistinguishable particles

Everyday experience tells us that no two objects are the same. We can always find some prop-
erties in which they differ. We can even tell identical twins apart, if only we know them well
enough: their characteristic traits give them individuality. It has therefore been argued that ob-
jects that cannot be distinguished must be identical, as Leibnitz did with his Principle of the
Identity of Indiscernibles [1]. We might, however, imagine a replicator that could produce a
perfect clone that is identical to the original in every respect. Still, being material objects, orig-
inal and clone cannot be at the same place at the same time. So even then we could tell original
and clone apart by closely following their trajectory in space. This is, of course, only possible
in a classical setting. Quantum mechanically, our knowledge of the actual position is limited by
the uncertainty principle.
While the idea of identical clones sounds like science fiction, it is standard fare in modern
physics: with the discovery of the periodic table it was realized that all materials are built from
a small set of different types of atoms, the elementary particles of chemistry. The notion of
elementary particle seems, however, to depend on the energy range of interest. While from a
chemist’s point of view all atoms of a given element are identical, probing the atom at higher
energies, we can actually find an internal structure, allowing us to distinguish atoms of the same
type but in different excited states [2]. Probing at even higher energies, it turns out that atoms are
built of more elementary particles: electrons and the nuclei. These are the elementary particles
of condensed-matter physics and quantum chemistry. At still higher energies the nuclei turn out
to be built of protons and neutrons, which at even higher energies appear to be built of up and
down quarks.
The elementary particle we will mainly be concerned with here is the electron. For a system of
two electrons we can write the wave function as Ψ(x1, x2), where x1 are the degrees of freedom,
e.g., position and spin, of the first electron, and x2 those of the second. As indistinguishable
particles, the labeling as first and second electron is of course arbitrary, and we can ask how
the wave function changes when we exchange the labels, putting the first electron at x2 and the
second at x1. Such a reordering is performed by the permutation operator P :

PΨ(x1, x2) = Ψ(x2, x1) .

Indistinguishability implies that the observables do not change under a relabeling of the parti-
cles. This is true, in particular, for the probability density: |Ψ(x1, x2)|2 = |Ψ(x2, x1)|2, i.e.,

PΨ(x1, x2) = eiϕΨ(x1, x2) (1)

with some phase ϕ. When permuting twice gives the identity, P 2 = 1, then e2iϕ = 1, i.e., ϕ
can only take two different values: ϕ = 2π, meaning that the wave function does not change
(symmetric), or ϕ = π, which means that it changes sign (antisymmetric) under the permutation
P . These are the irreducible representations of the permutation group. A particular consequence
of antisymmetry is that for Ψ(x1, x2 → x1) = 0, i.e., the two particles can never be found at the
same place. This is the Pauli principle.
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Fig. 1: Permutation of particles: In 3-dimensional space the permutation is independent of
the path along which the particles are exchanged. In 2-dimensional space it matters how the
exchange paths wind around each other, giving rise to the braid group and fractional statistics.
In 1-dimension, particles have to pass through each other in order to exchange their positions.

The definition of indistinguishability is that no experiment can distinguish one particle from the
other. Consequently, observables involving indistinguishable particles must remain unchanged
when the particles are relabeled, or, more technically, they must commute with all possible
permutations of the particles. This applies, in particular, to the Hamiltonian: [P,H] = 0. This
implies that the symmetric and antisymmetric components of the many-body wave function are
not mixed by the Hamiltonian: if the initial wave function is symmetric/antisymmetric, this
does not change under time evolution.

There is an intriguing connection between the spin of the indistinguishable particles and the
symmetry of their many-body wave function: for particles with integer spin (bosons) the wave
function is symmetric under particle permutations, for fermions (half-integer spin) the wave
function is antisymmetric. In non-relativistic quantum mechanics this spin-statistics connec-
tion is incorporated ad hoc via the initial conditions. In relativistic field-theory the connection
between spin and statistics can be derived under fairly general assumptions on the axioms of
the theory [3, 4]. For popular accounts, see [5, 6]. More recently there have been efforts to
establish the spin-statistics connection in non-relativistic quantum mechanics. The basic idea
of the approach is to perform the permutation of particles along a smooth path, where the spin
picks up a geometric phase ϕ [7].

The concept of permuting particles by moving them along paths is also vital for understanding
the statistics in lower-dimensional systems. Let us permute two particles by moving particle
one along path γ1(t) from γ1(0) = x1 to γ1(1) = x2 and the other particle along γ2(t) from
x2 to x1. If we call this operation Pγ , then P 2

γ is given by moving particle one first along γ1(t)

from x1 to x2 and then along γ2(t) from x2 back to x1 and likewise for the other particle. In
three and higher dimensions these combined paths can be continuously deformed into the paths
ι1(t) = x1 and ι2(t) = x2, which correspond to not moving the particles at all, i.e., the identity.
Since the paths are homotopic, P 2

γ = 1, as assumed above. In two dimensions this is not the
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case. Let us assume the two paths γ1(t) and γ2(t) that exchange the particles wind around each
other in clockwise direction as shown in Fig. 1. Applying this operation a second time, we
obtain paths winding around each other twice to restore the original order of particles. These
are however not homotopic to the paths corresponding to the identity 1, as deforming γ1(t)

and γ2(t) into ι1 and ι2 would involve passing the curves through one another. Thus in two
dimensions P 2

γ need not be the identity and thus there is no restriction on the phase ϕ in (1).
Since any phase is allowed, particles with such statistics are called anyons [8]. They appear,
e.g., as quasiparticles in the fractional quantum Hall effect.
In one dimension two particles would have to pass through each other to exchange their posi-
tions. Therefore particles that cannot be at the same position, as is true for fermions, cannot
exchange their positions. Then configuration space splits into equivalent parts, each with a spe-
cific ordering of the particles, separated from each other by nodes in the wave function where
the coordinates of at least two particles agree. In each of these nodal pockets the ground state
wave function is non-vanishing [9]. This is what makes many one-dimensional systems solv-
able [10].

1.1 Symmetric and antisymmetric wave functions

The (anti)symmetry of a many-body wave function has profound effects on the physical prop-
erties of the system. This can already be seen for a simple system of two particles, with one
particle in a state ϕa(x) and the other in state ϕb(x). When the particles are distinguishable the
many-body wave function could be

Ψ12(x1, x2) = ϕa(x1)ϕb(x2) or Ψ21(x1, x2) = ϕb(x1)ϕa(x2) . (2)

For indistinguishable particles the wave functions is (anti)symmetric

Ψ±(x1, x2) =
1√
2

(
Ψ12(x1, x2)± Ψ21(x1, x2)

)
. (3)

We can then calculate the expectation value of the squared distance〈
(x1 − x2)2

〉
=
〈
x2

1

〉
+
〈
x2

2

〉
− 2

〈
x1x2

〉
. (4)

For wave function Ψ12, assuming that the single-electron states are normalized, we obtain

〈x2
1〉12 =

∫
dx1 x

2
1|ϕa(x1)|2

∫
dx2 |ϕb(x2)|2 = 〈x2〉a· 1

〈x2
2〉12 =

∫
dx1 |ϕa(x1)|2

∫
dx2 x

2
2|ϕb(x2)|2 = 1 ·〈x2〉b

〈x1x2〉12 =
∫
dx1 x1|ϕa(x1)|2

∫
dx2 x2|ϕb(x2)|2 = 〈x〉a · 〈x〉b

Giving the expectation value in terms of single-electron expectation values〈
(x1 − x2)2

〉
12

=
〈
x2
〉
a

+
〈
x2
〉
b
− 2 〈x〉a 〈x〉b . (5)

Due to the symmetry (x1−x2)2 = (x2−x1)2 we obtain the same expectation value for Ψ21. For
indistinguishable particles additional cross terms appear in the expectation value of an operator
M

〈M〉± =
1

2

(
〈M〉12 ± 〈Ψ12|M |Ψ21〉 ± 〈Ψ21|M |Ψ12〉+ 〈M〉21

)
. (6)
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Fig. 2: Probability distribution |Ψ(x1, x2)|2 for two identical particles in a one-dimensional
infinite potential well with one particle in the ground and the other in the first excited state.
For the symmetric wave function, shown on the left, the probability of finding the electrons is
largest on the line x1 = x2, for the antisymmetric wave function, shown in the centre, the prob-
ability vanishes there. For comparison, the right-most plot shows the probability distribution
for independent particles.

For observables involving only one coordinate like M = x2
1, and similarly for x2

2, these terms
are of the form 〈

Ψ12

∣∣x2
1

∣∣Ψ21

〉
=

∫
dx1 x

2
1 ϕa(x1)ϕb(x1)

∫
dx2 ϕb(x2)ϕa(x2) , (7)

which vanishes if the two states ϕa and ϕb are orthogonal. For operators like M = x1x2

involving both coordinates they do not vanish, even for orthogonal states

〈Ψ12 |x1x2|Ψ21〉 =

∫
dx1 x1 ϕa(x1)ϕb(x1)

∫
dx2 x2 ϕb(x2)ϕa(x2) = 〈x〉ab · 〈x〉ab . (8)

These non-vanishing cross terms are called exchange terms. They make expectation values for
symmetric and antisymmetric wave functions different. In the present case〈

(x1 − x2)2
〉
± =

〈
x2
〉
a

+
〈
x2
〉
b
− 2
(
〈x〉a 〈x〉b ± |〈x〉ab|

2
)

(9)

we see that the exchange terms decrease (increase) the expectation value of the squared distance
by 2| 〈x〉ab |2 for symmetric (antisymmetric) wave functions compared to the result for distin-
guishable particles. I.e., indistinguishable fermions tend to avoid each other while bosons tend
to move closer together. For two identical particles in a one-dimensional box this tendency is
readily apparent from the probability density |Ψ(x1, x2)|2 shown in Fig. 2.
The effect of (anti)symmetry thus has to do with the overlap of the of the single-particle states
that are involved. When this overlap vanishes for some reason, the symmetry of the wave
function makes no difference. An extreme example is two electrons that are strictly localized
in non-overlapping regions in space. In this case all integrals of the type (8) vanish, and there
is no observable to distinguish an (anti)symmetric from a non-symmetrized state. This makes
sense, since their localization in different regions of space makes them actually distinguishable.
Such a situation is, of course, never perfectly realized. And in principle we would have to
antisymmetrize the states of all electrons in the universe. Except for the rare case that we have
sent an electron of an entangled pair to our far-away friend Bob, it is, however, safe to assume
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that the electrons on the moon have negligible overlap with those in our (terrestrial) laboratory.
We can then consider them distinguishable from those in our experiment, so that we need only
antisymmetrize the wave function with respect to the electrons in our apparatus.
Often we have a similar situation where we can use the spin to tell electrons apart: When the
Hamiltonian of our system does not affect the spin [~S,H] = 0, and we are only interested in
observables that commute with the spin, we can distinguish two types of electrons by their spin
direction Sz. In that case we need not antisymmetrize all electrons, but only the spin-up and
the spin-down electrons separately. This is a typical example of how quantum numbers that are
conserved in the processes we are interested in make can elementary particles distinguishable.
This is how the concept of elementary particle becomes dependent on what energy scale we are
interested in.

2 Reduced density matrices

By definition, observables on an N -particle Hilbert space that do not distinguish between the
particles must be symmetric under particle permutations. For example, a single-particle opera-
tor M(x) takes the form

∑N
i=1 M(xi) in the N -particle Hilbert space. We can write a general

operator as a sum of n-particle operators

M(x) = M0 +
∑
i

M1(xi) +
1

2!

∑
i6=j

M2(xi, xj) +
1

3!

∑
i6=j 6=k

M3(xi, xj, xk) + · · · (10)

= M0 +
∑
i

M1(xi) +
∑
i<j

M2(xi, xj) +
∑
i<j<k

M3(xi, xj, xk) + · · · , (11)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, e.g. M2(xi, xj) = M2(xj, xi), while for two or more identical coordinates the operator
is really one of lower order, e.g. M2(xi, xi) only acts on a single coordinate and should be
included in M1.
To evaluate expectation values it is useful to introduce density matrices [11]

Γ (p)(x′1, . . . , x
′
p;x1, . . . , xp) :=(

N

p

)∫
dxp+1 · · · dxN Ψ(x′1, . . . , x

′
p, xp+1, . . . , xN)Ψ(x1, . . . , xp, xp+1, . . . , xN) , (12)

where we integrate over all except p coordinates of the normalized N -particle wave function Ψ .
When x = (r, σ) denotes the coordinate and the spin of the particle, the integral over x means
integration over space and summation over spin. The density matrices are obviously related by

Γ (p)(x′1, . . . , x
′
p;x1, . . . , xp) =

p+ 1

N − p

∫
dxp+1Γ

(p+1)(x′1, . . . , x
′
p, xp+1;x1, . . . , xp, xp+1) (13)

They are Hermitean, e.g. Γ (2)(x′1, x
′
2;x1, x2) = Γ (2)(x1, x2;x′1, x

′
2), and (anti)symmetric in each

set of their arguments, e.g. Γ (2)(x′1, x
′
2;x1, x2) = −Γ (2)(x′2, x

′
1;x1, x2). The p-body density

matrix contains all the information needed for evaluating expectation values of operators up to
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order p. The expectation value of a single-electron operator, e.g., the expectation value of the
kinetic energy T = −1/2

∑
i∆ri is obtained from the one-body density matrix as

〈Ψ |T |Ψ〉 = −1

2

∫
dx ∆r Γ

(1)(x′;x)

∣∣∣∣
x′=x

, (14)

where we first keep x′ 6= x to make sure that the derivative only operates on the second argu-
ment, x = (r, σ), but after that set x′ = x so both arguments are summed over. For a local
operator like the Coulomb potential we can directly work with the diagonal elements of the
density matrix. For the interaction of the electrons with a nucleus of charge Z at R this gives

〈V 〉 = −Z
∫
dx

Γ (1)(x;x)

|r −R|
. (15)

Similarly, the Coulomb repulsion between the electrons is given by

〈U〉 =

∫
dx dx′

Γ (2)(x, x′;x, x′)

|r − r′|
. (16)

We see that for calculating the eigenenergies of a many-body Hamiltonian describing a system
of N electrons moving around nuclei of charge Zα at position Rα

H = −1

2

∑
i

∆i −
∑
i,α

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
(17)

we do not need the full eigenfunction but only the corresponding one-body density matrix and
the diagonal elements of the two-body density matrix. It is then tempting to try to calculate
the ground state energy of an N -electron system by finding the two-electron density matrix that
leads to the lowest energy expectation value. This is known as Coulson’s Challenge [12]. The
approach is, however, not practical since we know no criterion that would tell us what function
of four arguments is actually a fermionic density matrix, i.e., one that can be obtained via (12)
from an antisymmetric N -electron wave function. For the single-electron density matrix there
is such a criterion: for any Γ (x′;x) with eigenvalues γi ∈ [0, 1] and trace TrΓ (x′;x) = N there
exists a normalized N -electron wave function with single-electron density matrix Γ (x′;x).
Since we made sure that the N -electron wave function is normalized, the diagonal elements of
the density matrices have straightforward physical interpretations. From the definition (12) we
see that the single-electron density matrix gives the electron density Γ (1)(x;x) = n(x), while
the two-electron density matrix 2Γ (2)(x, x′;x, x′) = n(x, x′) gives the conditional electron
density, i.e., the electron density at x′, given that one electron is at x. They are normalized
accordingly∫

dxΓ (1)(x;x) = N and
∫
dx dx′ Γ (2)(x, x′;x, x′) =

N(N − 1)

2
. (18)

The way the two-electron density differs from the simple product of the one-electron densities
describes the correlation of the electrons

n(x, x′) = n(x)n(x′) g(x, x′) . (19)
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The factor g(x, x′) is called the pair-correlation function. Since by the Pauli principle no two
electrons can occupy the same state, it vanishes for x = x′. From (13) we find

n(x) (N − 1) =

∫
dx′ n(x, x′) = n(x)

∫
dx′ n(x′) g(x, x′)

which gives the sum rule ∫
dx′ n(x′)

(
g(x, x′)− 1

)
= −1 , (20)

which implies that the integrand vanishes for |r − r′| → ∞. In practice n(x′) (g(x, x′)− 1) is,
as a function of x′, quite localized around x. It is called the exchange-correlation hole. With
this we can write the Coulomb repulsion energy between the electrons as

〈U〉 =
1

2

∫
dx dx′

n(x)n(x′)

|r − r′|
+

1

2

∫
dx dx′

n(x)n(x′)
(
g(x, x′)− 1

)
|r − r′|

, (21)

where the first term is the long ranged Coulomb interaction between the uncorrelated charge
densities (Hartree energy), while the second term is the interaction of the charge density with
its rather localized exchange-correlation hole.

3 Slater determinants

When dealing with indistinguishable particles, we need only consider many-body wave func-
tions that are (anti)symmetric under particle permuations. This can be ensured by explicitly
(anti)symmetrizing an arbitrary wave function

S± Ψ(x1, . . . , xN) :=
1√
N !

∑
P

(±1)PΨ
(
xp(1), . . . , xp(N)

)
, (22)

where (±1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely expensive operation. Since (anti)symme-
trization only involves a relabeling of coordinates, in integrals, i.e., matrix elements, we can
save some work by observing that in matrix elements only one of the wave functions needs to
be properly (anti)symmetrized [11]∫

dx (S±Ψa(x))M(x) (S±Ψb(x)) =
√
N !

∫
dx Ψa(x)M(x) (S±Ψb(x)) , (23)

where x = x1, . . . , xN and the observable M commutes with particle permutations.
It is remarkable that for products of single-electron states antisymmetrization can be performed
very efficiently: it is simply the prescription for calculating a determinant, which can be calcu-
lated with O(N3) operations. Interestingly, the corresponding operation for bosons, the sym-
metrized of a product of single-electron states, called the permanent, cannot be performed effi-
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ciently. Given a set of spin-orbitals ϕα(x) we write the Slater determinant

Φα1···αN (x) := S− ϕα1(x1) · · ·ϕαN (xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
.

(24)
Obviously, replacing the orbitals by linear combinations ϕ̃αn(x) =

∑N
m=1 an,m ϕαm(x) among

themselves produces the same Slater determinant, merely changing the normalization by det(A),
which is non-zero as long as A is invertible.
For N = 1 a Slater determinant is simply the one-electron orbital ϕα(x); for N = 2 it has the
familiar form (ϕα(x)ϕβ(x′)− ϕβ(x)ϕα(x′))/

√
2.

Slater determinants are popular electronic wave functions because operations can be calculated
efficiently, even for large numbers N of electrons, using standard methods of linear algebra.
As an example, using (23), we see that the overlap of two Slater determinants is simply the
determinant of the overlap matrix of their single electron orbitals:∫

dx1 · · · dxN Φα1···αN (x1, . . . , xN)Φβ1···βN (x1, . . . , xN) = det
(
〈ϕαn|ϕβm〉

)
. (25)

It follows that Slater determinants constructed from a set of orthonormal spin-orbitals ϕµ(x)

are normalized – except when they contain an orbital more than once, in which case the deter-
minant, obeying the Pauli principle, vanishes. Likewise, it follows that two Slater determinants
Φα1···αN (x1, . . . , xN) and Φβ1···βN (x1, . . . , xN) are orthogonal except when they are built from
the same set of orbitals, i.e., {α1, . . . , αN} = {β1, . . . , βN}. Thus, if we fix some ordering of
the orbitals, e.g., α1 < α2 < · · · < αN , the determinants formed from all possible choices of N
spin-orbitals from the set of K orthonormal single-electron functions ϕµ(x) forms an orthonor-
mal set in the N -electron Hilbert space. There are K · (K − 1) · (K − 2) · · · (K − (N − 1))

ways of picking N indices out of K. Since we only use one specific ordering of these indices,
we still have to divide by N ! to obtain the number of such determinants:

K!

N !(K −N)!
=

(
K

N

)
. (26)

They span the antisymmetrized N -particle Hilbert space. Thus, the choice of an orthonormal
set of single-electron functions {ϕµ(x)|µ = 1 . . . K} induces an orthonormal basis{

Φα1···αN (x1, . . . , xN)
∣∣∣ α1 < α2 < · · · < αN ∈ {1, . . . , K}

}
(27)

in the corresponding N -electron space. Given a set of one-electron functions, we can thus, by
the variational principle, approach the exact solution of the many-body problem in the corre-
sponding N -electron Hilbert space by including more and more of these determinants. This
is called the configuration interaction (CI) method. It becomes exact on this space when we
include all

(
K
N

)
basis determinants (exact diagonalization or full CI). Even though these calcu-

lation very quickly involve unimaginable numbers of determinants – for N = 25 electrons in
K = 100 orbitals the number of basis functions already exceeds 1023 – the result is still not
exact, as the single electron basis is not complete. This is illustrated in Fig. 3.
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Fig. 3: Left: Convergence of a calculation for an N -electron system with K basis functions.
The dimension of the Hilbert space for configuration interaction is dim =

(
K
N

)
. The plot on the

right shows the log10 of this as a function of the number of electrons N and orbitals K.

3.1 Hartree-Fock

To calculate expectation values for Slater determinants we take again the route via the reduced
density matrices described in Sec. 2. To calculate the one-body density matrix, we expand the
Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi6=n(x2, . . . , xN) , (28)

where Φαi6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written asN−1-electron Slater determinants with orbital αn removed. The integral
for obtaining the one-body density matrix is then just of the type (25), so that

Γ (1)(x′;x) =
1

N

∑
n,m

(−1)n+m ϕαn(x′)ϕαm(x)
det(〈ϕαj 6=n|ϕαk 6=m〉)

det(〈ϕαj |ϕαk〉)
(29)

where we have introduced the normalization factor of the Slater determinant. For orthonormal
orbitals this simplifies to the familiar expressions

Γ (1)(x′;x) =
∑
n

ϕαn(x′)ϕαn(x) and n(x) =
∑
n

|ϕn(x)|2 . (30)

For higher-order density matrices, we could expand the N − 1 Slater determinants further. A
simpler way to generalize (28) is, however, to realize that we can write the permutations of a
set of N objects by considering all possible partitions of this set into two sets and taking all
permutations among the elements of these sets. This lets us write a Slater determinant as the
sum over products of two smaller Slater determinants:

Φα1···αN (x) =
1√(
N
p

) ∑
n1<n2<···<np

(−1)1+
∑
i niΦαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}(xp+1, . . . , xN)

(31)
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For p = 2 we get the general form of the two-body density matrix for a Slater determinant

Γ (2)(x′1, x
′
2;x1, x2)=

∑
n′<m′
n<m

(−1)n
′+m′+n+mΦαn′ ,αm′ (x

′
1, x
′
2)Φαn,αm(x1, x2)

det(〈ϕαj 6=n′,m′ |ϕαk 6=n,m〉)
det(〈ϕαj |ϕαk〉)

(32)
Since the summation indices are ordered, for orthogonal orbitals only the terms with (n′,m′) =

(n,m) remain, giving the generalization of (30) to p = 2

Γ (2)(x′1x
′
2;x1, x2) =

∑
n<m

Φαn,αm(x′1, x
′
2)Φαn,αm(x1, x2) (33)

and
n(x1, x2) =

∑
n,m

|Φαn,αm(x1, x2)|2 , (34)

where the factor of 2 is included by summing over all combinations (n,m), not only the ordered
ones, and m = n can be included, since in that case the determinant vanishes. In terms of the
orbitals this becomes

n(x1, x2) =
∑
n,m

(
|ϕαn(x1)|2|ϕαm(x2)|2 − ϕαn(x1)ϕαm(x1)ϕαm(x2)ϕαn(x2)

)
, (35)

from which it is easy to find the pair correlation function

g(x1, x2) = 1−
∑

n,m ϕαn(x1)ϕαm(x1) ϕαm(x2)ϕαn(x2)

n(x1)n(x2)
. (36)

Given the explicit form of the two-body density matrix (32), we can meet Coulson’s challenge
for the Hamiltonian (17), albeit restricted to density matrices that arise from Slater determinants.
This procedure is equivalent to the Hartree-Fock method, which gives the Slater determinant for
which the total energy is stationary.
For a homogeneous electron gas, i.e., the Hamiltonian (17) without ionic potentials (except for
a homogeneous neutralizing background), one such stationary point is, by symmetry, the Slater
determinant of plane waves of wave vectors k with |k| ≤ kF . For this simple case we can
calculate the pair correlation function (36) explicitly

g(r1, σ1, r2, σ2)− 1 = − 9

(
sin(kF r)− kF r cos(kF r)

)2

(kF r)6
δσ1,σ2 (37)

with r = r2 − r1. This shows how electrons of the same spin avoid getting close to each
other because of the antisymmetry requirement (exchange hole), while for a Slater determinant
electrons of opposite spin are uncorrelated.
The exchange hole decays rapidly with distance and becomes more localized with increasing
density, approaching a delta function in the limit kF → ∞. As shown in Fig. 4, the exchange
hole is essentially contained in a sphere of the Wigner-Seitz radius rσ = 21/3rs, i.e., the ra-
dius of a sphere containing one electron of a given spin. Since this condition is somewhat
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Fig. 4: Exchange hole for a paramagnetic homogeneous electron gas in units of the spin Wigner-
Seitz radius kF rσ = (9π/2)1/3. In addition, the dotted line shows the contribution of the
exchange hole to the Coulomb repulsion energy of Eq. (21).

similar to the sum rule (20) for the pair-correlation function, this is not entirely unexpected. In-
cluding correlation effects, which are missing in Hartree-Fock, could increase the range of the
exchange-correlation hole, while, missing exchange effects, the correlation hole for electrons of
different spin should be more localized. This is in fact what is found in quantum Monte Carlo
calculations, see, e.g., Fig. 1 of Ref. [13].
We note in passing that the homogeneous electron gas is not necessarily the Hartree-Fock
ground state. Allowing the Slater determinant to break the symmetry of the Hamiltonian, we
might obtain a lower energy solution [14]. Enforcing the symmetry of the Slater determinant
is called restricted Hartree-Fock, allowing it to have a lower symmetry is unrestricted Hartree-
Fock. See, e.g., Ref. [15] for a simple example.
To go beyond Hartree-Fock we could now derive the matrix elements of n-particle operators
between different Slater determinants, so that we could represent the operators, e.g., in the
orthonormal basis (27). For this we could introduce generalized density matrices with two
different many-body wave functions [11]. A much more transparent approach is, however,
provided by the formalism of second quantization. It addresses the main inconvenience when
working with Slater determinants: keeping track of the sign for sub-determinants. In second
quantization these signs are simply stored in the relative positions of certain operators. For this
to work, these operators have to change sign when exchanging the order of two of them – they
have to anti-commute.

4 Second quantization

The first object to be successfully quantized was the electron. It was no longer described as
a classical point-particle but by a quantum mechanical Schrödingier field. Later, for studying
the interaction of radiation with matter, also the electromagnetic field had to be quantized,
giving rise to quantum particles – photons. This process, pioneered by Dirac [16], was called
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the second quantization. Shortly after, Jordan, Klein, and Wigner used a similar approach to
quantize the Schrödingier field and found that it could be used to write antisymmetric states in
a very convenient way using particle-type operators [17, 18].
When working with Slater determinants of the form (24) we are working in a real-space basis.
Like in fundamental quantum mechanics, it is, however, often useful to abstract from a specific
basis and work with abstract states: Instead of a wave function ϕα(x), we write a Dirac state
|α〉. Second quantization allows us to do the same for Slater determinants.
Let us consider a Slater determinant for two electrons, one in state ϕα(x), the other in state
ϕβ(x). It is simply the antisymmetrized product of the two states

Φαβ(x1, x2) =
1√
2

(ϕα(x1)ϕβ(x2)− ϕβ(x1)ϕα(x2)) . (38)

We could do the same for Dirac states, defining a two-particle Dirac state

|α, β〉 :=
1√
2

(|α〉|β〉 − |β〉|α〉) .

The idea of second quantization is then to specify the states using operators

c†βc
†
α|0〉 = |α, β〉 . (39)

When these operators change sign when they are reordered, antisymmetry of the wave function
will be automatically ensured

|α, β〉 = c†βc
†
α|0〉 = −c†αc

†
β|0〉 = −|β, α〉 . (40)

Naturally, this also implies the Pauli principle for the special case β = α..

4.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use operators with these properties to
represent Slater determinants. We start by motivating the properties of the new operators.
To be able to construct many-electron states, we start from the simplest such state: |0〉 the state
with no electron, i.e., the vacuum state, which we assume to be normalized 〈0|0〉 = 1. Next
we introduce for each single-electron state |α〉 (corresponding to an orbital ϕα(x)) an operator
c†α. We call it a creation operator, since we ask that applying c†α to an N -electron state adds an
electron in state |α〉 to that state, making it anN+1 electron state. In effect, the operator should
be constructed such as to mimic the effect of adding an extra column ϕα and an extra row xN+1

to the Slater determinant (24). Since the order in which we add rows/columns matters for the
sign of the Slater determinant, we postulate that the operators change sign when exchanged:
c†αc
†
β = −c†βc†α. This is more conveniently written as {c†α, c

†
β} = 0 by introducing the anti-

commutator
{A,B} := AB +BA . (41)
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The simplest state we can produce with these operators is the single-electron state |α〉 = c†α|0〉.
When we want to calculate its norm, we have to consider the adjoint of c†α|0〉, formally obtaining
〈α|α〉 = 〈0|cαc†α|0〉, or, more generally, 〈α|β〉 = 〈0|cαc

†
β|0〉. This must mean that cα, the adjoint

of a creation operator, must remove an electron from the state, otherwise the overlap of cαc
†
β|0〉

with the vacuum state 〈0| would vanish. We therefore call the adjoint of the creation operator
an annihilation operator. We certainly cannot take an electron out of the vacuum state, so
cα|0〉 = 0. Moreover, by taking the adjoint or the anti-commutator of the creation operators,
we see that also the annihilation operators anti-commute: {cα, cβ} = 0. Moreover, to obtain
the proper normalization of the single-electron states, we postulate the commutation relation
{cα, c†β} = 〈α|β〉.
Thus, we have defined the vacuum state |0〉 and the set of operators cα related to single-electron
states |α〉 with the properties

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(42)

We note that the creators and annihilators are not ordinary operators in a Hilbert space, but
transfer states from an N -electron to a N ± 1-electron Hilbert space, i.e., they are operators
defined on the Fock space. It is also remarkable that the mixed anti-commutator is the only
place where the orbitals that distinguish different operators enter.
One type of operators is particularly useful for making contact with the real-space picture: The
operators Ψ̂ †(x), with x = (r, σ), that create an electron of spin σ at position r, i.e., in state
|x〉 = |r, σ〉. Because of their importance they get a special name, field operators, and a special
symbol Ψ̂ †(x) instead of c†x, but really they are just ordinary creation operators for the states
corresponding to a delta function at r and a spin σ. The anti-commutator for the field-operators
obviously follow from (42){

Ψ̂(x), Ψ̂(x′)
}

= 0 =
{
Ψ̂ †(x), Ψ̂ †(x′)

}
and

{
Ψ̂(x), Ψ̂ †(x′)

}
= δ(x− x′) . (43)

Given the single-electron wave functions in real space ϕα(x), we can express any creation
operator in terms of the field operators

c†α =

∫
dxϕα(x)Ψ̂ †(x) . (44)

Using (43), it is easy to see that these operator indeed fulfill all properties (42) required of the
creation operators.
Conversely, if we have a complete set of single electron states {ϕαn(x)}, we can expand the field
operators in terms of the corresponding creators and annihilators. Given the overlap matrix
S = (〈αn|αm〉) we can use the Cholesky factorization S−1 = T †T to orthonormalize the
orbitals ϕ̃αn(x) =

∑
Tn,m ϕαm(x). The completeness relation is then∑

n,m

ϕαn(x)
(
S−1

)
n,m

ϕαm(x′) =
∑
j

ϕ̃αj(x) ϕ̃αj(x
′) = δ(x− x′) . (45)
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Using this together with the commutation relations (42) we see that the operators

Ψ̂(x) =
∑
n

ϕ̃αn(x) cαn , (46)

fulfill the commutation relations (43) of the field operators.

4.2 Representation of Slater determinants

We now show that we can write a Slater determinant in terms of the algebra (42) we have
just defined. For this we consider an N -electron state

∏
c†α |0〉 and prove that its real-space

representation, obtained via the field operators is just the corresponding Slater determinant

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣∣ 0〉 (47)

Not surprisingly, the proof is by induction. As a warm-up we consider the case of a single-
electron wave function (N = 1). Using the special case of an anti-commutation relation

{Ψ̂(x), c†α} =

∫
dx′ ϕα(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕα(x) (48)

we see that 〈
0
∣∣∣ Ψ̂(x1) c†α1

∣∣∣ 0〉 =
〈

0
∣∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣∣ 0〉 = ϕα1(x1) (49)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣∣ 0〉 =
〈

0
∣∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣∣ 0〉
=

〈
0
∣∣∣ Ψ̂(x1)c†α1

∣∣∣ 0〉 ϕα2(x2)−
〈

0
∣∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣∣ 0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2) . (50)

We see how anti-commutating automatically produces appropriate sign for the antisymmetric
wave function. Dividing by

√
2, we obtain the desired two-electron Slater determinant.

The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N − 1 terms with alternating sign〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

. . . c†α1

∣∣∣ 0〉 =

+
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1) c†αN−1

. . . c†α1

∣∣∣ 0〉 ϕαN (xN)

−
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣∣ 0〉 ϕαN−1
(xN)

...

(−1)N
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1) c†αN . . . c†α2

∣∣∣ 0〉 ϕα1 (xN)

Using (47) for the N − 1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
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along the N th row. Dividing by
√
N ! we see that we have shown (47) for N -electron states.

Thus we see that instead of working with the Slater determinant Φα1α2...αN (x1, x2, . . . , xN) we
can work with the corresponding N -electron product state

∏
c†α |0〉. In particular, instead of

working with the basis of Slater determinants (27) induced by an orthonormal set of single-
electron states {ϕαn(x)}, we can work with the corresponding basis of product states{ ∏

α1<···<αN

c†αN · · · c
†
α1
|0〉

}
. (51)

4.3 Representation of n-body operators

Having established the relation between product states and Slater determiants, it is straightfor-
ward to express the matrix elements of a general n-body operator (11)

M(x) = M0 +
∑
i

M1(xi) +
∑
i<j

M2(xi, xj) +
∑
i<j<k

M3(xi, xj, xk) + · · · (52)

with N -electron Slater determinants:∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, · · · , xN)Φα1···αN (x1, · · · , xN)

=
〈

0
∣∣∣ cβ1 · · · cβN M̂ c†αN · · · c

†
α1

∣∣∣ 0〉 (53)

with the representation of the n-body operator in terms of field operators

M̂ =
1

N !

∫
dx1 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (54)

Note that this form of the operator is only valid when applied to N -electron states. But from
here on, we can work entirely in terms of our algebra (42).
To see what (54) means we look at its parts (52). As usual, we start with the simplest case,
the zero-body operator, which, up to trivial prefactor, is M0(x1, · · · , xN) = 1. Operating on an
N -electron wave function, it gives

M̂0 =
1

N !

∫
dx1dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
1

N !
1 · 2 · · · N = 1 (55)

where we have used that ∫
dx Ψ̂ †(x)Ψ̂(x) = N̂ (56)
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is the number operator and that applying n annihilation operators Ψ̂(xj) to an N -electron state
gives a state with N − n electrons. We note that we obtain a form of M̂0 = 1 that apparently
does not depend on the number of electrons in the wave function that it is applied to. This was
not the case for the original expression (54).
Next we consider one-body operators M(x1, . . . , xN) =

∑
jM1(xj)

M̂1 =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M1(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M1(xj) (N − 1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M1(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M1(x) Ψ̂(x)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. The operation
leaves the integrals over the variables except xi, a zero-body operator for N − 1 electron states,
operating on Ψ̂(xj)|N -electron state〉.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕαn(x) cαn gives

M̂1 =
∑
n,m

∫
dxϕαn(x)M(x)ϕαm(x) c†αncαm =

∑
n,m

〈αn|M1|αm〉 c†αncαm . (57)

Also here we find a form for M̂1 that is apparently independent of the number of electrons N
and can be evaluated directly in the basis states (51).
For the two-body operators M(x1, . . . , xN) =

∑
i<jM2(xi, xj) we proceed in the familiar way,

anti-commuting first the operators with the coordinates involved in M2 all the way to the left
and right. This time we are left with a zero-body operator for N − 2 electrons:

M̂2 =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M2(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M2(xi, xj) (N − 2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N − 1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M2(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M2(x, x′) Ψ̂(x) Ψ̂(x′)

Expanding in an orthonormal basis, we get

M̂2 =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕαn′ (x

′)ϕαn(x)M2(x, x′)ϕαm(x)ϕαm′ (x
′) c†αn′c

†
αncαmcαm′

=
1

2

∑
n,n′,m,m′

〈αnαn′ |M2|αmαm′〉 c†αn′c
†
αncαmcαm′ (58)
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where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index for
the second, while taking the adjoint of the operators changes their order. Obviously, from the
symmetry M2(x, x′) = M2(x′, x) follows 〈αnαn′ |M2|αmαm′〉 = 〈αn′αn|M2|αm′αm〉.
The procedure generalizes to operators acting on more than two electrons in the natural way.
We note that, while we started from a form of the operators (52) that was explicitly formulated
in an N -electron Hilbert space, the results (55), (57), and (58) are of the same form no matter
what value N takes. Thus these operators are valid not just on some N -electron Hilbert space,
but on the entire Fock space. This is a particular strength of the second quantized formulation.

4.4 Vacuum state and electron-hole transformation

We have introduced the state |0〉 as the state with no electrons, N = 0. The whole formalism
of second quantization requires, however, only (42), i.e., that |0〉 is normalized and annihilated
by the annihilation operators. We can exploit this to obtain more convenient descriptions of
many-electron systems. As a first example, see [19] for the physics background, let us consider
the d-states of an atom. Denoting the operator for putting an electron of spin σ in the d-orbital
with directional quantum number m by d†mσ, we can describe a dN configuration, i.e., a state
with N d-electrons as a linear combination of product states

∏N
n=1 d

†
mnσ|0〉. Here |0〉 is the

state without electrons. This is the description we have used so far. It specifies the states the
electrons are in. For an almost full shell it might, however, be more convenient to specify the
state in terms of the non-occupied states. We can do this by introducing a new “vacuum” state

|full shell〉 = d†−2↓d
†
−1↓ · · · d

†
2↓d
†
−2↑d

†
−1↑ · · · d

†
2↑|0〉 =

∏
σ

−2∏
m=2

d†mσ|0〉 , (59)

corresponding to a filled d-shell. |full shell〉 certainly does not fulfill the requirements for a
vacuum state, since dmσ|full shell〉 6= 0. Thanks to the Pauli principle it is, however, annihilated
by any electron creation operator c†δ in the space of d-orbitals. Thus, when we relabel these
electron creation operators as hole annihilation operators, hδ = c†

δ̄
, then |full shell〉 behaves as

a vacuum state for these newly labeled operators hδ. We pick the relation between the hole
state δ and the corresponding electron states δ̄ such that form of the anti-commutation relations
remain unchanged: {hα, h

†
β} = {c†ᾱ, cβ̄} = 〈β̄|ᾱ〉 = 〈α|β〉. Having established an isomorphism

between the algebra of electron operators and that of the corresponding hole operators, we can
relate electron expectation values to those of hole-states, e.g., 〈0|cαc

†
β|0〉 = 〈full|hᾱh†β̄|full〉.

A common choice is to take the complex conjugate state ϕδ̄(x) = ϕδ(x).
We can now ask what kind of particles the operators h†δ create. This is most easily done in the
basis d†mσ of spherical harmonics; the general h†δ follow then by expanding them in the d†mσ. A
full d-shell has total orbital momentum L = 0 and total spin S = 0. Removing an electron
in state |mσ〉 thus changes Lz from 0 to −m and Sz from 0 to −σ. The corresponding creator
therefore creates a hole with directional quantum number −m and spin −σ. We express this by
writing the electron-hole transformation as h†mσ = d−m,−σ. We can make a similar argument
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for a completely filled band
|full band〉 =

∏
σ

∏
k

b†kσ|0〉 , (60)

with hole operators h†kσ = b−k,−σ.
We can then relate the matrix elements for N -electron states of type |e〉 =

∏
c†αn|0〉 and the

related N -hole states |h〉 =
∏
h†ᾱn|full〉, where |full〉 =

∏Nstates

n=1 c†αn|0〉 is assumed to be nor-
malized, as is required of a vacuum state. Working with orthonormal operators, we find that
the matrix elements for a one-body operator (57) change sign and have a constant shift on the
diagonal

〈h′|M̂1|h〉 =
∑
n,m

〈αn|M1|αm〉 〈h′|c†αncαm|h〉 (61)

=
∑
n,m

〈αn|M1|αm〉 〈h′|hᾱnh
†
ᾱm|h〉 (62)

=
∑
n,m

〈αn|M1|αm〉

 〈ᾱn|ᾱm〉︸ ︷︷ ︸
〈full|c†αncαm |full〉

〈h′|h〉 − 〈h′|h†ᾱmhᾱn|h〉︸ ︷︷ ︸
=〈e′|c†αmcαn |e〉

 (63)

= 〈full|M̂1|full〉 δh′,h − 〈e′|M̂1|e〉 . (64)

In going to the second line, we converted from writing the matrix element in electron operators
to the formulation in hole operators. The identity of the matrix elements for the N -hole and
N -electron states in the third line follows from the fact that the operators cᾱ and hα form, with
their respective vacua, the same algebra. For two-body operators (58) we use

hαhβh
†
γh
†
δ = h†δh

†
γhβhα − 〈α|γ〉hβh

†
δ + 〈α|δ〉hβh

†
γ − 〈β|γ〉h

†
δhα + 〈β|δ〉h†γhα . (65)

Collecting contributions of the direct two-body terms to 〈h′|M̂2|h〉 we get

1

2

∑
αβγδ

〈βα|M2|γδ〉〈h′|δαδ hβh
†
γ−δβγh

†
δ hα|h〉=

1

2

∑
αβ

〈βα|M2|βα〉 δh′,h−
∑
αβγ

〈βα|γα〉〈h′|h†γhβ|h〉

and similarly for minus the exchange terms
1

2

∑
αβγδ

〈βα|M2|γδ〉〈h′|δαγ hβh
†
δ−δβδh

†
γ hα|h〉=

1

2

∑
αβ

〈βα|M2|αβ〉 δh′,h−
∑
αβγ

〈βα|αγ〉〈h′|h†γhβ|h〉

The first terms only contribute to diagonal matrix elements and give the expectation value of
the full shell 〈full|M̂2|full〉. The one-body terms also contribute only to the diagonal when the
full shell is symmetric (atomic shell: radial symmetry, filled band: k = 0) and M2 conserves
the corresponding quantum numbers (atomic shell: m1 +m2 = m3 +m4, filled band: k1 +k2 =

k3 + k4): fixing, e.g., α = γ then also fixes β = δ. Moreover, all terms
∑

α〈βα|M2|βα〉 or
the corresponding exchange term are independent of |β〉 for orbitals of the same symmetry (just
rotate the basis to the desired |β′〉) so that, again, there is just a constant shift of the diagonal
elements

〈h′|M̂2|h〉 =

(
〈full|M̂2|full〉+N

∑
α

(〈βα|M2|βα〉 − 〈βα|M2|αβ〉)

)
δe′,e+〈e′|M̂2|e〉 . (66)
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An interesting new situation arises when we consider product states that are not closed shells.
A popular example is the Fermi sea for a homogeneous electron gas

|Fermi sea〉 =
∏
σ

∏
|k|≤kF

c†kσ|0〉 . (67)

We can now introduce new annihilation operators as

hkσ =

{
c†−k,−σ for |k| ≤ kF
c k, σ for |k| > kF

(68)

They are of hole-type for states occupied in |Fermi sea〉, while for empty states they are of elec-
tron type. This mixing of character has an interesting consequence: electron creation operators
in a basis other than that used for defining the new vacuum are transformed to operators with
mixed creator/annihilator contributions. As an example, the field operator

Ψ̂σ(r) =

∫
dk eikr ck =

∫
|k|≤kF

dk eikr h†−k,−σ +

∫
|k|>kF

dk eikr hk,σ (69)

is no longer a pure annihilation operator in the hole picture. I.e., we no longer get the full
algebra (42) but are restricted to operators defined in the basis that was used to generate the new
vacuum.

5 Many-body states

We now consider small model Hamiltonians to illustrate the techniques introduced so far. This
will also allow us to discuss characteristic many-body states without too much complication.

5.1 Hubbard model

As the first example we study the Hubbard model with two sites, i = 1, 2, between which the
electrons can hop with matrix element −t and with an on-site Coulomb repulsion U

H = −t
∑
σ

(
c†2σc1σ + c†1σc2σ

)
+ U

∑
i∈{1,2}

ni↑ni↓ . (70)

The number of electrons N and Sz are conserved, so the Fock space Hamiltonian is block-
diagonal in the Hilbert spaces with fixed number of up- and down-spin electrons N↑ and N↓
with dimensions

N 0 1 2 3 4

N↑ 0 1 0 2 1 0 2 1 2

N↓ 0 0 1 0 1 2 1 2 2

dim 1 2 2 1 4 1 2 2 1 16
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The Hamiltonian for N = N↑ = 1 is easily constructed. By introducing the basis states c†1↑|0〉
and c†2↑|0〉, we obtain the Hamiltonian matrix

〈
0
∣∣∣ (c1↑

c2↑

)
H
(
c†1↑ c†2↑

) ∣∣∣0〉 =

(
0 −t 〈0|c1↑ c

†
1↑c2↑ c

†
2↑|0〉

−t 〈0|c2↑ c
†
2↑c1↑ c

†
1↑|0〉 0

)
=

(
0 −t
−t 0

)
.

This is easily diagonalized giving the familiar bonding and antibonding solution

|±〉 =
1√
2

(
c†1↑ ± c

†
2↑

)
|0〉 = c†±↑|0〉 . (71)

For N↑ = 1 = N↓, we obtain a non-trivial interacting system

〈
0
∣∣∣

c1↑c2↓

c2↑c1↓

c1↑c1↓

c2↑c2↓

 H
(
c†2↓c

†
1↑ c†1↓c

†
2↑ c†1↓c

†
1↑ c†2↓c

†
2↑

) ∣∣∣0〉 =


0 0 −t −t
0 0 −t −t
−t −t U 0

−t −t 0 U

 . (72)

To diagonalize the matrix, we transform the basis into linear combinations of covalent and ionic
states

|cov±〉 =
1√
2

(
c†2↓c

†
1↑ ± c

†
1↓c
†
2↑

)
|0〉 (73)

|ion±〉 =
1√
2

(
c†1↓c

†
1↑ ± c

†
2↓c
†
2↑

)
|0〉 (74)

It is then easy to verify that |cov−〉 is an eigenstate with eigenvalue εcov− = 0 and that |ion−〉
has eigenenergy εion− = U . The remaining two states mix(

〈cov+|
〈ion+|

)
H
(
|cov+〉 |ion+〉

)
=

1

2

{
U −

(
U 4t

4t −U

)}
. (75)

Rewriting the matrix (
U 4t

4t −U

)
=
√
U2 + 16t2

(
cosΘ sinΘ

sinΘ − cosΘ

)
, (76)

we find the ground state of the half-filled two-site Hubbard model

|gs〉 = cosΘ/2 |cov+〉+ sinΘ/2 |ion+〉 (77)

=
1√
2

(
cos Θ

2
c†2↓c

†
1↑ + cos Θ

2
c†1↓c

†
2↑ + sin Θ

2
c†1↓c

†
1↑ + sin Θ

2
c†2↓c

†
2↑

) ∣∣0〉 (78)

with an energy of εgs = (U −
√
U2 + 16t2)/2. Without correlations (U = 0 ; Θ = π/2), all

basis states have the same prefactor, so we can factorize the ground state, writing it as a product
c†+↓c

†
+↑|0〉 of the operators defined in (71). For finite U this is no longer possible. In the strongly

correlated limit U � t (Θ ↘ 0) the ground state becomes the maximally entangled state |cov+〉
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Fig. 5: Spectrum of the two-site Hubbard model as a function of U/t.

and can not even approximately be expressed as a two-electron Slater determinant. See [15] for
a more detailed discussion, but beware that there the basis was chosen slightly differently to
make the symmetry of the singlet/triplet state apparent.
We can, however, construct a product state, exploiting the freedom we gained by introducing
second quantization: the product wave function in Fock space

|VB〉 =
(

1 + c†2↓c
†
1↑

)(
1 + c†1↓c

†
2↑

) ∣∣0〉 (79)

= |0〉︸︷︷︸
N=0

+
(
c†2↓c

†
1↑ + c†1↓c

†
2↑

) ∣∣0〉︸ ︷︷ ︸
N↑=1=N↓

+ c†2↓c
†
1↓c
†
2↑c
†
1↑|0〉︸ ︷︷ ︸

N=4

(80)

has a component in the two-electron Hilbert space that is just the covalent state |cov+〉. It would
be very desirable to generalize this approach to a half-filled state without double occupancies,
i.e., a Mott state and to models with more than two sites. We might try an ansatz

|VB?〉 =
∏
〈ij〉

(
1 + c†j↓c

†
i↑ + c†i↓c

†
j↑

) ∣∣0〉 (81)

that has the advantage of not producing doubly occupied sites. The product is over pairs of
sites, i.e., bonds, where each site only occurs in one such bond (if a site i participated in two
bonds 〈ij〉 and 〈ik〉, there would be terms with doubly occupied site i, e.g., c†k↓c

†
i↑ c
†
i↓c
†
k↑). There

are, however, many ways we could partition the lattice sites into bonds, and to maintain the
symmetry of the lattice we would have to sum over them. Alternatively, we could take products
of all bond states and use a Gutzwiller projection to eliminate the doubly occupied sites. This
is the idea of the resonating valence bond (RVB) state [20]. Unfortunately, neither approach to
the Mott state is easy to handle.
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In the negative-U Hubbard model we do not have such problems. For U � t the ground state
is a linear combination of doubly occupied sites |ion+〉, which can be obtained from

|pair〉 =
1

2

(
1 + c†2↓c

†
2↑

) (
1 + c†1↓c

†
1↑

)
|0〉 . (82)

As each pair of creation operators in the product involves only a single site, this ansatz readily
generalizes to larger lattices

|pair〉 =
∏
i

1√
2

(
1 + c†i↓c

†
i↑

)
|0〉 . (83)

The idea of such grand-canonical product states in Fock space are central for understanding the
superconducting state.

5.2 BCS state

We now turn from the Hubbard model to the BCS Hamiltonian

HBCS =
∑
kσ

εk c
†
kσckσ +

∑
k,k′

Vk,k′ c
†
−k′↓c

†
k′↑ck↑c−k↓ (84)

in which the interaction term scatters Cooper pairs of electrons (k ↑, −k ↓) with different
values of k. We start again by looking at a two-site model. With periodic boundary conditions,
the bonding and antibonding states (71) become states with k = 0 and k = π, respectively.
Note that for both values (k = π being at the boundary of the Brillouin zone) we have k = −k.
Setting V0,π = −I , we obtain the two-site Hamiltonian

H =
∑

k∈{0,π},σ

εk nkσ − I
(
c†π↓c

†
π↑c0↑c0↓ + c†0↓c

†
0↑cπ↑cπ↓

)
. (85)

For N↑ = 1 = N↓ the Hamiltonian matrix is

〈
0
∣∣∣

c0↑cπ↓
cπ↑c0↓

c0↑c0↓

cπ↑cπ↓

 H
(
c†π↓c

†
0↑ c†0↓c

†
π↑ c†0↓c

†
0↑ c†π↓c

†
π↑

) ∣∣∣0〉 =


ε0 + επ 0 0 0

0 ε0 + επ 0 0

0 0 2ε0 −I
0 0 −I 2επ

 (86)

To find the ground state, we need only consider the subspace of the Cooper pairs

|pairk〉 = c†−k↓c
†
k↑|0〉 . (87)

Writing ε̄ = (ε0 + επ)/2 and ∆ = επ − ε0(
2ε0 −I
−I 2επ

)
= 2ε̄−

(
∆ I

I −∆

)
= 2ε̄−

√
I2 +∆2

(
cosΘ sinΘ

sinΘ − cosΘ

)
(88)
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we diagonalize, just as we did in the case of the Hubbard model, to find the ground state of the
half-filled two-site BCS-model for I > 0

|gs〉 = cosΘ/2 |pair0〉+ sinΘ/2 |pairπ〉 =
(

cos Θ
2
c†0↓c

†
0↑ + sin Θ

2
c†π↓c

†
π↑

) ∣∣0〉 (89)

It is similar in form to the ground state (82) of the negative-U two-site Hubbard model, except
that the two pairs can have different amplitudes, as the pair with lower band energy εk is pre-
ferred. Introducing Θ0 = Θ and Θπ = π − Θ we can recover this state (for any I > 0, not
just in the limit of large interaction as for the negative-U Hubbard model) from the Fock-space
product-state

|BCS〉 =
∏

k∈{0,π}

1√
1 + cos2 Θk

2

(
1 + cos Θk

2
c†−k↓c

†
k↑

) ∣∣0〉 . (90)

This readily generalizes to larger numbers of k-points, where it becomes the BCS wave function.

6 Conclusions

We have studied the consequences of one of the most bizarre features of quantum mechan-
ics, the existence of indistinguishable particles. To treat such particles, we have to introduce
artificial labels but must make sure that no observable depends on them. The invariance un-
der permutations of these labels implies that many-particle wave functions must be properly
(anti)symmetrized. The type of symmetry is given by the spin-statistics connection. Unfortu-
nately, imposing the correct (anti)symmetry on a generic N -particle wave function is a compu-
tationally hard problem as there are N ! permutations. One way to get around this problem is
to integrate-out all degrees of freedom that are not explicitly considered. This gives rise to the
reduced density matrices. Another is to exploit the fact that products of single-particle wave
functions can be efficiently anti-symmetrized by forming the Slater determinant. Working with
Slater determinants is made more convenient by introducing operators that are designed to en-
code the Fermi sign in their position. This technique of second quantization has two important
benefits: we are no longer restricted to calculating with Slater determinants in configuration-
space representation but can work with abstract Dirac states instead. Even more importantly,
creation and annihilation operators are defined in Fock space. They enable us to write observ-
ables in a unified way on Fock space. Moreover, they allow us to also write wave functions in
Fock space. Using this additional degree of freedom, it is possible to write non-Fermi-liquid
states as generalized Slater determinants (product states), the most famous being the BCS state.
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Contents
1 Magnetism in strongly-correlated systems 2

2 The Hubbard model 7
2.1 Itinerant magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Isolated magnetic ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Interacting localized moments . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The Kondo model 28

4 Conclusion 31

A Formalism 33
A.1 Matsubara Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.3 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

E. Pavarini, E. Koch, and U. Schollwöck
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1 Magnetism in strongly-correlated systems

Long-range magnetic order is a manifestation of emergence, the hallmark of strong electron-
electron correlations. It arises from the same interactions that lead to the metal-insulator tran-
sition and orbital-ordering or that give rise to the Kondo effect. And yet, magnetic order phe-
nomena can, to a large extent, be explained by solving spin models and forgetting about the
microscopic mechanisms which justify them. To understand models and mechanisms we have,
however, to take a step back into the complex world of strong correlations [1–7].
Magnetism ultimately arises from the intrinsic magnetic moment of electrons, µ = −gµBs,
where µB is the Bohr magneton and g ' 2.0023 is the electronic g-factor. It is however an
inherently quantum mechanical effect, the consequence of the interplay between Pauli exclusion
principle, Coulomb electron-electron interaction, and hopping of electrons. To understand this
let us consider the simplest possible system, an isolated atom or ion. In the non-relativistic limit
electrons in a single ion are typically described by the Hamiltonian

HNR
e = −1

2

∑
i

∇2
i −

∑
i

Z

ri
+
∑
i>j

1

|ri − rj|
,

where Z is the atomic number and {ri} are the coordinates of the electrons with respect to the
ionic nucleus. Here, as in the rest of this lecture, we use atomic units. If we consider only the
external atomic shell with quantum numbers nl, for example the 3d shell of transition-metal
ions, we can rewrite this Hamiltonian as follows

HNR
e = εnl

∑
mσ

c†mσcmσ +
1

2

∑
σσ′

∑
mm̃m′m̃′

U l
mm′m̃m̃′c

†
mσc

†
m′σ′cm̃′σ′cm̃σ. (1)

Here εnl is the energy of the electrons in the nl atomic shell and m the degenerate one-electron
states in that shell. For a hydrogen-like atom

εnl = −
1

2

Z2

n2
.

The couplings U l
mm′m̃m̃′ are the four-index Coulomb integrals. In a basis of atomic functions

the bare Coulomb integrals are

U iji′j′

mm′m̃m̃′ =

∫
dr1

∫
dr2

ψimσ(r1)ψjm′σ′(r2)ψj′m̃′σ′(r2)ψi′m̃σ(r1)

|r1 − r2|
,

and

U l
mm′m̃m̃′ = U iiii

mm′m̃m̃′ m,m′, m̃, m̃′ ∈ nl shell.

The eigenstates of Hamiltonian (1) for fixed number of electrons, N , are the multiplets [8, 9].
Since in HNR

e the Coulomb repulsion and the central potential are the only interactions, the
multiplets can be labeled with S and L, the quantum numbers of the electronic total spin and
total orbital angular momentum operators, S =

∑
i si, and L =

∑
i li. Closed-shell ions have

S = L = 0 in their ground state. Ions with a partially-filled shell are called magnetic ions; the
value of S and L for their ground state can be obtained via two rules due to Friedrich Hund.
They say that the lowest-energy multiplet is the one with
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• the largest value of S

• the largest value of L compatible with the previous rule

The main relativistic effect is the spin-orbit interaction, which has the form HSO
e =

∑
i λi li·si.

For not too heavy atoms it is a weak perturbation. Then, for electrons in a given shell, we can
use the first and second Hund’s rule to rewrite HSO

e in a simpler form

HSO
e ∼ λ L · S =

1

2
λ
(
J2 − S2 −L2

)
, (2)

λ ∼ [2Θ(1− 2n)− 1] gµ2
B

1

2S

〈
1

r

d

dr
vR(r)

〉
,

where n is the filling and Θ the step function; vR(r) is the effective potential, which includes,
e.g., the Hartree electron-electron term [10]. For a hydrogen-like atom, vR(r) = −Z/r.
Because of the LS coupling (2) the eigenstates have quantum numbers L, S and J , where
J = S + L is the total angular momentum. The value of J in the ground-state multiplet is
given by the third Hund’s rule

• total angular momentum J =


|L− S| for filling n < 1/2

S for filling n = 1/2

L+ S for filling n > 1/2

In the presence of spin-orbit interaction a given multiplet is then labeled by 2S+1LJ , and its
states can be indicated as |JJzLS〉. If we consider, e.g., the case of the ion Cu2+, characterized
by the [Ar] 3d9 electronic configuration, Hund’s rules tell us that the 3d ground-state multiplet
has quantum numbers S = 1/2, L = 2 and J = 5/2. A Mn3+ ion, which is in the [Ar] 3d4

electronic configuration, has instead a ground-state multiplet with quantum numbers S = 2,
L = 2 and J = 0. The order of the Hund’s rules reflects the hierarchy of the interactions. The
strongest interactions are the potential vR(r), which determines εnl, and the average Coulomb
interaction, the strength of which is measured by the average direct Coulomb integral,

Uavg =
1

(2l + 1)2

∑
mm′

U l
mm′mm′ .

For a N -electron state the energy associated with these two interactions is E(N) = εnlN +

UavgN(N − 1)/2, the same for all multiplets of a given shell. The first Hund’s rule is instead
due to the average exchange Coulomb integral, Javg, defined as

Uavg − Javg =
1

2l(2l + 1)

∑
mm′

(
U l
mm′mm′ − U l

mm′m′m

)
,

which is the second largest Coulomb term; for transition-metal ions Javg ∼ 1 eV. Smaller
Coulomb integrals determine the orbital anisotropy of the Coulomb matrix and the second
Hund’s rule.1 The third Hund’s rule comes, as we have seen, from the spin-orbit interaction
which, for not too heavy atoms, is significantly weaker than all the rest.

1For more details on Coulomb integrals and their averages see Ref. [10].
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The role of Coulomb electron-electron interaction in determining S and L can be understood
through the simple example of a C atom, electronic configuration [He] 2s2 2p2. We consider
only the p shell, filled by two electrons. The Coulomb exchange integrals have the form

Jpm,m′ = Up
mm′m′m (3)

=

∫
dr1

∫
dr2

ψimσ(r1)ψim′σ(r2)ψimσ(r2)ψim′σ(r1)

|r1 − r2|

=

∫
dr1

∫
dr2

φimm′σ(r1)φimm′σ(r2)

|r1 − r2|
=

1

V

∑
k

4π

k2
|φimm′σ(k)|2 ,

and they are therefore positive. They generate the Coulomb-interaction term

−1

2

∑
σ

∑
m6=m′

Jpm,m′c
†
mσcmσc

†
m′σcm′σ = −1

2

∑
m6=m′

2Jpm,m′

[
Smz S

m′

z +
1

4
nmn

′
m

]
.

This interaction yields an energy gain if the two electrons occupy two different p orbitals with
parallel spins, hence favors the state with the largest spin (first Hund’s rule). It turns out that for
the p2 configuration there is only one possible multiplet with S = 1, and such a state has L = 1.
There are instead two excited S = 0 multiplets, one with L = 0 and the other with L = 2; the
latter is the one with the lowest energy (second Hund’s rule).
To understand the magnetic properties of an isolated ion we have to analyze how its levels are
modified by an external magnetic field h. The effect of a magnetic field is described by

HH
e = µB (gS +L) · h+

h2

8

∑
i

(
x2
i + y2

i

)
= HZ

e +HL
e . (4)

The linear term is the Zeeman Hamiltonian. If the ground-state multiplet is characterized by
J 6= 0 the Zeeman interaction splits its 2J + 1 degenerate levels. The second order term yields
Larmor diamagnetism, which is usually only important if the ground-state multiplet has J = 0,
as it happens for ions with closed external shells. The energy µBh is typically very small (for
a field as large as 100 T it is as small as 6 meV); it can however be comparable with or larger
than the spin-orbit interaction if the latter is tiny (very light atoms). Taking all interactions into
account, the total Hamiltonian is

He ∼ HNR
e +HSO

e +HH
e .

In a crystal the electronic Hamiltonian is complicated by the interaction with other nuclei and
their electrons. The non-relativistic part of the Hamiltonian takes then the form

HNR
e = −1

2

∑
i

∇2
i +

1

2

∑
i6=i′

1

|ri − ri′ |
−
∑
iα

Zα
|ri −Rα|

+
1

2

∑
α6=α′

ZαZα′

|Rα −Rα′|
,

where Zα is the atomic number of the nucleus located at position Rα. In a basis of localized
Wannier functions [10] this Hamiltonian can be written as

HNR
e = −

∑
ii′σ

∑
mm′

ti,i
′

m,m′c
†
imσci′m′σ

+
1

2

∑
ii′jj′

∑
σσ′

∑
mm′

∑
m̃m̃′

U iji′j′

mm′m̃m̃′c
†
imσc

†
jm′σ′cj′m̃′σ′ci′m̃σ, (5)
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where

ti,i
′

m,m′ = −
∫
dr ψimσ(r)

[
−1

2
∇2 + vR(r)

]
ψi′m′σ(r).

The terms εm,m′ = −ti,im,m′ yield the crystal-field matrix and ti,i
′

m,m′ with i 6= i′ the hopping
integrals. The label m indicates here the orbital quantum number of the Wannier function.
In general the Hamiltonian (5) will include states stemming from more than a single atomic
shell. For example, in the case of strongly-correlated transition-metal oxides, the set {im} in-
cludes transition-metal 3d and oxygen 2p states. The exact solution of the many-body problem
described by (5) is an impossible challenge. The reason is that the properties of a many-body
system are inherently emergent and hence hard to predict ab-initio in the lack of any understand-
ing of the mechanism behind them. In this lecture, however, we want to focus on magnetism.
Since the nature of cooperative magnetic phenomena in crystals is nowadays to a large extent
understood, we can find realistic approximations to (5) and even map it onto simpler models
which still retain the essential ingredients to explain long-range magnetic order.
Let us identify the parameters of the electronic Hamiltonian important for magnetism. The first
is the crystal-field matrix εm,m′ . The crystal field at a given site i is a non-spherical potential due
to the joint effect of the electric field generated by the surrounding ions and of covalent-bond
formation [9]. The crystal field might split the levels within a given shell and has therefore a
strong impact on magnetic properties. We can identify three ideal regimes. In the strong crystal
field limit the crystal field splitting is so large that it is comparable with the average Coulomb
exchange responsible for the first Hund’s rule. This can happen in 4d or 5d transition-metal
oxides. A consequence of an intermediate crystal field (weaker than the average Coulomb
exchange but larger than Coulomb anisotropy and spin-orbit interaction) is the quenching of the
angular momentum, 〈L〉 = 0. In this limit the second and third Hund’s rule are not respected.
This typically happens in 3d transition-metal oxides. In 4f systems the crystal-field splitting
is usually much weaker than the spin-orbit coupling (weak crystal field limit) and mainly splits
states within a given multiplet, leaving a reduced magnetic moment. In all three cases, because
of the crystal field, a magnetic ion in a crystal might lose, totally or partially, its spin, angular
or total moment. Or, sometimes, it is the other way around. This happens for Mn3+ ions, which
should have a J = 0 ground state according to the third Hund’s rule. However in perovskites
such as LaMnO3 they behave as S = 2 ions because of the quenching of the angular momentum.
Even if the crystal field does not suppress the magnetic moment of the ion, the electrons might
delocalize to form broad bands completely losing their original atomic character. This happens,
e.g., if the hopping integrals ti,i

′

m,m′ are much larger than the average on-site Coulomb interaction
Uavg. Surprisingly, magnetic instabilities arise even in the absence of localized moments. This
itinerant magnetism is mostly due to band effects, i.e., it is associated with a large one-electron
linear static response-function, χ0(q; 0). In this limit correlation effects are typically weak. To
study them we can exploit the power of the standard model of solid-state physics, the density-
functional theory (DFT), taking into account Coulomb interaction effects beyond the local-
density approximation (LDA) at the perturbative level, e.g., in the random-phase approximation
(RPA). With this approach we can understand and describe Stoner instabilities.
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In the opposite limit, the local moments regime, the hopping integrals are small with respect
to Uavg. This is the regime of strong electron-electron correlations, where complex many-body
effects, e.g., those leading to the Mott metal-insulator transition, play an important role. At
low enough energy, however, only spin excitations matter. Ultimately, at integer filling we can
integrate out (downfold) charge fluctuations and describe the system via effective spin Hamilto-
nians. The latter typically take the form

HS =
1

2

∑
ii′

Γ i,i′ Si · Si′ + · · · = HH
S + . . . . (6)

The term HH
S given explicitly in (6) is the Heisenberg Hamiltonian, and Γ i,i′ is the Heisenberg

exchange coupling, which can be antiferromangetic (Γ i,i′ > 0) or ferromagnetic (Γ i,i′ < 0).
The Hamiltonian (6) can, for a specific system, be quite complicated, and might include long-
range exchange interactions or anisotropic terms. Nevertheless, it represents a huge simplifica-
tion compared to the unsolvable many-body problem described by (5), since, at least within very
good approximated schemes, it can be solved. Spin Hamiltonians of type (6) are the minimal
models which still provide a realistic picture of long-range magnetic order in strongly-correlated
insulators. There are various sources of exchange couplings. Electron-electron repulsion itself
yields via Coulomb exchange a ferromagnetic Heisenberg interaction, the Coulomb exchange
interaction. The origin of such interaction can be understood via a simple model with a single
orbital, m. The inter-site Coulomb exchange coupling has then the form

J i,i
′
= U ii′i′i

mmmm =

∫
dr1

∫
dr2

ψimσ(r1)ψi′mσ(r2)ψimσ(r2)ψi′mσ(r1)

|r1 − r2|
,

and it is therefore positive, as one can show by following the same steps that we used in Eq. (3)
for Jpm,m′ . Hence, the corresponding Coulomb interaction yields a ferromagnetic Heisenberg-
like Hamiltonian with Γ i,i′ = −2J i,i′ < 0. A different source of magnetic interactions are the
kinetic exchange mechanisms (direct exchange, super-exchange, double exchange, Rudermann-
Kittel-Kasuya-Yosida interaction . . . ), which are mediated by the hopping integrals. Kinetic
exchange couplings are typically (with few well understood exceptions) antiferromagnetic [11].
A representative example of kinetic exchange will be discussed in the next section.

While itinerant and local moment regime are very interesting ideal limit cases, correlated ma-
terials elude rigid classifications. The same system can present features associated with both
regimes, although at different temperatures and/or energy scales. This happens in Kondo sys-
tems, heavy Fermions, metallic strongly-correlated materials, and doped Mott insulators.

In this lecture we will discuss in representative cases the itinerant and localized moment regime
and their crossover, as well as the most common mechanisms leading to magnetic cooperative
phenomena. Since our target is to understand strongly-correlated materials, we adopt the for-
malism typically used for these systems. A concise introduction to Matsubara Green functions,
correlation functions, susceptibilities and linear-response theory can be found in the Appendix.
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Fig. 1: The band structure of the one-band tight-binding model (hypercubic lattice). The
hopping integral is t = 0.4 eV. From left to right: one-, two-, and three-dimensional case. At
half-filling (n = 1) the Fermi level is at zero energy.

2 The Hubbard model

The simplest model that we can consider is the one-band Hubbard model

H = εd
∑
i

∑
σ

c†iσciσ − t
∑
〈ii′〉

∑
σ

c†iσci′σ + U
∑
i

ni↑ni↓ = Hd +HT +HU , (7)

where εd is the on-site energy, t is the hopping integral between first nearest neighbors 〈ii′〉 and
U the on-site Coulomb repulsion; c†iσ creates an electron in a Wannier state with spin σ centered
at site i and niσ = c†iσciσ. The Hubbard model is a simplified version of Hamiltonian (5) with
m = m′ = m̃ = m̃′ = 1 and 

εd = −ti,i1,1

t = t
〈i,i′〉
1,1

U = U iiii
1111

.

In the U = 0 limit the Hubbard model describes a system of independent electrons. The
Hamiltonian is then diagonal in the Bloch basis

Hd +HT =
∑
k

∑
σ

[εd + εk]c
†
kσckσ. (8)

The energy dispersion εk depends on the geometry and dimensionality d of the lattice. For a
hypercubic lattice in d dimensions

εk = −2t
d∑

ν=1

cos(krνa),

where a is the lattice constant, and r1 = x, r2 = y, r3 = z. The energy εk does not depend on
the spin. In Fig. 1 we show εk in the one-, two- and three-dimensional case.
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In the opposite limit (t = 0) the Hubbard model describes a collection of isolated atoms. Each
atom has four electronic many-body states

|N,S, Sz〉 N S E(N)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1
2
, ↑〉 = c†i↑|0〉 1 1/2 εd

|1, 1
2
, ↓〉 = c†i↓|0〉 1 1/2 εd

|2, 0, 0〉 = c†i↑c
†
i↓|0〉 2 0 2εd + U

(9)

where E(N) is the total energy, N the total number of electrons and S the total spin. We can
express the atomic Hamiltonian Hd +HU in a form in which the dependence on Ni, Si, and Siz
is explicitly given

Hd +HU = εd
∑
i

ni + U
∑
i

[
−
(
Siz
)2

+
n2
i

4

]
, (10)

where Siz = (ni↑ − ni↓)/2 is the z component of the spin operator and ni =
∑

σ niσ = Ni.
In the large t/U limit and at half-filling we can downfold charge fluctuations and map the
Hubbard model into an effective spin model of the form

HS =
1

2
Γ
∑
〈ii′〉

[
Si · Si′ −

1

4
nini′

]
. (11)

The coupling Γ can be calculated by using second-order perturbation theory. For a state in
which two neighbors have opposite spins, | ↑, ↓〉 = c†i↑c

†
i′↓|0〉, we obtain the energy gain

∆E↑↓ ∼ −
∑
I

〈↑, ↓ |HT |I〉〈I
∣∣∣∣ 1

E(2) + E(0)− 2E(1)

∣∣∣∣ I〉〈I|HT | ↑, ↓〉 ∼ −
2t2

U
.

Here |I〉 ranges over the excited states with one of the two neighboring sites doubly occupied
and the other empty, | ↑↓, 0〉 = c†i↑c

†
i↓|0〉, or |0, ↑↓〉 = c†i′↑c

†
i′↓|0〉; these states can be occupied

via virtual hopping processes. For a state in which two neighbors have parallel spins, | ↑, ↑〉 =
c†i↑c

†
i′↑|0〉, no virtual hopping is possible because of the Pauli principle, and ∆E↑↑ = 0. Thus

1

2
Γ ∼ (∆E↑↑ −∆E↑↓) =

1

2

4t2

U
. (12)

The exchange coupling Γ = 4t2/U is positive, i.e., antiferromagnetic.
Canonical transformations [12] provide a scheme to derive systematically the effective spin
model at any perturbation order. Let us consider a unitary transformation of the Hamiltonian

HS = eiSHe−iS = H + [iS,H] +
1

2
[iS, [iS,H]] + . . . .

We search for a transformation operator which eliminates, at a given order, hopping integrals
between states with a different number of doubly occupied states. To do this first we split the
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Fig. 2: Left: The crystal structure of HgBa2CuO4 showing the two-dimensional CuO2 layers.
Spheres represent atoms of Cu (blu), O (red), Ba (yellow), and Hg (grey). Right: A CuO2 layer.
The first nearest-neighbors hopping integral between neighboring Cu sites, t, is roughly given
by ∼ 4t2pd/∆dp, where tpd is the hopping between Cu d and O p states and ∆dp = εd − εp their
charge-transfer energy.

kinetic term HT into a component, H0
T , which does not change the number of doubly occupied

states and two terms which either increase it (H+
T ) or decrease it (H−T ) by one

HT = −t
∑
〈ii′〉

∑
σ

c†iσci′σ = H0
T +H+

T +H−T ,

where

H0
T = −t

∑
〈ii′〉

∑
σ

ni−σc
†
iσci′σni′−σ

−t
∑
〈ii′〉

∑
σ

(1− ni−σ) c†iσci′σ (1− ni′−σ) ,

H+
T = −t

∑
〈ii′〉

∑
σ

ni−σc
†
iσci′σ (1− ni′−σ) ,

H−T =
(
H+
T

)†
.
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The term H0
T commutes with HU . The remaining two terms fulfill the commutation rules

[H±T , HU ] = ∓UH±T .

The operator S can be expressed as a linear combination of powers of the three operators
H0
T , H

+
T , and H−T . The actual combination which gives the effective spin model at a given

order can be found via a recursive procedure [12]. At half-filling and second order, however,
we can simply guess the form of S which leads to the Hamiltonian (11). By defining

S = − i

U

(
H+
T −H

−
T

)
we obtain

HS = HU +H0
T +

1

U

{[
H+
T , H

−
T

]
+
[
H0
T , H

−
T

]
+
[
H+
T , H

0
T

]}
+O(U−2).

If we restrict the Hilbert space of HS to the subspace with one electron per site (half filling),
no hopping is possible without increasing the number of occupied states; hence, only the term
H−T H

+
T contributes. After some algebra, we obtain HS = H

(2)
S +O(U−2) with

H
(2)
S =

1

2

4t2

U

∑
ii′

[
Si · Si′ −

1

4
nini′

]
.

The Hubbard model (7) is seldom realized in Nature in this form. To understand real materials
one typically has to take into account orbital degrees of freedom, long-range hopping inte-
grals and sometimes longer range Coulomb interactions or perhaps even more complex many-
body terms. Nevertheless, there are very interesting systems whose low-energy properties are,
in the first approximation, described by (7). These are strongly correlated organic crystals
(one-dimensional case) and high-temperature superconducting cuprates, in short HTSCs (two-
dimensional case). An example of HTSC is HgBa2CuO4, whose structure is shown in Fig. 2.
It is made of CuO2 planes well divided by BaO-Hg-BaO blocks. The x2 − y2-like states stem-
ming from the CuO2 planes can be described via a one-band Hubbard model. The presence of
a x2 − y2-like band at the Fermi level is a common feature of all HTSCs.

2.1 Itinerant magnetism
2.1.1 Pauli paramagnetism

Let us consider first the non-interacting limit of the Hubbard model, Hamiltonian (8). In the
presence of an external magnetic field h = hz ẑ the energy εk of a Bloch state is modified by
the Zeeman interaction (4) as follows

εk → εkσ = εk +
1

2
σgµBhz,

where we take the direction of the magnetic field as quantization axis and where on the right-
hand side σ = 1 or−1 depending if the spin is parallel or antiparallel to h. Thus, at linear order
in the magnetic field, the T = 0 magnetization of the system is

Mz = −
1

2
(gµB)

1

Nk

∑
k

[nk↑ − nk↓] ∼
1

4
(gµB)

2 ρ(εF )hz,
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Fig. 3: Top: Density of states (DOS) per spin, ρ(ε)/2, for a hypercubic lattice in one, two,
and three dimension. The energy dispersion is calculated for t = 0.4 eV. The curves exhibit
different types of Van-Hove singularities. Bottom: Effects of ρ(εF ) on the temperature depen-
dence of χR = χP (T )/χP (0). Up to ∼ 1000 K only the logarithmic Van-Hove singularity
(two-dimensional case) yields a sizable effect.

where nkσ = c†kσckσ andNk is the number of k points; ρ(εF ) is the total density of states (DOS)
at the Fermi level, εF . The T = 0 susceptibility is then given by the Pauli formula

χP (0) =
1

4
(gµB)

2 ρ(εF ).

In linear-response theory (see Appendix) the magnetization induced along ẑ by an external
magnetic field hz(q;ω)ẑ oscillating with vector q is given by

Mz(q;ω) = χzz(q;ω)hz(q;ω).

The Pauli susceptibility χP (0) is thus the static (ω = 0) and uniform (q = 0) linear response
function to an external magnetic field. At finite temperature the Pauli susceptibility takes the
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form

χP (T ) =
1

4
(gµB)

2

∫
dερ(ε)

(
−dn(ε)

dε

)
,

where n(ε) = 1/(1 + e(ε−µ)β) is the Fermi distribution function, β = 1/kBT and µ the chem-
ical potential. χP (T ) depends weakly on the temperature; its temperature dependence is more
pronounced, however, in the presence of van-Hove singularities close to the Fermi level (Fig. 3).
Although we have considered here the non-interacting limit of the Hubbard model, Pauli para-
magnetism is important even in the U 6= 0 case. This happens in the so-called Fermi-liquid
regime. When Landau Fermi-liquid theory holds there is a one-to-one correspondence between
the one-electron states and the excitations of the many-body system, the quasi particles. The
latter are characterized by heavy masses m∗

m∗

m
= 1 +

1

3
F s

1 > 1, F s
1 > 0

and are more polarizable than electrons; correspondingly the system exhibits an enhanced Pauli
susceptibility

χ

χP
=

1

1 + F a
0

> 1, F a
0 < 0.

The coefficients F s
1 and F a

0 are Landau parameters. Because of the finite lifetime of quasiparti-
cles and/or non Fermi-liquid phenomena of various nature, the temperature and energy regime
in which the Fermi-liquid behavior is observed can be very narrow. This happens, e.g., for
heavy Fermions or Kondo systems. We will discuss this in the last section.

2.1.2 Stoner instabilities

In the presence of the Coulomb interaction U 6= 0 finding the solution of the Hubbard model
requires many-body techniques. Nevertheless, in the small U limit, we can already learn a lot
about magnetism from Hartree-Fock (HF) static mean-field theory. In the simplest version of
the HF approximation we make the following substitution

HU = U
∑
i

ni↑ni↓ → HHF
U = U

∑
i

[ni↑〈ni↓〉+ 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉] .

This approximation transforms the Coulomb two-particle interaction into an effective single-
particle interaction. Let us search for a ferromagnetic solution and set therefore

〈niσ〉 = nσ =
n

2
+ σm,

where m = (n↑ − n↓)/2 and n = n↑ + n↓. It is convenient to rewrite the mean-field Coulomb
energy as in (10), i.e., as a function of m, n and Siz

HHF
U = U

∑
i

[
−2mSiz +m2 +

n2

4

]
. (13)
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Fig. 4: Band-structure trend in hole-doped cuprates and correlation with Tc max, the maximum
value of the critical temperature for superconductivity. From Ref. [13].

The solution of the problem defined by the HamiltonianH0+H
HF
U amounts to the self-consistent

solution of a non-interacting electron system with Bloch energies

εUkσ = εk + n−σ U = εk +
n

2
U − σmU.

In a magnetic field we additionally have to consider the Zeeman splitting. Thus

εkσ = εUkσ +
1

2
gµBhzσ.

In the small U limit and for T → 0 the magnetization Mz = −gµBm is then given by

Mz ∼ χP (0)

[
hz −

2

gµB
Um

]
= χP (0)

[
hz + 2(gµB)

−2UMz

]
Solving for Mz we find the Stoner expression

χS(0; 0) =
χP (0)

1− 2 (gµB)
−2 UχP (0)

.

Thus with increasing U the q = 0 static susceptibility increases and at the critical value

Uc = 2/ρ(εF )

it diverges, i.e., even an infinitesimal magnetic field can produce a finite magnetization. This
means that the ground state becomes unstable against ferromagnetic order.
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Fig. 5: Top: Effect of r = t′/t on the band structure of the two-dimensional tight-binding
model. Black line: Fermi level at half filling. Bottom: corresponding density of states per spin.

Let us consider the case of the half-filled d-dimensional hypercubic lattice whose density of
states is shown in Fig. 3. In three dimensions the DOS is flat around the Fermi level, e.g.,
ρ(εF ) ∼ 2/W where W is the band width. For a flat DOS ferromagnetic instabilities are likely
only when U ∼ W , a rather large value of U , which typically also brings in strong-correlation
effects not described by static mean-field theory. In two dimensions we have a rather different
situation because a logarithmic Van-Hove singularity is exactly at the Fermi level (Fig. 3); a
system with such a density of states is unstable toward ferromagnetism even for very small U .
In real materials distortions or long-range interactions typically push the Van-Hove singularities
away from the Fermi level. In HTSCs the electronic dispersion is modified as follows by the
hopping t′ between second nearest neighbors

εk = −2t[cos(kxa) + cos(kya)] + 4t′ cos(kxa) cos(kya).

As shown in Fig. 4, the parameter r ∼ t′/t ranges typically from ∼ 0.15 to 0.4 [13]. Fig. 5
shows that with increasing r the Van-Hove singularity moves downwards in energy.
It is at this point natural to ask ourselves if ferromagnetism is the only possible instability. For
a given system, magnetic instabilities with q 6= 0 might be energetically favorable with respect
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Fig. 6: Doubling of the cell due to antiferromagnetic order and corresponding folding of the
Brillouin zone (BZ) for a two-dimensional hypercubic lattice. The antiferromagnetic Q2 =
(π/a, π/a, 0) vector is also shown.

to ferromagnetism; an example of a finite-q instability is antiferromagnetism (see Fig. 6).
To investigate finite-q instabilities we generalize the Stoner criterion. Let us consider a mag-
netic excitation characterized by the vector q commensurate with the reciprocal lattice. This
magnetic superstructure defines a new lattice; the associated supercell includes j = 1, . . . , Nj

magnetically non-equivalent sites. We define therefore the quantities

Siz(q) =
∑
j

eiq·RjSjiz ,

〈Sjiz 〉 = m cos(q ·Rj),

where j runs over the magnetically non-equivalent sites {Rj} and i over the supercells in the
lattice. In the presence of a magnetic field oscillating with vector q and pointing in the z
direction, hj = hz cos(q ·Rj)ẑ, the mean-field Coulomb and Zeeman terms can be written as

HHF
U +HZ =

∑
i

[
gµB
2

(
hz −

2

gµB
mU

)[
Siz(q) + Siz(−q)

]
+m2 +

n2

4

]
,

where m has to be determined self-consistently. This leads to the generalized Stoner formula

χS(q; 0) =
1

2
(gµB)

2 χ0(q; 0)

[1− Uχ0(q; 0)]
, (14)

χ0(q; 0) = −
1

Nk

∑
k

nk+q − nk
εk+q − εk

.

The expression (14) is the same that we can find in the so-called random-phase approximation.
For q = 0 in the zero-temperature limit we recover the ferromagnetic RPA susceptibility with

χ0(0; 0) = 2 (gµB)
−2 χP (0) ∼ 1

2
ρ(εF ).
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Fig. 7: The ratio χ0(q; 0)/χ0(0; 0) in the xy plane for a hypercubic lattice (T ∼ 230 K) at half
filling. From left to right: one, two and three dimensions.

Figure 7 shows the non-interacting susceptibility in the xy plane for our d-dimensional hy-
percubic lattice. The figure shows that, in the one-dimensional case, the susceptibility di-
verges at the antiferromagnetic vector Q1 = (π/a, 0, 0); in two dimensions this happens at
Q2 = (π/a, π/a, 0); in three dimension atQ3 = (π/a, π/a, π/a), not shown in the figure. The
energy dispersion exhibits at these vectors the property of perfect nesting

εk+Qi = −εk.

Remarkably, the T = 0 non-interacting susceptibility χ0(Qi; 0) diverges logarithmically at the
nesting vector unless the density of states is zero at the Fermi level (ε→ 0)

χ0(Qi; 0) ∝
1

4

∫ εF=0

−∞
dερ(ε)

1

ε
→∞.

Under these conditions an arbitrary small U can cause a magnetic transition with magnetic
vector Qi. In the two-dimensional case we have reached a similar conclusion for the T =

0 ferromagnetic (q = 0) instability. The finite-temperature χ0(q; 0) susceptibility (Fig. 7)
shows that, however, the antiferromagnetic instability is the strongest. Perfect nesting at Q2 is
suppressed by t′ 6= 0

εk+Q2 = −εk + 8t′ cos(kxa) cos(kya).

Figure 8 shows how the susceptibility is modified by t′ 6= 0 (half filling). The Q2 instability is
important even for t′ ∼ 0.4t, but instabilities at incommensurate vectors around it are stronger.
As a last remark it is important to notice that the RPA expression (14) depends on the filling
only through the density of states, i.e., magnetic instabilities described by the Stoner formula
can exist at any filling. This is very different from the case of the local moment regime that we
will discuss starting from the next section.
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Fig. 8: The ratio χ0(q; 0)/χ0(0; 0) in the xy plane for the two-dimensional hypercubic lattice
(230 K) at half filling. Left: t′ = 0.2t. Right: t′ = 0.4t.

2.2 Isolated magnetic ions
2.2.1 Paramagnetism

As we have seen, the ground-state multiplet of free ions with partially occupied shells can be
determined via the Hund’s rules. In Tab. 1 and Tab. 2 we can find the values of the S, L, and
J quantum numbers for the ground-state multiplet of the most common transition-metal and
rare-earth ions. If t = 0 and n = 1, the Hubbard model (7) describes precisely a collection of
idealized free ions with an incomplete shell. For such idealized ions the only possible multiplet
is the one with quantum numbers J = S = 1/2, L = 0. In the presence of a uniform external
magnetic field hz ẑ we can then obtain the magnetization per atom as

Mz = 〈M i
z〉 = −gµB

Tr [e−gµBhzβS
i
zSiz]

Tr [e−gµBhzβSiz ]
= gµBS tanh (gµBhzβS) ,

and thus

∂Mz

∂hz
= (gµBS)

2 1

kBT

[
1− tanh2 (gµBhzβS)

]
.

The static uniform susceptibility is then given by the h→ 0 limit

χzz(0; 0) = (gµBS)
2 1

kBT
=
C1/2

T
, (15)

where C1/2 is the S = 1/2 Curie constant. If S = 1/2, the relation S2 = S(S + 1)/3 holds.
Thus, for reasons that will become clear in short, the Curie constant is typically expressed as

C1/2 =
(gµB)

2 S(S + 1)

3kB
.
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Ion n S L J 2S+1LJ

V4+ Ti3+ 3d1 1/2 2 3/2 2D3/2

V3+ 3d2 1 3 2 2F2

Cr3+ V2+ 3d3 3/2 3 3/2 4F3/2

Mn3+ Cr2+ 3d4 2 2 0 5D0

Fe3+ Mn2+ 3d5 5/2 0 5/2 6S5/2

Fe2+ 3d6 2 2 4 5D4

Co2+ 3d7 3/2 3 9/2 4F9/2

Ni2+ 3d8 1 3 4 3F4

Cu2+ 3d9 1/2 2 5/2 2D5/2

Table 1: Quantum numbers of the ground-state multiplet for several transition-metal ions with
partially filled d shells. In transition-metal oxides the angular momentum is typically quenched
because of the crystal-field and therefore only the total spin matters.

If the ions have ground-state total angular momentum J we can calculate the susceptibility with
the same technique, provided that we replace g with the Landé factor gJ

gJ =
〈JJzLS|(gS +L) · J |JJzLS〉
〈JJzLS|J · J |JJzLS〉

∼ 3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
,

and calculate the thermal average of the magnetization, M = −gJµBJ , accounting for the
2J + 1 degeneracy of the multiplet. The result is

Mz = 〈M i
z〉 = gJµBJ BJ (gJµBhzβJ)

where BJ(x) is the Brillouin function

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
.

In the low-temperature (x → ∞) limit BJ(x) ∼ 1, and thus the magnetization approaches its
saturation value in which all atoms are in the ground state

Mz ∼ gJµBJ ≡M0.

In the high-temperature (x→ 0) limit

BJ(x) ∼ x
J + 1

3J

[
1− 2J2 + 2J + 1

30J2
x2

]
,

and thus the susceptibility exhibits the Curie high-temperature behavior

χzz(0; 0) ∼
CJ
T

=
µ2

3kBT
,
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Ion n S L J 2S+1LJ gJ

Ce3+ 4f 1 1/2 3 5/2 2F5/2 6/7
Pr3+ 4f 2 1 5 4 3H4 4/5
Nd3+ 4f 3 3/2 6 9/2 4I9/2 8/11
Pm3+ 4f 4 2 6 4 5I4 3/5
Sm3+ 4f 5 5/2 5 5/2 6H5/2 2/7
Eu3+ 4f 6 3 3 0 7F0 0
Gd3+ 4f 7 7/2 0 7/2 8S7/2 2
Tb3+ 4f 8 3 3 6 7F6 3/2
Dy3+ 4f 9 5/2 5 15/2 6H15/2 4/3
Ho3+ 4f 10 2 6 8 5I8 5/4
Er3+ 4f 11 3/2 6 15/2 4I15/2 6/5
Tm3+ 4f 12 1 5 6 3H6 7/6
Yb3+ 4f 13 1/2 3 7/2 2F7/2 8/7

Table 2: Quantum numbers of the ground-state multiplet for rare-earth ions with partially filled
f shells and corresponding gJ factor. In 4f materials the crystal field is typically small; thus
the ground-state multiplet is in first approximation close to that of the corresponding free ion.

where the generalized Curie constant is

CJ =
(gJµB)

2J(J + 1)

3kB
,

and where µ = gJµB
√
J(J + 1) is the total magnetic moment. Correspondingly, the suscepti-

bility decreases as 1/T with increasing T (Fig. 9). We have thus the three limit cases

χzz(0; 0) ∼


0 kBT/|M0|hz → 0

CJ/T |M0|hz/kBT → 0

CJ/T hz → 0

.

Remarkably, the T → 0 and hz → 0 limit cannot be interchanged. If hz is finite the suscepti-
bility goes to zero in the T → 0 limit; instead, if we perform the hz → 0 limit first it diverges
with the Curie form 1/T . The point hz = T = 0 is a critical point in the phase space.
Let us return to the S = 1/2 case, i.e., the one relevant for the Hubbard model. It is interesting
to calculate the inter-site spin correlation function Si,i′

Si,i′ = 〈(Si − 〈Si〉) · (Si′ − 〈Si′〉)〉 = 〈Si · Si′〉 − 〈Si〉 · 〈Si′〉 .

We express 〈Si ·Si′〉 in the form [S(S+1)−Si(Si+1)−Si′(Si′+1)]/2, where Si = Si′ = 1/2

andS = Si+Si′ is the total spin. Then, since in the absence of magnetic field 〈Si〉 = 〈Si′〉 = 0,

Si,i′ = [S(S + 1)− 3/2]/2 =

{
1/4 S = 1

−3/4 S = 0
.

The ideal paramagnetic state is however characterized by uncorrelated sites. Hence

Si,i′ = 〈Si · Si′〉 ∼

{
〈Si〉 · 〈Si′〉 ∼ 0 i 6= i′

〈Si · Si〉 = 3/4 i = i′
. (16)
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Fig. 9: Left: Mz/M0 = BJ(x) as a function of x = hzM0/kBT . The different lines correspond
to J = 1/2 (blue), J = 1 (green) and J = 3/2 (red). Right: The ratio Mz/M0hz for finite
magnetic field in the small x limit; the slope is (J + 1)/3J .

The (ideal) paramagnetic phase is thus quite different from a spatially disordered state, i.e., a
situation in which each ion has a spin oriented in a given direction but spin orientations are
randomly distributed. In the latter case, in general, 〈Si · Si′〉 6= 0 for i′ 6= i, even if, e.g., the
sum of 〈Siz · Si

′
z 〉 over all sites i′ with i′ 6= i is zero∑

i′ 6=i

〈Siz · Si
′

z 〉 ∼ 0.

The high-temperature static susceptibility can be obtained from the correlation function Eq. (16)
using the fluctuation-dissipation theorem and the Kramers-Kronig relations (see Appendix).
The result is

χzz(q; 0) ∼
(gµB)

2

kBT

∑
i′

S i,i′zz e
iq·(Ri−Ri′ ) = χizz(T ) =

M2
0

kBT
=
C1/2

T
. (17)

This shows that χzz(q; 0) is q-independent and coincides with the local susceptibility χizz(T )

χzz(0; 0) = lim
hz→0

∂Mz

∂hz
= χizz(T ).

How can the spin susceptibility (17) be obtained directly from the atomic limit of the Hubbard
model, Eq. (10)? To calculate it we can use, e.g., the imaginary time and Matsubara frequencies
formalism (see Appendix). Alternatively at high temperatures we can obtain it from the corre-
lation function as we have just seen. The energy of the four atomic states are given by (9) and,
at half filling, the chemical potential is µ = εd + U/2. Therefore

χzz(0; 0) ∼
(gµB)

2

kBT

Tr
[
e−β(Hi−µNi) (Siz)

2
]

Tr [e−β(Hi−µNi)]
−

[
Tr
[
e−β(Hi−µNi) Siz

]
Tr [e−β(Hi−µNi)]

]2


=
C1/2

T

eβU/2

1 + eβU/2
.
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Thus the susceptibility depends on the energy scale

U = E(Ni + 1) + E(Ni − 1)− 2E(Ni).

If we perform the limit U → ∞ we effectively eliminate doubly occupied and empty states.
In this limit we recover the expression that we found for the spin S = 1/2 model, Eq. (17).
This is a trivial example of downfolding, in which the low-energy and high-energy sector are
decoupled from the start in the Hamiltonian. In the large U limit the high-energy states are
integrated out leaving the system in a magnetic S = 1/2 state.

2.2.2 Larmor diamagnetism and Van Vleck paramagnetism

For ions with J = 0 the ground-state multiplet, in short |0〉, is non-degenerate and the linear
correction to the ground-state total energy due to the Zeeman term is zero; remarkably, for open-
shell ions the magnetization remains nevertheless finite because of higher-order corrections. At
second order there are two contributions for the ground state. The first is the Van-Vleck term

MVV
z = 2hzµ

2
B

∑
I

|〈0|(Lz + gSz)|I〉|2

EI − E0

,

where EI is the energy of the excited state |I〉 and E0 the energy of the ground-state multiplet.
The Van-Vleck term is weakly temperature-dependent and typically small. The second term is
the diamagnetic Larmor contribution

ML
z = −1

4
hz〈0|

∑
i

(x2
i + y2

i )|0〉.

The Larmor and Van-Vleck terms have opposite signs and typically compete with each other.

2.3 Interacting localized moments
2.3.1 Spin models

In the large U limit and at half filling we can map the Hubbard model into an effective Heisen-
berg model. In this section we solve the latter using static mean-field theory. In the mean-field
approximation we replace the Heisenberg Hamiltonian (11) with

HMF
S =

1

2
Γ
∑
〈ii′〉

[
Si · 〈Si′〉+ 〈Si〉 · Si′ − 〈Si〉 · 〈Si′〉 −

1

4
nini′

]
.

In the presence of an external magnetic field h we add the Zeeman term and have in total

H = gµB
∑
i

[Si · (h+ hmi ) + const] ,

hmi = n〈ii′〉Γ 〈Si′〉/gµB ,

where n〈ii′〉 is the number of first nearest neighbors and hmi is the molecular field at site i.
We define the quantization axis z as the direction of the external magnetic field, h = hz ẑ,
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and assume that ẑ is also the direction of the molecular field, hmi = ∆hiz ẑ. Since Γ > 0 and
hypercubic lattices are bipartite, the likely magnetic order is two-sublattice antiferromagnetism.
Thus we setMA

z = −gµB〈Siz〉,MB
z = −gµB〈Si

′
z 〉,whereA andB are the two sublattices, i ∈ A

and i′ ∈ B. In the absence of an external magnetic field, the total magnetization per formula
unit,Mz = (MB

z +MA
z )/2, vanishes in the antiferromagnetic state. We define therefore as order

parameter σm = 2m = (MB
z −MA

z )/2M0, which is zero only above the critical temperature
for antiferromagnetic order. We then calculate the magnetization for each sublattice and find
the system of coupled equations{

MA
z /M0 = B1/2

[
M0(hz +∆hAz )β

]
MB

z /M0 = B1/2

[
M0(hz +∆hBz )β

] , (18)

where {
∆hAz = −(MB

z /M0)S
2Γn〈ii′〉/M0

∆hBz = −(MA
z /M0)S

2Γn〈ii′〉/M0

.

For hz = 0 the system (18) can be reduced to the single equation

σm = B1/2

[
σmS

2Γn〈ii′〉β
]
. (19)

This equation has always the trivial solution σm = 0. Figure 10 shows that, for small enough
temperatures it also has a non-trivial solution σm 6= 0. The order parameter σm equals ±1 at
zero temperature and its absolute value decreases with increasing temperature. It becomes zero
for T ≥ TN with

kBTN =
S(S + 1)

3
n〈ii′〉Γ.

If T ∼ TN we can find the non-trivial solution by first rewriting (19) as

σm = B1/2

[
TN

T
σm

]
. (20)

The inverse of this equation yields T/TN as a function of σm

T

TN

=
σm

B−1
1/2 [σm]

.

If T ∼ TN the parameter σm is small. We then expand the right-hand side in powers of σm

σm

B−1
1/2(σm)

∼ σm
σm + σ3

m/3 + . . .
∼ 1− σ2

m/3 + . . . .

This leads to the following expression

σm =
√
3

(
1− T

TN

)1/2

,
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Fig. 10: The self-consistent solution of Eq. (20) for σm ≥ 0. The blue line shows the right-
hand side of the equation, the Brillouin function B1/2(x), with x = σmTN/T . The red lines
show the left-hand side of the equation, σm(x) = αx, with α = T/TN; the three different
curves correspond to representative T/TN values.

which shows that the order parameter has a discontinuous temperature derivative at T = TN.
It is interesting to derive the expression of the static uniform susceptibility. For this we go back
to the system of equations (18) and calculate from it the total magnetization Mz. In the weak
magnetic field limit MA

z ∼ −σmM0 + χzz(0; 0)hz and MB
z ∼ σmM0 + χzz(0; 0)hz. Then, by

performing the first derivative of Mz with respect to hz in the hz → 0 limit we obtain

χzz(0; 0) =
C1/2(1− σ2

m)

T + (1− σ2
m)TN

.

The uniform susceptibility vanishes at T = 0 and reaches the maximum at T = TN, where it
takes the value C1/2/2TN. In the high-temperature regime σm = 0 and

χzz(0; 0) ∼
C1/2

T + TN

,

which is smaller than the susceptibility of free S = 1/2 magnetic ions.
The magnetic linear response is quite different if we apply an external field h⊥ perpendicular
to the spins in the antiferromagnetic lattice. The associated perpendicular magnetization is

M⊥ ∼M0
σm(gµBh⊥)√

(gµBh⊥)2 + (4σm)2(kBTN)2
,

and therefore the perpendicular susceptibility is temperature-independent for T ≤ TN

χ⊥(0; 0) = lim
h⊥→0

dM⊥
dh⊥

=
C1/2

2TN

.

Hence, for T < TN the susceptibility is anisotropic, χzz(0; 0) = χ‖(0; 0) 6= χ⊥(0; 0); at the
absolute zero χ‖(0; 0) vanishes, but the response to h⊥ remains strong. For T > TN the order
parameter is zero and the susceptibility isotropic, χ‖(0; 0) = χ⊥(0; 0).



3.24 Eva Pavarini

We have up to now considered antiferromagnetic order only. What about other magnetic in-
stabilities? Let us consider first ferromagnetic order. For a ferromagnetic spin arrangement by
repeating the calculation we find

χzz(0; 0) =
C1/2(1− σ2

m)

T − (1− σ2
m)TC

,

where TC = −S(S + 1)n〈ii′〉Γ/3kB is, if the exchange coupling Γ is negative, the critical
temperature for ferromagnetic order. Then, differently than in the antiferromagnetic case, the
high-temperature uniform susceptibility is larger than that of free S = 1/2 magnetic ions.
For a generic magnetic structure characterized by a vector q and a supercell with j = 1, . . . , Nj

magnetically non-equivalent sites we make the Ansatz

〈M ji
z 〉 = −σmM0 cos(q ·Rj) = −gµBm cos(q ·Rj) ,

where σm is again the order parameter. We consider a magnetic field rotating with the same q
vector. By using the static mean-field approach we then find

kBTq =
S(S + 1)

3
Γq, Γq = −

∑
ij 6=0

Γ 00,ijeiq·(Ti+Rj), (21)

where Γ 00,ij is the exchange coupling between the spin at the origin and the spin at site ij, and
{Ti} are lattice vectors. In our example, T0 = TC and TqAF

= TN = −TC. Thus we have

χzz(q; 0) =
C1/2(1− σ2

m)

T − (1− σ2
m)Tq

, (22)

which diverges at T = Tq. The susceptibility χzz(q; 0) reflects the spatial extension of correla-
tions, i.e., the correlation length, ξ; the divergence of the susceptibility at Tq is closely related
to the divergence of ξ. To see this we calculate ξ for a hypercubic three-dimensional lattice, as-
suming that the system has only one instability with vectorQ. First we expand Eq. (21) around
Q obtaining Tq ∼ TQ + α(q −Q)2 + . . . and then we calculate χ00,ji

zz , the Fourier transform
of Eq. (22). We find that χ00,ji

zz decays exponentially with r = |Ti +Rj|, i.e., χ00,ji
zz ∝ e−r/ξ/r.

The range of the correlations is ξ ∝ [TQ/(T − TQ)]1/2, which becomes infinite at T = TQ.
It is important to notice that in principle there can be instabilities at any q vector, i.e., q does
not need to be commensurate with reciprocal lattice vectors. The value of q for which Tq is the
largest determines (within static mean-field theory) the type of magnetic order that is realized.
The antiferromagnetic structure in Fig. 6 corresponds to qAF = Q2 = (π/a, π/a, 0).
In real systems the spin S is typically replaced by an effective magnetic moment, µeff , and
therefore C1/2 → Ceff = µ2

eff/3kB. It follows that µeff is the value of the product 3kBTχzz(q; 0)
in the high-temperature limit (here T � Tq). The actual value of µeff depends, as we have
discussed in the introduction, on the Coulomb interaction, the spin-orbit coupling and the crystal
field. In addition, the effective moment can be screened by many-body effects, as it happens for
Kondo impurities; we will discuss the latter case in the last section.
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Fig. 11: Ferromagnetism in Hartree-Fock. The chemical potential is taken as the energy zero.

2.3.2 The Hartree-Fock approximation

We have seen that Hartree-Fock mean-field theory yields Stoner magnetic instabilities in the
weak coupling limit. Can it also describe magnetism in the local moment regime (t/U � 1)?
Let us focus on the half-filled two-dimensional Hubbard model for a square lattice, and let us
analyze two possible magnetically ordered states, the ferro- and the antiferro-magnetic state.
If we are only interested in the ferromagnetic or the paramagnetic solution, the Hartree-Fock
approximation of the Coulomb term in the Hubbard model, HHF

U , is given by Eq. (13); the HF
Hamiltonian is H = Hd + HT + HHF

U . For periodic systems it is convenient to write H in k
space. We then adopt as one-electron basis the Bloch states Ψkσ

Ψkσ(r) =
1√
Ns

∑
i

eik·Ti Ψiσ(r),

where Ψiσ(r) is a Wannier function with spin σ, Ti a lattice vector and Ns the number of lattice
sites. The term HHF

U depends on the spin operator Siz, whose Fourier transform in k space is

Sz(k,k
′) =

1

Ns

∑
i

ei(k−k
′)·Ti 1

2

∑
σ

σc†iσciσ.

The term HHF
U has the same periodicity of the lattice and does not couple states with different

k vectors. Thus only Sz(k,k) contributes, and the Hamiltonian can be written as

H =
∑
σ

∑
k

εknkσ + U
∑
k

[
−2m Sz(k,k) +m2 +

n2

4

]
,

where m = (n↑ − n↓)/2 and n = 1; for simplicity we set εd = 0. The HF correction splits the
bands with opposite spin, leading to new one-electron eigenvalues, εkσ = εk+

1
2
U − σUm; the

chemical potential is µ = U/2. The separation between εk↑ − µ and εk↓ − µ is 2mU , as can
be seen in Fig. 11. The system remains metallic for U smaller than the bandwidth W . In the
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Fig. 12: Antiferromagnetism in Hartree-Fock. The chemical potential is taken as the energy
zero. Blue: εk. Red: εk+Q2 = −εk. The high-symmetry lines are those of the large BZ in Fig. 6.

large t/U limit and at half filling we can assume that the system is a ferromagnetic insulator
and m = 1/2. The total energy of the ground state is then

EF =
1

Nk

∑
k

[εkσ − µ] =
1

Nk

∑
k

[
εk −

1

2
U

]
= −1

2
U.

Let us now describe the same periodic lattice via a supercell which allows for a two-sublattice
antiferromagnetic solution; this supercell is shown in Fig. 6. We rewrite the Bloch states of the
original lattice as

Ψkσ(r) =
1√
2

[
ΨAkσ(r) + ΨBkσ(r)

]
, Ψαkσ(r) =

1√
Nsα

∑
iα

eiT
α
i ·k Ψiασ(r).

Here A and B are the two sublattices with opposite spins and T A
i and TB

i are their lattice vec-
tors; α = A,B. We take as one-electron basis the two Bloch functions Ψkσ and Ψk+Q2σ, where
Q2 = (π/a, π/a, 0) is the vector associated with the antiferromagnetic instability and the cor-
responding folding of the Brillouin zone, also shown in Fig. 6. Then, in the HF approximation,
the Coulomb interaction is given by

HHF
U =

∑
i∈A

[
−2mSiz +m2 +

n2

4

]
+
∑
i∈B

[
+2mSiz +m2 +

n2

4

]
.

This interaction couples Bloch states with k vectors made equivalent by the folding of the
Brillouin zone. Thus the HF Hamiltonian takes the form

H =
∑
k

∑
σ

εknkσ +
∑
k

∑
σ

εk+Q2nk+Q2σ + U
∑
k

[
−2m Sz(k,k +Q2) + 2m2 + 2

n2

4

]
.

The sum over k is restricted to the Brillouin zone of the antiferromagnetic lattice. We find the
two-fold degenerate eigenvalues

εk± − µ =
1

2
(εk + εk+Q2)±

1

2

√
(εk − εk+Q2)

2 + 4(mU)2. (23)
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A gap opens where the bands εk and εk+Q2 cross, e.g., at the X point of the original Brillouin
zone (Fig. 12). At half filling and for mU = 0 the Fermi level crosses the bands at the X
point too; thus the system is insulator for any finite value of mU . In the small t/U limit we can
assume that m = 1/2 and expand the eigenvalues in powers of εk/U . For the occupied states
we find

εk− − µ ∼ −
1

2
U − ε2

k

U
= −1

2
U − 4t2

U

(εk
2t

)2

The ground-state total energy for the antiferromagnetic supercell is then 2EAF with

EAF = −1

2
U − 4t2

U

1

Nk

∑
k

(εk
2t

)2

∼ −1

2
U − 4t2

U

so that the energy difference per couple of spins between ferro- and antiferro-magnetic state is

∆EHF = EHF
↑↑ − EHF

↑↓ =
2

n〈ii′〉
[EF − EAF] ∼

1

2

4t2

U
∼ 1

2
Γ, (24)

which is similar to the result obtained from the Hubbard model in many-body second order
perturbation theory, Eq. (12). Despite of the similarity with the actual solution, one has to
remember that the spectrum of the Hartree-Fock Hamiltonian has very little to do with the
spectrum of the Heisenberg model, the model which describes the actual low-energy behavior
of the Hubbard Hamiltonian. If we restrict ourselves to the antiferromagnetic solution, the first
excited state is at an energy ∝ U rather than ∝ Γ ; thus we cannot use a single HF calculation
to understand the magnetic excitation spectrum of a given system. It is more meaningful to
use HF to compare the total energy of different states and determine in this way, within HF,
the ground state. Even in this case, however, one has to keep in mind that HF suffers of spin
contamination, i.e., singlet states and Sz = 0 triplet states mix [11]. The energy difference per
bond EHF

↑↑ − EHF
↑↓ in Eq. (24) only resembles the exact result, as one can grasp by comparing

it with the actual energy difference between triplet and singlet state in the two-site Heisenberg
model

∆E = ES=1 − ES=0 = Γ,

a factor two larger. The actual ratio ∆E/∆EHF might depend on the details of the HF band
structures. Thus, overall, Hartree-Fock is not the ideal approach to determine the onset of
magnetic phase transitions. Other shortcomings of the Hartree-Fock approximation are in the
description of the Mott metal-insulator transition. In Hartree-Fock the metal-insulator transition
is intimately related to long-range magnetic order (Slater transition), but in strongly-correlated
materials the metal-insulator transition can occur in the paramagnetic phase (Mott transition). It
is associated with a divergence of the self-energy at low frequencies rather than with the forma-
tion of superstructures. This physics, captured by many-body methods such as the dynamical
mean-field theory (DMFT) [6], is completely missed by the Hartree-Fock approximation.
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3 The Kondo model

The Kondo impurity is a representative case of a system which exhibits both local moment and
Pauli paramagnetic behavior, although in quite different temperature regimes [5]. The Kondo
effect was first observed in diluted metallic alloys, metallic systems in which isolated d or f
magnetic impurities are present, and it has been a riddle for decades. A Kondo impurity in a
metallic host can be described by the Anderson model

HA =
∑
σ

∑
k

εknkσ +
∑
σ

εfnfσ + Unf↑nf↓ +
∑
σ

∑
k

[
Vkc

†
kσcfσ + h.c.

]
, (25)

where εf is the impurity level, occupied by nf ∼ 1 electrons, εk is the dispersion of the metallic
band and Vk the hybridization. If we assume that the system has particle-hole symmetry with
respect to the Fermi level, then εf = −U/2. The Kondo regime is characterized by the param-
eters values εf � εF and εf + U � εF , and by a weak hybridization, i.e., the hybridization
function∆(ε) = π 1

Nk

∑
k |Vk|2δ(εk−ε) is such that∆(εF )� |εF−εf |, |εF−εf−U |. Through

the Schrieffer-Wolff canonical transformation [12] one can map the Anderson model onto the
Kondo model2

HK =
∑
σ

∑
k

εknkσ + ΓSf · sc(0) = H0 +HΓ , (26)

where

Γ ∼ −2|VkF |2
[
1

εf
− 1

εf + U

]
> 0

is the antiferromagnetic coupling arising from the hybridization, Sf the spin of the impurity
(Sf = 1/2), and sc(0) is the spin-density of the conduction band at the impurity site. The
solution of the problem defined by (25) or (26) is not at all trivial and requires many-body
techniques such as the Wilson numerical renormalization group [14] or the Bethe Ansatz [15].
Here we only discuss some important exact results. First we define the impurity susceptibility,
χfzz(T ), as the total susceptibility minus the contribution of the metallic band in the absence
of the impurity [14–16]. One can show that at high temperatures χfzz(T ), has the following
behavior

χfzz(T ) ∼
(gµB)

2Sf (Sf + 1)

3kBT

{
1− 1

ln (T/TK)

}
.

This expression resembles the Curie susceptibility, apart from the ln(T/TK) term. The scale TK

is the Kondo temperature, which, in first approximation, is given by

kBTK ∼ De−2/ρ(εF )Γ ,

2The Schrieffer-Wolf transformation yields additionally a potential scattering interaction, a pair tunneling cou-
pling and a shift of the energies εk. These interactions are however not important for the discussion in this section
and therefore we neglect them.
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where 2D = W is the band-width of the host conduction band. Because of the ln (T/TK) term,
the susceptibility apparently diverges at T ∼ TK. In reality, however, around TK there is a
crossover to a new regime. For T � TK

χfzz(T ) ∼
C1/2

WTK

{
1− αT 2 + . . .

}
,

whereW is a (universal) Wilson number. Thus the low-temperature system has a Fermi-liquid
behavior with enhanced density of states, i.e., with heavy masses m∗/m; furthermore χfzz(0) =
C1/2/WTK is the Curie susceptibility (Eq. (15)) with the temperature frozen at T = WTK. At
T = 0 the impurity magnetic moment is screened by the conduction electrons, which form
a singlet state with the spin of the impurity. In other words, the effective magnetic moment
formed by the impurity magnetic moment and its screening cloud,

µ2
eff(T ) ≡ 3kBTχ

f
zz(T ) ∝ 〈Sfz Sfz 〉+ 〈Sfz scz〉,

vanishes for T � TK. The Kondo temperature is typically 10-30 K or even smaller, hence the
Fermi-liquid behavior is restricted to a very narrow energy and temperature region.
We can understand the existence of a Fermi-liquid regime by using a simple approach due to
Anderson, the so-called poor-man scaling [17], and an argument due to Nozières. First we
divide the Hilbert space into a high- and a low-energy sector. We define as high-energy states
those with at least one electron or one hole at the top or bottom of the band; the corresponding
constraint for the high-energy electronic level εq is

D′ < εq < D

−D < εq < −D′,

where D′ = D − δD. Next we introduce the operator PH , which projects onto the high-energy
states, and the operator PL = 1 − PH , which projects onto states with no electrons or holes in
the high-energy region. Then we downfold the high-energy sector of the Hilbert space. To do
this we rewrite the Kondo Hamiltonian as

H ′ = PLHPL + δHL = HL + δHL,

δHL = PLHPH(ω − PHHPH)−1PHHPL.

Here HL is the original Hamiltonian, however in the space in which the high-energy states
have been eliminated; the term δHL is a correction due to the interaction between low and
(downfolded) high-energy states. Next we calculate δHL using perturbation theory. The first
non-zero contribution is of second order in Γ

δH
(2)
L ∼ PLHΓPH(ω − PHH0PH)

−1PHHΓPL.

There are two types of processes which contribute at this order, an electron and a hole process,
depending if the downfolded states have (at least) one electron or one hole in the high-energy
region. Let us consider the electron process. We set

PH ∼
∑
σ

∑
q

c†qσ|FS〉〈FS|cqσ, PL ∼
∑
σ

∑
k

c†kσ|FS〉〈FS|ckσ,
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where |εk| < D′ and |FS〉 =
∏
kσ c

†
kσ|0〉 is the Fermi see, i.e., the many-body state correspond-

ing to the metallic conduction band. Thus

δH
(2)
L = −1

2
Γ 2
∑
q

1

ω − εq
Sf · sc(0) + . . .

∼ 1

4
ρ(εF )Γ

2 δD

D
Sf · sc(0) + . . . .

We find an analogous contribution from the hole process. The correction δH(2)
L modifies the

parameter Γ of the Kondo Hamiltonian as follows

Γ → Γ ′ = Γ + δΓ,

δΓ

δ lnD
=

1

2
ρ(εF )Γ

2. (27)

The equation (27) has two fixed points, Γ = 0 (weak coupling) and Γ →∞ (strong coupling).
By solving the scaling equations we find

Γ ′ =
Γ

1 + 1
2
ρ(εF )Γ ln D′

D

.

If Γ is antiferromagnetic the renormalized coupling constant Γ ′ diverges for D′ = De−2/Γρ(εF ),
an energy proportional to the Kondo energy kBTK. This divergence (scaling to strong coupling)
indicates that at low energy the interaction between the spins dominates and therefore the sys-
tem forms a singlet in which the impurity magnetic moment is screened. The existence of this
strong coupling fixed point is confirmed by the numerical renormalization group of Wilson [14].
Nozières [19] has used this conclusion to show that the low-temperature behavior of the sys-
tem must be of Fermi liquid type. His argument is the following. For infinite coupling Γ ′ the
impurity traps a conduction electron to form a singlet state. For a finite but still very large Γ ′

any attempt of breaking the singlet will cost a very large energy. Virtual excitations (into the
nf = 0 or nf = 2 states and finally the nf = 1 triplet state) are however possible and they
yield an effective indirect interaction between the remaining conduction electrons surround-
ing the impurity. This is similar to the phonon-mediated attractive interaction in metals. The
indirect electron-electron coupling is weak and can be calculated in perturbation theory (1/Γ
expansion). Nozières has shown that, in first approximation, the effective interaction is between
electrons of opposite spins lying next to the impurity, it is of order D4/Γ 3 and repulsive; hence
it gives rise to a Fermi-liquid behavior with enhanced susceptibility [19].
If Γ = ΓF < 0 (ferromagnetic coupling, as for example the coupling arising from direct
Coulomb exchange) the renormalized coupling constant Γ ′ goes to zero in the D′ → 0 limit
(scaling to weak coupling). This means that the local spin becomes asymptotically free and
yields a Curie-type susceptibility, which diverges for T → 0. For small but finite coupling we
can account for the ferromagnetic interaction perturbatively (expansion in orders of ΓF ). In f
electron materials often both ferro and antiferromagnetic exchange couplings are present, the
first, ΓF , arising from the Coulomb exchange, the second, Γ , from the hybridization. There
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Fig. 13: Sketch of the scaling diagrams for the two-channel Kondo model. Γ = −Jhyb and
ΓF = −Jsf . For Γ > 0 (antiferromagnetic) and ΓF < 0 (ferromagnetic) the antiferromag-
netic coupling scales to strong coupling and ferromagnetic one to weak coupling (right bottom
quadrant). From Ref. [18].

are therefore two possibilities. If both exchange interactions couple the impurity with the same
conduction channel, only the total coupling ΓF + Γ matters. Thus a |ΓF | > Γ suppresses the
Kondo effect. If, however, ferromagnetic and antiferromagnetic exchange interaction couple
the impurity to different conduction channels, a |ΓF | > Γ does not suppress the Kondo effect
(Fig. 13), but merely reduces TK. In the infinite |ΓF | limit the model describes an undercom-
pensated Kondo effect [18].

4 Conclusion

In this lecture we introduced some of the fundamental aspects of magnetism in correlated sys-
tems. We have seen two distinct regimes, the itinerant and the local moment regime. In the first
regime we can, in most cases, treat correlation effects in perturbation theory. In the world of
real materials this is the limit in which the density-functional theory (DFT), in the local-density
approximation or its simple extensions, works best. If the system is weakly correlated we can
calculate the linear-response function in the random-phase approximation and understand fairly
well magnetism within this approach.
The opposite regime is the strong-correlation regime, in which many-body effects play a key
role. In this limit perturbation theory fails and we have in principle to work with many-body
methods. If, however, we are interested only in magnetic phenomena, at integer filling a strong
simplification comes from mapping the original many-body Hamiltonian into an effective spin
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model. The exact solution of effective spins models requires in general numerical methods
such as the Monte Carlo or quantum Monte Carlo approach, or, when the system is small
enough, exact diagonalization or Lanczos. These techniques are discussed in the lectures of
Werner Krauth, Stefan Wessel and Jürgen Schnack. The density-matrix renormalization group
(DMRG), particularly efficient for one-dimensional systems, is instead presented in the lectures
of Ulrich Schollwöck and Jens Eisert.
To work with material-specific spin models we need to calculate the magnetic exchange pa-
rameters. Typically this is done starting from total-energy DFT calculations for different spin
configurations, e.g., in the LDA+U approximation. The LDA+U approach is based on the
Hartree-Fock approximation, and therefore when we extract the parameters from LDA+U cal-
culations we have to keep in mind the shortcomings of the method. Furthermore if we want to
extract the magnetic couplings from total energy calculations we have to make a guess on the
form of the spin model. More flexible approaches, which allow us to account for actual corre-
lations effects, are based on Green functions and the local-force theorem [20], as discussed in
the lecture of Sasha Lichtenstein, or on canonical transformations [12, 21].
In strongly-correlated materials localized and itinerant moments physics can often be observed
in the same system, although in different energy or temperature regimes. This is apparent in the
case of the Kondo effect. For a Kondo impurity the susceptibility exhibits a Curie behavior at
high temperature and a Fermi-liquid behavior at low temperature. In correlated transition-metal
oxides Fermi liquid and local-spin magnetism can both play an important role but at different en-
ergy scales. Furthermore, in the absence of a large charge gap downfolding to spin models is not
really justified. The modern method to bridge between localized and itinerant regime and deal
with the actual complications of real systems is the dynamical mean-field theory (DMFT) [6].
Within this technique we solve directly generalized Hubbard-like models, however in the local
self-energy approximation. DMFT is the first flexible approach that allows us to understand the
paramagnetic Mott metal-insulator transition and thus also magnetism in correlated materials
in a realistic setting. Modern DMFT codes are slowly but steadily becoming as complex and
flexible as DFT codes, allowing us to deal with the full complexity of strongly-correlated mate-
rials. While this is a huge step forwards, we have to remember that state-of-the-art many-body
techniques have been developed by solving simple models within certain approximations. We
have to know very well these if we want to understand real materials and further advance the
field. In DMFT we solve self-consistently an effective quantum-impurity model, a generaliza-
tion of the Anderson model. Thus a lot can be learnt from the solution of the Anderson model
in the context of the Kondo problem. Much can be understood alone with simple arguments, as
Anderson or Noziéres have shown us, reaching important conclusions on the Kondo problem
with paper and pencil.
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Appendices

A Formalism

The formulas in this Appendix are in atomic units: The numerical value of e, m and ~ is 1, that
of µB is 1/2, and energies are in Hartree.

A.1 Matsubara Green functions

A.1.1 Imaginary time and frequency Green functions

The imaginary time Matsubara Green function is defined as

Gαβ(τ ) = −〈T cα(τ1)c
†
β(τ2)〉 = −

1

Z
Tr
[
e−β(H−µN)T cα(τ1)c

†
β(τ2)

]
,

where T is the time-ordering operator, τ = (τ1, τ2), Z = Tre−β(H−µN) is the partition function,
and the imaginary time operators o(τ) = c(τ), c†(τ) are defined as o(τ) = eτ(H−µN)o e−τ(H−µN).
The indices α and β are the flavors; they can be site and spin indices in the atomic limit, and
k and spin indices in the non-interacting electrons limit. Writing explicitly the action of the
time-ordering operator we obtain

Gαβ(τ ) = −Θ(τ1 − τ2)〈cα(τ1)c
†
β(τ2)〉+Θ(τ2 − τ1)〈c†β(τ2)cα(τ1)〉.

Using the invariance of the trace of the product of operators under cyclic permutations, one can
show that the following properties hold

Gαβ(τ ) = Gαβ(τ1 − τ2),

Gαβ(τ) = −Gαβ(τ + β) for − β < τ < 0.

The Fourier transform on the Matsubara axis is

Gαβ(iνn) =
1

2

∫ β

−β
dτeiνnτGαβ(τ) =

∫ β

0

dτeiνnτGαβ(τ),

with νn = (2n+ 1)π/β. The inverse Fourier transform is given by

Gαβ(τ) =
1

β

+∞∑
n=−∞

e−iνnτGαβ(iνn).

The convergence ofGαβ(τ) is only guaranteed in the interval−β < τ < β. A discussion of this
can be found in the lecture of Robert Eder. Finally, if nα is the number of electrons for flavor
α, one can show that

Gαα(τ → 0+) = −1 + nα, Gαα(τ → β−) = −nα. (28)
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Fig. 14: The function Gkσ(τ) defined in Eq. (30) for a state well below the Fermi level (red)
and at the Fermi level (blue) and β = 2 (eV)−1. The green line shows the atomic G(τ) from
Eq. (32) for U = 6 eV and h = 0.

A.1.2 Non-interacting limit

For a non-interacting system described by

H0 =
∑
k

∑
σ

εknkσ (29)

we can show that

Gkσ(τ) = −〈T
[
ckσ(τ)c

†
kσ(0)

]
〉

= − [Θ(τ) (1− nσ(εk))−Θ(−τ)nσ(εk)] e−(εk−µ)τ , (30)

where

nσ(εk) =
1

1 + eβ(εk−µ)
.

The Fourier transform at Matsubara frequencies is

Gkσ(iνn) =
1

iνn − (εk − µ)
.

To obtain the analytic continuation of this Green function on the real axis we substitute

iνn → ω + i0+.

A.1.3 Matsubara sums

The non-interacting Green function Gkσ(z) has a pole at zp = εk − µ; the Fermi function nσ(z)
has instead poles for z = iνn. Let us consider the integral

1

2πi

∮
C

Fkσ(z)nσ(z)ezτdz = 0,



Magnetism: Models and Mechanisms 3.35

where 0 < τ < β and where the function Fkσ(z) is analytic everywhere except at some poles
{zp}. The contour C is a circle in full complex plane centered at the origin and including the
poles of the Fermi function (Matsubara frequencies) and the poles of Fkσ(z). The integral is
zero because the integrand vanishes exponentially for |z| → ∞. Furthermore

Res [nσ(iνn)] = −
1

β
.

Using Cauchy’s integral theorem we then have

1

β

∑
n

eiνnτFkσ(iνn) =
∑
zp

Res [Fkσ(zp)]nσ(zp)ezpτ .

We can use this expression and (28) to show that

1

β

∑
n

e−iνn0−Gkσ(iνn) = Gkσ(0−) = nσ(εk),

1

β

∑
n

e−iνn0+Gkσ(iνn) = Gkσ(0+) = nσ(εk)− 1.

In a similar way we can show that

1

β

∑
n

eiνn0+Gkσ(iνn)Gkσ(iνn) =
dnσ(εk)

dεk
= βnσ(εk)[−1 + nσ(εk)],

1

β

∑
n

eiνn0+Gkσ(iνn)Gk+qσ(iνn + iωm) =
nk+q − nk

iωm + εk+q − εk
,

where in the last relation ωm = 2mπ/β is a Bosonic Matsubara frequency.

A.1.4 Atomic limit

It is interesting to consider a half-filled idealized atom described by the Hamiltonian

H = εd
∑
σ

nσ + U

(
N2

4
− S2

z

)
+ gµBhSz. (31)

For τ > 0 we can calculate explicitly the Green function obtaining

Gσ(τ) = −
1

2

1

1 + eβU/2 cosh (βgµBh/2)

[
eτ(U−gµBhσ)/2 + e(β−τ)(U+gµBhσ)/2

]
. (32)

The Fourier transform of Gσ(τ) is

Gσ(iνn) =

[
w−

iνn + (U − gµBhσ)/2
+

w+

iνn − (U + gµBhσ)/2

]
,

where

w± =
1

2

1 + eβU/2e±βgµBhσ/2

1 + eβU/2 cosh (βgµBh/2)
.

Since the Green function is written as the sum of functions with one pole, the analytic continu-
ation is simple, as in the non-interacting case. We replace iνn with ω + i0+.
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A.1.5 Lehmann representation

Using the Lehmann representation we can rewrite

Gkσ(iνn) =

∫
Akσ(ε)

1

iνn − ε
dε,

where Akσ(ε) = − 1
π
Im [Gkσ(ε)] is the spectral function. The spectral function is related to the

density of states as follows

ρσ(ε) =
1

Nk

∑
k

Akσ(ε).

A.2 Linear response theory
A.2.1 Theory

The response of a system described by the Hamiltonian H to a small magnetic field h(r, t) is
given by the linear correction to the Hamiltonian, i.e.,∑

ν

δHν(r; t) = −
∑
ν

Mν(r; t)hν(r; t), (33)

whereM (r; t) is the magnetization operator in the Heisenberg representation

Mν(r; t) = eiHtMν(r)e
−iHt

and ν = x, y, z. To linear order in the perturbation, and assuming that the perturbation is turned
on adiabatically at t0 = −∞

〈Mν(r; t)〉 = 〈Mν(r)〉0 − i
∑
ν′

∫
dr′
∫ t

−∞
dt′〈[Mν(r; t), δHν′(r

′; t′)]〉0,

where 〈Mν(r)〉0 is the (equilibrium) thermal average in the absence of the perturbation. By
replacing

∑
ν′ δHν′(r

′; t′) with the expression (33) we obtain

δ〈Mν(r; t)〉 = 〈Mν(r; t)〉 − 〈Mν(r)〉0 = i
∑
ν′

∫
dr′
∫ t

−∞
dt′〈[Mν(r; t),Mν′(r

′; t′)]〉0hν′(r′; t′).

The function

χνν′(r, r
′; t, t′) = i〈[Mν(r; t),Mν′(r

′; t′)]〉0Θ(t− t′) (34)

is the so-called retarded response function. It is often convenient to work with the operators
∆Mν(r; t) = Mν(r; t) − 〈Mν(r)〉0 which measure the deviation with respect to the average
in the absence of perturbation; since numbers always commute, we can replace Mν(r; t) with
∆Mν(r; t) in the expression (34).
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If the Hamiltonian H has time translational invariance symmetry the retarded response function
depends only on time differences t− t′. For the Fourier transform we have

δ〈Mν(r;ω)〉 =
∑
ν′

∫
dr′χνν′(r, r

′;ω)hν′(r
′;ω).

For a lattice with lattice translational invariance, if we Fourier transform to reciprocal space and
integrate over the unit cell

δ〈Mν(q;ω)〉 =
∑
ν′

∫
dr

∫
dr′eiq·rχνν′(q, r, r

′;ω)hν′(q, r
′;ω).

Finally, if the perturbation depends on r′ only through a phase we obtain

δ〈Mν(q;ω)〉 =
∑
ν′

∫
dr

∫
dr′eiq·(r−r

′)χνν′(q, r, r
′;ω)hν′(q;ω) =

∑
ν′

χνν′(q;ω)hν′(q;ω).

In the ω = 0 and q → 0 limit we have

χνν′(0; 0) = lim
hν′→0

∂Mν

∂hν′
,

where hν′ = hν′(0; 0).

A.2.2 Kramers-Kronig relations and thermodynamic sum rule

Important properties of the spin susceptibility are the Kramers-Kronig relations

Re[χ(q;ω)]− Re[χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im[χ(q;ω′)]

ω′ − ω
dω′,

Im[χ(q;ω)] = − 1

π
P
∫ +∞

−∞

Re[χ(q;ω′)]− Re[χ(q;∞)]

ω′ − ω
dω′,

where P is the Cauchy principal value, and Re and Im indicate the real and imaginary part.
The first Kramers-Kronig relation yields the sum rule

Re[χ(q;ω = 0)]− Re[χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im[χ(q;ω′)]

ω′
dω′. (35)

In the q = 0 limit, Eq. (35) is known as thermodynamic sum rule.

A.2.3 Fluctuation-dissipation theorem and static susceptibility

We define the spin correlation function

Sνν′(q; t) = 〈∆Sν(q; t)∆Sν′(−q)〉0

= 〈Sν(q; t)Sν′(−q) 〉0 − 〈Sν(q)〉0 〈Sν′(−q)〉0
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where∆Sν(q; t) = Sν(q; t)−〈Sν(q)〉0 and 〈Sν(q)〉0 = 〈Sν(q; 0)〉0. The fluctuation-dissipation
theorem relates Sνν′(q; t) with the magnetic susceptibility. First, one can show that the follow-
ing relation holds

Im[χνν′(q; t)] = (gµB)
21

2
[Sνν′(q; t)− Sν′ν(q;−t)]. (36)

The correlation function has the property

Sνν′(q;ω) = eβωSν′ν(q;−ω).

Thus, in ω space Eq. (36) is replaced by

Im[χνν′(q;ω)] =
1

2(1 + nB)
(gµB)

2Sνν′(q;ω), nB(ω) =
1

eβω − 1
.

Assuming kBT large and using Eq. (35) one can then show that

Re[χνν′(q;ω = 0)]− Re[χνν′(q;∞)] ∼ (gµB)
2

kBT
Sνν′(q; t = 0).

A.2.4 Imaginary time and frequency response function

We define the susceptibility in imaginary time as

χνν′(q; τ, τ
′) = 〈T ∆Mν(q; τ)∆Mν′(−q; τ ′)〉0

= 〈TMν(q; τ)Mν′(−q; τ ′)〉0 − 〈Mν(q)〉0〈Mν′(−q)〉0,

where ∆Mν(q; τ) = Mν(q; τ) − 〈Mν(q; τ)〉0 = Mν(q; τ) − 〈Mν(q)〉0. As in the case of the
Green function, by using the invariance properties of the trace one can show that

χνν′(q; τ, τ
′) = χνν′(q; τ − τ ′).

The response function in imaginary time is related to the response function at the Bosonic
Matsubara frequency iωn through the Fourier transforms

χνν′(q; τ) =
1

β

∑
n

e−iωmτχνν′(q; iωm),

χνν′(q; iωm) =

∫
dτeiωmτχνν′(q; τ).

In the rest of the Appendix we replace for simplicity the notation 〈〉0 with 〈〉.
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A.3 Magnetic susceptibility
A.3.1 Spin and magnetization operators

The spin operators Sν are defined as

Sν =
1

2

∑
σσ′

c†σσνcσ′ ,

where ν = x, y, z and σν are the Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
.

The magnetization operators Mν are defined as Mν = −gµBSν .

A.3.2 Matsubara magnetic susceptibility

The magnetic susceptibility for a single-band system can be expressed as

χzz(q; τ ) = (gµB)
21

4

∑
σσ′

σσ′ χqσσ
′
(τ ), (37)

where σ = 1 or −1 depending if the spin is up or down, τ = (τ1, τ2 τ3, τ4) and

χqσσ
′
(τ ) =

1

β

1

Nk

∑
k

χqσσ
′

k (τ ),

χqσσ
′

k (τ ) = 〈T ckσ(τ1)c
†
k+qσ(τ2)ck+qσ′(τ3)c

†
kσ′(τ4)〉

− 〈T ckσ(τ1)c
†
k+qσ(τ2)〉〈T ck+qσ′(τ3)c

†
kσ′(τ4)〉.

In Fourier space

χzz(q; iωm) =
1

4

∑
σσ′

σσ′
1

β2

∑
nn′

χqσσ
′

n,n′ (iωm),

where ωm = 2mπ/β is a Bosonic Matsubara frequency and

χqσσ
′

n,n′ (iωm) = χqσσ
′
(ν) =

1

16

∫∫∫∫
dτ eiν·τχqσσ

′
(τ ).

The integral for each τ component is from −β to β and ν = (νn,−νn − ωm, νn′ + ωm,−νn′).

A.3.3 Generalized Matsubara two-particle Green function

We define the generalized two-particle Green function

χαβγδ (τ ) = 〈T cα(τ1)c
†
β(τ2)cγ(τ3)c

†
δ(τ4)〉 − 〈T cα(τ1)c

†
β(τ2)〉〈T cγ(τ3)c

†
δ(τ4)〉. (38)

The Fourier transform of (38) is

χαβγδ (ν) = χαβγδn,n′ (iωm) =
1

16

∫∫∫∫
dτ eiν·τχαβγδ (τ ).
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From the symmetry properties of the trace we find that ν4 = −ν1 − ν2 − ν3. If we redefine
ν1 = νn, ν2 = −νn − ωm, ν3 = νn′ + ωm, and ν4 = −νn′ we obtain

ν = (νn,−νn − ωm, νn′ + ωm,−νn′),

χαβγδn,n′ (iωm) =
1

16

∫∫∫∫
dτ ei[−ωmτ23+νnτ12+νn′τ34] χαβγδ (τ ), (39)

where τij = τi − τj . The complex conjugate is given by[
χαβγδn,n′ (iωm)

]∗
= χαβγδ−n−1,−n′−1(−iωm),

where ν−n−1 = −νn, and ν−n′−1 = −νn′ .

A.3.4 Symmetry properties

Let us now analyze the symmetry properties of (39). By using the fact that the response function
(38) is real in τ space and by exchanging the indices 1 and 4, 2 and 3 in the integrand, we find

χαβγδn,n′ (iωm) = χδγβαn′,n (iωm),

and hence, if α = δ, β = γ, νn = ν ′n is a reflection axis for the absolute value of (39)∣∣∣χαβγδn,n′ (iωm)
∣∣∣ = ∣∣∣χδγβαn′,n (iωm)

∣∣∣
An additional reflection axis can be found by first shifting the frequency νn = νl − ωm

χαβγδl,n′ (iωm) =
1

16

∫∫∫∫
dτ ei(−ωmτ13+νlτ12+νn′τ34)χαβγδ (τ )

and then exchanging in the integrand the indices 12 with 34 and vice versa. Hence

χαβγδl,n′ (iωm) = χγδαβn′,l (−iωm)

so that, if α = γ and β = δ, νn+m = −νn′ is a mirror line∣∣∣χαβγδn+m,n′(iωm)
∣∣∣ = ∣∣∣χγδαβ−n′−1,−n−m−1(iωm)

∣∣∣ .
A.3.5 Non interacting limit

For a non-interacting system Wick’s theorem yields

χαβγδ (τ ) = −〈T cα(τ1)c
†
δ(τ4)〉〈T cγ(τ3)c

†
β(τ2)〉

= −Gαδ(τ14)Gγβ(−τ23).

We take as example the one band model (29) and set α = kσ, β = k + qσ, γ = k + qσ′, and
δ = kσ′. Then, in the paramagnetic case, the magnetic susceptibility is given by

χzz(q; τ ) = −(gµB)21

4

1

β

1

Nk

∑
k

∑
σ

Gkσ(τ14)Gk+qσ(τ32).
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Its Fourier transform is

χzz(q; iωm) = (gµB)
21

4

1

β2

∑
nn′

∑
σ

χqσσn,n′(iωm),

where ∑
σ

χqσσn,n′(iωm) = −β
1

Nk

∑
k

∑
σ

Gkσ(iνn)Gk+qσ(iνn + iωm)δn,n′ .

Thus the static susceptibility is

χzz(q; 0) = − (gµB)
2 1

4

1

Nk

∑
k

∑
σ

nσ(εk+q)− nσ(εk)
εk+q − εk

.

Finally, in the q → 0 and T → 0 limit we find

χzz(0; 0) =
1

4
(gµB)

2 ρ(εF )

ρ(εF ) = −
∑
σ

1

Nk

∑
k

dnσ(εk)

dεk

∣∣∣∣
T=0

A.3.6 Atomic limit

We calculate the local atomic susceptibility for the system described by the Hamiltonian (31)
starting from the general expression (38). In the sector τi > τi+1 we have

χσ σσ′σ′(τ ) =
1

2(1 + eβU/2)

(
eτ12U/2+τ34U/2 + δσσ′e

(β−τ12)U/2−τ34U/2
)
.

The magnetic susceptibility for τi > τi+1 is then given by

χzz(τ ) = (gµB)
2 1

4

1

β

∑
σσ′

σσ′χσ σσ′σ′(τ ) =
(gµB)

2

4β

1

(1 + eβU/2)
e(β−τ12−τ34)U/2,

which depends only on τ12 + τ34. If we perform the Fourier transform we recover formula for
the uniform static susceptibility

χzz(0; 0) = (gµB)
2 1

4kBT

eβU/2

1 + eβU/2
= (gµB)

2 1

4

1

β2

∑
nn′

∑
σσ′

σσ′ χ0σσ′

n,n′ (0),

where

∑
σσ′

σσ′ χ0σσ′

n,n′ (iωm) = β
1

iνn − U/2
1

iνn′ − U/2
1 + eβU/2

eβU/2
δωm,0.
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A.3.7 Alternative formulation

The spin susceptibility can also be obtained from χi,i
′

zz (τ ) with τ = (τ1, τ1, τ3, τ3). We have

χi,i
′

zz (τ ) = χi,i
′

zz (τ13) = 〈TM i
z(τ1)M

i′

z (τ3)〉 − 〈M i
z〉〈M i′

z 〉,

where M i
z = −gµBSiz is the magnetization at site i. Its Fourier transform is

χi,i
′

zz (iωm) =

∫
dτ13e

iωmτ13χi,i
′

zz (τ13).

By Fourier transforming to the reciprocal space we find

χzz(q; τ13) = 〈TMz(q; τ1)Mz(−q; τ3)〉 − 〈Mz(q)〉〈Mz(−q)〉,

χzz(q; iωm) =

∫
dτeiωmτ13χzz(q; τ13).
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1 Introduction

A quantity of central importance for the description of correlated electron systems is the elec-
tronic self-energyΣ(k, ω). It may be viewed as a momentum- and energy-dependent correction
to the energy of an electron that describes the effects of its interaction with the other electrons.
Here the word ‘correction’ is by no means supposed to imply that Σ(k, ω) is small. Quite the
contrary, for example, in a Mott-insulator Σ(k, ω) contains a term of the form U/~(ω − ω0),
with U the intra-atomic Coulomb repulsion, and this term is both large and strongly dependent
on the energy ω. In fact, the very reason why density functional calculations do not reproduce
the single-particle excitation spectrum – or ‘band structure’ – of Mott-insulators is that they
implicitly assume an ω-independent self-energy and thus miss this ‘correction’ of order U .
It would therefore seem desirable to have a theoretical principle that allows us to actually com-
pute the self-energy of a correlated electron system, and in fact it can be shown that Σ(k, ω)

obeys a stationarity condition that can be used for that purpose. More precisely, Luttinger and
Ward have shown in a seminal paper [1] that the grand canonical potential Ω of an interacting
fermion system can be expressed as a functional of its self-energy, Ω = Ω[Σ], and that this
functional is stationary with respect to variations of Σ:

δΩ

δΣ(k, ω)
= 0 .

Unfortunately a straightforward application of the stationarity property – e.g. by introducing
‘trial self-energies’ that depend on a number of variational parameters – is not possible because
Ω[Σ] involves the so-called Luttinger-Ward functional F [Σ], which is defined as a sum over
infinitely many Feynman diagrams and thus cannot be evaluated for a given trial self-energy.
A possible approximation would be to truncate the Luttinger-Ward functional, thereby keep-
ing only a selected class of Feynman diagrams, typically ‘bubbles’ or ‘ladders’. These are the
famous conserving approximations of Baym and Kadanoff [2] and one example for such an
approximation is the very successful GW-approximation proposed by Hedin [3]. On the other
hand, the truncation of the Luttinger-Ward functional ultimately is a poorly controlled approxi-
mation that may be less suitable for strongly correlated electrons.
In 2003, however, an entirely new idea on how to apply the stationarity principle for Σ in
strongly correlated electron systems was put forward by Potthoff, the so-called variational clus-
ter approximation (VCA) [4–6]. The basic idea of the VCA is to generate trial self-energies
Σ for an infinite lattice by exact diagonalization of finite clusters and, in the course of doing
so, to evaluate the exact value of the Luttinger-Ward functional F [Σ] numerically. Variation of
Σ is performed by varying the single-particle terms of a cluster that serves as the ‘self-energy
preparation-lab’. Put another way, the VCA seeks the best approximation to the self-energy
of an infinite lattice amongst ‘cluster-representable’ ones, i.e. functions Σ(k, ω) which can be
generated as the exact self-energies of finite clusters. This is a new way for generating approx-
imations in strongly correlated electron systems and in the following the variational principle
itself, the basic idea of the VCA, and some selected applications will be presented.
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2 Notation and brief review of field theory

First we define the notation and give a brief review of some concepts from field theory. While
this will be rather cursory, introductions to the use of field theory in statistical physics can be
found in many textbooks [7–9], in the present notes we try to be consistent with Fetter and
Walecka (FW) [8].
We assume that the solid in question can be described as a periodic array of atomic orbitals
centered on the nuclei of the atoms that form the basis of the lattice and we assume periodic
boundary conditions. We choose the unit of length such that the unit cell has volume 1. All
orbitals are taken as mutualy orthogonal. The number of unit cells in the crystal is N and
the number of atoms in the basis nAtom. The orbitals can be labeled by a triple of indices
(i, n, ν) where i ∈ {1, . . . , N} denotes the unit cell, n ∈ {1, . . . , nAtom} the basis atom and
ν ∈ {s, px, py, pz, dxy . . . } the type of orbital. The number of orbitals per unit cell is norb [10].
We introduce fermionic creation and annihilation operators, c†i,n,ν,σ and ci,n,ν,σ, for electrons in
these orbitals, where σ denotes the z-component of spin. It will often be convenient to contract
(i, n, ν, σ) into a single ‘compound index’ α, so that the Hamiltonian – assumed to be time-
independent – can be written as H = H0 +H1, with

H0 =
∑
α,β

tα,β c
†
αcβ, (1)

H1 =
1

2

∑
α,β,γ,δ

Vα,β,δ,γ c
†
αc
†
βcγcδ . (2)

Note the factor of 1/2 and the ‘inverted’ order of indices on the interaction matrix element V
in (2) which follows from the prescription of second quantization [7–9], see e.g. the lecture of
E. Koch. The Fourier transform of the Fermion operators reads

c†k,β =
1√
N

∑
i

eik·(Ri+rn) c†i,n,ν,σ ,

where we have introduced the orbital index β = (n, ν, σ). Since this second ‘compound index’
always comes together with either a momentum k or a cell index i no misunderstanding is
possible. The Hamiltonian now can be written as

H0 =
∑
k

∑
α,β

tα,β(k) c†k,α ck,β, (3)

H1 =
1

2N

∑
k,k′,q

∑
α,β,γ,δ

Vα,β,δ,γ(k,k
′,q) c†k+q,α c

†
k′−q,β ck′,γ ck,δ . (4)

Equation (3) defines the 2norb × 2norb matrix t(k), whose eigenvalues En(k) give the nonin-
teracting band structure. This formulation allows H0 to describe magnetic systems or include
spin-orbit coupling. With the explicit prefactor of 1/N in (4) the matrix elements V in (4) are
of order 1.
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In all that follows we consider a grand canonical ensemble with inverse temperature β = 1/kBT

and chemical potential µ. The thermal average of any operator Ô is given by

〈Ô〉th =
1

Z
Tr
(
e−β(H−µN)Ô

)
(5)

with the grand partition function

Z = Tr
(
e−β(H−µN)

)
. (6)

Introducing the imaginary-time Heisenberg operator

cα(τ) = eτ(H−µN)/~ cα e
−τ(H−µN)/~ ,

the imaginary time Green’s function is defined as

Gα,β(τ) = −Θ(τ)
〈
cα(τ) c†β

〉
th

+Θ(−τ)
〈
c†β cα(τ)

〉
th

(7)

=
1

Z

(
−Θ(+τ)

∑
i,j

e−β(Ei−µNi) eτ(Ei−Ej+µ)/~ 〈i|cα|j〉〈j|c
†
β|i〉

+Θ(−τ)
∑
i,j

e−β(Ei−µNi) eτ(Ej−Ei+µ)/~ 〈i|c†β |j〉〈j|cα|i〉

)
, (8)

where |i〉 are the exact eigenstates of the system with energies Ei and particle number Ni and
Θ(τ) is the Heaviside step function. G(τ) is a matrix with row dimension 2Nnorb, which can
be made block-diagonal by introducing the spatial Fourier transform

G(n,ν,σ),(n′,ν′,σ′)(k, τ) =
1

N

∑
i,j

eik·(Ri−Rj+rn−rn′ ) G(i,n,ν,σ),(j,n′,ν′,σ′)(τ) ,

where G(k, τ) is a 2norb × 2norb matrix.
From (8) it is easy to see that G is well-defined only if τ ∈ [−β~, β~] when Ei are unbounded
from above [11], and that for τ ∈ [−β~, 0] one has G(τ + β~) = −G(τ). It follows that G(τ)

has the Fourier transform (see equation (25.10) in FW)

G(τ) =
1

β~

∞∑
ν=−∞

e−iωντ G(iων),

G(iων) =

∫ β~

0

dτ eiωντ G(τ) ,

The ων = (2ν + 1)π/β~ are called the (Fermionic) Matsubara frequencies. From (8) we obtain

Gαβ(iων) =
1

Z

∑
i,j

e−β(Ei−µNi) + e−β(Ej−µNj)

iων + 1
~µ−

1
~(Ej − Ei)

〈i|cα|j〉〈j| c
†
β|i〉

=

〈
cα

1

iων + 1
~µ−

1
~L

c†β

〉
th

−
〈
c†β

1

−iων − 1
~µ−

1
~L

cα

〉
th

(9)
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Fig. 1: Top: Graphical representation of the Dyson equation. Middle: Self-energy diagrams
have two open ends. Bottom: The convention for the representation of the Green’s function
implies the labeling of the entry points of the self-energy.

where the Liouville operator L is defined by LX = [H,X]. When viewed as function of a
complex variable z, all elements of G(z) are analytic in the complex z-plane except for the real
axis, where there are poles at z = (Ej − Ei − µ)/~. It is this property on which the usefulness
of the imaginary-time Green’s function is based: its Fourier transform G(z) can be analytically
continued to a line infinitesimally above the real axis and then gives the Fourier transform of
the retarded real-time Green’s function – from which single-particle spectral function i.e. the
photoemission and inverse photoemission spectrum of a system can be obtained. For this rea-
son the Fourier transform (9) is often called ‘the’ Green’s function and when we speak of the
Green’s function in the following we always mean (9). The first line in (9) is the Lehmann
representation of the Green’s function.
It is shown in textbooks of field theory [7–9] that the imaginary-time Green’s function can be

expanded in Feynman diagrams and the self-energy Σ(k, iων) can be introduced in the stan-
dard way, see Figure 1. The self-energy can be expanded in diagrams which have two ‘entry
points’ an incoming and an outgoing one, see Figure 1. Following FW [8], we represent the
Green’s function Gαβ by a directed line with an arrow running β → α (the reason is that it is
the creation operator that has the index β, see (7)). In the Dyson equation the orbital indices
of the Green’s function and the self-energy must take the form of consecutive matrix products,
e.g. G0

δαΣαβG
0
βγ - otherwise the summation of the geometric series would not be possible. It

follows that the element Σαβ must have the label α on the outgoing entry and the label β on the
incoming one, see Figure 1. This will be of some importance later on.
Note that the real time Green’s function at finite temperature does not allow for a Feynman dia-
gram expansion – this is why the digression of calculating the imaginary time Green’s function
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G
(t
)

t
Fig. 2: Real part of the Green’s function G(ω) for real ω. The dashed vertical lines give the
position of the poles, ωi.

and analytically continuing its Fourier transform is necessary. It follows from the diagrammatic
expansion that the Green’s-function obeys the Dyson equation (see (26.5) of FW)(

iων + µ/~− t(k)/~−Σ(k, iων)
)
G(k, iων) = 1

(
− ∂τ + µ/~− t(k)/~

)
G(k, τ)−

∫ β~

0

Σ(k, τ − τ ′) G(k, τ ′)dτ ′ = δ(τ). (10)

where the second equation is the Fourier-transform of the first and FW (25.21) was used.
Let us finally briefly discuss the analytic structure of the Green’s function and self-energy. For
simplicity we specialize to a single band and assume that the z-component of spin is a good
quantum number so that the Green’s function is a scalar. It can be seen from (9) that the Fourier
transform of the Green’s function has the form

G(ω) =
∑
i

α2
i

ω − ωi

where αi and ωi are real numbers. It has poles on the real axis and the real part of G(ω) looks
like in Figure 2. This shows that in between any two successive poles ωi and ωi+1 the Green’s
function crosses zero with a negative slope

G(ω) ≈ −β2
i (ω − ζi).

Near the crossing point ζi we thus have

Σ(ω) = −G−1(ω) + ω + µ− tk
=

σi
ω − ζi

+ . . .

where σi = 1/β2
i . The self-energy thus has poles on the real axis as well, and these poles are

‘sandwiched’ in between the poles of the Green’s function. Luttinger has shown [12] that Σ(ω)

is essentially determined by these poles and their residua in that it can be written as

Σ(ω) = η +
∑
i

σi
ω − ζi

(11)

with a real constant η.
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3 Proof of the theorem by Luttinger and Ward

3.1 Statement of the theorem

The grand canonical potential Ω(T, µ) contains all thermodynamical information about a sys-
tem at fixed temperature T and chemical potential µ. It is defined as the logarithm of the grand
partition function

Ω = − 1

β
ln(Z).

Z =
∑
i

e−β(Ei−µNi) ,

where the sum is over all eigenstates of the system with energy Ei and particle number Ni.
The latter can indeed be evaluated for noninteracting particles and in this way one obtains for
example the grand canonical potential of noninteracting Bloch electrons

Ωnon−int = − 1

β

2norb∑
n=1

∑
k

ln
(
1 + e−β(En(k)−µ)

)
. (12)

As shown in textbooks of statistical mechanics, expression (12) allows one to derive the com-
plete thermodynamics of metals. However, it is in general not possible to evaluate the grand
partition function for a system of interacting particles of macroscopic size.
Luttinger and Ward, however, derived a relation for for the grand canonical potential of inter-
acting fermions [1]. More precisely, they considered the following quantity

Ω̃ = − lim
η→0+

1

β

∑
k,ν

eiωνη

(
ln det

(
−G−1(k, iων)

)
+Tr

(
G(k, iων)Σ(k, iων)

))
+Φ[G] . (13)

Here
∑

ν denotes summation over the Fermionic Matsubara frequencies and Φ[G] is the so-
called Luttinger-Ward functional which is defined as a sum over closed, linked Feynman-
diagrams (the precise definition will be discussed below). The important point here is that a
closed Feynman diagram is simply a number, so that Φ[G] indeed assigns a (real) number to
each possible Green’s function G. Regarding the logarithm of the determinant in (13), we recall
that the determinant of a matrix is given by the product of its eigenvalues (the matrix need not
be Hermitian for this to be true), so the logarithm of the determinant is the sum of the logarithms
of the (complex) eigenvalues of −G−1.

In the following, we want to show that in fact Ω̃ = Ω, the true grand canonical potential
and thereby follow the original proof by Luttinger and Ward. The basic idea is to multiply the
interaction part of the Hamiltonian, (2), by a scale factor, H1 → λH1, then show Ω̃ = Ω for
λ = 0 – i.e. the noninteracting limit – and next show that ∂λΩ̃ = ∂λΩ. Obviously, this proves
the identity of the two expressions for any λ.
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(c)(b)(a)

Fig. 3: (a) Integration contour C used in (15). Since the integrals along the two contours in (b)
are zero and the contributions from the circular arcs vanish, the integral along the contour in
(a) is equal to that over the contour C ′ in (c).

3.2 The case λ = 0

In this limit, Σ = 0 and Φ[G] = 0 (the latter property follows because all interaction lines in all
diagrams are zero) so that only the first term in (13) remains and

G−1(k, ω) = ω + (µ− t(k)) /~,

ln det
(
−G−1(k, ω)

)
=

2norb∑
n=1

ln
(
− ω −

(
µ− En(k)

)
/~
)
. (14)

We now replace the sum over Matsubara frequencies by a contour integration, a standard trick
used in field theory (see e.g. section 25 of FW) and obtain

− 1

β

∑
ν

eiωνη ln det
(
−G−1(k, iων)

)
=

~
2πi

∮
C
dω f(ω) eωη ln det

(
−G−1(k, ω)

)
, (15)

where

f(ω) =
1

eβ~ω + 1
,

is the Fermi function and the contour C encircles the imaginary axis in counterclockwise fash-
ion, see Figure 3a. Next we note that the integrals along the two clover-shaped contours in
Figure 3b are zero, provided the integrand is analytic in the interior of the two curves. Since
the Fermi function has all of its poles along the imaginary axis, which is outside of the curves
in 3b, we only need to consider possible singularities of ln det(−G−1(k, ω)). In principle, the
complex logarithm has a branch-cut along the negative real axis which could be problematic.
However, a quick glance at (14) shows that as long as ω has a nonvanishing imaginary part,
the argument of the logarithm can never be purely real. Singularities of the logarithm thus oc-
cur only on the real axis, which also is exterior to the contours 3b. The integral along these
contours therefore is indeed zero. Next, Jordan’s lemma can be invoked to establish that the
integral along the large semicircles vanishes. Here, the Fermi function f(ω) guarantees that the
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contribution from the semicircle with <(ω) > 0 vanishes, whereas the factor eωη does the same
for the semicircle with <(ω) < 0. It follows that the integral along the contour C in Figure
3a is equal to that along the contour C ′ in 3c (note the inverted direction of the curves in 3c as
compared to 3b). Next, we insert

f(ω) = − 1

β~
d

dω
ln
(
1 + e−β~ω

)
(16)

and integrate by parts. Thereby the Fermi function and the factor eηω again make sure that the
contributions from <(ω) = ±∞ vanish and we obtain

1

β

1

2πi

∮
C′
dω ln

(
1 + e−β~ω

) d

dω

(
eηω

2norb∑
n=1

ln (−ω + (µ− En(k))/~)

)

=
1

β

1

2πi

∮
C′
dω ln

(
1 + e−β~ω

)
eηω

2norb∑
n=1

1

ω + (µ− En(k))/~
+O(η) .

Now we substitute ~ω → z and use the theorem of residues (thereby remembering that C ′

encircles the poles of the Green’s function on the real axis in clockwise fashion) and after taking
the limit η → 0 obtain the expression (12), which completes the first step of the proof.

3.3 Calculation of ∂Ω/∂λ

To obtain the derivative of the true grand potentialΩ with respect to λ we start from the formula

λ
∂

∂λ
Ω(λ) = −λ

β

∂

∂λ
ln
(

Tr
(
e−β(H0+λH1)−µN

))
=

1

Z
Tr
(
λH1 e

−β(H0+λH1)−µN
)

= 〈λH1〉λ
where 〈...〉λ denotes the thermal average calculated at interaction strength λ. The last quantity
thus is the expectation value of the interaction Hamiltonian for interaction strength λ. This can
be computed by making use of the equation of motion of the Green’s function, a procedure
found in many textbooks, see e.g. Equation (23.14) of FW. One has

〈λH1〉λ = −1

2
lim
τ→0−

∑
k

Tr

(
~
∂

∂τ
− µ+ t(k)

)
Gλ(k, τ) ,

where the subscript λ on the Green’s function implies that this is the exact Green’s function for
interaction strength λ. Next we recall the Dyson equation (10), which holds for any λ

(−∂τ + (µ− t(k)) /~) G(k, τ)−
∫ β~

0

dτ ′Σ(k, τ − τ ′) G(k, τ ′) = δ(τ).

Since δ(τ < 0) = 0 we have limτ→0− δ(τ) = 0 and obtain

λ
∂

∂λ
Ω(λ) =

~
2

lim
τ→0−

∑
k

∫ β~

0

dτ ′Tr
(
Σλ(k, τ − τ ′)Gλ(k, τ

′)
)

=
1

2β

∑
k,ν

TrΣλ(k, iων)Gλ(k, iων) . (17)
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3.4 Definition and properties of the Luttinger-Ward functional

As already mentioned, the Luttinger-Ward functional Φ[G] is defined as a sum over infinitely
many Feynman diagrams with certain properties. The diagrams which contribute are closed,
which means they have no external lines. They are moreover connected, which means that they
cannot be decomposed into sub-diagrams that are not connected by lines. And finally, only
skeleton diagrams are taken into account in the Luttinger-Ward functional. A skeleton diagram
is a diagram where no Green’s function line contains a self-energy insertion. In other words, it
is impossible to draw a box around any part of the diagram so that only two Green’s function
lines cross the box.
At this point we need to discuss an important property of the skeleton diagrams. Let us consider
a self-energy diagram. It contains one Green’s function line from the entry-point to the exit-
point, and a number of Green’s function loops. Starting from the entry-point we may follow the
Green’s function line and draw a circle around each self-energy insertion that we encounter until
we reach the exit point. This procedure will eliminate a number of loops, that means enclose
them in a self-energy insertion. Then, we continue along the first interaction line which is not
eliminated until we reach a Fermion loop that is not yet eliminated. We follow the Green’s
function line along this loop and again draw a circle around each self-energy insertion. We
proceed to the next interaction line that has not yet been eliminated and so on. We end up
with a diagram in which all self-energy insertions are inside circles. Replacing the circles by
straight lines we obviously obtain a skeleton-diagram for the self-energy. It is easy to see that
the skeleton diagram to which a given self-energy diagram is reduced is unique. All self-energy
diagrams thus can be grouped into classes such that all members of one class can be reduced to
the same skeleton diagram. Conversely, all members of one class can be obtained by starting
out from the skeleton-diagram and inserting the full Green’s function for each Green’s function
line in the diagram, which we write as

Σ(k, ω) =
∑
n

Σ(s,n)(k, ω). (18)

Here Σ(s,n) denotes the set of all nth order skeleton diagrams (i.e. diagrams with n interaction
lines) with the Green’s function lines replaced by the full Green’s function.
Having defined the diagrams contributing to Φ[G] each diagram is now translated into a mul-
tiple sum according to the standard Feynman rules for the imaginary-time Green’s function in
momentum space (see section 25 of FW). However, there is one crucial difference: whereas in a
standard Feynman diagram a Green’s function line corresponds to a factor G0(k, ω) (the nonin-
teracting Green’s function), in the Luttinger-Ward functional we replace G0(k, ω) → G(k, ω)

where G(k, ω) is the argument of the functional Φ[G]. As an example, the expression corre-
sponding to the diagram in Figure 4 is(
−1

β~2N

)2

(−1)2
∑
k,k′,q

∑
α,β,γ,δ

∑
α1,β1,γ1,δ1

∑
ν,ν′,µ

Vα,β,δ,γ(k,k
′,q)Vδ1,γ1,α1,β1(k + q,k′ − q,−q)

×Gα1,α(k + q, iων + ωµ)Gδ,δ1(k, iων)Gβ1,β(k′ − q, ων′ − ωµ)Gγ,γ1(k
′, ων′) . (19)
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Fig. 4: Left: A diagram contributing to the Luttinger-Ward functional. Right: the elements of
the diagram.

The Luttinger-Ward functional Φ[G] thus consists of an infinite sum of multiple sums which
involve the interaction matrix elements V of the Hamiltonian (4) and the function G for which
the functional is to be evaluated.
Let us briefly discuss the scaling with system size, N . By the Feynman rules an nth order dia-
gram has the prefactor (1/N)n. On the other hand, there are n interaction lines, and 2n Green’s
function lines, so that there are 3n momenta. The n interaction lines give rise to 2n momentum
conservation conditions, one for each end of a line. However, in a closed diagram one of these
momentum conservation conditions is fulfilled trivially so that there remain n + 1 momenta to
be summed over (see the above example). Each sum runs over N momenta so that the total
diagram is of order N – as it has to be because Ω is an extensive quantity.
In addition to the factors originating from the Feynman rules, each diagram is multiplied by
−1/(βS) where the positive integer S is the symmetry factor of the diagram. A very de-
tailed discussion of these symmetry factors is given in section 2.3 of Negele-Orland [9]. The
definition is as follows: first, the diagram is drawn such that all interaction lines are in x-
direction. The n interaction lines of a diagram are labeled by integers i ∈ {1 . . . n} and the
ends of each interaction line are labeled by R and L (for ‘right end’ and ‘left end’), see Fig-
ure 5a. Any Green’s function line in the diagram now can be labeled by the ends of the in-
teraction lines where it departs and where it ends: (i, S1) → (j, S2) with i, j ∈ {1 . . . n}
and S1, S2 ∈ {R,L}. Obviously, the diagram is characterized completely by the 2n ‘directed
quadruples’ (i, S1) → (j, S2). Then, we consider the following operations on the diagrams: a)
any permutation of the indices i, b) exchange of the labels R and L on an arbitrary number of
interaction lines, c) any combination of a permutation followed by label exchanges. Such an
operation obviously changes the quadruples which characterize the connectivity of the diagram:
[(i, S1) → (j, S2)] → [(i′, S ′1) → (j′, S ′2)]. The symmetry factor of a diagram then is the num-
ber of symmetry operations – including identity – where the new labels (i′, S ′1) → (j′, S ′2) are
a permutation of the old ones, (i, S1) → (j, S2) (Negele-Orland then call the transformed dia-
gram a deformation of the first one). As an example, consider the diagram in Figure 5a. Label
exchange on, say, the interaction line 2 leads to the diagram shown in 5b, which however is not
a deformation of the original diagram. This can be seen by considering e.g. the line connecting
theR-end of 1 and theR-end of 2. In 5a this line would have the label (2, R)→ (1, R), whereas
it would be (1, R) → (2, R) in 5b. This means that the direction of momentum flow along the
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Fig. 5: Determination of the symmetry factor S for a diagram.

line would be reversed. On the other hand, the permutation of the labels 1 and 3 followed by
label exchange on interaction line 2 leads to the diagram 5c which indeed is a deformation of
the original diagram. In Figure 5d the Green’s function lines are numbered by 1→ 6 and Table
1 gives the quadruples corresponding to these lines in Figures 5a and 5c. Obviously the two sets
of quadruples are a permutation of each other. It turns out that this is the only symmetry oper-
ation which leaves the diagram invariant, so that, taking into account the identity operation, the
diagram has S = 2. Since a symmetry operation corresponds to a permutation of the quadruples
(i, S1)→ (j, S2) that characterize the individual Green’s function lines in a diagram, it defines
a mapping between these lines whereby each line is mapped onto the one that gets its label. For
example, from Table 1 one reads off the corresponding mapping for the operation connecting
5a and 5c:

1 2 3 4 5 6
2 1 6 5 4 3

If two Green’s function lines i and j are mapped onto each other the lines are equivalent in the
sense that the diagram could be deformed such that the deformed diagram is precisely the same
as the original one but with line j now taking the place of line i and vice versa.
Let us now assume that a diagram has the symmetry factor S. This means that all Green’s
function lines can be grouped into disjunct classes such that the lines belonging to one class are
mapped onto each other by one of the S symmetry operations. For example, the diagram in 5
has the classes (1, 2), (3, 6) and (4, 5). Since a diagram with n interaction lines has 2n Green’s
function lines the number of classes is 2n/S which will be of importance later on.

Line 5(a) 5(c)
1 (1,L)→(3,L) (3,L)→(1,L)
2 (3,L)→(1,L) (1,L)→(3,L)
3 (1,R)→(2,L) (3,R)→(2,R)
4 (2,R)→(1,R) (2,L)→(3,R)
5 (2,L)→(3,R) (2,R)→(1,R)
6 (3,R)→(2,R) (1,R)→(2,L)

Table 1: Quadruples describing the connectivity of the diagrams Figure 5a and Figure 5c. The
numbers of the Green’s function lines are given in Figure 5d.
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Fig. 6: Variation of G implies opening the lines of a Feynman diagram.

Next, we want to see the meaning of this definition. In fact, the Luttinger-Ward functional is
the generating functional of the self-energy, or, more precisely:

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων). (20)

To see this, consider an infinitesimal change Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων) as
in Figure 6. The initial diagrams correspond to multiple sums over products of Green’s func-
tions where all internal frequencies, momenta, and orbital indices are summed over, subject to
the condition of energy/momentum conservation at each interaction vertex, see (19). The first-
order change then also can be viewed as a sum of diagrams but with a single missing line, which
corresponds to the variation δG that has been factored out. Another way to state this is to say
that differentiating with respect to an element of G amounts to successively opening each of
the lines in the initial closed diagram and summing the remaining diagrams. These remaining
diagrams obviously look like self-energy diagrams in that they have two entry points. We now
need to show, however, that the diagrams not only look like possible contributions to the skele-
ton diagram expansion of the self-energy, but that they come with exactly the right numerical
prefactors. At this point, the additional prefactors of −1/βS turn out to be crucial.
We first note that the momentum and frequency which flow into/out-of the diagram are fixed
by the momentum and frequency of δG. Regarding the orbital indices, we recall that Gαβ cor-
responds to a directed line β → α. The resulting self-energy-like diagrams therefore all have
the matrix index α on their incoming entry and β on their outgoing entry and, comparing with
Fig. 4, we see that this assignment of indices corresponds to Σβα. Moreover, all internal mo-
menta, frequencies and matrix indices in the remaining diagrams are summed over – subject
to the condition of frequency and momentum conservation at the interaction lines – as would
be the case in the true self-energy diagrams. Second, the order n of a diagram, i.e. the number
of interaction lines, is not changed by opening a Green’s function line, so that the prefactor
(−1/β~2N)n of the closed diagram is also the correct prefactor for the resulting self-energy di-
agram. Third, opening a Green’s function line reduces the number of closed fermion loops by 1
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and the factor (−1) in−1/βS takes care of this. Lastly, we need to discuss the symmetry factor
S. Let us consider a diagram with n interaction lines, which accordingly has 2n Green’s func-
tion lines and moreover assume that the diagram has the symmetry factor S. As we saw above,
the 2n Green’s function lines can be divided into classes of S members which are mapped into
each other by the symmetry operations, and the number of these classes is 2n/S. A symmetry
operation maps a Green’s function line i onto an equivalent one j, so it is possible to deform the
diagram such that it looks exactly the same as the original one but with line j in place of line i.
This means, however, that ’opening’ the line i also gives exactly the same self-energy diagram
as opening line j. Accordingly, from the single closed diagram of degree n with symmetry
factor S we obtain 2n/S different skeleton diagrams for the self-energy, and each is produced
S times, see also Figure 7. This factor of S, however, precisely cancels the prefactor 1/S. It
follows that each skeleton-diagram for the self-energy is produced with the same prefactor 1/β.
Differentiating Φ[G] with respect to Gαβ(k, iων) thus gives 1/β times the sum of all skeleton
diagrams for Σβα(k, iων), with the noninteracting Green’s function replaced by the full one,
and this is exactly Σβα(k, iων) itself, see (18), proving (20).
We have just seen that all skeleton-diagrams for the self-energy can be obtained by differenti-

ating the Luttinger-Ward functional with respect to G, whereby the differentiation corresponds
to opening one line in a closed diagram. We then may ask if this operation can be reversed,
namely if the Luttinger-Ward functional can be obtained by starting from the skeleton-diagram
expansion of the self-energy and closing the diagrams by reconnecting the entry-points of the
self-energy by a Green’s function. More precisely, we consider an expression of the form

1

β

∑
ν,k

∑
α,β

Gα,β(k, iων) Σ
(s,n)
β,α (k, iων) . (21)

We have seen that an nth order diagram contributing to Φ[G] with symmetry factor S produces
2n/S different skeleton-self-energy diagrams, and each of them S times and with a factor of
(−1), so that the remaining prefactor was 1/β. Upon closing the fermion line again, according
to (21), each of these diagrams produces the original closed diagram (it is easy to see that for
each self-energy diagram there is exactly one closed diagram from which it can be obtained).
Since there are 2n/S self-energy diagrams originating from the original closed diagram the
latter is produced 2n/S times and thus has the additional prefactor −2n/Sβ, where the factor
of (−1) is due to the additional fermion loop in the closed diagram. In the expansion of Φ[G],
however, the diagram would have had the prefactor−1/Sβ, or, put another way, closing the sum
of all nth order skeleton diagrams for Σ according to (21) produces the nth order contribution
to Φ[G] with an additional prefactor of 2n so that

Φ(n) =
1

2nβ

∑
ν,k

Tr G(k, iων) Σ(s,n)(k, iων). (22)
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1

12

23

3

Fig. 7: The diagram on the left has n = 3 and S = 2 and accordingly 3 classes of symmetry-
equivalent Green’s function lines. The lines are labeled by the number of the classes, compare
Figure (5) and Table 1. Successively opening the lines of the diagram produces the three differ-
ent self-energy diagrams in the center column and each of them is produced S = 2 times. The
right column shows the diagrams redrawn to more look like self-energy diagrams.

3.5 Calculation of ∂Ω̃/∂λ

We proceed to the the final step of the proof and compute ∂Ω̃/∂λ. If we vary the interaction
strength λ there are two places in the expression Ω̃ in (13) where this makes itself felt. Namely,
the self-energy Σ will change, and moreover the interaction matrix elements V in the Luttinger-
Ward functional (compare 19) that have a prefactor of λ will also contribute to the variation.
Let us first consider the variation of Σ and compute

∂Ω̃

∂Σα,β(k, iων)
.

There are three terms in (13) and we consider them one after the other. The first two terms
involve a sum over momentum and frequency and obviously only those terms with momen-
tum k and frequency ων will contribute. Accordingly, in the following equations we omit the
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arguments (k, iων) for brevity. Then we find by using the chain rule for differentiation

∂

∂Σα,β

(
− 1

β
ln det

(
−G−1

))
= − 1

β

∑
µ,ν

(
∂

∂(−G−1
µ,ν)

ln det
(
−G−1

)) ∂(−G−1
µ,ν)

∂Σα,β

= − 1

β

∑
µ,ν

(−Gν,µ) δµ,α δν,β

=
1

β
Gβ,α .

In going to the 2nd line we used the identity from the Appendix and the Dyson equation

−G−1 = −ω − µ/~ + Σ

from which it follows that
∂(−G−1

µ,ν)

∂Σα,β

= δµ,α δν,β.

We proceed to the second term:

∂

∂Σα,β

(
− 1

β
Tr Σ G

)
=

∂

∂Σα,β

(
− 1

β

∑
µ,ν

Σν,µ Gµ,ν

)
= − 1

β

(
Gβ,α +

∑
µ,ν

Σν,µ
∂Gµ,ν

∂Σα,β

)
.

Lastly we consider the Luttinger-Ward functional. Using again the chain rule we find

∂Φ[G]

∂Σα,β

=
∑
µ,ν

∂Φ[G]

∂Gµ,ν

∂Gµ,ν

∂Σα,β

=
1

β

∑
µ,ν

Σν,µ
∂Gµ,ν

∂Σα,β

.

Adding up the three terms we thus obtain the important result

∂Ω̃

∂Σα,β(k, iων)
= 0. (23)

In other words: the expression Ω̃, which will be seen to be equal to the grand potential Ω in
a moment, is stationary with respect to variations of the self-energy. This is the stationarity
condition for Σ which is the basis of the VCA.
First, however, we have to complete the proof and evaluate λ ∂

∂λ
Ω̃(λ). Since there is no variation

of Ω̃ due to a variation of Σ, the only remaining source of variation are the interaction lines in
the Luttinger-Ward functional. Namely any nth order diagram has the prefactor of λn so that

λ
∂

∂λ
Φ(n) = n Φ(n)

Using (22) we thus obtain

λ
dΩ̃

dλ
=
∑
n

nΦ(n) =
∑
n

1

2β

∑
ν,k

Tr Gλ(k, iων) Σ
(s,n)
λ (k, iων)

=
1

2β

∑
ν,k

Tr Gλ(k, iων)

(∑
n

Σ
(s,n)
λ (k, iων)

)

=
1

2β

∑
ν,k

Tr Gλ(k, iων) Σλ(k, iων) .
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Comparing with (17), we see that this is equal to λ ∂
∂λ
Ω(λ) which completes the proof.

Let us summarize the results that we have obtained:

1. The grand canonical potential Ω of an interacting Fermi system is given by eqn. (13).

2. The Luttinger-Ward functional is the generating functional of Σ(k, iων), see eqn. (20).

3. Φ[G] depends only on the interaction matrix elements Vαβδγ in the Hamiltonian and the
Green’s function G which is the argument of the functional.

4. Ω is stationary under variations of Σ(k, iων) see (23).

Looking at the above proof one might worry about the fact that it assumes a continuous evo-
lution of the system with increasing interaction strength λ - whereas we are interested e.g. in
Mott-insulators where we have reason to believe that a phase transition occurs as a function
of λ. However, Potthoff has recently given a nonperturbative proof of the theorem [6, 13] that
means all of the above properties of the grand potential, the Luttinger-Ward functional and the
self-energy remain valid in a strongly correlated electron system where a Feynman-diagram ex-
pansion of the Green’s function and the adiabatic continuity with the noninteracting system can
no longer be assumed valid.

4 The variational cluster approximation

In the preceding section we have seen that the grand canonical ensemble of a system is sta-
tionary with respect to variations of the self-energy. In order to rewrite Ω as a functional of
the self-energy we need to change the argument of the Luttinger-Ward functional from G to
Σ. Since Σ is the derivative of Φ with respect to G this can be achieved, following [4], by
introducing the Legendre-transform of the Luttinger-Ward functional:

F [Σ] = Φ[G[Σ]]−
∑
k,ν

∑
α,β

∂Φ

∂Gαβ(k, iων)
Gαβ(k, iων)

= Φ[G[Σ]]− 1

β

∑
k,ν

∑
α,β

Gαβ(k, iων)Σβα(k, iων)

= Φ[G[Σ]]− 1

β

∑
k,ν

Tr G(k, iων) Σ(k, iων) .

By virtue of being a Legendre transform this new functional obviously satifies

∂F

∂Σαβ(k, iων)
= − 1

β
Gβα(k, iων) . (24)

Moreover, the second and third term in (13) together are nothing but F [Σ], whence

Ω = − lim
η→0+

1

β

∑
k,ν

eiωνη [ln det (−iων + (t(k)− µ)/~ + Σ(k, iων))] + F [Σ] . (25)
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Fig. 8: Left: The 2D Hubbard model. Center: The 2D Hubbard model partitioned into 2 × 2
clusters. Right: Partitioning into larger/smaller clusters, with or without additional bath sites
and additional hopping integrals. All systems have a different kinetic energy H0 but exactly the
same interaction part H1; accordingly, they all have the same Luttinger Ward functional.

Here we have used the Dyson equation to replace −G−1 in the first term. This expresses Ω as
a functional of Σ, and this functional is known to be stationary with respect to variations of its
argument at the exact Σ (this is also easily verified using the identity from the Appendix together
with (24)). One might now try and either derive Euler-Lagrange equations or introduce a trial
self-energy containing some variational parameters, e.g., of the form (11) with only a certain
number of poles (σi, ζi) retained, and perform the variation with respect to these parameters.
Unfortunately this procedure does not work, because the functional F [Σ] was defined as the
Legendre transform of the Luttinger-Ward functional Φ[G], which in turn was defined as a sum
over an infinite number of Feynman diagrams and thus is completely impossible to evaluate for
a given trial self-energy.
At this point Potthoff’s new idea comes into play. For definiteness let us assume that we are
interested in a 2D Hubbard model, shown schematically in Figure 8a. Then, we might partition
the plane into finite clusters and set the hopping between the clusters to zero, so that they
become disconnected, see Fig. 8b. The resulting array of clusters has been termed the reference
system. The finite clusters also can be decorated in various ways by noninteracting bath orbitals,
they can be larger than just 2× 2 or contain hopping terms not included in the original Hubbard
Hamiltonian, see Fig. 8c. As long as the resulting clusters are not too big, the Fock space of
a single cluster has a manageable size and the clusters can be treated by exact diagonalization.
This gives us all eigenstates |i〉 together with their energies Ei and particle numbers Ni. Using
these, we may numerically evaluate the grand partition function Z̆ and obtain the potential Ω̆
for a single cluster. In addition, we can calculate the Green’s function matrix Ğ(ω) using the
Lehmann representation or the Lanczos algorithm [14], invert it and extract the self-energy
Σ̆(ω). For all of this it is actually sufficient to know all eigenstates with Ei − µNi within
a window of ≈ 10 kBT above the minimum value, which can be obtained by the Lanczos
algorithm even for clusters of size Ñ ≈ 10− 20. Next, we revert to expression (25) and obtain
the numerical value of F [Σ̃]:

F [Σ̆] = Ω̆ + lim
η→0+

1

β

∑
ν

eiωνη
[
ln det

(
−iων + (t̆− µ)/~ + Σ̆(iων)

) ]
, (26)

where t̆ is the kinetic energy of the cluster, i.e., the matrix tαβ in (1). This procedure gives
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us the exact self-energy Σ̆(ω) of the cluster together with the exact numerical value of the
corresponding Luttinger-Ward functional. An important point is that all matrix elements Σ̆αβ

that have one index α or β on a bath site are zero. This can be seen, e.g., from the diagrammatic
expansion of the self-energy. The cluster self-energy Σ̆ therefore has non-vanishing entries only
for the correlated sites of the original lattice problem.
At this point the crucial observation by Potthoff comes into play: we have seen above that
the Luttinger-Ward functional Φ[G] was a sum over Feynman diagrams into which, apart from
numerical factors, only two quantities do enter: the interaction matrix elements V of the Hamil-
tonian and the Green’s function G which is the argument of the functional, see e.g. (19). In
our example with the 2D Hubbard model, however, the full 2D Hubbard model and the array of
clusters, which may include non-interacting bath sites, differ only in their single-particle terms
H0 but do have exactly the same interaction part H1. It follows that the functional Φ[G] and
hence its Legendre transform F [Σ] are identical for the two systems. Since, however, we are
able to calculate the self-energy of the cluster and the corresponding value of the Luttinger-
Ward functional exactly, we may use these as trial self-energies for the lattice system. In other
words, we make the ansatz for the lattice system

Ωlatt = − lim
η→0+

1

β

∑
k,ν

eiωνη
[
ln det

(
−G′(k, iων)

−1
)]

+ F [Σ̆],

G′(k, ω) =
(
ω + (µ− t(k))/~− Σ̃(k, ω)

)−1

. (27)

Here t(k) is now the kinetic energy matrix of the lattice system whereas Σ̆(k, ω) is the spatial
Fourier transform of the cluster self-energy (which may have no k-dependence at all, depending
on the geometry of the reference system). Accordingly, G′ is the approximate Green’s function
of the lattice system.
Then, how do we perform the variation of the self-energy? The answer is that the single-particle
Hamiltonian H̆0 of the cluster used to compute the trial self-energies Σ̆ is completely arbitrary,
because the only requirement for the equality of the Luttinger-Ward functionals was the equality
of the interaction partH1. If we change the single-particle terms of the reference system, i.e. the
hopping integrals or site-energies, the self-energy of the cluster will change. The self-energy
and its Luttinger-Ward functional thus become functions of the single-particle terms t̆αβ of the
reference system: Ωlatt = Ωlatt(t̆αβ). Then, we demand that

∂Ωlatt

∂t̆αβ
= 0, (28)

which is a condition on the parameters of the reference system, t̆, and we denote the solution of
(28) by t̆∗. The physical interpretation is that the VCA is seeking the best approximation to the
self-energy of the lattice-system amongst those functions Σ̆(k, iων) that can be represented as
the exact self-energies of the reference system for some values of the single-particle parameters
t̆αβ . After solving (28) we obtain an approximate self-energy Σ̆(k, iων) and an approximate
value of the grand canonical potential Ωlatt. Since Ωlatt can be obtained for arbitrary values
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of T and µ or other external parameters, thermodynamical quantities such as particle number,
entropy or specific heat can be obtained by doing the procedure for different T and µ and
differentiating.
As an example we address an interesting property of the VCA The particle number Ne of any
system can be obtained in two different ways (the second is a combination of FW (23.9) and
(25.10)):

Ne = −∂Ω
∂µ

=
1

β~
lim
η→0+

∑
k,ν

eiωνη Tr G′(k, iων).

Since the VCA gives both Ω, and G′(ω), it is natural to ask if the two ways of calculating Ne

give the same result, and this question has been addressed by Aichhorn et al. [15]. We first note
that the chemical potential of the reference system has to be the same as that of the physical
system. Next, let us assume that we regroup the orbital energies of the cluster, t̃αα, by separating
the center of gravity

ε =
1

2norb
Tr t̃

and introducing 2norb − 1 relative energies t̃′αα so that t̃αα = t̃′αα + ε. Since in all calculations
for the reference system the chemical potential µ and ε only appear in the combination µ − ε,
the derivative of any cluster quantity Ă with respect to the chemical potential µ obeys

∂Ă

∂ε

∣∣∣∣∣
t̆′,µ

= − ∂Ă

∂µ

∣∣∣∣∣
t̆′,ε

.

Next we consider the change of the approximate Ωlatt induced by a change of µ. A variation
of µ will make itself felt at a variety of places. Looking at (26) and (27) we see that µ appears
explicitely in these. Moreover, µ appears in the grand partition function Z̆ and the Green’s
function Ğ of the reference system, so that the cluster self-energy itself will change with µ.
As a consequence of these changes, we have to take into account that t̆∗, the solution of (28),
will change as well: t̆∗ → t̆∗ + δt̆∗, so that the situation becomes somewhat complicated.
Fortunately enough, the first-order change of Ωlatt due to a variation of t̆∗ is zero; this is exactly
the stationarity condition (28). We thus need to consider only the change of Ωlatt for fixed
parameters t̆. Using the last identity in the Appendix we obtain

− ∂Ωlatt

∂µ

∣∣∣∣
t̆′,ε

= lim
η→0+

1

β

∑
k,ν

eiωνη Tr

G′(k, iων)

1

~
− ∂Σ̆(k, iων)

∂µ

∣∣∣∣∣
t̆′,ε

− ∂F [Σ̃]

∂µ
|t̃′,ε

= lim
η→0+

1

β

∑
k,ν

eiωνη Tr

G′(k, iων)

1

~
+
∂Σ̆(k, iων)

∂ε

∣∣∣∣∣
t̆′,µ

+
∂F [Σ̃]

∂ε
|t̃′,µ

= lim
η→0+

1

β~
∑
k,ν

eiωνη Tr G′(k, iων)−
∂Ωlatt

∂ε

∣∣∣∣
t̆′,µ

.

The presence of the first term in the last line can be be understood by noting that µ appears
explictly in the approximate cluster Green’s function G′ (see (27)) whereas ε does not. At this
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point we note that if ε has been included into the set of cluster parameters which are subject
to variation, the last term vanishes (because this is exactly equation (28) for t̆αβ = ε) and the
two expressions for the particle number indeed give the same result. The VCA thus gives a
thermodynamically consistent particle number if and only if the center of gravity of the orbital
energies in the reference system is included into the set of parameters to be varied.
To conclude this section we briefly comment on the evaluation of terms like

S = − 1

β

∑
ν

eiων0+ ln det(−G−1(iων)) ,

where G may be either the Green’s function of the reference system as in (26) or the approx-
imate Green’s function of the lattice system as in (27). The form of this term suggests that
we proceed exactly as in the first step of the proof of the Luttinger-Ward theorem, namely to
convert the sum over Matsubara-frequencies into a contour-integral, deform the contour using
Jordan’s lemma as in Figure 3, replace the Fermi function according to (16) and integrate by
parts. One obtains

S = − 1

2πβi

∮
C′
dω log(1 + e−βω)

∑
n

1

λn(ω)

∂λn(ω)

∂ω

where λn(ω) are the eigenvalues of G(ω). There are two types of singularities of the integrand
in this expression:

1. zeros of an eigenvalue (which corresponds to a singularity of an eigenvalue of Σ) i.e.

λ(ω) ≈ aν(ω − ζν) →
1

λ(ω)

∂λ(ω)

∂ω
=

1

ω − ζν

2. singularities of an eigenvalue, i.e.

λ(ω) ≈ bµ
ω − ηµ

→ 1

λ(ω)

∂λ(ω)

∂ω
= − 1

ω − ηµ
.

In this way we obtain the expression derived by Potthoff [4]:

S = − 1

β

(∑
µ

log(1 + e−βηµ)−
∑
ν

log(1 + e−βζν )

)
,

An alternative is to simply evaluate the contour integral numerically.

5 Applications of the VCA

5.1 Metal-insulator transition in a dimer

As a simple illustration of the procedure we study Potthoff’s re-derivation of the phase diagram
for the metal-insulator transition in the Hubbard model [16]. We consider a half-filled single-



4.22 Robert Eder
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Fig. 9: Left: The physical Hubbard model (top) which is a true infinite lattice system and the
reference system which is an array of identical dimers. Right: Schematic representation of the
parameters of a single dimer (see the Hamiltonian (29)).

band Hubbard model on a bipartite N -site lattice

H =
∑
k,σ

t(k) c†k,σck,σ +
U

2

N∑
i=1

(ni − 1)(ni − 1)−NU

2

=
∑
k,σ

t(k) c†k,σck,σ + U
N∑
i=1

ni,↑ ni,↓ −
U

2

N∑
i=1

ni

where ni = c†i,↑ci,↑ + c†i,↓ci,↓. For simplicity we assume this Hamiltonian has particle-hole
symmetry. More precisely, under the transformation c† ↔ c we have ni − 1 → 1 − ni so
that the interaction part is invariant, whereas the first term changes sign. If the hopping term
connects only sites on different sublattices, which is what we assume, this sign change can
be compensated by the gauge transformation c†i,σ → −c†i,σ on the sites i of one sublattice.
This transformation exchanges photoemission and inverse photoemission spectrum and implies
µ = U/2.
For the reference system, Potthoff chose N dimers with one ‘Hubbard-site’ hybridizing with
one bath-site, see Figure 9, whereby the Hamiltonian for one dimer reads

H − µN = −V
∑
σ

(c†σbσ + b†σcσ) +

(
εb −

U

2

)∑
σ

b†σbσ +
U

2
(nc − 1)(nc − 1)− U

2
. (29)

Here b†σ creates an electron in a bath site and nc = c†↑c↑ + c†↓c↓. We have to write εb − U/2

because µ = U/2. Since we want to generate particle-hole symmetric self-energies we have
to impose particle-hole symmetry also in the reference system. The transformation c† ↔ c,
b† ↔ −b indeed converts the Hamiltonian into itself except for the second term. Setting εb =

U/2, however, eliminates this term and particle-hole symmetry is restored. The only remaining
parameter to be varied therefore is V .
The Fock space of the dimer has a dimension of 4 × 4 = 16, so all eigenstates can be readily
obtained. If we construct basis functions with fixed particle number, spin, and z-component
of the spin, the problem in fact can be broken down to diagonalizing 2 × 2 matrices, i.e. the
reference system can be solved analytically. To further simplify the calculations, Potthoff used
a semielliptical density of states of width W = 4 for the conduction band

ρ0(ε) =
1

2π

√
4− ε2.
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Fig. 10: (a): Ω versus V at T = 0, variation of U , (b): Ω versus V at U = 5.2, variation with
T , (c): the resulting phase diagram.

Figure 10a then shows Ω(V ) at T = 0 for different values of U . For smaller U there are two
stationary points: a maximum at V = 0 and a minimum at finite V , which is the physical
solution. At Uc ≈ 5.85 the two extrema coalesce into a single minimum at V = 0, which is the
only stationary point for larger U . This change from finite V to V = 0 precisely corresponds to
the metal-insulator transition. To see this we note that in the special case of T = 0 and µ = U/2

the self-energy of the dimer can be evaluated exactly [17]:

Σ(ω) =
U

2
+
U2

8

(
1

ω + 3V
+

1

ω − 3V

)
. (30)

Note that this has exactly the form (11) derived by Luttinger [12]. The k integrated Green’s
function then is (note that µ = U/2)

G(ω) =

∫ 2

−2

dε
ρ0(ε)

ω + U/2− ε−Σ(ω)
. (31)

For real ω the single particle spectral density, i.e. the combined photoemission and inverse
photoemission spectrum, is given by

A(ω) = − 1

π
lim
δ→0
=G(ω + iδ) .

This is shown in Figure 11 for different V , together with the imaginary part of the self-energy.
Since we only want to see qualitatively the effect of vanishing V , U = 5 was kept throughout.
Then =Σ(ω) shows two Lorentzian peaks located at ±3V as expected from (30). Each of these
peaks creates a gap in the density of states, so that there are three regions with nonvanishing
spectral density. As V → 0 the two poles of Σ(ω) approach each other and the spectral weight
in the inner region around ω = 0 which corresponds to the Fermi energy, becomes smaller
and smaller. Eventually, at V = 0 the two peaks merge and there is no more spectral weight
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Fig. 11: Single particle spectral function and imaginary part of the self-energy (calculated
with an imaginary part of 0.05 for the frequency) obtained from the angle integrated Green’s
function (31) and the self-energy (30). Parameter values are U = 5 and V = 0.4 (top), V = 0.2
(center) and V = 0 (bottom).

at the chemical potential; the system is an insulator now, which is the scenario predicted by
dynamical mean-field theory (DMFT) [18]. It remains to be mentioned that DMFT calculations
find Uc ≈ 5.84 [19].
Next, Figure 10b shows Ω(V ) for the fixed value of U = 5.2 and different temperatures T .
For most temperatures there are three stationary points whereby the local maximum can be
discarded. It follows that there are actually two possible solutions for each temperature between
T = 0.10 and T = 0.12. This implies that there is a 1st order phase transition between these
two temperatures. Repeating the procedure for various U gives the phase diagram in Figure 10c.
There is only a metallic solution for small U , at a first Uc1 a second insulating solution starts
to appear, at Uc there is a first order metal-insulator transition and on from Uc2 there is only an
insulating solution. The results obtained in this way by the, essentially analytical, solution of
a dimer are qualitatively very similar to those obtained by extensive numerical renormalization
group [20] and quantum Monte Carlo [21] calculations in the framework of DMFT. The main
deficiency of the dimer calculation is the underestimation of the critical temperature Tc in Figure
10c by about a factor of two.
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Fig. 12: Variation of Ω with h in (32) for the half-filled 2D Hubbard model. The reference
system is an array of 10-site clusters. Reprinted with permission from [22], Copyright 2004 by
the American Physical Society.

5.2 Discussion of spontaneous symmetry breaking

As already mentioned, the VCA gives an estimate of the grand potential Ω. This property makes
the VCA of particular usefulness for the discussion of ordering transitions. For definiteness, let
us assume we want to discuss antiferromagnetism in the 2D Hubbard model and let us assume
that we partition the planar model into an array of finite clusters as in Figure 8. Then, since the
single-particle terms of the reference system are completely arbitrary, we may include a term

H̃S = h
∑
j

eiQ·Rj (nj,↑ − nj,↓) (32)

with Q = (π, π) into H̆0. This term represents a staggered magnetic field which breaks the
spin-rotation symmetry of the Hamiltonian. It has to be stressed, however, that no magnetic field
whatsoever is added to the Hamiltonian of the lattice system. The self-energy Σ̆(ω) computed
in the reference system with h �= 0, however, incorporates this broken symmetry in various
ways; for example the self-energy for the two spin-directions will be different and the sites of
the cluster are divided into inequivalent sublattices. If we now determine the optimum value of
the parameter h from the standard requirement

∂Ωlatt

∂h
= 0

there are two possible outcomes: we will usually always find a solution with h∗ = 0, which
corresponds to the paramagnetic state. It may happen, however, that there is a second solution
with h∗ �= 0, see Figure 12 for an example, and if this gives a lower Ω it follows that even in the
complete absence of any magnetic field the grand potential of the lattice system can be lowered
by a self-energy which incorporates broken symmetry. The lattice system thus undergoes a
transition to a state of spontaneously broken symmetry. In this way, not only various kinds of
magnetic ordering but also superconductivity, charge, or orbital ordering can be discussed, see
the review by Potthoff [6].
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5.3 Photoemission spectra of NiO, CoO and MnO

Lastly, we consider beyond-band-structure calculations for realistic models of 3d transition
metal compounds. Very often these have a rock-salt structure, such as NiO, CoO and MnO,
or a Perovskite structure, such as LaCoO3. In both cases the transition metal ion is surrounded
by an octahedron of oxygen ions.
It is well-known that these materials are often not well described by LDA calculations and it
is widely accepted that the reason is the strong Coulomb-repulsion between electrons in the 3d
shells of the transition metal ions. The description of this Coulomb interaction is the subject of
multiplet theory, which was initiated in the 1920’s to explain the optical spectra of atoms and
ions in the gas phase. Multiplet theory is discussed in many textbooks of atomic physics, in
particular the books by Slater [23] and Griffith [24] should be mentioned, as well as [25].
We assume that the orbitals which describe the 3d electrons in the Hamiltonian (2) are anal-
ogous to atomic wave functions in that they can be labeled by the set of quantum numbers
ν = (n, l,m, σ) where n = 3 is the principal quantum number, l = 2 the total orbital angular
momentum quantum number, m ∈ {−l, . . . l} the z-component of orbital angular momentum,
and σ = ±1/2 the z-component of spin. n and l could be omitted because they are identical
for all 3d orbitals, but we keep them to stay consistent with Slater and Griffith. We introduce
creation and annihilation operators d†i,ν and di,ν for electrons in the 3d shell of the transition
metal ion i. The Coulomb interaction between the 3d electrons then can be written as

H1 =
1

2

∑
i

∑
ν1,ν2,ν3,ν4

V (ν1, ν2, ν3, ν4) d†i,ν1d
†
i,ν2
di,ν3di,ν4

V (ν1, ν2, ν3, ν4) = δσ1,σ4 δσ2,σ3 δm1+m2,m3+m4 (33)

×
∞∑
k=0

ck(l1m1; l4m4) ck(l3m3; l2m2)Rk(n1l1, n2l2, n3l3, n4l4) .

Here the Gaunt coefficients ck(lm; l′m′) are given by

ck(lm; l′m′) =

√
4π

2k + 1

∫ 2π

0

dφ

∫ 1

−1

dcos(Θ)Y ∗lm,(Θ, φ)Yk,m−m′(Θ, φ)Yl′,m′(Θ, φ) (34)

and the Slater integrals Rk by

Rk(n1l1, n2l2, n3l3, n4l4) = e2

∫ ∞
0

dr r2

∫ ∞
0

dr′ r′2Rn1l1(r)Rn2l2(r
′)
rk<
rk+1
>

Rn4l4(r)R
l
n3l3

(r′) . (35)

The Gaunt coefficients are pure numbers, which do not depend on the specific ion and are
tabulated in textbooks [23–25]. The calculation of the Slater integrals requires knowledge of
the radial wave function R3,2(r) of the 3d shell, which is often obtained from Hartree-Fock
wave functions for the free transition metal ion in question. In any case, the parameters ck and
Rk can be assumed to be known. More detailed analysis shows, moreover, that for a d-shell
only the terms with k = 0, 2, 4 in the sum in (33) differ from zero; the sum thus is finite and the
Coulomb matrix elements can be calculated without problems. The noninteracting part of the
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Hamiltonian can be written as

H0 =
∑
i,j

∑
ν,λ

(
t(i,ν),(j,λ) d

†
i,ν pj,λ +H.c.

)
+
∑
i

∑
ν1,ν2

Cν1,ν2 d
†
i,ν1

di,ν2

+
∑
i,j

∑
λ1,λ2

t(i,λ1),(j,λ2) p
†
i,λ1

pj,λ2 . (36)

The first term describes hybridization between the 3d-orbitals and orbitals on other atoms,
which are created by p†j,λ where λ is shorthand for some set of quantum numbers which specify
these orbitals. The second term contains the orbital energies of the d-electrons and the effects
of the crystalline electric field. The third term describes hybridization between orbitals other
than the 3d orbitals. The matrix elements t(iν),(jλ) and t(i,λ1),(j,λ2) can be expressed in terms of
relatively few parameters such as (pdσ), (pdπ) . . . by use of the Slater-Coster tables [26]. For a
given compound the parameters in (36) can be obtained, e.g., by a fit to an LDA band structure.
It was shown in the pioneering work by Fujimori and Minami [27] that the momentum integrated
photoemission spectra of transition metal oxides can be reproduced very well by considering
an octahedron-shaped cluster comprising only a single transition metal ion and its six nearest
neighbor oxygen ions. If only the transition metal 3d and the oxygen 2p shells are taken into
account such a cluster has 5 + 6 · 3 = 23 orbitals per spin direction. This number can be re-
duced considerably by noting that in octahedral symmetry for each of the five 3d orbitals there
is precisely one linear combination of O-2p orbitals on the neighboring oxygen atoms that hy-
bridizes with it, so that the number of relevant orbitals is only 10 per spin direction, which is
well manageable by the Lanczos algorithm. The Hamiltonian for the cluster reads

H =
∑
α,σ

(
tα d

†
α,σpα,σ +H.c.

)
+
∑
α,β,σ

cα,β d
†
α,σdβ,σ +

∑
α,βσ

c̃α,β p
†
α,σpβ,σ +H1 . (37)

Here p†α,σ create electrons in the bonding combinations of O-2p orbitals and H1 is given in (33).
The finding of Fujimori and Minami immediately suggests an obvious generalization of Pot-
thoff’s treatment of the single-band Hubbard model: instead of a dimer consisting of a sin-
gle correlated site and a single bath site. see Figure 9 and the Hamiltonian (29), we use an
octahedron-shaped cluster comprising the 5 correlated 3d orbitals and 5 bath sites correspond-
ing to the the bonding combinations of oxygen 2p orbitals, i.e., precisely the Hamiltonian (37)
as reference system. The larger size of the clusters makes the calculation more demanding in
that the eigenstates of the reference system and the Green’s functions now have to be obtained
by the Lanczos algorithm. Moreover, the reference system contains more than just one parame-
ter so that (28) actually represents a system of coupled nonlinear equations. The problem still is
manageable, however, for the necessary numerical procedures and possible algorithms for the
solution of (28) see Refs. [28] and [29].
Here we proceed to some of the results. Figure 13 shows angle-integrated valence band photoe-
mission spectra for the three transition metal oxides NiO, CoO, and MnO. For each compound
the figure compares the computed spectral density with transition metal 3d character and for
oxygen 2p character to experimental valence band photoemission spectra obtained with high
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Fig. 13: Angle integrated valence-band photoemission spectra obtained by the VCA for transi-
tion metal oxides NiO (left), CoO (center), and MnO (right), compared to experimental spectra
taken with high and low photon energy. Reprinted with permission from [28], Copyright 2008
by the American Physical Society.

(top) and relatively low photon energy (bottom). It can be seen that the experimental spectra
change substantially with photon energy, and the main reason is the dependence of the pho-
toionization cross section on photon energy [30]. As a rule of thumb, one may say that at X-ray
energies the spectra show predominantly the transition-metal 3d-like spectral density, whereas
it is the oxygen 2p-like spectral density at low photon energy. Taking this into account, there
is good overall agreement between the theoretical and experimental spectra. One may also
compare k-resolved spectra and also find good agreement [28].

6 Summary

In summary, Potthoff’s new idea of introducing a reference system to generate trial self-energies
[4] allows one to combine the classic field theoretical work of Luttinger and Ward [1] with the
numerical technique of exact diagonalization of finite systems, resulting in a method for treating
strongly correlated lattice systems by exact diagonalization: the variational cluster approxima-
tion. Its variational nature makes the VCA particularly useful as exemplified by the ‘dimer-
DMFT’ description of the metal-insulator transition. Since the VCA always gives an estimate
for the grand potential, it is particularly useful for treating ordering transitions. By combining
this with the very successful cluster method for transition metal oxides [27], it allows one to
perform electronic structure calculations using realistic models of transition metal oxides.



The Variational Cluster Approximation 4.29

7 Appendix: A theorem on determinants

Here we prove the identity
∂ ln(detA)

∂Aij
= A−1

ji .

We use Lapalace’s formula and expand det(A) in terms of minors

det(A) =
∑
l=1,n

(−1)i+l AilMil .

Since none of the minors Mil contains the element Aij we find

∂ ln(detA)

∂Aij
=

(−1)i+jMij

det(A)
.

Next, the ith column of A−1 is the solution of the system of equations

Ac = ei ,

where ei is the ith column of the unit matrix, which has all elements equal to zero, except for
the ith, which is one. We use Kramer’s rule and find for the jth element of the ith column

A−1
ji =

det(Āj)

det(A)
,

where Āj is the matrix where the jth column has been replaced by ei. Now we use again
Laplace’s formula for det(Āj) and obtain

A−1
ji =

(−1)i+jMij

det(A)
,

which proves the theorem.
As an application we assume that the matrix elements of A are functions of some parameter α.
We then find

∂ ln(detA)

∂α
=

∑
i,j

∂ ln(detA)

∂Aij

∂Aij
∂α

=
∑
i,j

A−1
ji

∂Aij
∂α

= Tr

(
A−1 ∂A

∂α

)
.
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5.2 Alexander Lichtenstein

1 Introduction

We will discuss a realistic approach to magnetism and electronic structure of correlated materi-
als which takes into account dynamical many-body effects. The scheme combines the features
of the itinerant electron theory (Stoner) of magnetic crystals with the localized-moment descrip-
tion (Heisenberg) in a unified spin-fluctuations approach for a generalized multiorbital Hub-
bard model. Moreover, we analyze the calculation of effective exchange interaction-parameters
based on the realistic electronic structure of correlated magnetic crystals.

2 From Stoner to Hubbard

We start to discuss the different models of magnetic materials (Fig. 1) with the simplest one-
band Stoner Hamiltonian

Hs =
∑
kσ

(εk + I〈n−σ〉) c†kσckσ , (1)

where εk is the energy band spectrum and I is a Stoner interatomic exchange parameter. In
this case the temperature-dependent magnetic properties are related to the so-called Stoner ex-
citations from the occupied ”spin-up” to the unoccupied ”spin-down” band. They reduce the
magnitude of the magnetization, so that finally at the Curie point the itinerant system becomes
a nonmagnetic metal.
If we compare the Stoner model with a standard Hubbard approach with the Hamiltonian

Hh =
∑
ijσ

tijc
†
iσcjσ +

∑
i

Uni↑ni↓ , (2)

where tij are the hopping parameters and U the characteristic Hubbard Coulomb interaction,
then one can easily realize that the Stoner model is just a mean-field approximation to the
Hubbard model. In the weakly correlated case the only possible magnetic excitations are spin-
flips, and the corresponding energy is of the order I ·M with M = 〈n↑ − n↓〉 which is much
larger than realistic Curie temperatures. In the opposite limit, the strongly correlated Hubbard
model at half-filling [1], one can derive an effective Heisenberg model

He = −
∑
ij

Jij ~Si · ~Sj. (3)

The kinetic exchange interactions Jij = −2tijtji/U are of the order of magnetic (Néel) tran-
sition temperatures. The Heisenberg model describes well the magnetism of localized 4f -
materials. In the case of transition metals, where both longitudinal and transverse magnetic
fluctuations are important, the most appropriate model is the Hubbard Hamiltonian, Eq. (2).
We can discuss the different approaches to estimate the effective Heisenberg interactions, pre-
sented in Figs. 2 to 4. In Fig. 2 a simple two-site spin-model for the Heisenberg interaction with
the singlet and triplet states is compared with the so-called Slater one-electron model for anti-
ferromagnetic states, which results in an additional factor of two in the definition of the effective
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Fig. 1: Schematic view of different models of magnetism: Stoner model for itinerant weakly
correlated electrons, Heisenberg model for localized magnetic moments and Hubbard model
for the spin-fluctuations model of correlated electrons.

exchange interaction. In Fig. 3 the solution of the two-site Hubbard model for the many-body
sector with one spin-up and one spin-down electron is shown, which results in the famous An-
derson kinetic exchange interaction [1]. Finally, one can show that the mean-field solution of
the Hubbard model with band energies modified via infinitesimal spin-rotations results in the
same effective exchange interactions of a classical Heisenberg model (Fig. 4). In this case we
used the so-called “local force theorem” which was originally formulated for density functional
theory [2] and will be proven later (Sec. 6) using the Baym-Kadanoff approach. This theo-
rem gives a simple recipe to obtaine the total energy difference for a small perturbation of the
charge- or spin-density as a change from the non-selfconsistent band energy for corresponding
perturbation. In our case the energy of the infinitesimal spin-rotation in the two-site mean-field
rotationally invariant Slater (spin-polarized LDA) model have been calculated and compared
with the corresponding classical Heisenberg model (Fig. 4). We can see that both schemes give
exactly the same effective exchange parameter.

3 From LDA to DMFT

The calculation of thermodynamic properties and excitation spectra of different magnetic mate-
rials is one of the most important problems of the microscopic theory of magnetism. We intro-
duce a general functional approach which will cover density-functional theory (DFT), dynami-
cal mean-field theory (DMFT) and Baym-Kadanoff (BK) theories [3]. Let us start from the full
many–body Hamiltonian describing the electrons moving in the periodic external potential V (r)

of the ions with chemical potential µ and interacting via the Coulomb lawU(r−r′) = 1/|r−r′|.
We use atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian has
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Magnetism of H2: Heisenberg vs. Slater 
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Fig. 2: Exchange interaction in a two-site Heisenberg model.
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Fig. 3: Exchange interaction in the two-site Hubbard model.
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Exchange: Local force approach 

U t U

Spin-polarized LSDA 
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Exchange energy: 

Exchange: Local force approach
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Fig. 4: Exchange interaction in the two-site mean-field rotationally invariant Slater model.

the form

H =
∑
σ

∫
dr ψ̂†

σ(r)

[
−1

2
�2 + V (r)− µ

]
ψ̂σ(r) (4)

+
1

2

∑
σσ′

∫
dr

∫
dr′ψ̂†

σ(r)ψ̂
†
σ′(r

′)U(r − r′)ψ̂σ′(r′)ψ̂σ(r) .

We can always use a single-particle orthonormal basis set φn(r), in solids for example Wannier
orbitals with a full set of quantum numbers, e.g., site, orbital and spin index n = (i,m, σ), and
expand the fields in creation and annihilation operators

ψ̂(r) =
∑
n

φn(r)ĉn (5)

ψ̂†(r) =
∑
n

φ∗
n(r)ĉ

†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn} we can write the functional
integral representation for the partition function of the many-body Hamiltonian in the imaginary
time domain using the Euclidean action S

Z =

∫
D[c∗, c]e−S (6)

S =
∑
12

c∗1(∂τ + t12)c2 +
1

2

∑
1234

c∗1c
∗
2U1234c4c3, (7)



5.6 Alexander Lichtenstein

where the one- and two-electron matrix elements are defined as

t12 =

∫
dr φ∗1(r)

[
−1

2
52 + V (r)− µ

]
φ2(r) (8)

U1234 =

∫
dr

∫
dr′φ∗1(r)φ

∗
2(r
′)U(r − r′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:
∑

1 ... ≡
∑

im

∫
dτ...

The one-electron Green function is defined via the simplest non-zero correlation function for
fermions

G12 = −〈c1c
∗
2〉S = − 1

Z

∫
D[c∗, c]c1c

∗
2 exp(−S) (9)

and gives all information on the spin-dependent electronic structure of correlated materials.
The main difficulties of strongly interacting electronic systems are related to the fact that the
higher-order correlation functions do not separate into a product of lower-order correlation func-
tions. For example the two-particle Green function or generalized susceptibility (X) is defined
in the following way [4]

X1234 = 〈c1c2c
∗
3c
∗
4〉S =

1

Z

∫
D[c∗, c]c1c2c

∗
3c
∗
4 exp(−S), (10)

and can be expressed as a simple ”non-interacting” part and a connected correlated contribution
through the exact Green function and the full vertex function Γ1234 [5]

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 . (11)

In principle, the spin-dependent part of the two-particle correlation function or generalized
magnetic susceptibility contains all information on the magnetic properties of solids.
Modern computational material science is based on the density-functional (DFT) approach [6].
It is a common practice to use this scheme not only for the total energy calculations and re-
lated quantities such as charge and spin densities, but also for different spectral characteristics.
Sometimes the agreement of the computational results with the experimental data is very im-
pressive, despite the absence of a reliable theoretical background. In principle, the energies of
Kohn-Sham quasiparticles [6] which are calculated in standard band theory are just auxiliary
quantities for the total energy calculation.
The DFT functional is defined in the following way: the Kohn-Sham potential VKS = Vext +

VH + Vxc plays the role of the effective one-electron potential, where all exchange-correlations
effects Vxc are taken into account. In this case, Vext is the external potential and VH is the
Hartree potential. In principle the exchange-correlation potential Vxc is known only for the
homogeneous electron gas [8]. Therefore in practical applications one uses the so-called local-
density approximation (LDA) to DFT. The total-energy functional reads

Etot[n] = T0[n] + Vext[n] + VH [n] + Vxc[n] (12)
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where T0 is the kinetic energy of the non-interacting systems. Finally, if we define the total
electron density as

n(r) =
∑
i

φ∗i (r)φi(r) (13)

the local-density approximation to the DFT reads

T0[n] + Vext[n] =
∑
i

∫
dr φ∗i (r)

[
−1

2
52 + Vext(r)− µ

]
φi(r) (14)

EH [n] =
1

2

∫
dr n(r)U(r − r′)n(r′) (15)

Exc[n] =

∫
dr n(r)εxc(n(r)) (16)

where ε(n) is exchange correlation density for the homogeneous electron gas, which has been
calculated with quantum Monte Carlo (QMC) [8]. The variational principle leads to the Kohn-
Sham effective one-electron equation (in atomic units)[

−1

2
52 + Vext(r) + VH + Vxc

]
φk(r) = εkφk(r) . (17)

In the one-band case the back Fourier transform of εk will give an effective Kohn-Sham hopping
parameter t(R) to tij , where i, j are the lattice indices. For the realistic multi-orbital case one
can use the efficient first-principle Wannier-function parameterization of the energy bands to
get the multi orbital (m) hopping matrix elements tLDA

im,jm′ , which will be used in the magnetic
many-body formalism.
In the DFT scheme we lose information about the non-equal time Green function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function, and
restrict ourselves only to the ground state energy of the many-electron system. Moreover, we
also lose information about all collective excitations in solids, such as plasmons or magnons,
which can be obtained from the generalized susceptibility.
Despite all achievements of the quantitative electronic structure theory, the list of difficulties and
shortcomings is growing, especially when considering the magnetic d- and f -electron systems.
In a number of cases the theory appears even qualitatively inadequate. First, the DFT scheme
cannot describe correctly the phenomenon of “Mott insulators” [7], as was first observed by
Terakura et al. [9] in their attempt of calculating the electronic structure of 3d-metal oxides.
Later we faced similar problems in field of high-Tc superconductors [10] and other compounds
[11]. The Ce- and U- based “heavy fermion” compounds such as CeCu6, UPt3, etc, are other
“hot-spots”: normally the calculated effective masses are orders of magnitude smaller than
what is experimentally observed [12]. Even for the pure 3d-metals some qualitative differences
between theory and experiment exists. For example, there are at least three difficulties with the
photoelectron spectra of ferromagnetic nickel [13]: (i) the measured width of the occupied part
of the d-band is 30% narrower than calculated (ii) the spin-splitting is half of what is predicted
by LDA and (iii) the band structure cannot describe the famous 6 eV satellite. Calculations for
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paramagnetic spin-disordered states [14] lead to the conclusion that Ni has no local magnetic
moments above the Curie temperature TC , in clear contradiction with experimental results [15].
For iron, standard band theory cannot explain the data about spin polarization of thermionic
electrons [16–18] and some features of angle-resolved photoemission spectra [18–20]. All these
difficulties raise questions about the DFT approach: what is the “electron spectrum” that we
really calculate and how can we improve the electronic theory for magnetic d- and f -systems?
It was understood many years ago that all these problems are connected with the inadequate
description of many-body effects in DFT calculations of the excitation spectra. Methods such
as GW [21] and simplified LDA+U [11] have been proposed to improve the situation. These
methods are very useful for the description of antiferromagnetic transition-metal oxides as Mott
insulators [11]. However, one should note that LDA+U is just a mean-field approximation
and cannot describe correlation effects which are, by definition, the many-body effects beyond
Hartree-Fock. For example, in these approaches one needs spin- or orbital-ordering to describe
the Mott insulator and it is impossible to describe correctly the electronic structure of NiO
or MnO in the paramagnetic phase. At the same time, the magnetic ordering should not be
important for the basic physics of Mott insulators [7]. All the “Hartree-Fock-like” approaches
fail to describe the renormalization of the effective mass in the heavy fermion systems. There are
also many problems concerning the electronic structure and itinerant magnetism of 3d metals
as described above. Thus, one needs some practical ways of incorporating correlation effects
in the electronic structure of solids.
In principle, there are two ways to include them into DFT calculations. The first uses a time-
dependent DFT formalism which can guarantee, in principle, an opportunity to calculate exact
response functions [22], in the same sense as the Hohenberg-Kohn theorem guarantees the total
energy in usual “static” DFT [6]. However, all the expressions for this time-dependent non-local
DFT in real calculations are based on RPA-like approximations which do not give a satisfactory
description of really highly correlated systems. They are excellent for investigating the plas-
mon spectrum of aluminum, but not for understanding the nature of high-Tc superconductivity
or heavy fermion behavior. Another way is to use an “alternative” many-body theory devel-
oped in the 50s by Gell-Mann and Brueckner, Galitskii and Migdal, Beliaev and many others
in terms of the Green functions rather than the electron density [23]. We try to formulate such
a computational approach as a generalization of LDA+U scheme, the so-called “LDA+DMFT”
method. The main difference between LDA+DMFT and LDA+U is that in the former dynam-
ical fluctuations, the real correlation effects, are accounted for by a local but energy dependent
self-energy Σ(ω).
A comparison of the standard DFT theory in the local-density approximation (LDA) and the
LDA+DMFT approach is represented in table I. First of all, LDA is based on the Hohenberg-
Kohn theorem stating that the total energy Etot is a functional of charge (and spin) densities,
while the LDA+DMFT scheme considers the thermodynamic potential Ω as a functional of
exact one-particle Green functions. This approach in many-particle theory has been introduced
in the works by Luttinger and Ward [24] and Baym and Kadanoff [25]. The Green function
in LDA+DMFT plays the same role as the density matrix in LDA. We stress the dynamical
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Table 1: Comparison of LDA and realistic DMFT schemes

LDA LDA+DMFT

Density functional Baym-Kadanoff functional

Density ρ(r) Green-Function G(r, r′, ω)

Potential Vxc(r) Self-energy Σi(ω)

Etot = Esp − Edc Ω = Ωsp −Ωdc

Esp =
∑

k<kF
εk Ωsp = −Tr ln[−G−1]

Edc = EH +
∫
ρVxc dr − Exc Ωdc = TrΣG− ΦLW

nature of the correlation effects that are taken into account in the LDA+DMFT approach since
the density in the LDA is just the static limit of the local Green function. Further, the self-
energy Σ is treated analogously to the exchange-correlation potential, the local approximation
for Σ, which is assumed to be energy-dependent but not momentum-dependent, corresponds
to the local approximation for Vxc. In both formalisms the thermodynamic potential can be
represented in a “single-particle” form, Ωsp minus the contributions of the “doubly counted
terms”, Ωdc. This will be important for the consideration of the so-called “local force theorem”
and the computation of magnetic interaction parameters. The single-particle contribution to the
thermodynamic potential in the LDA+DMFT would have the same form as in the LDA if we
were taking into account only the poles of the Green function and neglected the quasiparticle
damping. However, even then the quasiparticle energies are not quite the same since the poles
of the Green functions do not coincide, generally speaking, with the “Kohn-Sham” energies.
The quantity ΦLW is the Luttinger-Ward generating functional for the self energy, or the sum of
all the skeleton diagrams without free legs [24].

The difficulty with finite temperature effects is one of the main shortcomings of a standard DFT
formalism. In all realistic calculations the temperature is included in the Fermi distribution
functions and in the lattice constants via the thermal expansion [26]. At the same time, for the
itinerant electron magnets the temperature effects connected with the “Bose” degrees of free-
dom due to spin waves and paramagnons are much more important [27]. In principle, these
effects could be taken into account in DFT via the temperature dependence of the exchange-
correlation potential, the corresponding terms being nonlocal. It is not easy to propose an
adequate expression for such temperature-dependent non-local potential. One of the first at-
tempts in this direction is based on simple RPA-like considerations [28]. On the other hand,
in LDA+DMFT-type scheme all calculations are naturally carried out for finite temperatures by
using Matsubara frequencies, as is usual in many-body theory [23].

The main assumption of the LDA+DMFT approach is the importance of only intra-site “Hub-
bard correlations” with the local approximation for the self-energy. It is worthwhile to stress a
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difference of this kind of locality from the locality in DFT theory. In the latter, the local approx-
imation means that the exchange-correlation energy is calculated for the homogeneous electron
gas [8]. It is known from exact QMC calculations that the correlation effects lead to some in-
stabilities of the state of homogeneous electron gas (magnetism, charge ordering, etc) only for
electron densities which are orders of magnitude smaller than ones typical for real metals (the
critical values of the parameter rs are of order of hundred in comparison with the “normal”
range 2-6 for metals). At the same time, magnetism and charge ordering are rather usual for
real compounds with the d- and f -elements. It thus seems that the “atomic-like” features of
d- and f -states are of crucial importance to describe the correlation effects in real compounds.
Only these features are taken into account in the Hubbard-like terms for the d- or f -states in
LDA+DMFT approach. Therefore one can view the LDA+DMFT as the simplest way for quan-
titative considerations of correlation effects in transition metals and their compounds, based on
the LDA description for all non-correlated electrons in the systems.
The investigation of correlation effects in the electronic structure and magnetism of iron-group
metals is still far from having found the final picture and attracts continuous interest (see, e.g.,
[14, 29–31] and references therein). Despite many attempts, the situation is still unclear both
theoretically and experimentally. For example, there is no agreement on the presence of a
5 eV satellite in the photoemission spectrum of iron [19, 20], and on the existence of local spin
splitting above the Curie temperature in nickel [32]. From the theoretical point of view, different
approaches such as second-order perturbation theory [30, 33], the T -matrix approximation [29,
34], the three-body Faddeev approximation [35], and the moment expansion method [36] were
used. Unfortunately, the range applicability of these schemes is not clear. Here we present the
LDA+DMFT approach [18, 37, 38] which is based on the combination of standard band-theory
techniques (LDA) with dynamical mean-field theory (DMFT) [39].

4 Realistic DMFT scheme

In the LDA+DMFT approach we consider the renormalisation of the “bare” LDA energy or
electron hopping due to correlation effects. Of course the tij contain already some part of the
correlation effects but only those which may be considered in the local density approximation.
The most important “rest” in strongly correlated system is the correlations of the Hubbard type
[41] due to the intra-site Coulomb repulsion. Therefore we start from the general form of the
LDA+DMFT Hamiltonian

H =
∑
ijσ{m}

tLDA
im1,jm2

c†im1σ
cjm2σ +

1

2

∑
i{σm}

U i
m1m2m

′
1m
′
2
c†im1σ

c†
im2σ

′cim′2σ
′cim′1σ

(18)

where the (i, j) represents different crystal sites, {m} label different orbitals and the {σ} are
spin indices. Coulomb matrix elements are defined in the usual way (see Eq. (8) with the the
screened Coulomb interactions in the basis of localized Wannier functions).
The simplified form of the LDA+DMFT Hamiltonian is related to the diagonal ”density-density
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approximation”

H =
∑
{imσ}

tLDA
im,i′m′c

†
imσci′m′σ

+
1

2

∑
imm′σ

U i
mm′nimσnim′−σ ++

1

2

∑
im6=m′σ

(U i
mm′ − J imm′)nimσnim′σ (19)

where i is the site index and m the orbital quantum numbers, σ =↑, ↓ the spin projection, c†, c
the Fermi creation and annihilation operators (n = c†c), and tLDA is the effective single-particle
Hamiltonian obtained from the non-magnetic LDA with the correction for double counting
of the average interactions among d-electrons. In the general case of a spin-polarized LDA
Hamiltonian this correction is presented in Refs. [18, 37, 40]. In the magnetic LDA it is just a
shift “back” of correlated d-states with respect to the s and p-states by the average Coulomb
and exchange potential

Edc =
1

2
U nd(1− nd)−

1

2
J [nd↑(1− nd↑) + nd↓(1− nd↓)]

with U and J being the average Coulomb and exchange interactions and nd = nd↑ + nd↓ the
total number of correlated d(f)-electrons.
The screened Coulomb and exchange vertices for the d-electrons

Umm′ = 〈mm′|Uscr(r − r′)|mm′〉 (20)

Jmm′ = 〈mm′|Uscr(r − r′)|m′m〉 (21)

are expressed via the effective Slater integrals. We use the minimal spd-basis in the LMTO-TB
formalism [42] and numerical orthogonalization for the tLDA(k) matrix [37]. The local density
approximation [6] is used for the self-consistent electronic structure calculation.
In order to find the best local approximation for the self-energy we use the DMFT method
[43] for real systems. This scheme becomes exact in the limit of infinite lattice coordination
number [44]. The DMFT approach reduces the lattice many-body problem (Eq. (21)) to the
self-consistent solution of an effective one-site Anderson model. In this case we need a local
Green-function matrix which has the following form in the orthogonal Wannier representation

G(iω) =
∑
k

{
(iω + µ)1̂− tLDA(k)−Σ(iω)

}−1
, (22)

where µ is the chemical potential. Note that due to the cubic crystal symmetry of ferromagnetic
bcc-iron the local Green function in the absence of spin-orbit interaction is diagonal both in
the orbital and the spin indices. The so-called bath Green function that defines the effective
Anderson model and preserves the double-counting of the local self-energy is obtained as a
solution of the impurity model via [43]

G−1(iω) = G−1(iω) +Σ(iω) (23)
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5 Solution of quantum impurity problem

5.1 Hirsch-Fye quantum Monte Carlo

As discussed above, DMFT maps the many-body system onto a multi-orbital quantum impurity,
i.e., a set of local degrees of freedom in a bath described by the Weiss field function G. The
impurity action (here nmσ = c†mσcmσ and c(τ) = [cmσ(τ)] is a vector of Grassman variables) is
given by:

Simp = −
∫ β

0

dτ

∫ β

0

dτ ′ Tr[c†(τ)G−1(τ, τ ′)c(τ ′)]

+
1

2

∑
m,m′,σ

∫ β

0

dτ [Umm′n
m
σ n

m′

−σ + (Umm′ − Jmm′)nmσ nm
′

σ ] . (24)

It describes the spin-, orbital-, energy-, and temperature-dependent interactions of a particular
magnetic 3d-atom with the rest of the crystal and is used to compute the local Green function
matrix

Gσ(τ − τ ′) = −
1

Z

∫
D[c, c†]e−Simpc(τ)c†(τ ′) , (25)

where Z is the partition function.
The local Green functions for the imaginary time interval [0, β] with the mesh τl = l∆τ , l =
0, ..., L − 1, and ∆τ = β/L, where β = 1/T are calculated in the path-integral formalism
[43, 45]

Gll′

m =
1

Z

∑
sl
mm′

det[O(s)] ∗Gll′

m(s) . (26)

Here we redefined for simplicitym ≡ {m,σ}, and the so-called fermion-determinant det[O(s)]
as well as the Green function for an arbitrary set of auxiliary fields G(s) = O−1(s) are obtained
via the Dyson equation [46] for the imaginary-time matrix (Gm(s) ≡ Gll′

m(s)):

Gm = [1− (G0
m − 1)(eVm − 1)]−1G0

m ,

where the effective fluctuation potential from the Ising fields slmm′ = ±1 is

V l
m =

∑
m′(6=m)

λmm′s
l
mm′σmm′ , where σmm′ =

{
1,m < m′

−1,m > m′

and the discrete Hubbard-Stratonovich parameters are λmm′ = arccosh[exp(1
2
∆τUmm′)] [46].

Using the output local Green function from QMC and input bath Green functions the new self-
energy is obtain via Eq. (23) and the self-consistent loop can be closed through Eq. (22). The
main problem of the multiband QMC formalism is the large number of the auxiliary fields
slmm′ . For each time slice l it is equal to M(2M − 1) where M is the total number of orbitals,
giving 45 Ising fields for a d-shell. We computed the sum over these auxiliary fields in Eq.(26)
using importance-sampling QMC, and performed a dozen self-consistent iterations over the
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Fig. 5: Spin-resolved density of d-states and magnetic moments for ferromagnetic iron calcu-
lated in LDA (top) and LDA+QMC (bottom) for different average Coulomb interactions with
J=0.9 eV and temperature T=850 K.

self-energy Eqs. (22,23,26). The number of QMC sweeps was of the order of 105 on the CRAY-
T3e supercomputer. The final Gm(τ) has very little statistical noise. We use the maximum
entropy method [47] for analytical continuations of the QMC Green functions to the real axis.

Comparison of the total density of states (DOS) with the results of LDA calculations (Fig. 5)
shows reasonable agreement for the single-particle properties of the not “highly correlated” fer-
romagnetic iron. We calculate bcc-iron at its experimental lattice constant with 256 k-points in
the irreducible part of Brillouin zone. The Matsubara summation corresponds to the tempera-
ture of about T = 850 K. The average magnetic moment is about 1.9 µB, which corresponds to
a small reduction of the LDA-value of 2.2 µB for such a high temperature. The DOS curves in
the LDA+Σ approach with the exact QMC solution of on-site multi-orbital problem is similar
to that obtained within the simple perturbative fluctuation-exchange (FLEX) approximation de-
scribed below. The discussion of the results and the comparison with experimental data will be
given in Section 4.
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5.2 Continuous-time quantum Monte Carlo

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution
of the underlying Anderson impurity model remains a formidable quantum many-body problem
that requires accurate solvers. Recently a new class has emerged, the continuous-time quantum
impurity solvers. These are based on stochastic, i.e., Monte-Carlo methods and mainly come in
two different flavors: The weak and strong-coupling approach.
The weak-coupling or interaction expansion (CT-INT) continuous-time quantum Monte Carlo
algorithm for fermions was originally introduced by Aleksey Rubtsov [48]. The power of the
new CT-QMC scheme is that it performs the path integral without any transformation to effec-
tive non-interacting models and that it can be used for any complicated electron-electron vertex.
We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-
purity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multiorbital
case can be found in Ref. [49]. To start, the action for the Anderson impurity model, up to an
irrelevant additive constant, is divided into a Gaussian S0 and an interacting part SU

S0 =
∑
σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ)[∂τ − µ+∆(τ − τ ′) + Uα−σ(τ)δ(τ − τ ′)]cσ(τ ′) , (27)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)][c∗↓(τ)c↓(τ)− α↓(τ)] . (28)

The parameters α are introduced to control the sign problem. A formal series expansion for the
partition function is obtained by expanding the exponential in the interaction term,

Z =

∫
e−S0[c∗,c]

∞∑
k=0

(−1)k

k!
Uk

∫ β

0

dτ1 . . .

∫ β

0

dτk [c
∗
↑(τ1)c↑(τ1)− α↑(τ1)][c

∗
↓(τ1)c↓(τ1)−

− α↓(τ1)] . . . [c
∗
↑(τk)c↑(τk)− α↑(τk)][c∗↓(τk)c↓(τk)− α↓(τk)]D[c∗, c] . (29)

Using the definition of the average over the noninteracting action:

〈...〉0 =
1

Z0

∫
D[c∗, c]... exp(−S0), (30)

the partition function can be expressed in the following form

Z = Z0

∞∑
k=0

∫ β

0

dτ1 . . .

∫ β

τk−1

dτk sgn(Ωk) |Ωk| , (31)

where the integrand is given by

Ωk = (−1)kUk〈[c∗↑(τ1)c↑(τ1)− α↑(τ1)][c
∗
↓(τ1)c↓(τ1)− α↓(τ1)] . . .

. . . [c∗↑(τk)c↑(τk)− α↑(τk)][c∗↓(τk)c↓(τk)− α↓(τk)]〉0 . (32)

Note that here the range of time integration has been changed such that time ordering is ex-
plicit: τ1 < . . . < τk−1 < τk. For a given set of times all k! permutations of this sequence
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Fig. 6: The four contributions to the partition function for k = 2. The interaction vertices are
depicted by squares. Bare Green functions are shown as lines. Vertical arrows indicate the spin
direction. Connecting the vertices by Green functions in all possible ways is the interpretation
of the determinant.

contribute to Eq. 29. These can be brought into the standard sequence by permuting quadruples
of Grassmann numbers, and hence without gaining an additional sign. Since all terms are sub-
ject to time-ordering, their contribution to the integral is identical, so that the factor 1/k! in (29)
cancels. A configuration can be fully characterized by specifying a perturbation order k and an
(unnumbered) set of k times: Ck = {τ1, . . . , τk}.
The Monte Carlo algorithm performs importance sampling over this configuration space. The
weight of a configuration is thereby taken to be equal to the modulus of the integrand, Eq. 32.
Since S0 is Gaussian, the average over the noninteracting system can be evaluated using Wick’s
theorem. Hence the weight of a configuration is essentially given by a fermionic determinant of
a matrix containing the bare Green functions

Ωk = (−1)kUk
∏
σ

det ĝσ , (33)

where the local Green function in the α fields is equal to

(ĝσ)ij = gσ0 (τi − τj)− ασ(τi)δij . (34)

Note that determinants for different spin orientations factorize since the Green function is diag-
onal in spin-space.
The hybridization expansion (CT-HYB) or strong-coupling algorithm was initially introduced
by Philipp Werner et al. [50] and has been generalized to multi-orbital systems with general
interactions [51, 52]. Here the algorithm is discussed in the segment representation, which
allows for a very fast computation of the trace for density-density type interactions. The action
is regrouped into the atomic part

Sat =

∫ β

0

dτ
∑
σ

c∗σ(τ)[∂τ − µ]cσ(τ) + U

∫ β

0

dτc∗↑(τ)c↑(τ)c
∗
↓(τ)c↓(τ) (35)

and the part of the action S∆ which contains the hybridization term:

S∆ = −
∫ β

0

dτ ′
∫ β

0

dτ
∑
σ

cσ(τ)∆(τ − τ ′)c∗σ(τ ′) . (36)
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Fig. 7: Diagrammatic representation of the six contributions to the partition function for spin-
less fermions at k = 3. An electron is inserted at the start of a segment (marked by an open
circle) and removed at the segment endpoint. The hybridization function lines∆(τi−τ ′j) (shown
in red) are connected to the segments in all possible ways. The sign of each diagram is given
on the left. The diagrams can be collected into a determinant. Reproduced from Ref. [50].

Here the sign is taken out by reversing the original order of c and c∗ to avoid an alternating sign
in the expansion. To simplify the notation, consider first the spinless fermion model, which is
obtained by disregarding the spin sums and interaction in Eqs. (35), (36). The series expansion
for the partition function is generated by expanding in the hybridization term

Z =

∫
D[c∗, c]e−Sat

∑
k

1

k!

∫ β

0

dτ ′1

∫ β

0

dτ1 . . .

∫ β

0

dτ ′k

∫ β

0

dτk×

× c(τk)c∗(τ ′k) . . . c(τ1)c
∗(τ ′1)∆(τ1 − τ ′1) . . . ∆(τk − τ ′k). (37)

The important observation now is that, at any order, the diagrams can be collected into a deter-
minant of hybridization functions. The partition function then takes the form

Z = Zat

∑
k

∫ β

0

dτ ′1

∫ β

τ ′1

dτ1 . . .

∫ β

τk−1

dτ ′k

∫ ◦τ ′k
τ ′k

dτk〈c(τk)c∗(τ ′k) . . . c(τ1)c
∗(τ ′1)〉at det ∆̂

(k), (38)

where the average is over the states of the atomic problem described by Sat. Here det ∆̂(k)

denotes the determinant of the matrix of hybridizations ∆̂ij = ∆(τi − τ ′j). The diagrams con-
tributing to the partition function for k = 3 are shown in Fig. 7. A diagram is depicted by a
collection of segments, where a segment is symbolic for the time interval where the impurity
is occupied. The collection of diagrams obtained by connecting the hybridization lines in all
possible ways corresponds to the determinant. Collecting the diagrams into a determinant is
essential to alleviate or completely suppress the sign problem. Note that the imaginary time
interval in Eq. (38) is viewed as a circle denoted by ◦τ ′k. The trajectories in the path integral are
subject to antiperiodic boundary conditions which is accommodated by an additional sign if a
segment winds around the circle.
For the single-orbital Anderson impurity model with Hubbard interaction the segment picture
still holds and gives a very intuitive picture of the imaginary time dynamics. A configuration is
visualized by two separate timelines, one for each spin. The additional sum over spins,

∑
σ1...σk

,
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Fig. 8: Example one band CT-HYB: a segment picture: blue dots illustrate annihilation op-
erators, red ones creation operators, and the black line represent the hybridization function
∆(τi − τj). The green regions represent the time interval at which two electrons are present on
the impurity with the total time ld for which the U price has to be paid.

Fig. 9: Comparison of the weak coupling (CT-INT) and strong coupling (CT-HYB) CT-QMC
impurity solvers for one-band semicircular model with U ≥ W . In the insert the density of
states obtained with maximum entropy scheme is shown

which enters in the first line of Eq. (38), generates contributions such as the one shown in
Fig. 8. The only difference from the spinless fermion model is that when the impurity is doubly
occupied, the energy U has to be paid and the trace is eµ(l↑+l↓)−Uld , where lσ is the time spent
on the impurity for an electron with spin σ and ld is the time the impurity is doubly occupied.

In Fig. 9 we show the comparison of CT-INT and CT-HYB calculations for a strongly coupled
(U ≥ W ) single band model. The perfect agreement of these two complementary CT-QMC
schemes supports the important conclusion about the possibility of the numerically exact solu-
tion of quantum impurity problems.
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5.3 Fluctuation exchange approximation

The QMC method described above is probably the most rigorous practical way to solve an
effective impurity problem in the framework of DMFT. However, it is rather time consuming.
Besides that, in the previous section we did not work with the complete four-index Coulomb
matrix

〈12 |v| 34〉 =
∫
drdr′ψ∗1(r)ψ

∗
2(r
′)vscr (r− r′)ψ3(r)ψ4(r

′) , (39)

where we define for simplicity m1 ≡ 1.
For moderately strong correlations (which is the case of iron group metals) one can propose an
approximate scheme which is more suitable for the calculations. It is based on the fluctuation
exchange (FLEX) approximation by Bickers and Scalapino [53], generalized to the multiband
spin-polarized case [18, 37, 54]. The electronic self-energy in the FLEX is equal to

Σ = ΣHF +Σ(2) +Σ(ph) +Σ(pp), (40)

where the Hartree-Fock contribution has a standard form

ΣHF
12,σ =

∑
34

[
〈13 |v| 24〉

∑
σ′

nσ
′

34 − 〈13 |v| 42〉nσ34

]
, (41)

with the occupation matrix nσ12 = Gσ
21(τ → −0); this contribution to Σ is equivalent to the

spin-polarized “rotationally-invariant” LDA+U method [40].
The second-order contribution in the spin-polarized case reads

Σ
(2)
12,σ(τ) = −

∑
{3−8}

〈13 |v| 74〉Gσ
78(τ)×

×

[
〈85 |v| 26〉

∑
σ′

Gσ′

63(τ)G
σ′

45(−τ)− 〈85 |v| 62〉Gσ
63(τ)G

σ
45(−τ)

]
, (42)

and the higher-order particle-hole (or particle-particle) contribution

Σ
(ph)
12,σ (τ) =

∑
34,σ′

W σσ′

13,42 (τ)G
σ′

34 (τ) , (43)

with p− h (p− p) fluctuation potential matrix

W σσ′ (iω) =

[
W ↑↑ (iω) W ↑↓ (iω)

W ↓↑ (iω) W ↓↓ (iω)

]
, (44)

where the spin-dependent effective potentials have a generalized RPA-form and can be found
in [18]. Note that for both the p-h and p-p channels the effective interactions, according to
Eq. (44), are non-diagonal matrices in spin space as in the QMC-scheme, in sharp contrast to
any mean-field approximation like LDA. This can be important for spin-dependent transport
phenomena in transition metal multilayers.
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We could further reduce the computational procedure by neglecting dynamical interactions in
the p-p channel since the most important fluctuations in itinerant electron magnets are spin-
fluctuations in the p-h channel. We take into account static (of T -matrix type) renormaliza-
tions of the effective interactions, replacing the bare matrix U12,34 = 〈12 |v| 34〉 in the FLEX-
equations with the corresponding spin-dependent scattering T−matrix

〈
12
∣∣∣T σσ′∣∣∣ 34〉 = 〈12 |v| 34〉 −

∑
5678

〈12 |v| 56〉
β∫

0

dτGσ
56 (τ)G

σ′

78 (τ)
〈
78
∣∣∣T σσ′∣∣∣ 34〉 . (45)

Similar approximation have been checked for the Hubbard model [55] and appear to be accurate
enough for not too large U . Finally, in the spirit of the DMFT-approach Σ = Σ[G0], and all the
Green functions in the self-consistent FLEX-equations are in fact the bath Green-functions G0.

6 Effective magnetic interactions in LDA+DMFT

A useful scheme for analyses of exchange interactions in the LDA approach is the so called
“local force theorem”. In this case the calculation of small total energy changes reduces to
variations of the one-particle density of states [56, 57]. First of all, let us prove the analog
of the local force theorem in the LDA+DMFT approach. In contrast with standard density-
functional theory, it deals with the real dynamical quasiparticles defined via Green functions
for the correlated electrons rather than with Kohn-Sham “quasiparticles” which are, strictly
speaking, only auxiliary states for the total energy calculations. Therefore, instead of working
with the thermodynamic potential as a density functional we have to start from the general
expression for Ω in terms of the exact Green function given in Table I. We have to also keep in
mind the Dyson equation G−1 = G−1

0 −Σ and the variational identity δΦLW = TrΣδG. Here
Tr = TrωiLσ is the sum over Matsubara frequencies Trω... =

∑
ω

...,with ω = πT (2n+ 1) , n =

0,±1, ..., with T the temperature, iLσ the numbers of sites (i), the orbital quantum numbers
(L = l,m), and the spin projections σ, correspondingly. We represent the expression for Ω
as a difference of ”single particle” (sp) and ”double counted” (dc) terms as is usual in density-
functional theory. When neglecting the quasiparticle damping, Ωsp will be nothing but the
thermodynamic potential of ”free” fermions but with exact quasiparticle energies. Suppose we
change the external potential, for example, by small spin rotations. Then the variation of the
thermodynamic potential can be written as

δΩ = δ∗Ωsp + δ1Ωsp − δΩdc (46)

where δ∗ is the variation without taking into account the change of the ”self-consistent po-
tential”, i.e. self energy, and δ1 is the variation due to the change of Σ. To avoid a possible
misunderstanding, note that we consider the variation of Ω in the general “non-equilibrium”
case when the torques acting on spins are nonzero and therefore δΩ 6= 0. In order to study the
response of the system to general spin rotations one can consider either variations of the spin
directions at fixed effective fields or, vice versa, rotations of the effective fields, i.e. variations
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of Σ, at fixed magnetic moments. We use the second way. Taking into account the variational
property of Φ, it can be easily shown (cf. Ref. [24]) that

δ1Ωsp = δΩdc = TrGδΣ (47)

and hence
δΩ = δ∗Ωsp = −δ∗Tr ln

[
Σ −G−1

0

]
(48)

which is an analog of the “local force theorem” in density-functional theory [57].
In the LDA+DMFT scheme, the self energy is local, i.e., is diagonal in the site indices. Let us
write the spin-matrix structure of the self-energy and Green function in the following form

Σi = Σc
i +ΣΣΣs

iσσσ , Gij = Gc
ij +G

s
ijσσσ (49)

where Σ(c,s)
i = (Σ↑i ± Σ↓i )/2 and Σs

i = Σs
i ei, with ei being the unit vector in the direction

of effective spin-dependent potential on site i, σσσ = (σx, σy, σz) are the Pauli matrices, Gc
ij =

Trσ(Gij)/2 and Gs
ij = Trσ(Gijσ)/2. We assume that the bare Green function G0 does not

depend on spin directions and all the spin-dependent terms including the Hartree-Fock terms
are incorporated into the self-energy. Spin excitations with low energies are connected with the
rotations of vectors ei

δei = δϕϕϕi × ei (50)

According to the ”local force theorem” (48) the corresponding variation of the thermodynamic
potential can be written as

δΩ = δ∗Ωsp = Viδϕϕϕi , (51)

where the torque is equal to
Vi = 2TrωL [ΣΣΣ

s
i ×Gs

ii] . (52)

Using the spinor structure of the Dyson equation one can write the Green function in this expres-
sion in terms of pair contributions. As a result, we represent the total thermodynamic potential
of spin rotations or the effective Hamiltonian in the form [38]

Ωspin = −
∑
ij

TrωL
{(
Gs
ijΣ

s
j

) (
Gs
jiΣΣΣ

s
i

)
−ΣΣΣs

iG
c
ijΣΣΣ

s
jG

c
ji − i

(
ΣΣΣs
i ×Gc

ijΣΣΣ
s
j

)
Gs
ji

}
. (53)

One can show by direct calculation that[
δΩspin

δϕϕϕi

]
G=const

= Vi . (54)

This means thatΩspin {ei} is the effective spin Hamiltonian. The last term in Eq. (53) is nothing
but a Dzialoshinskii-Moriya interaction term. It is non-zero only in the relativistic case where
ΣΣΣs
j and Gs

ji can be, generally speaking, “non-parallel” and Gij 6= Gji for crystals without
inversion center.
In the non-relativistic case, one can rewrite the spin Hamiltonian for small spin deviations near
collinear magnetic structures in the following form

Ωspin = −
∑
ij

Jijei · ej , (55)
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where
Jij = −TrωL

(
Σs
iG
↑
ijΣ

s
jG
↓
ji

)
(56)

are the effective exchange parameters. This formula generalizes the LDA expressions of [57,58]
to the case of correlated systems.
The spin-wave spectrum in ferromagnets can be considered both directly from the exchange
parameters or from the energy of corresponding spiral structures (cf. Ref. [57]). In the non-
relativistic case when anisotropy is absent one has

ωq =
4

M

∑
j

J0j (1− cos q ·Rj) ≡
4

M
[J(0)− J(q)] , (57)

where M is the magnetic moment (in Bohr magnetons) per magnetic ion.
It should be noted that the expression for the spin-stiffness tensor Dαβ defined by the relation
ωq = Dαβqαqβ (q → 0) in terms of exchange parameters has to be exact as the consequence
of the phenomenological Landau-Lifshitz equations, which are definitely correct in the long-
wavelength limit. Direct calculation based on variation of the total energy under spiral spin
rotations (cf. Ref. [57]) leads to the following expression

Dαβ = − 2

M
TrωL

∑
k

(
Σs∂G

↑ (k)

∂kα
Σs∂G

↓ (k)

∂kβ

)
, (58)

were k is the quasi-momentum and the summation is over the Brillouin zone. The expressions
Eqs. (56) and (57) are reminiscent of usual RKKY indirect exchange interactions in the s-d
exchange model (with Σs instead of the s-d exchange integral). One can prove that this ex-
pression for the stiffness is exact within the local approximation [59]. At the same time, the
exchange parameters themselves, generally speaking, differ from the exact response character-
istics defined via static susceptibility since the latter contains vertex corrections. The derivation
of approximate exchange parameters from the variations of the thermodynamic potential can be
useful for the estimation of Jij in different magnetic systems.

7 LDA+DMFT results for itinerant ferromagnetic metals

We have started from the spin-polarized LDA band structure of ferromagnetic iron within the
LMTO method [42] in the minimal s, p, d basis set and used numerical orthogonalization to
find the Ht part of our starting Hamiltonian. We take into account Coulomb interactions only
between d-states. The correct parameterization of the HU part is indeed a serious problem. For
example, first-principle estimations of average Coulomb interactions (U ) [30,60] in iron lead to
unreasonably large values of order of 5–6 eV in comparison with experimental values of the U -
parameter in the range of 1–2 eV [30]. A semi-empirical analysis of the appropriate interaction
value [61] gives U ' 2.3 eV. The difficulties with choosing the correct value of U are connected
with complicated screening problems, definitions of orthogonal orbitals in the crystal, and con-
tributions of the inter-site interactions. In the quasi-atomic (spherical) approximation the full
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Fig. 10: Total spin-polarized density of states and d-part of the self-energy for iron with
U = 2.3 eV and J = 0.9 eV for the temperature T = 750 K. Two different self-energies for
t2g and eg d-states in the cubic crystal field symmetry are presented. The four different lines
correspond to imaginary-part spin-up (full line) and spin-down (dashed line) as well as real-
part spin-up (dashed-dot line) and spin-down (dashed-double-dot line).

U -matrix for the d-shell is determined by the three parameters U, J and δJ or equivalently by
effective Slater integrals F 0, F 2 and F 4 [11,37]. For example, U = F 0, J = (F 2 +F 4)/14 and
we use the simplest way of estimating δJ , or F 4, keeping the ratio F 2/F 4 equal to its atomic
value 0.625 [62].

Note that the value of the intra-atomic (Hund) exchange interaction J is not sensitive to the
screening and approximately equals 0.9 eV in different estimations [60]. For the most important
parameter U , which defines the bare vertex matrix Eq. (39), we use the value U = 2.3 eV for Fe
[61], U = 3 eV for Co and Mn and U = 4 eV for Ni and Cu. To calculate the spectral functions
Aσ (k, E) = −TrLGσ (k, E + i0) /π and DOS as their sum over the Brillouin zone, we first
performed analytical continuations for the matrix self-energy from Matsubara frequencies to the
real axis using the Pade approximation [63], and then numerically inverted the Green-function
matrix as in Eq. (22) for each k-point. In the self-consistent solution of the FLEX equations we
used 1024 Matsubara frequencies and the FFT-scheme with an energy cut-off at 100 eV. The
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Fig. 11: Spectral function of ferromagnetic iron for spin-up (a) and spin-down (b) and the two
k-directions in the Brillouin zone compared with the experimental angle resolved photoemission
and de Haas van Alphen (at the EF=0) points.

sums over the irreducible Brillouin zone have been made with 72 k-points for SCF-iterations
and 1661 k-points for the final total density of states.

The depolarization of states near the Fermi level is another important correlation effect. The
decrease of the ratio P = [N↑ (EF )−N↓ (EF )] / [N↑ (EF ) +N↓ (EF )] is a typical sign of spin-
polaron effects [31, 64]. In our approach these effects are taken into account through the W (ph)

↑↓
terms in the effective spin-polarized LDA+DMFT potential (Eq. (44)).

The energy dependence of self-energy in Fig. 10 shows the characteristic features of moder-
ately correlated systems. At low energies |E| < 1 eV we see a typical Fermi-liquid behavior
ImΣ (E) ∼ −E2, and ∂ReΣ (E) /∂E < 0.At the same time, for the states beyond this interval
within the d-bands the damping is rather large (of the order of 1 eV) so these states correspond
to ill-defined quasiparticles, especially for the occupied states. This is probably one of the most
important conclusions of our calculations. Qualitatively it was already pointed out in Ref. [33]
on the basis of model second-order perturbation-theory calculations. We have shown that this
is still the case for the realistic quasiparticle structure of iron with a reasonable value for the
Coulomb interaction parameter.

Due to the noticeable broadening of the quasiparticle states, a description of the computational
results in terms of effective band structure (determined, for example, from the maximum of the
spectral density) would be incomplete. We present in Fig. 11 the full spectral density Aσ (k, E)
including both coherent and incoherent parts as a function of k and E. We see that in general
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Fig. 12: Spin-polarized partial 3d density of states for different transition metals at temperature
T=750 K. The full line is the spin-up, the dashed line the spin-down DOS.

the maxima of the spectral density (dark regions) coincide with the experimentally obtained
band structure. However, for occupied majority spin states at about −3 eV the distribution of
the spectral density is rather broad and the description of these states in terms of the quasi-
particle dispersion is problematic. This conclusion is in complete quantitative agreement with
raw experimental data on angle-resolved spin-polarized photoemission [65] with the broad non-
dispersive second peak in the spin-up spectral function around −3 eV.

Comparison of the DOS for transition metals in the Fig. 12 shows interesting correlation effects.
First of all, the most prominent difference from the LDA calculation is observed for antiferro-
magnetic fcc-Mn. There is the clear formation of lower and upper Hubbard bands around ±
3 eV. Such behavior is related with the half-filled Mn d-shell, which corresponds to a large
phase space for particle-hole fluctuations. For ferromagnetic bcc-Fe, the p-h excitations are
suppressed by the large exchange splitting and a bcc structural minimum in the DOS near the
Fermi level. In the case of ferromagnetic fcc-Co and Ni, correlation effects are more important
than for Fe since there is no structural bcc-dip in the density of states. One can see the formation
of a ”three-peak” structure for the spin-down DOS for Co and Ni and satellite formation around
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Fig. 13: The spin-wave spectrum for ferromagnetic iron in LDA and LDA+Σ compared with
different experiments (circles [16], squares [17], and diamonds [18]) (a); The corresponding
spin-wave spectrum from the LDA+Σ scheme in the (110) plane (b).

-5 eV. In order to describe the satellite formation more carefully one needs to include T -matrix
effects [29, 34] or use the QMC scheme in LDA+DMFT calculations. Finally, there are no big
correlation effects in non-magnetic fcc-Cu since the d-states are located well bellow the Fermi
level.

Using the self-consistent values for Σm(iω) computed by QMC, we calculate the exchange
interactions (Eq. 56) and spin-wave spectrum (Eq. 57) using the four-dimensional fast Fourier
transform (FFT) method [66] in (k, iω) space with a mesh of 203×320. The spin-wave spectrum
for ferromagnetic iron is presented in Fig. 13 with comparison to the results of LDA-exchange
calculations [57] and with different experimental data [67–69]. The room-temperature neutron
scattering experiments have a sample dependence (Fe-12%Si in Ref. [67, 69] and Fe-4%Si in
Ref. [68]) due to problems with the bcc-Fe crystal growth. Note that for high-energy spin-
waves the experimental data [69] has large error-bars due to Stoner damping (we show one
experimental point with the uncertainties in q space). On the other hand, the expression of
magnon frequency in terms of exchange parameters itself becomes problematic in that region
due to the breakdown of the adiabatic approximation. Therefore we think that the comparison
of our theoretical results with the experimental spin-wave spectrum for large energy needs addi-
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Fig. 14: LDA+DMFT results for ferromagnetic iron (T = 0.8 TC). The partial densities of
the d-states (full lines) are compared with the corresponding LDA results at zero temperature
(dashed lines) for the spin-up (red lines, arrow-up) and spin-down (blue lines, arrow-down)
states. The insert shows the spin-spin autocorrelation function for T=1.2 TC .

tional investigation of Stoner excitations and calculations of the dynamical susceptibility in the
LDA+DMFT approach [43]. Within the LDA scheme one could use the linear-response formal-
ism [70] to calculate the spin-wave spectrum with the Stoner renormalizations, which should
give in principle the same spin-wave stiffness as our LDA calculations. Our LDA spin-wave
spectrum agrees well with the results of frozen magnon calculations [71, 72].
At the lower-energy, where the present adiabatic theory is reliable, the LDA+DMFT spin-wave
spectrum agrees better with experiments than the result of the LDA calculations. Experimen-
tal values of the spin-wave stiffness D = 280 meV/A2 [68] agree well with the theoretical
LDA+DMFT estimate of 260 meV/A2 [38].
Self-consistent LDA+DMFT results for the local spectral function of iron and nickel are shown
in Figs. 14 and 15, respectively. The LDA+DMFT approach describes well all the qualitative
features of the density of states (DOS), which is especially non-trivial for nickel. Our QMC
results reproduce well the three main correlation effects on the one particle spectra below TC
[75–77]: the presence of the famous 6 eV satellite, the 30% narrowing of the occupied part of
d-band and the 50% decrease of exchange splitting compared to the LDA results. Note that the
satellite in Ni has substantially more spin-up contributions, in agreement with photoemission
spectra [77]. The exchange splitting of the d-band depends very weakly on temperature from
T = 0.6TC to T = 0.9TC . Correlation effects in Fe are less pronounced than in Ni, due to its
large spin-splitting and the characteristic bcc-structural dip in the density of states for spin-down
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Fig. 15: LDA+DMFT results for ferromagnetic nickel (T = 0.9 TC). The partial densities of
the d-states (full lines) is compared with the corresponding LDA results at zero temperature
(dashed lines) for the spin-up (red lines, arrow-up) and spin-down (blue lines, arrow-down)
states. The insert shows the spin-spin autocorrelation function for T=1.8 TC .

states near the Fermi level that reduces the density of states for particle hole excitations.
Now we discuss the application of the LDA+DMFT approach to the description of finite-
temperature magnetic properties of iron and nickel. While density functional theory can, in
principle, provide a rigorous description of the thermodynamic properties, at present there is
no accurate practical implementation available. As a result the finite-temperature properties of
magnetic materials are estimated following a simple suggestion [57], whereby constrained DFT
at T = 0 is used to extract exchange constants for a classical Heisenberg model, which in turn is
solved using approximation methods (e.g., RPA, mean field) from classical statistical mechan-
ics of spin systems [57, 78–80]. The most recent implementation of this approach gives good
values for the transition temperature of iron but not of nickel [81]. While these localized spin
models give, by construction, at high temperatures a Curie-Weiss like magnetic susceptibility,
as observed experimentally in Fe and Ni, they encountered difficulties in predicting the correct
values of the Curie constants [82].
The uniform spin susceptibility in the paramagnetic state: χq=0 = dM/dH was extracted from
QMC simulations by measuring the induced magnetic moment in a small external magnetic
field. The dynamical mean-field results account for the Curie-Weiss law which is observed
experimentally in Fe and Ni. As the temperature increases above TC , the atomic character of
the system is partially restored resulting in an atomic-like susceptibility with effective moment

χq=0 =
µ2

eff

3(T − TC)
(59)
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Fig. 16: Temperature dependence of ordered moment and inverse ferromagnetic susceptibility
for Fe (open squares) and Ni (open circles) compared with experimental results (filled symbols).

The temperature dependence of the ordered magnetic moment below the Curie temperature and
the inverse of the uniform susceptibility above the Curie point are plotted in Fig. 16 together
with the corresponding experimental data for iron and nickel [83]. The LDA+DMFT calcu-
lations describe the magnetization-curve and the slope of the high-temperature Curie-Weiss
susceptibility remarkably well. The calculated values of high-temperature magnetic moments
extracted from the uniform spin susceptibility are µeff = 3.09 (1.50)µB for Fe (Ni), in good
agreement with the experimental data µeff = 3.13 (1.62)µB for Fe (Ni) [83].
One can estimate the value of the Curie temperature of Fe and Ni from the disappearance of spin
polarization in the self-consistent DMFT solution and from the Curie-Weiss law in Eq. (59).
Our estimates TC = 1900 (700)K are in reasonable agreement with experimental values of
1043 (631)K for Fe (Ni) respectively [83], considering the single-site nature of the DMFT
approach, which is not able to capture the reduction of TC due to long wavelength spin waves.
These effects are governed by the spin wave stiffness. Since the ratio TC /a2D of the spin
wave stiffness D to TC is nearly a factor of 3 larger for Fe than for Ni [83] (a is the lattice
spacing), we expect the Curie temperature from DMFT to be much higher than the observed
TC in Fe than in Ni. Note that this is a consequence of the long-range oscillating character
of exchange interactions in iron compared to short-range ferromagnetic exchange interactions
in nickel [81]. Quantitative calculations demonstrating the sizable reduction of TC due to spin
waves in Fe in the framework of a Heisenberg model were performed in Ref [81]. Moreover
including additional spin-flip terms in the rotationally invariant Coulomb matrix will drastically
reduce the effective Curie temperature for the case of iron with its approximately two unpaired
electrons [88].
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Within dynamical mean-field theory one can also compute the local spin susceptibility

χloc =
g2
s

3

β∫
0

dτ 〈S (τ)S(0)〉 , (60)

where gs = 2 is the gyromagnetic ratio, S = 1
2

∑
m,σ,σ′ c

†
mσ~σσσ′cmσ′ the single-site spin op-

erator, and ~σ = (σx, σy, σz) are the Pauli matrices. It differs from the q = 0 susceptibility
by the absence of spin polarization in the Weiss field of the impurity model. Eq. (60) cannot
be probed directly in experiments but it is easily computed in DMFT-QMC. Its behavior as a
function of temperature gives a very intuitive picture of the degree of correlations in the system.
In a weakly correlated system we expect Eq. (60) to be nearly temperature-independent, while
in a strongly correlated system we expect a leading Curie-Weiss behavior at high temperatures
χloc = µ2

loc/(3T + C), where µloc is an effective local magnetic moment. In the Heisenberg
model with spin S, µ2

loc = S(S + 1)g2
s and for well-defined local magnetic moments (e.g., for

rare-earth magnets) this quantity should be temperature-independent. For the itinerant electron
magnets µloc is temperature-dependent, due to a variety of competing many body effects such
as Kondo screening and the reduction of local magnetic moment by temperature [27]. All these
effects are included in the DMFT calculations. The τ -dependence of the correlation function
〈S (τ)S(0)〉 results in the temperature dependence of µloc and is displayed in the inserts on
the Figs. 14,15. Iron can be considered as a magnet with very well-defined local moments
above TC (the τ -dependence of the correlation function is relatively weak), whereas nickel is
a more itinerant electron magnet (stronger τ -dependence of the local spin-spin autocorrelation
function).
The comparison of the values of the local and the q = 0 susceptibility gives a crude measure of
the degree of short range order which is present above TC . As expected, the moments extracted
from the local susceptibility, Eq. (60), are a bit smaller ( 2.8 µB for iron and 1.3 µB for nickel)
than those extracted from the uniform magnetic susceptibility. This reflects the small degree of
short-range correlations that remains well above TC [85]. The high-temperature LDA+DMFT
data clearly show the presence of a local-moment above TC . This moment is correlated with the
presence of high energy features (of the order of the Coulomb energies) in the photoemission.
This is also true below TC , where the spin dependence of the spectra is more pronounced for
the satellite region in nickel than for the quasiparticle bands near the Fermi level (Fig. 15).
This can explain the apparent discrepancies between different experimental determinations of
the high-temperature magnetic splittings [84, 86, 87] as being the result of probing different
energy regions. The resonant photoemission experiments [86] reflect the presence of local-
moment polarization in the high-energy spectrum above TC in nickel, while the low-energy
ARPES investigations [87] result in non-magnetic bands near the Fermi level. This is exactly
the DMFT view on the electronic structure of transition metals above TC . Fluctuating moments
and atomic-like configurations are large at short times, which results in correlation effects in
the high-energy spectra such as spin-multiplet splittings. The moment is reduced at longer time
scales, corresponding to a more band-like, less correlated electronic structure near the Fermi
level.
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8 Conclusions

We have discussed a general scheme for investigating the magnetic properties for correlated
itinerant-electron systems. This approach is based on the combination of the first-principle
LDA scheme with dynamical mean-field theory. The application of the LDA+DMFT method
gives an adequate description of the quasiparticle electronic structure of ferromagnetic transition
metals. The main correlation effects in the electron energy spectrum are a strong damping of
the occupied states more than 1 eV from the Fermi level EF and essentially a depolarization of
the states in the vicinity of EF . We obtain a reasonable agreement with different experimental
spectral data (spin-polarized photo- and thermo-emission). The method is quite universal and
can be applied for other correlated d- and f -electron magnetic systems.
We discussed as well a general method for the investigation of magnetic interactions in corre-
lated electron systems. Our general expressions are also valid in the relativistic case and can be
used for the calculation of both exchange and Dzialoshinskii-Moriya interactions, and magnetic
anisotropy [38]. The illustrative example of ferromagnetic iron shows that correlation effects
in the exchange interactions may be noticeable even in such moderately correlated systems.
For rare-earth metals and their compounds, colossal magnetoresistance materials, or high-Tc
systems, this effect may be even more important.
This work demonstrates an essential difference between the spin density functional and the
LDA+DMFT approach. The latter deals with the thermodynamic potential as a functional of the
local Green function rather than the electron density. Nevertheless, there is a close connection
between the two techniques (the self-energy corresponds to the exchange-correlation potential).
In particular, an analog of the local force theorem can be proved within the LDA+DMFT ap-
proach. It may be useful not only for the calculation of magnetic interactions but also for elastic
stresses, in particular pressure, and other physical properties of correlated magnetic systems.
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6.2 Werner Krauth

1 Introduction

In my lecture at the Jülich Autumn School 2013, I discuss Monte Carlo methods, and their
application to spin systems, in the language of my recent text book [1], but in much less detail.
During the lecture, I first concentrate on the relation between Monte Carlo methods and the con-
cept of incompressible flow (Section 2), which allows one to understand the crucial detailed and
global balance conditions. I then introduce to the “a priori” probabilities, which are at the basis
of the Metropolis-Hastings algorithm (Section 3). After an introduction to the local algorithms
(heatbath, local Metropolis), and the classic faster-than-the-clock approaches (Section 4), I then
discuss the Swendsen-Wang and Wolff cluster algorithms for spin systems (Section 5), as an
illustration of the great liberty one has in designing Monte Carlo algorithms. I finish with the
coupling approach (Section 6) which has provided essential for rigorously understanding for
how long a simulation must be run until the computational output reflects thermal equilibrium
(the classical Boltzmann distribution or the quantum density matrix) rather than the initial state
of the Markov chain.

2 Markov chains and incompressible flow

Markov-chain Monte Carlo strives to sample a distribution π by starting from another distribu-
tion π0 and using an incremental algorithm pi→j to move between configurations i and j. In
each time step (iteration) t = 1, 2, 3, . . . , the probability distribution πt is sampled. The target
distribution is approached in the limit of infinite simulation time π = π∞. Convergence is al-
ways exponential in time, and it can be assured as long as we satisfy (in addition to an ergodicity
requirement) the global balance condition. This means that the flow into each configuration i
equals the flow out of it: ∑

k

Pi→k =
∑
l

Pl→i (global balance). (1)

Here, the flow Pk→i denotes the product of the stationary probability πk with the conditional
probability pk→i to move from k to i given that the system is at k. The global flow condition
can be easily understood under the stationarity condition, as the first sum in Eq. (1) equals∑

k Pi→k = πi (see [1], Section 1.1.4). Eq. (1) is satisfied in particular if we balance the flow
between each pair of configurations i and k individually:

Pi→k = Pk→i ∀i, k (detailed balance). (2)

This detailed balance condition is satisfied for example by the Metropolis algorithm

Pi→k = min(πi, πk) (3)

(the right-hand-side of this equation is manifestly symmetric in i and k, so is the left-hand-side).
Usually, Eq. (3) is written in terms of the probabilities pi→k, etc, that is by dividing by πi > 0.
This yields

pi→k = min(1, πk/πi), (4)
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Fig. 1: Balance condition for Markov-chain Monte Carlo moves. The global balance condition
(left) is necessary for the convergence of the Markov chain towards the stationary probability
measure π. The time-honored detailed balance condition (center) is often realized through the
Metropolis algorithm of Eq. (3) and Eq. (4). The unidirectional motion of the maximal global
balance condition (right) is realized in a number of modern algorithms (see [2]. Figure adapted
from [3]).

an equation that has been written down in thousands of papers and a huge number of computer
programs. There are many choices of P which satisfy these balance conditions. This implies
that a great many valid Monte Carlo algorithms are out there, some of them slow and some of
them fast, most of the latter ones yet to be discovered.
Much more could be said, and has been written, about the detailed and global balance condi-
tions, but the most important finding is the following: While convergence towards the equilib-
rium distribution π is generally exponential (∝ exp(−t/τ)), even for continuum systems, it is
very difficult to estimate the correlation time τ . This question — what is the correlation time
— is one of the three great conceptual issues in Monte Carlo algorithms and, really, the most
serious one. The other two are finite-size scaling, and the estimation of the variance for observ-
ables (see [1], Section 1.4). We will take up the convergence issue in Section 6, in the context
of coupling algorithms.

3 A priori probabilities

How do we move from configuration i to configuration j, and what do we mean with the (con-
ditional) probability pi→j to go from configuration i to configuration j (see our discussion in
Section 1)? This question is best discussed with the help of a priori probabilities: While the
flow Pi→j is a product of the stationary probability πi and the conditional probability pi→k,
the latter is put together from a probability to propose the move from i to j (the “a priori”
probability) times the conditional probability to accept it:

pi→j = Ai→j pacc
i→j. (5)

This equation can be illustrated by a simple example, as the “triangle algorithm” for a particle
in a box (see [1], Sect. 1.1.6). As the balance condition of Eq. (1) only considers the flow,
we are free to choose an arbitrary a priori probability A and bias it with a given acceptance
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a

‘flip’ spin

(move) b

Fig. 2: Local Monte Carlo move a → b in the Ising model. The spin to be flipped
is sampled uniformly through the lattice and the flip should be accepted with probability
min(1, exp(−β(Eb − Ea)) (from [1]).

probability in order to fall back on our feet (obtain the correct flow). With a priori probabilities,
the Metropolis Monte Carlo algorithm takes the form

pacc
i→j = min

(
1,
Aj→i
πi

πj
Ai→j

)
. (6)

If the a priori probability Ai→j to propose the move from i to j is equal to πj , the acceptance
probability pacc

i→j is equal to one and, in a sense, we have already solved the problem. This
means two things: (i) we have no rejections and (ii) we can usually make quite large moves, as
the reason for making small ones was the presence of rejections. See [1], Section 1.1.6, for a
discussion of the relation between this Metropolis-Hastings algorithm and perturbation theory
of quantum physics.

4 Local algorithm, faster-than-the-clock algorithms

Let us now do our first real Monte Carlo simulation of Ising spins σk = ±1, k = 1 . . . N on a
lattice, say the two-dimensional square lattice. We use the energy

E = −J
∑
〈i,j〉

σiσj, (7)

where i and j are neighbors on the lattice. In the following, we choose J = 1, and the stationary
probability of a configuration σ is given by πσ = exp[−E(σ)/kT ), where k is the Boltzmann
constant and T the temperature, with β = 1/kT .
The Ising model can be simulated by the Metropolis algorithm, by uniformly sampling at each
time step a site i, as in Fig. 2. If we call “a” the original configuration and “b” the configuration
obtained through the flip σi → −σi, then the Metropolis probability for accepting the move is
given by

p = min[1, exp(−β(Eb − Ea)]. (8)

One may picture the spin σi in the “molecular” field hi equal to the sum of the neighboring
spins, and the flipping probability turns out to be

p = min[1, exp(−2βσihi)]. (9)
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E = −h E = +h

Fig. 3: A single spin in an external field: building block of local Monte Carlo algorithms (figure
adapted from [1]).

Instead of the Metropolis algorithm, we may also use the heatbath algorithm, which consists in
taking out the spin i and in replacing it with thermalized values of σi

π+
h =

e−βE
+

e−βE+ + e−βE− =
1

1 + e−2βh
, (10)

π−h =
e−βE

−

e−βE+ + e−βE− =
1

1 + e+2βh
. (11)

(See [1], Section 5.2.1 for simple programs, and the author’s website for a basic Python pro-
gram.) Practically, we sample a random number Υ uniformly distributed in the unit interval. If
Υ < π+

h , we set σi = 1, otherwise σi = −1). In the long run, the program will converge towards
the Boltzmann distribution, that is, spin configurations σ will be visited with their Boltzmann
probability πσ.

In the local Metropolis or heatbath algorithm, the flip concerns a single spin subject to the
molecular magnetic field produced by its neighbors. Let us analyze this problem, a single spin
in a magnetic field, in more detail (see Fig. 3). At low temperature, the acceptance probability
of the algorithm is very small: We consider the spin, and try to flip it (but reject the flip), then
try again, reject again, etc. Many calculations will be wasted, as we compute probabilities and
draw random numbers, but most often reject the move. There is a better way to organize the
calculation: it consists in finding out how many times we will reject the flip before accepting it.
This is called the faster-than-the-clock approach (in a single iteration, we may determine that the
flip in Fig. 3 is rejected 7 times before it is accepted). As discussed in detail in [1], Section 7.2.2,
the faster-than-the-clock approach is at the base of the classic Bortz-Kalos-Lebowitz (BKL)
algorithm [4] among others. The general lesson is that very small acceptance probabilities, as
they appear at low temperatures in the Ising model, can generally be avoided through a clever
trick. The inverse is also true: in some recent approaches, almost all Monte Carlo move are
accepted, and their results can be easily added up [5, 6]. We can then use the faster-than-the-
clock approach to sample the first time when a long streak of events (or non-events) comes to
an end.
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5 Cluster algorithms

Close to the critical point, the transition between the paramagnetic and the ferromagnetic phases,
local Monte Carlo algorithms slow down considerably. This is due to a complicated interplay
between several factors: On the one hand, close to the critical point, finite-size effects are large
and the physical observables at one system size N can be quite different from the ones for
larger or smaller systems (in consequence, we must simulate very large systems, which is nat-
urally CPU-time intensive). On the other hand, computing these observables for fixed N may
take quite some CPU time because of critical slowing down. In a computational context, this
phenomenon describes the appearance of slow variables (in the Ising model it is the total mag-
netization), whose distribution becomes very wide (at the critical point, total magnetizations
from −N through +N appear with sizable probability). As the local Monte Carlo algorithm
only flips a single spin at a time, it takes a long time to move across the probability distribution
of the magnetization, and we experience slowing down (see [1], Section 5.2.1, for a detailed
discussion).
To speed up the simulation, we should flip more than one spin concurrently, but this cannot
be achieved by parallel flipping of uncorrelated spins: The attempted moves are indeed larger,
but with the increased rejection rate, the effective move will get smaller instead of larger. We
understand that we should propose larger moves but, quite importantly, we must get them ac-
cepted. The Wolff cluster algorithm [7] (an efficient version of the Swendsen-Wang cluster
algorithm [8]) does this marvelously. It provides a prime example for the use of the Metropolis-
Hastings paradigm. Our discussion closely mirrors [1], Section 5.2.3.
In the Wolff cluster algorithm, we start with one site, then add any of the neighboring sites with
probability p, if they carry the same spin, etc. The construction in Fig. 4a then came to a halt
because all of the 14 links ++ across the cluster boundary were rejected. The move consists in
flipping the cluster.
To apply Eq. (6), we compute the a priori probability Aa→b, the probability of stopping the
cluster construction process at a given stage rather than continuing and including more sites
(see the configuration a in Fig. 4). Aa→b is given by an interior part (the two neighbors inside
the cluster) and the stopping probability at the boundary: each site on the boundary of the
cluster was once a pocket site and the construction came to a halt because none of the possible
new edges was included. Precisely, the boundary ∂C of the cluster (with one spin inside and its
neighbor outside) involves two types of edge:

{
cluster in a

in Fig. 4

}
:

edges across ∂C︷ ︸︸ ︷ inside outside #

+ − n1

+ + n2

 E|∂C = n1 − n2 (12)

(in Fig. 4, n1 = 17, n2 = 14). In order to acquire all information needed for Eq. (6), we
must analyze likewise the return flip in Fig. 4 from configuration b back to configuration a.
the same interior part as before, but a new boundary part Ab→a = Ain · (1 − p)n1 , because
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a b

Fig. 4: Wolff cluster algorithm in the Ising model. Starting from an initial site, we move on to
neighboring sites with the same value of the spin, and add them to the cluster with probability p.
The cluster construction terminates, and the cluster is flipped, when no more neighboring sites
can be added. In order to set up the algorithm correctly, we have to consider both the initial
configuration a and the final configuration b (see Eq. (6)). For the special value of p given in
Eq. (14), this algorithm is rejection free (figure taken from [1]).

there were n1 opportunities to let the cluster grow and again none was accepted. We also note
that πa = πinπout exp(−β(n1 − n2)), where πin takes into account all the edges with both sites
inside the cluster and πout all those at its outside. By an argument similar to that above, the
statistical weight of configuration b is πb = πinπout exp(−β(n2− n1)). The interior and exterior
contributions to the Boltzmann weight are the same as for configuration a. All the ingredients
of the detailed-balance condition in Eq. (6) are now known:

e−β(n1−n2)(1− p)n2pacc
a→b = e−β(n2−n1)(1− p)n1pacc

b→a. (13)

which leads to

pacc
a→b = min

[
1,

(
e−2β

1− p

)n2
(
1− p
e−2β

)n1
]
. (14)

The algorithm is at its peak efficiency for p = 1− exp(−2β), where the acceptance probability
is equal to one: we can construct the cluster, then flip it, build another one, turns it over . . . .
This Wolff cluster algorithm [7], one of the first of its kind, can be implemented in a dozen or
so lines of code: see the website of [1].

6 Coupling approach

As final subject, we now consider the problem of correlation times: that is we try to understand
at what time the sampled configurations reflect the stationary distribution π∞ and no longer the
starting configuration π0. For many real-life problems, this complex and crucial question has
no truly satisfactory solution: Although we know that the corrections to the equilibrium state
decay as e−i/τ , we cannot really compute τ . Quite often whole communities underestimate τ ,
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σ5

<

σ4 σ3

Fig. 5: Partial order in a two-dimensional 3×3 Ising spin model. Order relations are indicated,
but not all configurations are related to each other. The all + configuration σ+ is larger, and the
all - configuration σ− is smaller than all other configurations. The partial order is preserved
by the heatbath algorithm (figure taken from [1]).

and it is the advent of new algorithms that clearly make that point (as in [2, 9, 10]). Beginners
often think it is sufficient to start the simulation with some “random” initial condition, but
this is a misconception, as it is normally impossible to sample an initial configuration from a
distribution π0 anywhere close to π. In the Ising model, a time-honored practice has consisted
in starting two initial configurations, one from the all up configuration σk = +1 ∀k and another
one from an all down configuration σk = −1 ∀k. According to popular wisdom, when both
simulations reached similar magnetizations, they reached equilibrium. This idea turned out to
be basically correct. To explain why, we first have to understand the concept of partial order:
One configuration a is “smaller” than another one, b, if σai ≤ σbi ∀i. Not all configurations can
be compared to each other, but all can be compared to the all up and the all down configuration
(see Fig. 5). If we use the same random numbers for choosing the site i and for updating the
spin σi (coupling), and update the configurations using the heatbath algorithm of Eq. (11), then
the partial order is invariant under the dynamics. This means that the children of the all +1

configuration will always stay above the descendants of the all −1 configuration. As soon as
both match, at the coupling time τcoup, all possible initial configurations will have produced the
same output. This means that the memory of the initial configuration has been lost completely,
with the implication that the coupling time is a rigorous upper bound for the convergence time.
Propp and Wilson, in a classic paper [12], succeeded in turning the coupling approach into a
rigorous exact sampling method (from the distribution π, without any corrections). This has
far-reaching consequences, most of which have not been explored so far. See [1], Section 1.1.7
and [13] for a detailed discussion of the coupling approach, and of its most surprising finding,
namely that a Markov chain can be used to sample π∞, without any correction whatsoever.
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7.2 Stefan Wessel

1 Introduction

These lecture notes aim to provide a basic introduction to the central concepts behind modern
quantum Monte Carlo (QMC) techniques for the simulation of quantum spin systems in ther-
mal equilibrium. Acquaintance with the Monte Carlo approach to simulate classical statistical
physics models is assumed, and can be obtained for example from the lecture of W. Krauth
in this volume. In devising QMC simulation methods, two major steps need to be taken: (i)
The quantum partition function must be reformulated in a way as to allow stochastic sampling
over a space of effective configurations, such that each contributing configuration has a positive
statistical weight. (ii) An efficient update-scheme needs to be devised in order to sample this
configuration space through a Markov process. The first part of these lecture notes (Secs. 2
and 3) concerns the derivation of different representations of the quantum partition function,
and thus relates to the first of these steps. Similarly as in the case of classical Monte Carlo
schemes, a major breakthrough concerning the second step was the invention of efficient global
update schemes, which will be introduced in the second part of these notes (Secs. 4 and 5).
Finally, in section 6, we will discuss the QMC sign problem, which still poses the most severe
restriction in applying the presented QMC methods to (frustrated) quantum spin systems. There
exist already various excellent recent reviews on the methods that we discuss below, and we will
mention some of these at the appropriate places. Thus, in these notes, we do not attempt to pro-
vide a comprehensive account on the subject, but instead we will highlight the key ideas behind
these techniques.

2 World lines and local updates

We will discuss QMC methods for the simulation of (finite) quantum spin systems at finite
temperatures. Upon tuning the simulation temperature sufficiently low (sufficiently below the
finite-size spin gap), however, ground state properties of a finite system can usually be explored
as well. As will be seen below, these QMC methods are feasible for non-frustrated spin mod-
els. In particular, this restricts for example the simulation of the antiferromagnetic Heisenberg
model to bipartite lattices. But, there are no restrictions regarding e.g., the dimensionality of
the system, and also very large systems with several thousands or even millions of spins can
be treated, depending on the temperature range of interest; the computational effort of these
methods scales linearly in both the system size and in the inverse temperature β = 1/T (we
fix kB = 1 here). For the sake of clarity, we consider in the following the spin-1/2 Heisenberg
model on an open chain with Ns lattice sites,

H = J

Ns−1∑
i=1

~Si · ~Si+1 (1)

as an example system when deriving the QMC algorithms. We refer to appendix A concerning
the notation employed here. In the following, we are interested in calculating thermal expec-
tation values, such as for example the internal energy E = 〈H〉 of the system at an inverse
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temperature β. From statistical physics, we know that

〈H〉 =
1

Z
Tr
(
He−βH

)
=

1

Z

∑
n

Ene
−βEn , (2)

where in the last step we expressed the trace in the basis of eigenstates of the Hamiltonian, and
the partition function Z = Tr(e−βH) =

∑
n e
−βEn . While the above expressions in the basis

of eigenstates of the Hamiltonian closely resemble the corresponding formulas for a classical
system, the problem in the quantum case is that usually one does not know the full spectrum of
the Hamiltonian, and thus the above sums cannot be directly calculated. Knowing the spectrum
of H in the quantum case, one would often have essentially already solved the problem of
interest.
QMC methods circumvent the full diagonalization of H by mapping the quantum partition
function Z to a partition function of an effective classical model, and then performing a Monte
Carlo sampling of the states contributing to the effective classical partition function. In order to
see how such a mapping can be realized, we consider first the Suzuki-Trotter decomposition of
the partition function, as pioneered by Suzuki in 1976 [1]. This approach will set the stage for
more advanced QMC approaches.

2.1 Suzuki-Trotter decomposition

Our first task will be to map the quantum partition function to that of an effective classical
model. In the following, we consider in particular the quantum Heisenberg model on an open
chain, given by the Hamiltonian Eq. (1), which can be decomposed into contributions from each
bond,

H =
∑
i

Hi, Hi = J ~Si · ~Si+1, (3)

where Hi is a bond Hamiltonian, that corresponds to the bond between site i and site i + 1 on
the chain. We can furthermore separate H into two parts,

H = HA +HB, (4)

where HA (HB) consists of only the even (odd) bond contributions, i.e,

HA =
∑
i even

Hi, HB =
∑
i odd

Hi. (5)

While
[
HA, HB

]
6= 0, the bond Hamiltonians within HA or HB commute among themselves,

since [Hi, Hj] = 0 for i and j both even (or both odd). We have thus separated H into two
parts, each of which consists of commuting terms. Now, we rewrite the statistical operator as a
product of many terms, each with a small prefactor β/M in front of H ,

e−βH =
(
e−

β
M
H
)M

=
(
e−∆τH

)M
, (6)

with a (large) integer number (called the Trotter number) M , and ∆τ = β/M . The Suzuki-
Trotter (or split-operator) approximation [1, 2] now consists in approximating the exponential
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of H , expressed in terms of the two non-commuting pieces H = HA + HB, by a product of
exponentials. While many such decompositions are possible, the most commonly used approx-
imations (also employed beyond QMC methods) are

e−∆τH = e−∆τ(HA+HB) =

{
e−∆τHA e−∆τHB +O(∆τ 2)

e−∆τHB/2 e−∆τHA e−∆τHB/2 +O(∆τ 3)
, (7)

where the errors are also proportional to the commutator
[
HA, HB

]
. Using either of the two

approximations in Eq. (6), we obtain

Z = Tr
(
e−βH

)
= Tr

(
e−∆τHA e−∆τHB︸ ︷︷ ︸

M

e−∆τHA e−∆τHB︸ ︷︷ ︸
M−1

· . . . · e−∆τHA e−∆τHB︸ ︷︷ ︸
1

)
+O(∆τ 2). (8)

When using the second-order approximation from Eq. (7), the final expression is obvious. How-
ever, when using the third-order approximation, one actually obtains the same final expression,
due to the cyclic invariance of the trace, which can be used to move the most left exponential
to the very right, and then coalesce every other two consecutive terms. This also shows, that
the systematic error in Z actually scales as M∆τ 3 ∝ ∆τ 2, even when using the second-order
approximation, where one might have expected an O(∆τ) error in the final expression. Now,
consider a basis of the Hilbert space, e.g., in terms of the local eigenstates of Szi , which we write

|σ1〉 = | ↑↑ . . . ↑↑〉
|σ2〉 = | ↑↑ . . . ↑↓〉

...

|σ2N 〉 = | ↓↓ . . . ↓↓〉 . (9)

Since this set forms a basis, we obtain a completeness relation:∑
σ

|σ〉〈σ| = 1 , (10)

where |σ〉〈σ| is a projection operator onto the basis state |σ〉. Within this basis of the Hilbert
space, we can thus express the partition function as

Z =
∑
σ0

〈σ0|e−βH |σ0〉

≈
∑
σ0

〈σ0| e−∆τHAe−∆τHB︸ ︷︷ ︸
M

e−∆τHAe−∆τHB︸ ︷︷ ︸
M−1

. . . e−∆τHAe−∆τHB︸ ︷︷ ︸
1

|σ0〉

=
∑
σ0

〈σ0|e−∆τHAe−∆τHB . . . e−∆τHA
(∑

σ1

|σ1〉〈σ1|

)
e−∆τHB |σ0〉

=
∑
σ0

∑
σ1

〈σ0|e−∆τHAe−∆τHB . . .

(∑
σ2

|σ2〉〈σ2|

)
e−∆τHA|σ1〉〈σ1|e−∆τHB |σ0〉

=
∑

σ0,σ1,σ2

〈σ0|e−∆τHAe−∆τHB . . .

(∑
σ3

|σ3〉〈σ3|

)
e−∆τHB |σ2〉〈σ2|e−∆τHA|σ1〉〈σ1|e−∆τHB |σ0〉 .
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Fig. 1: A configuration contributing to the checkerboard decomposition of the partition function
of an open spin-1/2 Heisenberg chain with 6 lattice sites, for a Trotter number M = 3. Black
(white) circles denote spin up (down), and the world lines of the up (down) spins are denoted
by red (green) lines. Each dashed square represents the exponential of a bond Hamiltonian.

In the above summations, we added a (superscript) label to distinguish the basis sets that arise
from the trace (|σ0〉) and from the various inserted partitions of unity (|σ1〉, |σ2〉, and |σ3〉).
Continuing this way, we eventually arrive at the following expression:

Z =
∑
{σi}

〈σ0|e−∆τHA|σ2M−1〉︸ ︷︷ ︸
2M

〈σ2M−1|e−∆τHB |σ2M−2〉︸ ︷︷ ︸
2M−1

〈σ2M−2|e−∆τHA|σ2M−3〉︸ ︷︷ ︸
2M−2

. . .

. . . 〈σ3|e−∆τHB |σ2︸ ︷︷ ︸
3

〉 〈σ2|e−∆τHA|σ1︸ ︷︷ ︸
2

〉 〈σ1|e−∆τHB |σ0︸ ︷︷ ︸
1

〉+O(∆τ 2) .
(11)

This representation of Z is referred to as the “Suzuki-Trotter decomposition”. Furthermore,
since HA and HB each consists of commuting parts, we find that

e−∆τHA =
∏
i even

e−∆τHi = e−∆τH2e−∆τH4 . . . (12)

e−∆τHB =
∏
i odd

e−∆τHi = e−∆τH1e−∆τH3 . . . (13)

and thus in the Suzuki-Trotter decomposition each exponential expression factorizes into ex-
ponentials for the bond Hamiltonians on either all even or all odd bonds. One can represent a
given contribution to Z graphically, as is shown for a specific example withNs = 6, andM = 3

in Fig. 1. This two-dimensional picture appears like a space-time picture of spins propagating
in discrete steps from the initial configuration |σ0〉 to |σ1〉,..., and finally from |σ2M−1〉 back
to |σ0〉, since the configurations on the first and the last step are equal. This pictorial illustra-
tion also explains why the underlying partitioning of the Hamiltonian is often referred to as the
“checkerboard decomposition” .
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2.2 World lines

Each exponential e−∆τHi couples two spin sites on a shaded plaquette, and the statistical weight
of a configuration is the product of all the matrix elements of the exponentials on all shaded
plaquettes. Note, that e−∆τHi appears as an imaginary-time evolution operator, that propagates
the two spins at sites i and i+ 1 from one “time slice” to the next. To appreciate this suggestive
picture of a discrete time propagation, we introduced the corresponding “Trotter time-step”
∆τ = β/M above. However, not all of the 24 = 16 possible spin configurations along a shaded
plaquette are allowed to appear within the checkerboard decomposition. In order to assess
the allowed configurations and the corresponding matrix elements, we explicitly calculate the
matrix elements of the operators

e−∆τHi =
∞∑
k=0

1

k!
(∆τ)k(−Hi)

k. (14)

In the local two-sites basis of the two spins at site i and i+ 1, the Hamiltonian matrix is

Hi = J


1
4

0 0 0

0 −1
4

1
2

0

0 1
2
−1

4
0

0 0 0 1
4

 , in the local basis

| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

. (15)

Upon performing the Taylor expansion, and grouping back the resulting terms, one finds (this
would make up a nice exercise)

e−∆τHi = e+∆τJ/4


e

−∆τJ
2 0 0 0

0 cosh(∆τJ
2

) − sinh(∆τJ
2

) 0

0 − sinh(∆τJ
2

) cosh(∆τJ
2

) 0

0 0 0 e
−∆τJ

2

 . (16)

There are thus 6 possible allowed plaquettes with a finite weight. They are shown in Fig. 2.
All other combinations would lead to a vanishing matrix element and are thus not allowed to
occur as part of any allowed configuration. The allowed configurations are those that exhibit
the same total local magnetization Szi + Szi+1 on the lower and the upper edge of each shaded
plaquette. This property derives from the fact that each bond Hamiltonian Hi conserves the
total magnetization of the two spins connected by the bond.
When we connect the positions of the up and down spins as they propagate through the shaded
plaquettes, we obtain continuous lines. These are the “world lines” of the spins, and each such
world line denotes the evolution of one spin up or down from |σ0〉 back to |σ0〉. The world
lines for both the spin-up and the spin-down case are illustrated in Fig. 1. Note, that it would be
sufficient to only show, say, the up spins, which is what will be done later on in these notes. If
one would glue together the upper and lower boundary of the space-time configuration to make
the periodicity constraint by the trace more explicit, these world lines are thus continuous, and
are not broken anywhere. This set of unbroken world-line configurations defines a classical
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Fig. 2: Allowed shaded plaquette configurations for the spin-1/2 Heisenberg model. Black
(white) circles denote spin up (down), and the world lines of the up (down) spins are denoted
by red (green) lines.

statistical model, which has the same partition function as the quantum partition function, if the
weight of a given world-line configuration C equals the product of the matrix elements from all
shaded plaquettes P

W (C) =
∏
P

WP (C|P ), (17)

where WP (C|P ) is the corresponding matrix element of e−∆τHi for plaquette P in the con-
figuration C. At first sight, the effective model might appear to be just the two-dimensional
Ising model on a square lattice of size Ns × 2M , with periodic boundary conditions in the y-
direction. However, the effective classical model is in fact more complex than the Ising model,
which has an unconstrained configuration space. Only a subset of configurations of the two-
dimensional Ising model are allowed to occur also in the effective classical model for Z. These
configurations are those that correspond to continuous, unbroken world lines. In higher spatial
dimensions, one can use the Suzuki-Trotter approach with decompositions very similar to the
one discussed above. One thus finds that the quantum partition function of a d-dimensional sys-
tem (here d = 1) corresponds to that of an effective classical model in (d+ 1) dimensions, with
the (d + 1)-th direction corresponding to an imaginary-time evolution of the original quantum
model. This well known quantum-to-classical-mapping holds in fact much more generally, and
exposes a deep connection between classical and quantum statistical physics.
Note however the minus sign in front of the off-diagonal matrix elements: for the allowed
world-line configurations, all the accumulated signs actually cancel out, due to the periodicity
constraint in imaginary time, in case of the open chain or for a closed chain with an even number
of sites. This holds also true for higher-dimensional generalizations of the world-line approach
whenever the underlying lattice structure is bipartite. However, for frustrated systems, e.g., for
a closed 3-site chain, there appears a “sign problem”, since both configuration with positive and
negative weights are allowed. We will discuss the consequences of this issue in Sec. 6.

2.3 Local updates

The world-line representation introduced above can be taken as a starting point to set up a QMC
algorithm [3]. But, how does one sample configurations in the effective world-line model in a
Monte Carlo algorithm, i.e., how do we generate new valid world-line configurations from a
given one? Since the spin Sz-conservation prohibits the breaking of world lines, the updates
need to move world-line segments instead of just changing local spin states like in the classical
Ising model. In the early days, so-called local updates were performed, i.e., local manipulations
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(a) (b)

Fig. 3: Two different local updates of world-line configurations in discrete time (a) and in the
continuous-time limit (b). For clarity, only the spin-up world lines are shown explicitly.

of the world-line configuration, such as those shown in Fig. 3 (a). These local updates are quite
simple and either generate a pair of kinks across a white plaquette within a straight section of
the world line, or they move a kink to a neighboring plaquette [3, 4], as shown in Fig. 3 (a).
Slightly more complicated local moves are required for higher-dimensional spin systems [5], or
for other quantum lattice models [6]. In any case, such local updates are accepted by considering
the related change in the statistical weight according to Eq. (17), using e.g., the Metropolis [7]
acceptance scheme.
However, such local updates are not efficient in two respects: First, global properties of the
configurations cannot be changed by such local updates; the spatial winding number of the
world lines and their total number, i.e. the total magnetization of the system, cannot be changed
using local moves. Thus, they had to be complemented by special global updates as well [5].
Second, such updates lead to severe critical slowing down upon approaching critical regions,
similarly as those familiar from the local Metropolis algorithm for the Ising model. A major
breakthrough in overcoming this problem was the work by Evertz, Lana and Marcu [8], in which
they presented an extension of the Swendsen-Wang cluster update idea known from classical
Monte Carlo studies to world-line QMC methods [56]. We will present this “loop algorithm”
in Sec. 4. Before doing so, we want to introduce two other QMC representations, which are
relevant for modern QMC algorithms.

2.4 The continuous-time limit

Due to the finite number of time slices, M , the approach described above suffers from a sys-
tematic error – the discretization or Trotter error. It has been shown that in most cases, one
can keep ∆τ independent of Ns and β in order to ensure a constant error level [9] (for some
observables, however, care has to be taken to avoid divergent errors in the zero temperature
limit β → ∞ [9, 10]). The Trotter error was controlled originally by extrapolation to the
continuous-time limit ∆τ → 0, from simulations with different values of the time step ∆τ . It
was realized later [11] that the continuous-time limit can be taken already in the construction of
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Fig. 4: Comparison of world-line QMC configurations in a) discrete time, b) continuous time,
and c) in SSE representation. In the latter, the continuous-time index is replaced by an ordered
integer index of the operators, and additional diagonal terms are indicated by dashed lines.

the algorithm, so that simulations can be performed directly in the limit ∆τ → 0, i.e., M →∞,
without the need to perform any final extrapolations. This appears feasible, once one realizes
that a given world-line configuration can be represented by keeping only a list of times at which
the configuration changes, instead of storing the configuration at each of the 2M time slices.
Indeed, the probability for a jump of a world line (i.e., a kink in the world line) from one lattice
site to a neighboring site across a given plaquette, and thus a change in the local configuration
is proportional to sinh(∆τJ/2) ∝ ∆τ ∝ 1/M . Hence, the mean total number of such kinks
remains finite in the limit M → ∞. The continuous world-line representation, i.e., the limit
∆τ → 0, is thus well defined, and the relevant configurational information can be efficiently
represented on a computer. This is illustrated in Fig. 4 (a) and (b), by comparing the discrete
and continuous-time world-line approach.

In addition to the configurational information, the local updates need to be revisited in the
continuous-time limit as well. In particular, the probability Ppk for the insertion of a pair of
kinks in the world line (the upper move in Fig. 3 (a)), vanishes in the continuous-time limit as

Ppk = sinh2(∆τJ/2)/ cosh2(∆τJ/2) ∝ ∆τ 2 ∝ 1/M2 → 0. (18)

To circumvent such a vanishing probability, one now proposes to insert a pair of jumps not at
specific locations, but anywhere inside a finite time interval [11], as illustrated in Fig. 3 (b).
The integrated probability for such a move then remains finite in the continuous-time limit.
Similarly, instead of shifting a kink by ∆τ (the lower move in Fig. 3 (a)), one now moves it
within a finite time interval in the continuous-time algorithm. In addition to local updates, also
the loop algorithm has been shown to allow for an efficient realization in the continuous-time
limit [12], as will be discussed below.

Finally, we remark that the continuous-time limit of the Suzuki-Trotter formula, Eq. (11), in the
above interpretation is in fact equivalent to a time-dependent perturbation theory in imaginary
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time,

Z = Tr exp(−βH) = Tr

[
exp(−βH0) T exp

∫ β

0

dτV (τ)

]
= Tr

[
exp(−βH0)

(
1−
∫ β

0

dτV (τ)dτ +
1

2

∫ β

0

dτ1

∫ β

τ1

dτ2V (τ1)V (τ2) + ...

)]
, (19)

where the symbol T denotes the (imaginary-) time ordering of the exponential [11, 13]. In this
representation, the Hamiltonian H = H0 + V is split up into a diagonal term H0 and an off-
diagonal perturbation V , which in the interaction picture is V (τ) = exp(τH0)V exp(−τH0).
For the Heisenberg model, the diagonal term H0 is given by the longitudinal Szi S

z
j spin-spin in-

teractions, while the off-diagonal perturbation V relates to the transverse, spin exchange terms,
1
2
(S+

i S
−
j + S−i S

+
j ) in H . In more detail, we express the Heisenberg Hamiltonian as

H = H0 + V =
∑
〈i,j〉

JSzi S
z
j +

∑
〈i,j〉

J

2
(S+

i S
−
j + S−i S

+
j ). (20)

The number of kinks in a given continuous-time world-line configuration is then equal to the
expansion order of a specific term in the perturbation expansion, wherein each kink’s space-
time position is set by a specific spin exchange term from V between two lattice sites i and j,
as well as a corresponding imaginary time τ between 0 and β. Furthermore, the exponential
factors exp(τH0) in V (τ) describe the vertical, unperturbed evolution of the spins along the
world lines between the kinks, thus establishing explicitly the above-mentioned equivalence
between these two formulations of the continuous-time limit.

3 Stochastic series expansion

Already before Suzuki’s approach to QMC in the mid 1970s [1, 3], an alternative approach
to QMC simulations had been put forward by Handscomb in the early 1960s [14, 15] for the
specific case of the ferromagnetic Heisenberg model. It is based on a Taylor expansion of the
statistical operator inside the partition function:

Z = Tr exp(−βH) =
∞∑
n=0

βn

n!
Tr ((−H)n) . (21)

In Handscomb’s approach and within later extensions to other models [16–18], the traces of
Hn where evaluated employing projection operator expressions. Later, in the early 1990s, the
power-series approach to QMC simulations was revisited by Sandvik and Kurkijärvi within
the more generally applicable stochastic series expansion (SSE) formulation [19, 20], in which
these traces are also sampled stochastically. A recent review of the SSE method, combined with
a general introduction to computational methods for quantum spin systems, can be found in
Ref. [21]. It contains also many basic details for implementing the SSE QMC method.
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3.1 Configuration space

To formulate the SSE method, it proves convenient to first express the Heisenberg Hamiltonian
as a sum of bond operators, which are either diagonal or off-diagonal in the standard Sz-basis,

H = −
Nb∑
b=1

(H1,b −H2,b) + JNb/4, (22)

with

H1,b = J

(
1

4
− Szi(b)Szj(b)

)
, (23)

H2,b =
J

2

(
S+
i(b)S

−
j(b) + S−i(b)S

+
j(b)

)
. (24)

Here, Nb equals the total number of bonds in the system, and i(b) and j(b) denote the two
lattice sites that are connected by the bond with bond index b. The explicit introduction of
the minus sign in H is convenient, while the constant in the diagonal operators will make the
series expansion positive definite, as we will see shortly. Note that this constant is irrelevant
for the physics of the system, but has to be accounted for when calculating the system’s energy,
as we will see in the next section. We now insert the above form of the Hamiltonian into the
expression Eq. (21) for the partition function, thereby obtaining

Z =
∑
σ

∞∑
n=0

βn

n!

∑
Sn

(−1)n2〈σ|Ht(n),b(n) · · ·Ht(2),b(2)Ht(1),b(1)|σ〉. (25)

Here we used the local Sz-basis to express the trace, and Sn denotes products (strings) of the
bond operatorsH1,b orH2,b that originate from expandingHn in these bond operator terms using
Eq. (22), namely, each such operator string Sn is an sequence of n bond operators, specified by
the type labels t(p) ∈ {1, 2} (i.e. diagonal or off-diagonal) and b(p) ∈ {1, ..., Nb}, so that we
can also write such a sequence as

Sn = [t(1), b(1)], [t(2), b(2)], ..., [t(n), b(n)]. (26)

The summation in Eq. (25) extends over all expansion orders n, and for each expansion order,
over all operator sequences Sn of length n, containing n bond operators. Finally, n2 denotes the
number of off-diagonal operators in the sequence Sn, i.e., the number of sequence elements with
t(p) = 2. It is important to note that, in the local Sz-basis, the bond operators exhibit a non-
branching property, i.e., if one applies a bond operator to one of these basis states, the resulting
state is either proportional to the same basis state, or to another basis state, or it vanishes. But
in no case it is a superposition of two or more such basis states generated when traversing the
action of the sequence of bond operators starting from any initial basis state |σ〉.
The propagated basis state that appears after the action of the first p operators, i.e., at propaga-
tion level p, will be denoted (after proper normalization) by |σ(p)〉, i.e.,

|σ(p)〉 ∝
p∏
q=1

Ht(q),b(q)|σ〉 . (27)
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Note that for any operator-state configuration (Sn, |σ〉) that contributes to Z, the final state,
resulting after the action of all the n operators has to fulfill 〈σ|σ(n)〉 6= 0, thus we obtain the
following periodicity constraint: |σ(n)〉 = |σ(0)〉 = |σ〉.
If one examines in more detail the action of the different bond operators H1,b and H2,b on the
two spins at the related lattice sites i(b) and j(b) of a basis state |σ〉, one finds, that (i) the state
is destroyed if both spins are parallel,

H1,b| ↑i(b)↑j(b)〉 = 0, H1,b| ↓i(b)↓j(b)〉 = 0, (28)

H2,b| ↑i(b)↑j(b)〉 = 0, H2,b| ↓i(b)↓j(b)〉 = 0, (29)

and (ii) if the two spins are anti-parallel, the spin state is preserved by H1,b, while being flipped
by H2,b, in both cases with a matrix element of J/2,

〈↑i(b)↓j(b) |H1,b| ↑i(b)↓i(b)〉 = J/2, 〈↓i(b)↑j(b) |H1,b| ↓i(b)↑i(b)〉 = J/2, (30)

〈↓i(b)↑j(b) |H2,b| ↑i(b)↓i(b)〉 = J/2, 〈↑i(b)↓j(b) |H2,b| ↓i(b)↑i(b)〉 = J/2. (31)

From (i) it follows that for any operator-state configuration (Sn, |σ〉) that contributes to Z, the
bond operators Ht(p),b(p) act only on propagated states with anti-parallel spins on bond b(p).
Property (ii) implies that all the matrix elements that arise from the bond operators within the
operator string are equal and positive. The effective configuration space of the SSE method
thus essentially consists of all allowed operator-state configurations, i.e., those with non-zero
weight, with the weight of a given configuration C = (Sn, |σ〉) obtained from Eq. (25),

Z =
∑
C

W (C), W (C) =
βn

n!
〈σ|

n∏
p=1

Ht(p),b(p)|σ〉 . (32)

Here, we also anticipated that on a bipartite lattice the number of off-diagonal operators in an
allowed operator sequence must be even, such that (−1)n2 = +1, due to the periodicity con-
straint |σ(n)〉 = |σ(0)〉 = |σ〉. For a non-bipartite (frustrated) lattice this would not be the case,
and a QMC sign-problem would result; cf. Sec. 6 for a discussion of this case. The SSE QMC
configurations can be visualized very similarly as in the previous case, cf. Fig. 4 for a compar-
ison between the different formulations. Note that in the SSE formulation a discrete time-like
index p is introduced. Furthermore, in addition to the jump events that appear in the continuous-
time world-line formulation, the SSE configurations exhibit the additional presence of diagonal
bond-operators. Indeed, the SSE representation can be formally related to the continuous-time
world-line representation by observing that Eq. (25) is obtained from Eq. (19) upon setting
H0 = 0, V = H and integrating over all times (compare also Fig. 4) [22]. This mapping
exposes the respective advantages and disadvantages of the two representations: The SSE rep-
resentation corresponds to a perturbation expansion in all terms of the Hamiltonian, whereas
continuous-time world-line algorithms treat the diagonal terms exactly and perturb only in the
off-diagonal terms of the Hamiltonian. The continuous-time algorithm hence needs fewer terms
in the expansion, but we pay for it by having to handle continuous imaginary-time variables.
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For spin systems in which the contributions to the total energy arising from diagonal and off-
diagonal terms are well balanced, the SSE is typically preferable in practice, due to its discrete
representation of the imaginary-time continuum. It is important to note, that this discretization
does not introduce any Trotter-error as in the discrete-time world-line QMC; instead, the SSE
formulation should be considered an essentially exact QMC technique.
It is possible to formulate Monte Carlo sampling algorithms for the SSE configuration space
introduced above, i.e., containing operator strings of fluctuating length [14, 20, 23]. However,
it is also possible to work with operator strings of a fixed length, which is in most cases more
convenient computationally [19, 20]. Indeed, as will be shown in the next section, the mean
length of the operator string 〈n〉 is essentially related to the energy of the system and scales
linear with the system size Ns and β. Furthermore, the specific heat is given by C = 〈n2〉 −
〈n〉2−〈n〉, so that in particular for T → 0, where C vanishes, the variance of the distribution of
expansion orders is seen to be equal to 〈n〉. Hence, for a given system size and temperature, the
series expansion order n of the operator-state configurations C = (Sn, |σ〉) can in practice be
truncated at a sufficiently large cutoffΛ, which is typically determined during the thermalization
phase of an SSE simulation, without introducing any detectable error. It is then feasible to work
with fixed-length operator strings upon augmenting all operator sequences of length n < Λ

by Λ − n unit operators I , denoted in the following by H0,0 = I . Allowing for all possible
positions of the unit operators in the original operator strings, one is then lead to the following
representation of the partition function:

Z =
∑
C

WΛ(C), W (C) =
βn(Λ− n)!

Λ!
〈σ|

Λ∏
p=1

Ht(p),b(p)|σ〉, (33)

where each operator-state configuration (SΛ, |σ〉) now consists of a sequence of operators speci-
fied by the type labels t(p) ∈ {0, 1, 2} and b(p) ∈ {1, ..., Nb} in case t(p) ∈ {1, 2}, or b(p) = 0,
if t(p) = 0, which would represent a unit operator. In the above formula, n denotes the number
of non-unit operators in the operator sequence, i.e., the number of true bond operators from H .
The new combinatorial factor inWΛ(C) accounts for the

(
Λ
n

)
equivalent terms that are generated

this way as compared to the expression without unit operators in Eq. (25). Again, we left out
the factor (−1)n2 = +1 on bipartite lattices, where all allowed configurations thus contribute
with a positive weight WΛ(C) > 0 to the partition function, which is hence feasible for Monte
Carlo sampling.

3.2 Observables

Thus far in this exposition of QMC methods, we focused on different representations of the
quantum partition function in terms of an effective set of configurations that prove amenable to
Monte Carlo sampling. However, we did not mention yet how observables can be calculated.
Here, we provide an overview how typical observables are measured within the SSE frame-
work [19, 20, 24]. In many cases, the generalization from the formulas provided below to the
other world-line methods is straightforward. A remarkably simple formula holds for the total
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inner energy E = 〈H〉, which can be expressed in terms of the mean expansion order:

〈H〉 =
1

Z
Tr[He−βH ] =

1

Z

∞∑
n=0

βn

n!
Tr[(−H)n+1] = − 1

Z

∞∑
n=1

βn

n!

n

β
Tr[(−H)n] = −〈n〉

β
. (34)

Accounting for the constant shift that we added to the Hamiltonian in Eq. (22) to perform the
SSE expansion, we thus obtain the estimator for the inner energy before the shift as

E = −〈n〉
β

+ JNb/4 . (35)

By the same procedure, that leads to Eq. (34), one finds that 〈H2〉 = 〈n(n−1)〉/β2, from which
the specific heat estimator

C = β2(〈H2〉 − 〈H〉2) = 〈n2〉 − 〈n〉2 − 〈n〉 (36)

is readily obtained, which we already advocated above. Note, that the constant introduced in
Eq. (22) cancels out in the estimator for C, as would be expected. In practice, the statistical
error of C becomes large at low temperatures (where C itself becomes small), since it is given
by the difference of two large numbers (∼ (Nsβ)2). We can also readily obtain the expectation
value of any operator A that is diagonal in the local Sz-basis, such as for example a spin-spin
correlation function 〈Szi Szj 〉, in which case A = Szi S

z
j , by using averages over the propagated

states:

〈A〉 =

〈
1

n

n−1∑
p=0

A(p)

〉
, (37)

where A(p) = 〈σ(p)|A|σ(p)〉 has been introduced for convenience. From the spin-spin corre-
lation function, the equal-time structure factor is then obtained by Fourier transformation.
Finally, let us mention, how one can measure generalized susceptibilities related to two diagonal
operators A,B within the SSE approach. Consider that we add to the Hamiltonian H a linear
coupling term hBB, i.e., H → H − hBB, then one obtains for the linear response function

χAB =
∂〈A(hB)〉
∂hB

∣∣∣∣
hB=0

(38)

the Kubo formula

χAB =

∫ β

0

dτ
(
〈A(τ)B(0)〉 − 〈A〉〈B〉

)
, (39)

with A(τ) = e−τHAeτH the imaginary time-evolved operator. In case A and B are both diago-
nal in the local Sz-basis, this integral can be evaluated using

∫ β

0

dτ〈A(τ)B(0)〉 =

〈
β

n(n+ 1)

(
n−1∑
p=0

A(p)

)(
n−1∑
p=0

B(p)

)
+

β

(n+ 1)2

(
n∑
p=0

A(p)B(p)

)〉
.

(40)
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A special case concerns the uniform magnetic susceptibility, for which A = B = 1
Ns

∑Ns
i=1 S

z
i ,

and thus we obtain the simple expression

χu =
β

Ns

〈M2
z 〉, Mz =

Ns∑
i=1

Szi . (41)

For further observables, such as the spin stiffness, we refer to Sandvik’s review [21]. Let us
finally note, that within the world-line approach and the SSE representation it is also possible
to evaluate the expectation values of imaginary-time-dependent correlation functions [19, 24].
For an efficient evaluation of the corresponding SSE expressions, based on the explicit mapping
between the SSE configuration space and the continuous-time representation, we refer to the
review by Assaad and Evertz [25].

3.3 Local updates

In order to sample the SSE configuration space, we need to generate operator-state configura-
tions (SΛ, |σ〉) according to the appropriate statistical weights. Updates of the operator sequence
can in general not be carried out without affecting also the spin configuration. For example, if
one changes the operator at a given propagation level p, say from a diagonal operator H1,b on
the bond b to the off-diagonal operatorH2,b on the same bond, then the spin configuration |σ(p)〉
has to change as well. This change in the world-line configuration must be healed at some other
propagation level p′, by also exchanging diagonal and off-diagonal operators, so that the result-
ing state |σ(p′)〉 is the same as before. Hence, one needs to perform Monte Carlo updates by
attempting to change the bond operators at two appropriately picked propagation levels. Indeed,
in most cases update attempts with randomly picked positions would not be possible, such that
one has to specifically search for operator pairs (or even more operators), which can be up-
dated this way. In the end, such a procedures correspond to the local update schemes that we
introduced above for the world-line QMC approach, and they suffer from similar problems.
However, more efficient update schemes have been developed [26, 27]. Such updates in fact
consist of two sub-steps: (i) the diagonal update, wherein the expansion order n is modified
while keeping fixed the spin configuration |σ〉 of (SΛ, |σ〉) as well as the off-diagonal operator
content of the operator sequence SΛ, and (ii) a non-diagonal update, the operator-loop update,
that updates the operator content as well as the spin configuration simultaneously – similar to,
but in a much more efficient way than, the two-operator case that we discussed above.
We will outline the operator-loop update in the next section, and concentrate here on the diag-
onal update step, that is an essential local update procedure, which we formulate here for the
fixed operator-string length representation [26]. Within this diagonal update, the whole operator
sequence is sequentially traversed, and attempts are made to exchange diagonal operators and
identity operators, so that in each such step, the expansion order, i.e., the number of non-identity
operators, n can change by one to n± 1. While moving through the operator sequence, the spin
configuration |σ〉 is updated whenever an off-diagonal operator is encountered, such that the
propagated spin configurations |σ(p)〉 are readily available, as they will be required within this
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Fig. 5: Cluster components on a bond vs. graph components on a plaquette (breakups).

update scheme. In more detail, if at propagation level p = 1, ..., Λ, an identity-operator is
present, i.e., t(p) = 0, we attempt to replace it by a diagonal bond-operator on a bond b that
is randomly chosen among all the Nb lattice bonds. We then use the Metropolis acceptance
probability for this move, i.e.

P ([0, 0]→ [1, b]) = min

[
βNb

Λ− n
〈σ(p− 1)|H1,b|σ(p− 1)〉 , 1

]
, (42)

where n is the number of bond-operators in the sequence before the update. For the Heisenberg
model considered here, this update can be immediately rejected, if the two spins at the chosen
bond at the current propagation level are parallel, while in the other case, the matrix element
simply equals 1/2, cf. Eqs. (28)-(30). On the other hand, if the local operator at the current
propagation level is a diagonal bond operator, t(p) = 1, an attempt is made to replace it by the
identity operator with Metropolis acceptance probability

P ([1, b]→ [0, 0]) = min

[
Λ− n+ 1

βNb

〈σ(p− 1)|H1,b|σ(p− 1)〉−1 , 1

]
. (43)

Once the full operator sequence has been traversed, one should have recovered the initial spin
configuration, since |σ(Λ)〉 = |σ〉. In case of long-ranged exchange interactions, the above up-
date scheme can be easily generalized to ensure that the various interaction terms are efficiently
sampled [28, 29].

4 The loop algorithm

We now present the improved global update schemes that have been developed during the 1990s
and early 2000s for the world-line QMC approach. We will first discuss the idea behind the loop
algorithm [8], based on the discrete-time formulation. An excellent, general account on the loop
algorithm and related methods is provided by Evertz in his review [30].
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To appreciate the idea behind the loop algorithm, it is useful to first recall the Swendsen-
Wang [56] algorithm for the ferromagnetic Ising model. The goal there is to identify physically
relevant clusters of parallel spins, and then collectively flip all spins within such a cluster in
order to enhance the update dynamics near criticality. Essentially, one visits all bonds on the
lattice and assigns a bond variable τb ∈ {0, 1} to each bond, by deciding if a given bond will
be filled (τb = 1 ) or kept empty (τb = 0) according to certain probabilities, cf. the upper panel
of Fig. 5. Namely, if the two spins connected by the bond are anti-parallel, the bond is kept
empty for sure, while for parallel spins along a bond, the bond is filled with a finite probability
p = 1 − e−2β|J |, where J < 0 denotes the strength of the (ferromagnetic) Ising interaction
on that bond. Then, one identifies clusters of spins connected by filled bonds, and attempts to
flip each cluster individually with probability 1/2. Within the Wolff-algorithm [57] one instead
generates only one of these clusters by starting its construction from a randomly chosen lattice
site, and then flips this cluster with probability 1.
For the case of the quantum model in the checkerboard decomposition, we cannot directly apply
these schemes of assigning bond variables, since we need to ensure that after an update only
valid, unbroken world-line configurations have been generated. Since we are given restrictions
for the possible types of shaded plaquettes that can occur in valid configurations, we should thus
instead of assigning bond variables assign plaquette variables. Therefore, in the loop algorithm,
each plaquette P is assigned a plaquette variable (now called “graph” or “breakup”),with certain
probabilities. For the antiferromagnetic Heisenberg model, there are two types of breakups that
can be assigned to a plaquette; they are shown in the lower panel of Fig. 5 and we refer to them
as the horizontal (H) and vertical (V ) breakup. Each shaded plaquette with the state C|P is
assigned the horizontal breakup (H) with probability

P (H) =


0 , C|P = 〈↑↑ |e−∆τHi| ↑↑〉, 〈↓↓ |e−∆τHi| ↓↓〉

tanh(∆τJ
2

) , C|P = 〈↑↓ |e−∆τHi| ↑↓〉, 〈↓↑ |e−∆τHi| ↓↑〉
1 , C|P = 〈↓↑ |e−∆τHi| ↑↓〉, 〈↑↓ |e−∆τHi| ↓↑〉

, (44)

otherwise, it is assigned the vertical breakup (V ). These graph assignment rules can be obtained
upon considering an extended configuration space that combines spin and graph configurations,
which we describe next. Such a general framework to describe cluster algorithms was presented
by Kandel and Domany [31], generalizing the Fortuin-Kasteleyn [32] representation of the Ising
model. Below we follow the formulation by Kawashima and Gubernatis [33], which makes this
relation very transparent. We start from the original representation of the quantum partition
function in terms of the spin (world-line) configurations,

Z =
∑
C

W (C). (45)

The phase space is now enlarged, by assigning a set of possible graphs G to the original config-
urations, such that

Z =
∑
C

∑
G

W (C,G), (46)
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where the new weights W (C,G) ≥ 0 are chosen as to ensure∑
G

W (C,G) = W (C). (47)

The algorithm then proceeds as follows: Given a configuration C (which implies W (C) 6= 0),
we assign first a graph G to the configuration C, chosen with the correct probability,

P (G|C) = W (C,G)/W (C). (48)

Then we choose a new configuration C ′ with probability P [(C,G) → (C ′, G)], keeping the
graph G fixed. This completes a configurational update C → C ′ and the process repeats by
choosing a new graph G′, etc. The first step, choosing graphs with probabilities P (G|C), triv-
ially obeys detailed balance. Detailed balance for the second step requires that

W (C,G)P [(C,G)→ (C ′, G)] = W (C ′, G)P [(C ′, G)→ (C,G)] (49)

One possible solution of this detailed balance condition is provided by the heat-bath algorithm

P [(C,G)→ (C ′, G)] =
W (C,G)

W (C,G) +W (C ′, G)
. (50)

The whole approach is apparently simplified a lot, if one can find an assignment of graph
weights, such that W (C,G) does not depend on the configuration C , whenever it is non-zero
in that configuration, i.e., when W (C,G) has the following form:

W (C,G) = ∆(C,G)V (G), (51)

where

∆(C,G) =

{
1 , if W (C,G) 6= 0

0 , otherwise
. (52)

In this case, the heat-bath probability (50) simply becomes P = 1/2. Furthermore, the weight
of the spin configuration W (C) in fact decomposes into a product of plaquette weights, cf.
Eq. (17). Further simplifications thus arise, if also the graph weight can be represented as a
product of separate weights for each plaquette, i.e., if

W (C,G) =
∏
P

WP (C|P , G|P ), (53)

so that the whole graph assignment procedure can be performed locally on the level of the
(shaded) plaquettes, i.e., in terms of the plaquette breakups.
While for a more general, anisotropic spin-1/2 model additional graph elements are required,
the above conditions can be fulfilled for the Heisenberg antiferromagnet by employing only
the two breakups (H and V ) on each shaded plaquette and assigning the H breakup with the
probability given in Eq. (44). An example of such an assignment of the plaquette breakups
is shown in the central panel of Fig. 6. After having assigned to each plaquette a breakup, the
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space space space

flip
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loops

Fig. 6: An update step in the loop algorithm, where two clusters of spins are flipped.

graph edges are connected to form clusters of connected graph edges, and hence clusters (loops)
of connected local spin states. Now one flips each such cluster independently with probability
P = 1/2, thereby changing the local spins and thus the world-line configuration. An example
of the whole update procedure in shown in Fig. 6. One sees from this example, that after a single
loop update, one can realize large-scale changes of the world-line configuration. In particular,
as seen in Fig. 6, it is possible to change the total magnetization of the system. The algorithm
that we introduced above generates the whole graph, i.e., the complete set of all loops, G and
flips each such cluster with probability P = 1/2. It is however also possible, to employ a
single-loop version of the algorithm, in which, similar to the classical Wolff cluster algorithm,
only a single cluster is constructed: One randomly picks a site from the world-line configuration
and constructs only the cluster which includes that site. This can be done by determining the
breakups (and thus the route of the loop) only on those plaquettes, that are indeed traversed
during the loop construction. It is then feasible to employ the Metropolis acceptance for solving
the detailed balance condition in Eq. (49), which results in the probability P = 1 to flip the just
constructed loop. As in the classical case, the single-loop variant usually provides an even
smaller dynamical critical scaling than the multi-loop variant.
Furthermore, it is also feasible to realize the loop algorithm directly in the continuous-time
version of the world-line QMC formulation, in both multi- and single-loop versions [12]. Since
the single-loop version paves a direct conceptual path to the worm, operator and directed loop
algorithms to be introduced below, we focus here on the single-loop variant, even though it is
technically a bit more involved than the multi-loop version. The key insight in realizing, that
a continuous-time formulation of the loop algorithm is feasible, follows from considering the
breakup probability per time, which has a continuous time limit. Indeed, for an imaginary time
interval τ1 < τ2, during which the world-line configuration on a given bond does not change,
the breakup probability is constant, and the probability density for a horizontal breakup within
this imaginary time range becomes

lim
∆τ→0

P (H)

∆τ
= lim

∆τ→0

tanh (∆τJ/2)

∆τ
=
J

2
. (54)

We are thus lead to the following procedure: To start the loop construction, a site i is picked
randomly, as well as a random imaginary time τ1 between 0 and β, from which the loop will be
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Fig. 7: A SSE configuration (left panel), the local construction of the operator loop at a 4-leg
vertex corresponding to a bond operator from the SSE operator sequence (central panel), and
the resulting final vertex (right panel). The path taken by the operator loop through the vertex
is indicated in the central panel by the arrowed blue line (switch-and-reverse rule).

constructed, starting, e.g., initially moving upwards in time. In this forward time direction, one
next identifies the time interval τ1 < τ < τ2, within which the world-line configuration on all
sites neighboring site i does not change. For each such neighbor j, draw a random number τij
from an exponential distribution based on the above probability density for a horizontal breakup,
i.e., with P (τij) ∝ exp(−Jτij/2). Now, let j̄ be the neighbor with the smallest value of τij , i.e.,
τij̄ = minj(τij). If td = t1 + τij̄ < t2, the loop-end on site i now moves up to the time td, and
right there jumps to the site j̄ (a memorable analogy of this procedure is the radioactive decay
with decay constant J/2 where the neighboring sites correspond to different decay channels).
Since the constructed loops do not self-overlap, one has to exclude in the above procedure all
temporal regions of neighboring sites, which have been visited by the current loop already. In
case td > t2, the loop end stays on site i and moves to time t2. In case the world-line jumps
at time t2, the loop must jump as well. The whole procedure ensures the constant probability
density Eq. (54) for a horizontal breakup. This process is iterated until the loop eventually
closes and can be flipped as a whole.
Based on the loop algorithm, large scale simulations of up to a several million quantum spins
can be performed even in (quantum) critical regions. After the original introduction of the loop
algorithm for the spin-1/2 Heisenberg model in a six-vertex model formulation, it has seen var-
ious extensions to anisotropic- and higher-spin models, as well as to Hubbard and t-J models.
For a detailed derivation of the breakup rules, also beyond the case of the isotropic Heisenberg
model considered here, we refer to the review article by Evertz [30]. It is also possible to devise
so-called “improved estimators” [34] for certain observables within the loop update, e.g., for
correlation functions or magnetic susceptibilities, which provide a significant reduction of sta-
tistical errors compared to “naive” estimators for the same quantities. See Evertz’s article [30]
for details.
Within the SSE formulation, which does not exhibit any systematic (Trotter) error, but still
avoids the technical complications of the continuous-time formulation, it is feasible to imple-
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ment a very simple version of a loop algorithm [26, 35]. This cluster update complements the
local diagonal updates, that were introduced in Sec. 3.3. Namely, one considers to construct
a discrete-time-like loop, based on a given SSE configuration: Consider a SSE configuration,
such as the one shown in Fig. 4(c), redrawn in Fig. 7, as a collection of n vertexes (where n
denotes the number of non-identity operators in the operator string), each coming along with 4
“legs”. In the central part of Fig. 7, one such 4-leg-vertex is highlighted. The loop construction
starts from a randomly chosen vertex leg in the SSE configuration, called the “entrance leg”.
Like in the discrete-time version of the loop algorithm, one then defines a local rule of how
the loop continues through this vertex and leaves the vertex through an “exit leg”. One can
interpret such rules as prescribing the scattering of the loop-head off the vertexes. The corre-
sponding probabilities for choosing the exit leg among the four legs of the vertex need to satisfy
again a local detailed balance condition. For the antiferromagnetic Heisenberg model it turns
out that a very simple, deterministic scattering rule can be devised, namely, that the entrance
and exit leg are always located on the same side of the vertex (the switch-and-reverse rule). This
is illustrated in the central part of Fig. 7. After the exit leg has been assigned, the loop moves
from this exit leg to the leg of another vertex, to which the exit leg is connected within the given
SSE configuration, cf. Fig. 7. Now this leg becomes the new entrance leg on the new vertex
and the whole process repeats, until the loop closes, i.e., when the last exit leg eventually equals
the initial entrance leg on the starting vertex. In the example of Fig. 7, the loop closes when it
reaches back to the initial entrance leg after it has visited the vertex atop the vertex from which it
started. All spins along the path of the loops are then flipped. In addition to replacing all visited
diagonal operators by off-diagonal operators and vice versa (cf. the right panel of Fig. 7), this
operator loop update can also modify the initial spin configuration |σ〉, thus ensuring an ergodic
sampling of the SSE configuration space if combined with the diagonal update. Of course, it is
also possible in this SSE formulation to construct all the loops for a given SSE configuration
and perform a multi-loop update, flipping each such loop with probability 1/2.

5 Worms, operator loops, and directed loops

The cluster-updates that have been introduced above provide optimal performance for spin in-
version symmetric Hamiltonians. However, terms in the Hamiltonian which break this symme-
try, such as a magnetic field, are not taken into account during the loop construction. Instead,
they would have to be included through the acceptance rate of the loop flips, which can be-
come exponentially small at low temperatures, degrading the algorithm’s performance. Hence,
it would be highly desirable to generalize the idea of a local construction of a global cluster of
spins to cases, where spin-inversion symmetry is not present. The algorithms that we outline
next provide such a general sampling scheme.

The worm algorithm [13] formally works in an extended configuration space, where in addi-
tion to closed world-line configurations one open world-line fragment (the “worm”) is allowed.
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Formally, this is done by adding a source term to the Hamiltonian,

Hworm = H − η
∑
i

(S+
i + S−i ) , (55)

which allows world lines to be broken with a matrix element proportional to η. The worm al-
gorithm then proceeds as follows: a worm, i.e., a world-line fragment, is created by randomly
inserting a pair (S+

i , S
−
i ) of operators on a world line at nearby times in the world-line con-

figuration. The ends of this worm are then moved randomly in space and time, using local
Metropolis or heat bath updates, until the two ends of the worm meet again. Then an update
which removes the worm is proposed, and if accepted we are back to a configuration with closed
world lines only. This algorithm is straightforward, consisting just of local updates of the worm
ends in the extended configuration space but it can perform non-local changes. Furthermore, a
worm end can wind around the lattice in the temporal or spatial direction and that way change
the magnetization and winding number. While not being as efficient as the loop algorithm in
zero magnetic field (the worm movement follows a random walk while the loop algorithm can
be interpreted as a self-avoiding random walk), the big advantage of the worm algorithm is
that it remains efficient in the presence of a magnetic field. A similar algorithm was actually
proposed more than a decade earlier [36]. Instead of a random walk fulfilling detailed balance
at every move, the worm head in this earlier algorithm just performed a random walk. The a
posteriori acceptance rates are then often very small and the algorithm is not efficient, just as
the small acceptance rates for loop updates in magnetic fields make the loop algorithm ineffi-
cient. This highlights the importance of having the cluster-building rules of a non-local update
algorithm closely tied to the physics of the problem.
Algorithms with a similar basic idea are the operator-loop update [26] in the SSE formulation
and the directed-loop algorithms [27, 37] which can be formulated in both the SSE and the
world-line representation. Like the worm algorithm, these algorithms create two world line
discontinuities and move them around by local updates. The operator-loop algorithm for the
SSE representation can be understood as a generalization of the loop algorithm for the SSE
configuration, which we described at the end of Sec. 4 [26]. Again, a loop (“operator-loop”)
is constructed for a given SSE configuration, starting from a random leg of a randomly chosen
vertex as the entrance leg. However, for a general Hamiltonian, including, e.g., a magnetic
field, the scattering rules at the vertices have to be chosen appropriately, and in general turn
out to include a stochastic decision, instead of the deterministic switch-and-reverse-rule that
holds for the isotropic Heisenberg model. One generic solution of the local detailed balance
condition on the scattering rates is provided by a heat-bath choice among the 4 possible exit
legs: the probability to chose one out of the four legs is taken to be proportional to the matrix
element of the bond operator of the considered vertex in the final resulting spin configuration
on this bond [26]. This choice already leads to a rather efficient algorithm. However, it is
in general not excluded, that the chosen exit leg is equal to the leg on which the vertex was
entered. Such a “bounce” move would result in the operator loop retracing its previous path,
and thus in undoing a previously performed change to the spin configuration and the operator
content of the operator string. It thus appears desirable to reduce the probability for such bounce
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moves, or to even eliminate them completely. In fact, for many cases it can be shown that
scattering rates can be optimized such as to eliminate completely the bounce move, while still
ensuring detailed balance of the operator-loop construction [26, 27, 35, 37, 38]. An example is
just the switch-and-reverse-rule for the isotropic Heisenberg antiferromagnet that was presented
above. For more general models, a systematic approach to reduce the bounce probability has
been formulated [27]. Such algorithms, which direct the loop away from the last changes, are
called “directed loop” methods and can be formulated also for the continuous-time world-line
approach [27]. Furthermore, it is possible to use linear programming techniques, in order to
optimize the scattering rates with respect to the overall bounce probability for general quantum
lattice models [38]. An alternative strategy to enhance the update dynamics of the operator
loop algorithm is based on the concept of optimal Monte Carlo updates [39, 40]: Starting from
the heat-bath solution, one iteratively improves the scattering rules by minimizing its higher
eigenvalues in a matrix formulation. Both this “locally optimal solution” and the directed loops
are superior to the heat-bath solution and typically perform equally well.
We furthermore want to point out that within the worm and operator-loop approaches, a natural
implementation for evaluating transverse spin-spin correlation functions can be realized, based
upon on-the-fly measurements of the corresponding matrix elements at the worm-ends, while
constructing the worm’s path through the world-line configuration [11,13,24,38]. Based on the
close connection between the SSE and the continuous-time world-line approach, that we men-
tioned in Sec. 3.3, it is possible to implement such measurements in a rather efficient way [25].
Finally, we would like to point out that beyond the cluster update methods, which drastically
reduce autocorrelation times in QMC simulations of quantum spin systems, it is also possible to
adapt various extended ensemble methods such as parallel tempering [41], multicanonical meth-
ods [42, 43], and the Wang-Landau technique [44, 45], which are employed in classical Monte
Carlo simulations for systems with a rough energy landscape or at first-order phase transitions,
to further enhance the performance of QMC simulations in similar situations [23, 46–48].

6 The sign problem

Before closing this short review on world line QMC methods, we finally want to address a
severe restriction of this approach: the sign problem. This is indeed its major limitation (note
that also other unbiased QMC methods, in particular those for fermionic models, exhibit sign
problems in many physically interesting situations) [49]. Currently, it seems rather unlikely
that there is a general solution to this problem [50]. Let us explain what the sign problem is
and where it comes from. For this purpose, consider again the weight of a plaquette in the
Suzuki-Trotter decomposition that corresponds to a local spin exchange:

〈↑↓ |e−∆τHi| ↓↑〉 = − sinh

(
∆τJ

2

)
. (56)

In the antiferromagnetic case (J > 0), this matrix element is negative. Then we might actually
worry that there will be allowed QMC world line configurations with an overall negative weight,
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flip flip flip

Fig. 8: Example of an odd number of spin flips on a triangle, returning to the initial state. The
bond along which the spins are going to be flipped next is indicated by a red line.

which cannot be assigned as the probability for such a configuration, since probabilities ought to
be positive. It is not too hard to convince yourself, that for an open chain or square lattice (in fact
any bipartite lattice graph structure) the total number of spin exchange plaquettes in an allowed
QMC configuration is even. In that case, the overall weight of the configuration will be positive.
Hence, for the Heisenberg antiferromagnet, we are restricted to positive weights only, and can
apply the Monte Carlo sampling method of the world-line configurations. However, if the lattice
is not bipartite, this property is lost. To see why, consider a single triangle as an example of a
non-bipartite lattice. In this case, we can start from one local spin configuration and return to
the same configuration, after applying an odd number of (namely 3) spin exchanges, see Fig. 8
for an illustration. Hence, on the triangular lattice, and in fact on any frustrated, non-bipartite
lattice, the weight W (C) of a QMC configuration C is not necessarily positive, but can take
on negative values as well. How can we then perform a MC sampling of such configurations?
Well, at first sight, there seems to be an easy solution: Let us express the partition function of
the quantum model in the effective classical representation as follows:

Z =
∑
C

W (C) =
∑
C

|W (C)| · Sgn(C), (57)

where we have written the weight as a product of its absolute value and its sign Sgn(C) =

W (C)/|W (C)| = ±1. Now assume that we would perform a simulation of the antiferromagnet
and ignore the sign, thus weighting each configuration according to the absolute values |W (C)|
of the weights. In fact, this precisely corresponds to simulating the ferromagnetic Heisenberg
model on the same lattice, with the partition function

ZF =
∑
C

|W (C)|. (58)

Using the generated configurations, we can then obtain the following expectation value of an
observable A of the antiferromagnetic model,

〈A〉 =
1

Z

∑
C

W (C)A(C)

=
1

Z

ZF
ZF

∑
C

|W (C)| · Sgn(C) · A(C)

=
ZF
Z

1

ZF

∑
C

|W (C)| · Sgn(C) · A(C)︸ ︷︷ ︸
〈Sgn·A〉F

, (59)
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from (i) the expectation value of 〈Sgn ·A〉F measured from the simulation of the ferromagnetic
model (i.e., we would measure the expectation value of the product of the sign of a configuration
times the value of A in that configuration), and (ii) the expectation value of the sign itself, since

Z

ZF
= 〈Sgn〉F , (60)

so that

〈A〉 =
〈Sgn · A〉F
〈Sgn〉F

. (61)

Hence, it looks like in order to obtain the expectation value ofA for the antiferromagnetic model
on a frustrated lattice, we could just simulate the ferromagnetic model (all weights positive), and
perform the two measurements of 〈Sgn · A〉F and 〈Sgn〉F . In fact, such an approach works for
large temperatures T � J , where the spins do not feel their exchange interactions too much,
and behave weakly coupled in both the ferromagnetic and the antiferromagnetic case. But, once
we are interested in the low temperature regime, then both models are characterized by very
different important states. Can we really expect to learn something about the low temperature
behavior of the antiferromagnet from the low temperature behavior of the ferromagnet? No, this
should not be reasonable, and indeed, the above approach fails miserably at low temperatures.
What happens is, that there will be almost the same number of configurations with positive
weight as with negative weight, such that the average sign decreases exponentially to zero.
Namely, at low temperatures we find

〈Sgn〉F ∼ e−βNS∆f , (62)

where ∆f is the difference in the free energy per site between the antiferromagnetic and the
ferromagnetic model – remember, that the free energy F = − ln(Z)/β. Hence, in order to cal-
culate the physical observable A from Eq. (61) we divide (in the denominator) by an exponen-
tially small value with a finite statistical error, leading to an exponentially increasing statistical
uncertainty for 〈A〉. Thus, in order to reach low temperatures and large system sizes, the com-
putational time needs to grow exponentially and renders any useful simulation impossible. This
behavior is called “the sign problem”, and makes QMC simulations of, e.g., frustrated quan-
tum magnets practically impossible within the interesting (low-) temperature and large-system
regime.
Up to date, no general solution of the QMC sign problem is known, although it can be over-
come in certain special cases (cf., e.g., [35,51,52]). Moreover, it has been shown that a general
solution to the sign problem essentially constitutes an NP-hard challenge [50]. It is however
generally suspected, that no polynomial-time solutions to NP-hard problem exist. Hence, we
urge the reader to contact us immediately in case she or he finds a serious path to a generic so-
lution of the QMC sign problem! In the mean time, we hope to have stimulated your interest in
performing some QMC simulations of your own for sign-problem free situations. An excellent
opportunity to access application-ready codes for the methods that were introduced here is the
ALPS (Algorithms and Libraries for Physics Simulations) library [53, 54]. Furthermore, basic
SSE simulation codes are also available online [55]. Let the dice roll!
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Appendix

A Quantum Heisenberg Model 101

For reference and to fix notation, we define the spin-1/2 quantum Heisenberg model on a fi-
nite lattice, such as a one-dimensional chain or a two-dimensional square lattice. A spin-1/2
quantum spin resides at each lattice site. Each spin ~Si, located at lattice site i = 1, . . . , Ns is
described by quantum mechanical spin operators

~Si =

 Sxi
Syi
Szi

 ,

which fulfill the commutation relation [Sαi , S
β
j ] = i~εαβγSγi δij , i.e., operators on different sites

(i 6= j) commute, and locally (i = j) the above commutation relations reduce to the well-
known algebra of spin operators. In order to set up a basis of the Hilbert space, we start from
the eigenvectors of the local Szi operator at each lattice site i:

|Szi = +1/2〉 = | ↑〉i =

(
1

0

)
i

,

|Szi = −1/2〉 = | ↓〉i =

(
0

1

)
i

.

In this local basis, the spin operators are given in matrix form as (~ = 1),

Szi =
1

2
σz =

(
1
2

0

0 −1
2

)
, i.e.

Szi | ↑〉i = +1
2
| ↑〉i

Szi | ↓〉i = −1
2
| ↓〉i

S+
i = Sxi + iSyi =

1

2
σx + i

1

2
σy =

(
0 1

0 0

)
, i.e.

S+
i | ↓〉i = | ↑〉i
S+
i | ↑〉i = 0

S−i = Sxi − iS
y
i =

1

2
σx − i

1

2
σy =

(
0 0

1 0

)
, i.e.

S−i | ↑〉i = | ↓〉i
S−i | ↓〉i = 0

with the spin raising and lowering operators S+
i and S−i , and the Pauli matrices

σx =

(
0 1

1 0

)
,

σy =

(
0 −i
i 0

)
,

σz =

(
1 0

0 −1

)
.
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For a lattice of Ns spins, we have a total of 2Ns basis states of the Hilbert space,

{|Sz1 , ..., SzNs〉} =



| ↑, ↑, . . . , ↑, ↑〉
| ↑, ↑, . . . , ↑, ↓〉
| ↑, ↑, . . . , ↓, ↑〉

...
| ↑, ↓, . . . , ↓, ↓〉
| ↓, ↓, . . . , ↓, ↓〉


.

Each spin operator on site i acts only on the corresponding local spin. Next, we introduce an
exchange coupling between nearest neighbor spins, so that the quantum spin system is described
by the Hamiltonian

H = J
∑
〈i,j〉

~Si · ~Sj,

where 〈i, j〉 indicates a pair of neighboring lattice sites.
In case J > 0, the above model is the antiferromagnetic quantum Heisenberg model, which
results, e.g.,within second-order perturbation theory from the half-filled Hubbard model at large
local repulsions. The Hamiltonian of the Heisenberg model can also be written using spin
raising and lowering operators as

H = J
∑
〈i,j〉

~Si · ~Sj = J
∑
〈i,j〉

(
1

2
(S+

i S
−
j + S−i S

+
j ) + Szi S

z
j

)
.

Consider for example a system of only two spins (a dimer). The Hamiltonian is then given by
the matrix

H = J


1
4

0 0 0

0 −1
4

1
2

0

0 1
2
−1

4
0

0 0 0 1
4

 in the basis

| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

.
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Universitätsstr. 25, D-33615 Bielefeld

Contents
1 Introduction 2

2 Substances 3

3 Theoretical techniques and results 6
3.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Evaluating the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Evaluation of thermodynamic observables . . . . . . . . . . . . . . . . . . . . 18

4 General properties of spectra 20

5 Magnetocalorics 27

E. Pavarini, E. Koch, and U. Schollwöck
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1 Introduction

In this chapter I would like to present a short introduction into the field of molecular magnetism
and some of the theoretical techniques as well as results. Some parts of the presentation overlap
with earlier presentations in Refs. [1, 2].
The synthesis of magnetic molecules shows continuous progress for the past 20 years [3–13].
Each of the identical molecular units can contain as few as two and up to several dozens of
paramagnetic ions (“spins”). One of the largest paramagnetic molecules synthesized to date, the
polyoxometalate {Mo72Fe30} [14] contains 30 iron ions of spin s = 5/2. Although these mate-
rials appear as macroscopic samples, i. e. crystals or powders, the intermolecular magnetic inter-
actions are utterly negligible as compared to the intra-molecular interactions. Therefore, mea-
surements of their magnetic properties reflect mainly ensemble properties of single molecules.
Their magnetic features promise a variety of applications in physics, magneto-chemistry, biol-
ogy, biomedicine and material sciences [3,5,15] as well as in quantum computing [16–19]. The
most promising progress so far is being made in the field of spin crossover substances using
effects like “Light Induced Excited Spin State Trapping (LIESST)” [20] as well as in the field
of magnetic refrigeration [13, 21, 22]. New efforts consist in depositing magnetic molecules on
surfaces and investigating their static and transport properties [23–26].
It appears that in many of these molecules – especially those which contain iron-group elements
or gadolinium – the localized single-particle magnetic moments couple in most cases antiferro-
magnetically (and much rarer ferromagnetically), and the spectrum is rather well described by
the Heisenberg model [27] with isotropic nearest neighbor interaction sometimes augmented
by terms which describe various anisotropies [28, 29]. Studying such spin arrays focuses on
qualitatively new physics caused by the finite (mesoscopic) size of the system.
The determination of the energy spectra of magnetic molecules is a demanding numerical prob-
lem. The attempt to diagonalize the Hamilton matrix numerically is very often severely re-
stricted due to the huge dimension of the underlying Hilbert space. For a magnetic system
of N spins of spin quantum number s the dimension is (2s + 1)N which grows exponentially
with N . Group theoretical methods can help to ease this numerical problem [29–37]. With
such methods one is able to block-diagonalize the Hamiltonian and thus to treat spin systems
of unprecedented size. Thermodynamic observables such as the magnetization are then easily
evaluated. In addition it provides a spectroscopic labeling by irreducible representations that
can be related to selection rules which can be helpful when interpreting transitions induced
by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR) or Inelas-
tic Neutron Scattering (INS). Besides numerically exact methods, approximations such as the
Density Matrix Renormalization Group (DMRG) [38–41] and the Finite-Temperature Lanczos-
Method (FTLM) [42–45] are employed for magnetic molecules.
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2 Substances

From the viewpoint of theoretical magnetism it is not so important which chemical structures
magnetic molecules actually have. Nevertheless, it is very interesting to note that they appear
in almost all branches of chemistry. There are inorganic magnetic molecules like polyoxometa-
lates, metal-organic molecules, and purely organic magnetic molecules in which radicals carry
the magnetic moments. It is also fascinating that such molecules can be synthesized in a huge
variety of structures extending from rather asymmetric structures to highly symmetric rings.

Fig. 1: Structure of Mn-12-acetate: On the l.h.s. the Mn ions are depicted by large bullets, on
the r.h.s. the dominant couplings are given.

One of the first magnetic molecules to be synthesized was Mn-12-acetate [46] (Mn12) –
[Mn12O12(CH3COO)16(H2O)4] – which by now serves as the “drosophila” of molecular mag-
netism, see e. g. [3, 15, 47–49]. As shown in Fig. 1 the molecules contains four Mn(IV) ions
(s = 3/2) and eight Mn(III) ions (s = 2) which are magnetically coupled to give an S = 10

ground state. The molecules possesses a magnetic anisotropy, which determines the observed
relaxation of the magnetization and quantum tunneling at low temperatures [47, 50].
Although the investigation of magnetic molecules in general – and of Mn-12-acetate in partic-
ular – has made great advances over the past two decades, it is still a challenge to deduce the
underlying microscopic Hamiltonian, even if the Hamiltonian is of Heisenberg type. Mn-12-
acetate is known for more than 20 years now and investigated like no other magnetic molecule,

Fig. 2: Structure of a chromium-4 and a chromium-8 ring. The Cr ions are depicted in red.
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but only recently its model parameters could be estimated with satisfying accuracy [51, 52].
Another very well investigated class of molecules is given by spin rings among which iron rings
(“ferric wheels”) are most popular [8, 41, 53–60]. Iron-6 rings for instance can host alkali ions
such as lithium or sodium which allows to modify the parameters of the spin Hamiltonian within
some range [61, 62]. Another realization of rings is possible using chromium ions as paramag-
netic centers [63, 64]. Figure 2 shows the structure of two rings, one with four chromium ions
the other one with eight chromium ions.

Fig. 3: Structure of {Mo72Fe30}, a giant Keplerate molecule where 30 iron ions are placed at
the vertices of an icosidodecahedron. a) sketch of the chemical structure, b) magnetic structure
showing the iron ions (spheres), the nearest neighbor interactions (edges) as well as the spin
directions in the classical ground state. The dashed triangle on the left corresponds to the
respective triangle on the right [66].

Another route to molecular magnetism is based on so-called Keplerate structures which allow
the synthesis of truly giant and highly symmetric spin arrays [65]. The molecule {Mo72Fe30}
[14, 66] containing 30 iron ions of spin s = 5/2 may be regarded as the archetype of such
structures. Figure 3 shows on the left the inner skeleton of this molecule – Fe and O-Mo-O
bridges – as well as the classical ground state [67] depicted by arrows on the right [66].

Fig. 4: Structure of a spin tube that consists of stacked Cu3 units (black spheres) [68–70].
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One of the obvious advantages of magnetic molecules is that the magnetic centers of different
molecules are well separated by the ligands of the molecules. Therefore, the intermolecular
interactions are utterly negligible and magnetic molecules can be considered as being inde-
pendent. Nevertheless, it is also desirable to build up nanostructured materials consisting of
magnetic molecules in a controlled way. Figure 4 gives an example of a linear structure consist-
ing of stacked Cu3 units [68,69]. These systems show new combinations of physical properties
that stem from both molecular and bulk effects, the latter in the example consisting in Luttinger
liquid behavior [70].

Fig. 5: Design principle of Mn6Cr and related molecules: Two C3–symmetric ligands (shown
on the left) enclose a central unit and thus preserve total C3 symmetry [12, 71].

Many more structures than those sketched above can be synthesized nowadays and with the in-
creasing success of coordination chemistry more are yet to come. The final hope of course is that
magnetic structures can be designed according to the desired magnetic properties. One major
step along this line is performed by the group of Thorsten Glaser in Bielefeld who synthesizes
Single Molecule Magnets according to a rational design as illustrated in Fig. 5 [12,71]. Another
example is given by the search for new sub-Kelvin refrigerant materials such as gadolinium con-
taining compounds as shown in Fig. 6 [13, 72].

Fig. 6: Examples of Gd-containing molecules for magnetic refrigeration [13, 72].
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3 Theoretical techniques and results

3.1 Hamiltonian

It appears that in the majority of these molecules the interaction between the localized single-
particle magnetic moments can be rather well described by the Heisenberg model with isotropic
(nearest neighbor) interaction and an additional anisotropy term [29, 30, 61, 73, 74]. Dipolar
interactions are usually of minor importance. It is also found that antiferromagnetic interactions
are favored in most molecules leading to nontrivial ground states.

Heisenberg Hamiltonian

For many magnetic molecules the dominant parts of the total Hamiltonian can be written as

H∼ = H∼ Heisenberg +H∼ anisotropy +H∼ Zeeman (1)

H∼ Heisenberg = −
∑
i,j

Jij~s∼i · ~s∼j (2)

H∼ anisotropy =
N∑
i=1

[Di~ei,3 ⊗ ~ei,3 + Ei {~ei,1 ⊗ ~ei,1 − ~ei,2 ⊗ ~ei,2}] (3)

H∼ Zeeman = µB ~B ·
∑
i

gi · ~s∼i . (4)

The Heisenberg Hamilton operator1 in the form given in Eq. (2) is isotropic, Jij is a symmet-
ric matrix containing the exchange parameters between spins at sites i and j. The exchange
parameters are usually given in units of energy, and Jij < 0 corresponds to antiferromagnetic,
Jij > 0 to ferromagnetic coupling.2 The sum in (2) runs over all possible tuples (i, j). The
vector operators ~s∼i are the single-particle spin operators.

The single-ion anisotropy terms (3) usually simplify to a large extend in symmetric systems, for
instance for symmetric spin rings, where the site-dependent unit vectors ~ei,3 often are all equal,
and the strength as well is the same for all sites Di = d and Ei ≈ 0.

The third part (Zeeman term) in the full Hamiltonian describes the interaction with the external
magnetic field. With an isotropic and identical g-matrix the direction of the field can be assumed
to be along the z-axis which simplifies the Hamiltonian very much.

Although the Hamiltonian looks rather simple, the eigenvalue problem is very often not solvable
due to the huge dimension of the Hilbert space or because the number of exchange constants is
too big to allow an accurate determination from experimental data. Therefore, one falls back
to effective single-spin Hamiltonians for molecules with non-zero ground state spin and a large
enough gap to higher-lying multiplets.

1Operators are denoted by a tilde.
2One has to be careful with this definition since it varies from author to author
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Single-spin Hamiltonian

For molecules like Mn12 and Fe8 which possess a high ground state spin and well separated
higher lying levels the following single-spin Hamiltonian

H∼ = D2S∼
2
z +D4S∼

4
z +H∼

′ (5)

H∼
′ = gµBBxS∼x (6)

is appropriate, see e. g. Ref. [49]. The first two terms of the Hamilton operator H∼ represent
the anisotropy whereas H∼

′ is the Zeeman term for a magnetic field along the x-axis. The
total spin is fixed, i. e. S = 10 for Mn12 and Fe8, thus the dimension of the Hilbert space is
dim(H) = 2S + 1.
The effective Hamiltonian (5) is sufficient to describe the low-lying spectrum and phenomena
like magnetization tunneling. Since H∼

′ does not commute with the z-component of the total
spin S∼z, every eigenstate |M 〉 of S∼z, i. e. the states with good magnetic quantum number M ,
is not stationary but will tunnel through the barrier and after half the period be transformed into
| −M 〉.

3.2 Evaluating the spectrum

The ultimate goal is to evaluate the complete eigenvalue spectrum of the full Hamilton operator
(1) as well as all eigenvectors. Since the total dimension of the Hilbert space is usually very
large, e. g. dim(H) = (2s + 1)N for a system of N spins of equal spin quantum number s, a
straightforward diagonalization of the full Hamilton matrix is not feasible. Nevertheless, very
often the Hamilton matrix can be decomposed into a block structure because of spin symme-
tries or space symmetries. Accordingly the Hilbert space can be decomposed into mutually
orthogonal subspaces. Then for a practical evaluation only the size of the largest matrix to be
diagonalized is of importance (relevant dimension).

Product basis

The starting point for any diagonalization is the product basis | ~m 〉 = |m1, . . . ,mj, . . . ,mN 〉
of the single-particle eigenstates of all s∼

z
j

s∼
z
j |m1, . . . ,mj, . . . ,mN 〉 = mj |m1, . . . ,mj, . . . ,mN 〉 . (7)

These states are sometimes called Ising states. They span the full Hilbert space and are used to
construct symmetry-related basis states.

Symmetries of the problem

Since the isotropic Heisenberg Hamiltonian includes only a scalar product between spins, this
operator is rotationally invariant in spin space, i. e. it commutes with ~S∼ and thus also with[

H∼ Heisenberg, ~S∼
2
]
= 0 ,

[
H∼ Heisenberg, S∼z

]
= 0 . (8)
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In a case where anisotropy is negligible a well-adapted basis is thus given by the simultaneous
eigenstates |S,M, α 〉 of ~S∼

2 and S∼z, where α enumerates those states belonging to the same S
andM [33,36,37,75]. Since the applied magnetic field can be assumed to point into z-direction
for vanishing anisotropy the Zeeman term automatically also commutes withH∼ Heisenberg, ~S∼

2, and
S∼z. Since M is a good quantum number the Zeeman term does not need to be included in the
diagonalization but can be added later.
Besides spin symmetries many molecules possess spatial symmetries. One example is given by
spin rings which have a translational symmetry. In general the symmetries depend on the point
group of the molecule; for the evaluation of the eigenvalue spectrum its irreducible representa-
tions have to be used [30,33,36,37,61]. Thus, in a case with anisotropy one loses spin rotational
symmetries but one can still use space symmetries. Without anisotropy one even gains a further
reduction of the relevant dimension.

Dimension of the problem

The following section illuminates the relevant dimensions assuming certain symmetries [75]. If
no symmetry is present the total dimension is just

dim (H) =
N∏
j=1

(2sj + 1) (9)

for a spin array ofN spins with various spin quantum numbers. In many cases the spin quantum
numbers are equal resulting in a dimension of the total Hilbert space of dim(H) = (2s+ 1)N .
If the Hamiltonian commutes with S∼z then M is a good quantum number and the Hilbert space
H can be divided into mutually orthogonal subspacesH(M)

H =

+Smax⊕
M=−Smax

H(M) , Smax =
N∑
j=1

sj . (10)

For given values of M , N and of all sj the dimension dim (H(M)) can be determined as the
number of product states (7), which constitute a basis inH(M), with

∑
jmj =M . The solution

of this combinatorial problem can be given in closed form [75]

dim (H(M)) =
1

(Smax −M)!

[(
d

dz

)Smax−M N∏
j=1

1− z2sj+1

1− z

]
z=0

. (11)

For equal single-spin quantum numbers s, and thus a maximum total spin quantum number of
Smax = Ns, (11) simplifies to

dim (H(M)) = f(N, 2s+ 1, Smax −M) with (12)

f(N,µ, ν) =

bν/µc∑
n=0

(−1)n
(
N

n

)(
N − 1 + ν − nµ

N − 1

)
.
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In both formulae (11) and (12), M may be replaced by |M | since the dimension of H(M)

equals those ofH(−M). bν/µc in the sum symbolizes the greatest integer less or equal to ν/µ.
Eq. (12) is known as a result of de Moivre [76].
If the Hamiltonian commutes with ~S∼

2 and all individual spins are identical the dimensions of
the orthogonal eigenspaces H(S,M) can also be determined. The simultaneous eigenspaces
H(S,M) of ~S∼

2 and S∼z are spanned by eigenvectors of H∼ . The one-dimensional subspace
H(M = Smax) = H(Smax, Smax), especially, is spanned by |Ω 〉, a state called magnon vacuum.
The total ladder operators (spin rising and lowering operators) are

S∼
± = S∼x ± i S∼y . (13)

For S > M , S∼
− maps any normalized H∼ -eigenstate ∈ H(S,M + 1) onto an H∼ -eigenstate

∈ H(S,M) with norm
√
S(S + 1)−M(M + 1).

For 0 ≤M < Smax,H(M) can be decomposed into orthogonal subspaces

H(M) = H(M,M)⊕ S∼
−H(M + 1) (14)

with

S∼
−H(M + 1) =

⊕
S≥M+1

H(S,M) . (15)

In consequence, the diagonalization of H∼ in H has now been traced back to diagonalization in
the subspacesH(S, S), the dimension of which are for S < Smax

dim (H(S, S)) = dim (H(M = S))− dim (H(M = S + 1)) (16)

and can be calculated according to (12).
The use of combined spin, i.e. SU(2), and point group symmetries is rather involved, compare
[36, 37, 77]. I would therefore like to demonstrate the use of symmetries for the combined use
of the S∼z-symmetry and the translational symmetry which is a cyclic group.
As a special example I focus on the translational symmetry found in spin rings. The discussed
formalism can as well be applied to other cyclic symmetries. Any such translation is represented
by the cyclic shift operator T∼ or a multiple repetition. T∼ is defined by its action on the product
basis (7)

T∼ |m1, . . . ,mN−1,mN 〉 = |mN ,m1, . . . ,mN−1 〉 . (17)

The eigenvalues of T∼ are the N -th roots of unity

zk = exp

{
−i2πk

N

}
, k = 0, . . . , N − 1 , pk = 2πk/N , (18)

where k will be called translational (or shift) quantum number and pk momentum quantum
number or crystal momentum. The numbers zk are called characters of the point group CN .
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The shift operator T∼ commutes not only with the Hamiltonian but also with total spin. Any

H(S,M) can therefore be decomposed into simultaneous eigenspaces H(S,M, k) of ~S∼
2, S∼z

and T∼ .
In the following we demonstrate how an eigenbasis of both S∼z and T∼ can be constructed, this ba-
sis spans the orthogonal Hilbert spacesH(M,k). A special decomposition ofH into orthogonal
subspaces can be achieved by starting with the product basis and considering the equivalence
relation

|ψ 〉 ∼= |φ 〉 ⇔ |ψ 〉 = T∼
n |φ 〉 , n ∈ {1, 2, . . . , N} (19)

for any pair of states belonging to the product basis. The equivalence relation then induces
a complete decomposition of the basis into disjoint subsets, i.e. the equivalence classes. A
“cycle” is defined as the linear span of such an equivalence class of basis vectors. The obviously
orthogonal decomposition ofH into cycles is compatible with the decomposition ofH into the
various H(M). Evidently, the dimension of a cycle can never exceed N . Cycles are called
“proper cycles” if their dimension equals N , they are termed “epicycles” else. One of the N
primary basis states of a proper cycle may arbitrarily be denoted as

|ψ1 〉 = |m1, . . . ,mN 〉 (20)

and the remaining ones may be enumerated as

|ψn+1 〉 = T∼
n |ψ1 〉 , n = 1, 2, . . . , N − 1 . (21)

The cycle under consideration is likewise spanned by the states

|χk 〉 =
1√
N

N−1∑
ν=0

(
ei

2π k
N T∼

)ν
|ψ1 〉 (22)

which are eigenstates of T∼ with the respective shift quantum number k. Consequently, every
k occurs once in a proper cycle. An epicycle of dimension D is spanned by D eigenstates of
T∼ with each of the translational quantum numbers k = 0, N/D, . . . , (D − 1)N/D occurring
exactly once. As a rule of thumb one can say that the dimension of each H(M,k) is approxi-
mately dim(H(M,k)) ≈ dim(H(M))/N . An exact evaluation of the relevant dimensions for
spin rings can be obtained from Ref. [75].

Exact diagonalization

If the relevant dimension is small enough, the respective Hamilton matrices can be diagonalized,
either analytically [75, 78, 79] or numerically, see e.g. [30, 33, 80–85].
Again, how such a project is carried out, will be explained with the help of an example, a simple
spin ring with N = 6 and s = 1/2. The total dimension is dim(H) = (2s + 1)N = 64. The
Hamilton operator (2) simplifies to

H∼ Heisenberg = −2J
N∑
j=1

~s∼j · ~s∼j+1 , N + 1 ≡ 1 . (23)
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We start with the magnon vacuum |Ω 〉 = |++++++ 〉 which spans the Hilbert space
H(M) with M = Ns = 3. “±” are shorthand notations for m = ±1/2. The dimension of the
subspace dim(H(M = Ns)) is one and the energy eigenvalue is EΩ = −2JNs2 = −3J . |Ω 〉
is an eigenstate of the shift operator with k = 0. Since S is also a good quantum number in this
example |Ω 〉 has to be an eigenstate of ~S∼

2, too, the quantum number is S = Ns.
The next subspace H(M) with M = Ns − 1 = 2 is spanned by | −+++++ 〉 and the five
other vectors which are obtained by repetitive application of T∼ . This subspace obviously has
the dimension N , and the cycle spanned by T∼

n | −+++++ 〉, n = 0, . . . , N − 1 is a proper
one. Therefore, each k quantum number arises once. The respective eigenstates of T∼ can be
constructed according to Eq. (22) as

|M = 2, k 〉 =
1√
N

N−1∑
ν=0

(
ei

2π k
N T∼

)ν
| −+++++ 〉 . (24)

All subspaces H(M,k) have dimension one. Since S∼
− |Ω 〉 is a state belonging to H(M =

Ns− 1) with the same k-quantum number as |Ω 〉 it is clear that |M = 2, k = 0 〉 is a already
an eigenstate of ~S∼

2 with S = Ns. The other five |M = 2, k 6= 0 〉 must have S = Ns− 1.
The next subspace H(M) with M = Ns − 2 = 1 is spanned by three basic vectors, i.e.
| − −++++ 〉, | −+−+++ 〉, | −++−++ 〉 and the repetitive applications of T∼ onto
them. The first two result in proper cycles, the third vector | −++−++ 〉 results in an epicy-
cle of dimension three, thus for the epicycle we find only k quantum numbers k = 0, 2, 4. The
energy eigenvalues found in the subspaceH(M = Ns−1) (“above”) must reappear here which
again allows to address an S quantum number to these eigenvalues. The dimension of the sub-
space H(M = 1) is 15, the dimensions of the subspaces H(M,k) are 3 (k = 0), 2 (k = 1), 3
(k = 2), 2 (k = 3), 3 (k = 4), and 2 (k = 5).
The last subspace to be considered belongs to M = 0 and is spanned by | − − −+++ 〉,
| − −+−++ 〉, | −+−−++ 〉, | −+−+−+ 〉 and repetitive applications of T∼ . Its di-
mension is 20. Here | −+−+−+ 〉 leads to an epicycle of dimension two.
The Hamilton matrices in subspaces with M < 0 need not be diagonalized due to the S∼z-
symmetry, i.e. eigenstates with negative M can be obtained by transforming all individual
mj → −mj . Summing up the dimensions of allH(M) yields 1+6+15+20+15+6+1 = 64

√
.

Figure 7 shows the resulting energy spectrum both as a function of total spin S and as a function
of translational quantum number k.

Lanczos method

Complex hermitian matrices can be completely diagonalized numerically on a normal PC up to
a size of about 10,000 by 10,000 which corresponds to about 1.5 Gigabyte of necessary RAM.
Nevertheless, for larger systems one can still use numerical methods to evaluate low-lying en-
ergy levels and the respective eigenstates with high accuracy. Very accurate methods rest on
the construction of a so-called Krylov space. One of these methods to partially diagonalize a
huge matrix was proposed by Cornelius Lanczos in 1950 [86,87]. This method uses a (random)
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Fig. 7: Energy eigenvalues as a function of total spin quantum number S (l.h.s.) and k (r.h.s.).

initial vector. It then generates an orthonormal system in such a way that the representation of
the operator of interest is tridiagonal. Every iteration adds one row and one column to the tridi-
agonal matrix. With growing size of the matrix its eigenvalues converge against the true ones
until, in the case of finite dimensional Hilbert spaces, the eigenvalues reach their true values.
The key point is that the extremal eigenvalues converge rather quickly compared to the other
ones [88]. Thus, after about 100 Lanczos steps the ground state energy is already approximated
to 10 figures although the dimension of the underlying Hilbert space is 108.
A simple Lanczos algorithm looks like the following. One starts with an arbitrary vector |ψ0 〉,
which has to have an overlap with the (unknown) ground state. The next orthogonal vector is
constructed by application of H∼ and projecting out the original vector |ψ0 〉

|ψ′1 〉 = (1− |ψ0 〉〈ψ0 | )H∼ |ψ0 〉 = H∼ |ψ0 〉 − 〈ψ0 |H∼ |ψ0 〉 |ψ0 〉 , (25)

which yields the normalized vector

|ψ1 〉 =
|ψ′1 〉√
〈ψ′1 |ψ′1 〉

. (26)

Similarly all further basis vectors are generated

|ψ′k+1 〉 = (1− |ψk 〉〈ψk | − |ψk−1 〉〈ψk−1 | )H∼ |ψk 〉 (27)

= H∼ |ψk 〉 − 〈ψk |H |ψk 〉 |ψk 〉 − 〈ψk−1 |H∼ |ψk 〉 |ψk−1 〉

and

|ψk+1 〉 =
|ψ′k+1 〉√
〈ψ′k+1 |ψ′k+1 〉

. (28)

The new Lanczos vector is by construction orthogonal to the two previous ones. Without proof
we repeat that it is then also orthogonal to all other previous Lanczos vectors. This constitutes
the tridiagonal form of the resulting Hamilton matrix

Ti,j = 〈ψi |H∼ |ψj 〉 with Ti,j = 0 if |i− j| > 1 . (29)

The Lanczos matrix T can be diagonalized at any step. Usually one iterates the method until a
certain convergence criterion is fulfilled.
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The eigenvectors of H∼ can be approximated using the eigenvectors φµ of T

|χµ 〉 ≈
n∑
i=0

φµ,i |ψi 〉 , (30)

where µ labels the desired energy eigenvalue, e.g. the ground state energy. n denotes the number
of iterations, and φµ,i is the i-th component of the n-dimensional eigenvector φµ of T .
The simple Lanczos algorithm has some problems due to limited accuracy. One problem is that
eigenvalues may collapse. Such problems can be solved with more refined formulations of the
method [87].

Density Matrix Renormalization Group Method

The DMRG technique [38] has become one of the standard numerical methods for quantum
lattice calculations in recent years [40]. Its basic idea is the reduction of Hilbert space while
focusing on the accuracy of a target state. For this purpose the system is divided into subunits
– blocks – which are represented by reduced sets of basis states. The dimension m of the
truncated block Hilbert space is a major input parameter of the method and to a large extent
determines its accuracy. For further details please see the lecture of Ulrich Schollwöck.
DMRG is best suited for chain-like structures. Many accurate results have been achieved by
applying DMRG to various (quasi-)one-dimensional systems [84,89,90]. The best results were
found for the limit of infinite chains with open boundary conditions. It is commonly accepted
that DMRG reaches maximum accuracy when it is applied to systems with a small number of
interactions between the blocks, e.g. systems with only nearest-neighbor interaction [91].
It is not a priori clear how good results for finite systems like magnetic molecules are. Such
systems are usually not chain-like, so in order to carry out DMRG calculations a mapping onto
a one-dimensional structure has to be performed [91]. Since the spin array consists of a count-
able number of spins, any arbitrary numbering is already a mapping onto a one-dimensional
structure. However, even if the original system had only nearest-neighbor exchange, the new
one-dimensional system has many long-range interactions depending on the way the spins are
enumerated. Therefore, a numbering which minimizes long range interactions is preferable.
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Fig. 8: Two-dimensional and one-dimensional projection of the icosidodecahedron, the site
numbers are those used in [39], the lines represent interactions.
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Fig. 8 shows the graph of interactions for the molecule {Mo72Fe30}which was used in Ref. [39].
For finite systems a block algorithm including sweeps, which is similar to the setup in White’s
original article [38], has turned out to be most efficient.

For illustrative purposes we use a simple Heisenberg Hamiltonian, compare (2). The Hamilto-
nian is invariant under rotations in spin space. Therefore, the total magnetic quantum number
M is a good quantum number and we can perform our calculation in each orthogonal subspace
H(M) separately [41, 92].

When DMRG is applied to spin systems that are not one-dimensional, the usual way is to map
the system on a one-dimensional chain with long-range interactions, i.e., to number the spins
of the lattice [93]. However, if not very simple systems such as, e.g., ladders are investigated,
it is not clear, which numbering is best suited. Such a problem also occurs, when DMRG is
applied in the context of quantum chemistry, where models similar to the Hubbard model with
long-range interactions appear and the ordering, i.e., the numbering of the orbitals is relevant.
Since long-range interactions diminish the accuracy of DMRG (cf. Ref. [94]) it is clear that a
good ordering needs to minimize such long-range interactions.

We have tested several numberings for the icosidodecahedron. The resulting coupling matrices
Jij are shown in Fig. 9. The numbering used by Exler and Schnack in an earlier investigation
[39] (see top left of Fig. 9) gives a very regular “interaction pattern” with rather-short-ranged
interactions, but the “periodic boundaries”, i.e., interactions between the first and the last spins,
are clearly not optimal for the DMRG algorithm with two center sites. As proposed in Ref. [95],

Exler/Schnack
1

10

20

30

1 10 20

RCMD

1 10 20 30

1

10

20

Sloan

1 10 20 30

1

10

20

no optimization

1 10 20 30

1

10

20

Fig. 9: Depiction of the coupling matrix (Jij) for four different numberings of the vertices of the
icosidodecahedron. Nonzero entries are denoted by the orange squares. Top left: numbering
according to Exler and Schnack (see Ref. [39]); top right: result of the RCMD algorithm;
bottom left: result of the Sloan algorithm; bottom right: unoptimized numbering.
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Fig. 10: DMRG results for different numberings (see Fig. 9) of the spins sitting on the vertices
of the icosidodecahedron. The plot shows the error in the ground state energy as a function
of the number of DMRG sweeps. The numbers above the symbols denote the number of kept
density matrix eigenstates for the sweep [92].

we have used a variant of the reverse Cuthill-McKee algorithm [96, 97], the RCMD algorithm,
which aims to number the vertices such that the bandwidth of the matrix is minimized. We have
also used the Sloan algorithm [98] which minimizes the “envelope size”, i.e., the sum of the
“row bandwidths”. (The bandwidth is the maximum of the row bandwidths.) The figure also
shows an unoptimized numbering for comparison.

The results of DMRG calculations (using the ALPS DMRG code [99]) for the different spin
numberings are shown in Fig. 10. We have calculated the ground state energy of the s = 1/2

icosidodecahedron with an increasing number of kept density matrix eigenstates (m) so that
the convergence can be investigated and a comparison with the exact ground state energy (see
Ref. [100]) is possible. One can see that the different optimized numberings (Exler/Schnack,
RCMD, and Sloan) give almost identical results whereas the unoptimized numbering gives
much worse results. These results show that a “good” numbering of the spins is absolutely
essential if the DMRG method is applied to a spin system with a complicated structure. For the
following results we have always used the numbering as proposed by Exler and Schnack.

As a next step we have calculated the lowest energies in the M subspaces for the icosidodec-
ahedron with s > 1/2 using DMRG. The results for the s = 1/2 system already showed that
DMRG is able to produce very accurate results for this system with relative errors smaller than
10−3 [39, 92].

Figure 11 shows the lowest energy eigenvalues in the subspaces of total magnetic quantum
number M for the icosidodecahedron with s = 1 and s = 3/2 as obtained by DMRG and – for
the large-M subspaces (M > 18 for s = 1 and M > 33 for s = 3/2) – Lanczos calculations.
We have used up tom = 2500 density matrix eigenstates for the s = 1 case and up tom = 2000

for the s = 3/2 case. The largest truncated weight within a sweep is of the order of 7 · 10−4

for the M = 0 subspace of the s = 1 icosidodecahedron and of the order of 4 · 10−4 for the
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Fig. 11: Lowest energy eigenvalues in the subspaces of total magnetic quantum number M
as obtained by DMRG calculations [92]. The eigenvalues for the smallest subspaces, i.e., for
large M , were calculated using the Lanczos algorithm. For the DMRG calculations, the ALPS
DMRG code was employed [99]. For the s = 1 system we have kept m = 2500 density matrix
eigenstates in all DMRG calculations. For the s = 3/2 system we have kept m = 2000 states
for the subspaces up to M = 4, m = 1500 states for the subspaces 5 ≤ M ≤ 23, and 1000
states for the subspaces M > 23.

s = 3/2 case. That the truncated weight for the s = 1 icosidodecahedron is larger than for
s = 3/2 although more states have been used for s = 1 indicates that it cannot be reliably used
for a quantitative estimate of the error. The reason for this behavior might be that the results are
not yet fully converged for the value of m that we have used, although we have carried out up
to 60 sweeps for the calculations.

The rotational band model, compare next section, predicts a behavior of the form Emin(M) =

aM(M + 1) + b, i.e., a parabolic dependence [101]. The insets of Fig. 11 show that this is
an overall good approximation for the energy eigenvalues of the full Heisenberg model. The
simple rotational band approximation predicts a proportionality constant of a = 0.1. The linear
fits as shown in the insets give the results a = 0.111 for s = 1 and a = 0.108 for s = 3/2, very
close to the simple rotational band approximation. However, if one uses these (DMRG) data to
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Fig. 12: Zero-temperature magnetization curves of the icosidodecahedron as obtained by
DMRG calculations (cf. Fig. 11). The data for s = 1/2 is taken from Ref. [100], the clas-
sical result from [67]. The data is normalized to the saturation field and magnetization. L.h.s.:
s = 1/2, 1, 3/2 and classical result. R.h.s.: s = 3/2, 2, 5/2 and classical result [92].
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Fig. 13: Ground state energy of the s = 5/2 icosidodecahedron as a function of the DMRG
sweep. The numbers show the retained density matrix eigenstates for the current sweep [92].

calculate the zero-temperature magnetization curve, it becomes clear that there are some crucial
deviations from the ideal parabolic dependence. If there was an ideal parabolic dependence, the
resulting magnetization curve would consist of steps with constant widths. Fig. 12 shows the
resulting zero-temperature magnetization curves as calculated using the DMRG data.
One can see, that the magnetization curves do not consist of steps with constant widths. There
are some anomalies as expected for frustrated systems. The plateaus at M/Msat = 1/3 are
clearly visible. The magnetization jumps due to the independent magnons [102] are also visible.
Since the jump has a height of ∆M = 3, it is clear that this effect vanishes for s → ∞ in the
plot because the magnetization is normalized by the saturation magnetizationMsat = 30gµBs.
For s→∞, the classical result, i.e., a strictly linear magnetization curve [67], will be reached.
On the contrary, the plateau seems to be very stable when increasing s. A similar behavior has
already been found for the cuboctahedron, compare Ref. [100]. For the cases s = 2 and s = 5/2

we have calculated the lowest energy eigenvalues only in some M subspaces, including those
subspaces that are relevant for the calculation of the plateau width. We have kept m = 2000

density matrix eigenstates for these calculations. The plateau is clearly visible.
In the following we focus on the s = 5/2 case and the comparison to previous results on this
system. Fig. 13 shows the ground state energy as a function of the DMRG sweep and as a
function of the kept density matrix eigenstates. One can see that even for 2000 kept states and
more than 30 sweeps the result is not yet converged. A much larger number of states is needed
to get convergence. Also, an extrapolation to m → ∞ is not reliably possible because for that
many more sweeps would have to be performed.
For m = 2000 we obtain the value EDMRG

0 ≈ −216.5 J . This value can be compared with
previous results. The DMRG result of Exler and Schnack for the ground state energy (withm =

120) is approximately−211.1 J [39], a value that is much higher and thus much more imprecise
than our result. The very recent result of Neuscamman and Chan using correlator product states
in combination with variational Monte Carlo is−216.3 J [103]. This demonstrates that modern
DMRG is able to accurately estimate relative ground state energies, at least much more accurate
than determined by other methods.
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3.3 Evaluation of thermodynamic observables
Exact evaluation

For the sake of completeness we want to outline how basic observables can be evaluated both
as function of temperature T and magnetic field B. We will assume that

[
H∼ , S∼z

]
= 0 for

this part, so that the energy eigenvectors | ν 〉 can be chosen as simultaneous eigenvectors of
S∼z with eigenvalues Eν(B) and Mν . The dependence of Eν(B) on B is simply given by the
Zeeman term. If H∼ and S∼z do not commute the respective traces for the partition function and
thermodynamic means have to be evaluated starting from their general definitions.
The partition function is defined as

Z(T,B) = Tr
{

e−βH∼
}
=
∑
ν

e−βEν(B) . (31)

Then the magnetization and the susceptibility per molecule can be evaluated from the first and
the second moment of S∼z

M(T,B) = − 1

Z
Tr
{
gµBS∼ze

−βH∼
}
= − gµB

Z(T,B)

∑
ν

Mν e−βEν(B) (32)

χ(T,B) =
∂M(T,B)

∂B
=

(gµB)
2

kBT

{
1

Z

∑
ν

M2
ν e−βEν(B)−

(
1

Z

∑
ν

Mν e−βEν(B)

)2}
(33)

In a similar way the internal energy and the specific heat are evaluated from first and second
moment of the Hamiltonian

U(T,B) = − 1

Z
Tr
{
H∼ e−βH∼

}
= − 1

Z

∑
ν

Eν(B) e−βEν(B) (34)

C(T,B) =
∂U(T,B)

∂T
(35)

=
1

kBT 2

{
1

Z

∑
ν

(Eν(B))2 e−βEν(B) −

(
1

Z

∑
ν

Eν(B) e−βEν(B)

)2}
.

Approximate evaluation by means of the Finite-Temperature Lanczosmethod

For the evaluation of thermodynamic properties in the canonical ensemble the exact partition
function Z depending on temperature T and magnetic field B is given by

Z(T,B) =
∑
ν

〈 ν | e−βH∼ | ν 〉 . (36)

Here { | ν 〉} denotes an arbitrary orthonormal basis of the respective Hilbert space. Following
the ideas of Refs. [42, 43] the unknown matrix elements are approximated as

〈 ν | e−βH∼ | ν 〉 ≈
NL∑
n=1

〈 ν |n(ν) 〉e−βε
(ν)
n 〈n(ν) | ν 〉 . (37)
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For the evaluation of the right hand side of Eq. (37) | ν 〉 is taken as the initial vector of a
Lanczos iteration. This iteration consists of NL Lanczos steps, which span a respective Krylov
space. As common for the Lanczos method the Hamiltonian is diagonalized in this Krylov
space. This yields the NL Lanczos eigenvectors |n(ν) 〉 as well as the associated Lanczos
energy eigenvalues ε(ν)n . They are enumerated by n = 1, . . . , NL. The notation n(ν) is chosen
to remind one that the Lanczos eigenvectors |n(ν) 〉 belong to the Krylov space derived from
the original state | ν 〉.
The number of Lanczos steps NL is a parameter of the approximation that needs to be large
enough to reach the extremal energy eigenvalues but should not be too large in order not to run
into problems of numerical accuracy. NL ≈ 100 is a typical and good value.
In addition, the complete and thus very large sum over all ν = 1, . . . , dim(H) states | ν 〉 is
replaced by a summation over a subset of R random vectors. These vectors are truly random,
they do not need to belong to any special basis set. Altogether this yields for the partition
function

Z(T,B) ≈ dim(H)
R

R∑
ν=1

NL∑
n=1

e−βε
(ν)
n |〈n(ν) | ν 〉|2 . (38)

Although this already sketches the general idea, it will always improve the accuracy if symme-
tries are taken into account as in the following formulation

Z(T,B) ≈
∑
Γ

dim(H(Γ ))
RΓ

RΓ∑
ν=1

NL∑
n=1

e−βε
(ν,Γ )
n |〈n(ν, Γ ) | ν, Γ 〉|2 . (39)

Here Γ labels the irreducible representations of the employed symmetry group. The full Hilbert
space is decomposed into mutually orthogonal subspacesH(Γ ).
An observable would then be calculated as

O(T,B) ≈ 1

Z(T,B)

∑
Γ

dim(H(Γ ))
RΓ

RΓ∑
ν=1

NL∑
n=1

e−βε
(ν,Γ )
n 〈n(ν, Γ ) |O∼ | ν, Γ 〉〈 ν, Γ |n(ν, Γ ) 〉 .

(40)
It was noted in Ref. [104] that this approximation of the observable O(T,B) may contain large
statistical fluctuations at low temperatures due to the randomness of the set of states { | ν, Γ 〉}.
It was shown that this can largely be cured by assuming a symmetrized version of Eq. (40). For
our investigations this is irrelevant.
Our very positive experience is that even for large problems the number of random starting
vectors as well as the number of Lanczos steps can be chosen rather small, e.g. R ≈ 20, NL ≈
100 [44,45,72]. Figure 14 displays the zero-field differential susceptibility of the cuboctahedron
with s = 3/2 as an example. One notices that the approximate result, that anyway deviates
from the exact one only for 0.5 ≤ kBT/|J | ≤ 3, quickly approaches the exact curve with
increasing number R of initial states. Already for R = 20 the approximation is practically
indistinguishable from the exact one; an increase to R = 100 does not further improve this
observable [44].
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Fig. 14: Zero-field differential susceptibility of the cuboctahedron with s = 3/2. The various
curves depict the investigated scenarios R1 = 1, R2 = 5, R3 = 20, and R4 = 100; NL = 100.
The exact dependence is given by the dots [44].

It is foreseeable that the method does not work optimally in very small subspaces or subspaces
with large degeneracies of energy levels especially if the symmetry is not broken up into ir-
reducible representations Γ . The underlying reason is given by the properties of the Lanczos
method itself that fails to dissolve such degeneracies. The other case of small subspaces can be
solved by including their energy eigenvalues and eigenstates exactly.
Another technical issue is given by the fact that the chosen random vectors | ν, Γ 〉 should
be mutually orthogonal. Although one could orthonormalize the respective vectors, this is for
practical purposes not really necessary. The reason is, that two vectors with random components
are practically always orthogonal, because their scalar product is a sum over fluctuating terms
that nearly vanishes especially in very large Hilbert spaces.
Since Lanczos iterations consist of matrix vector multiplications they can be parallelized by
openMP directives. In our programs this is further accelerated by an analytical state coding
and an evaluation of matrix elements of the Heisenberg Hamiltonian “on the fly” [105].

4 General properties of spectra

In the following I discuss some properties of the spectra of magnetic molecules with isotropic
and antiferromagnetic interaction.

Non-bipartite spin rings

With the advent of magnetic molecules it appears to be possible to synthesize spin rings with
an odd number of spins [106]. Although related to infinite spin rings and chains such systems
have not been considered mainly since it does not really matter whether an infinite ring has an
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odd or an even number of spins. In addition the sign rule of Marshall and Peierls [107] and
the famous theorems of Lieb, Schultz, and Mattis [108, 109] provided valuable tools for the
understanding of even rings which have the property to be bipartite and are thus non-frustrated.
These theorems explain the degeneracy of the ground states in subspacesH(M) as well as their
shift quantum number k or equivalently crystal momentum quantum number pk = 2πk/N .
Nowadays exact diagonalization methods allow to evaluate eigenvalues and eigenvectors of H∼
for small even and odd spin rings of various numbersN of spin sites and spin quantum numbers
s where the interaction is given by antiferromagnetic nearest neighbor exchange [80–82, 110–
112]. Although Marshall-Peierls sign rule and the theorems of Lieb, Schultz, and Mattis do
not apply to non-bipartite rings, i.e. frustrated rings with odd N , it turns out that such rings
nevertheless show astonishing regularities. Unifying the picture for even and odd N , we find
for the ground state without exception [111–113]:

1. The ground state belongs to the subspaceH(S) with the smallest possible total spin quan-
tum number S; this is either S = 0 for N ·s integer, then the total magnetic quantum
number M is also zero, or S = 1/2 for N ·s half integer, then M = ±1/2.

2. If N ·s is integer, then the ground state is non-degenerate.

3. If N ·s is half integer, then the ground state is fourfold degenerate.

4. If s is integer or N ·s even, then the shift quantum number is k = 0.

5. If s is half integer and N ·s odd, then the shift quantum number turns out to be k = N/2.

6. If N · s is half integer, then k = b(N + 1)/4c and k = N − b(N + 1)/4c is found.
b(N + 1)/4c symbolizes the greatest integer less or equal to (N + 1)/4.

In the case of s = 1/2 one knows the k-quantum numbers for all N via the Bethe ansatz
[82, 110], and for spin s = 1 and even N the k quantum numbers are consistent with Ref. [81].
It appears that for the properties of the first excited state such rules do not hold in general,
but only for “high enough” N > 5 [112]. Then, as can be anticipated from table 1, we can
conjecture that

• if N is even, then the first excited state has S = 1 and is threefold degenerate, and

• if N is odd and the single particle spin is half-integer, then the first excited state has
S = 3/2 and is eightfold degenerate, whereas

• if N is odd and the single particle spin is integer, then the first excited state has S = 1

and is sixfold degenerate.

Considering relative ground states in subspaces H(M) one also finds – for even as well as for
odd N – that the shift quantum numbers k show a strikingly simple regularity for N 6= 3

k ≡ ±(Ns−M)

⌈
N

2

⌉
mod N , (41)
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s N
2 3 4 5 6 7 8 9 10

1.5 0.5 1 0.747 0.934 0.816 0.913 0.844 0.903 E0/(NJ)
1
2

1 4 1 4 1 4 1 4 1 deg
0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k

4.0 3.0 2.0 2.236 1.369 2.098 1.045 1.722 0.846 ∆E/|J |
1
2

3 4 3 2 3 8 3 8 3 deg
1 3/2 1 1/2 1 3/2 1 3/2 1 S
0 0 2 0 0 1, 6 4 3, 6 0 k
4 2 3 2.612 2.872 2.735 2.834 2.773 2.819 E0/(NJ)

1 1 1 1 1 1 1 1 1 1 deg
0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.929 1.441 1.714 1.187 1.540 1.050 ∆E/|J |
1 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S
1 0, 1, 2 2 2, 3 3 3, 4 4 4, 5 5 k

7.5 3.5 6 4.973 5.798 5.338 5.732 5.477 5.704 E0/(NJ)
3
2

1 4 1 4 1 4 1 4 1 deg
0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1, 2 0 1, 4 3 2, 5 0 2, 7 5 k

4.0 3.0 2.0 2.629 1.411 2.171 1.117 1.838 0.938 ∆E/|J |
3
2

3 16 3 8 3 8 3 8 3 deg
1 3/2 1 3/2 1 3/2 1 3/2 1 S
0 0, 1, 2 2 2, 3 0 1, 6 4 3, 6 0 k

12 6 10 8.456 9.722 9.045 9.630 9.263 9.590 E0/(NJ)
2 1 1 1 1 1 1 1 1 1 deg

0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.922 1.394 1.652 1.091 1.431 0.906 ∆E/|J |
2 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S
1 0, 1, 2 2 2, 3 3 3, 4 4 4, 5 5 k

17.5 8.5 15 12.434 14.645 13.451 14.528 13.848 14.475 E0/(NJ)
5
2

1 4 1 4 1 4 1 4 1 deg
0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1, 2 0 1,4 3 2, 5 0 2, 7 5 k

Table 1: Properties of ground and first excited state of AF Heisenberg rings for various N and
s: ground state energy E0, gap ∆E, degeneracy deg, total spin S and shift quantum number k.

where dN/2e denotes the smallest integer greater than or equal to N/2 [113]. For N = 3

and 3s − 2 ≥ |M | ≥ 1 one finds besides the ordinary k-quantum numbers given by (41)
extraordinary k-quantum numbers, which supplement the ordinary ones to the complete set
{k} = {0, 1, 2}.
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For even N the k values form an alternating sequence 0, N/2, 0, N/2, . . . on descending from
the magnon vacuum with M = Ns as known from the sign-rule of Marshall and Peierls [107].
For oddN it happens that the ordinary k-numbers are repeated on descending fromM ≤ Ns−1
to M − 1 iff N divides [2(Ns−M) + 1].
Using the k-rule one can as well derive a rule for the relative ground state energies and for the
respective S quantum numbers:

• For the relative ground state energies one finds that if the k-number is different in adjacent
subspaces, Emin(S) < Emin(S +1) holds. If the k-number is the same, the energies could
as well be the same.

• Therefore, if N (even or odd) does not divide (2(Ns−M) + 1)dN/2e, then any relative
ground state inH(M) has the total spin quantum number S = |M |.

• This is always true for the absolute ground state which therefore has S = 0 forNs integer
and S = 1/2 for Ns half integer.

The k-rule (41) is founded in a mathematically rigorous way for N even [107–109], N = 3,
M = Ns, M = Ns − 1, and M = Ns − 2 [113]. An asymptotic proof for large enough
N can be provided for systems with an asymptotically finite excitation gap, i.e. systems with
integer spin s for which the Haldane conjecture applies [114, 115]. In all other cases numerical
evidence was collected and the k-rule as a conjecture still remains a challenge [113].

Rotational bands

For many spin systems with constant isotropic antiferromagnetic nearest neighbor Heisenberg
exchange the minimal energies Emin(S) form a rotational band, i.e. depend approximately
quadratically on the total spin quantum number S [101, 116, 117]

Emin(S) ≈ Ea − J
D(N, s)

N
S(S + 1) . (42)

The occurrence of a rotational band has been noted on several occasions for an even number of
spins defining a ring structure, see, e.g., Ref. [117]. The minimal energies have been described
as “following the Landé interval rule” [54–56, 58]. However, one finds that the same property
also occurs for rings with an odd number of spins as well as for the various polytope config-
urations we have investigated, in particular for quantum spins positioned on the vertices of a
tetrahedron, cube, octahedron, icosahedron, triangular prism, and an axially truncated icosa-
hedron. Rotational modes have also been found in the context of finite square and triangular
lattices of spin-1/2 Heisenberg antiferromagnets [118, 119].
There are several systems, like spin dimers, trimers, squares, tetrahedra, and octahedra which
possess a strict rotational band since their Hamiltonian can be simplified by quadrature. As an
example the Heisenberg square, i.e., a ring with N = 4 is presented. Because the Hamilton
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Fig. 15: Energy spectra of antiferromagnetically coupled Heisenberg spin rings (horizontal
dashes). The crosses connected by the dashed line represent the fit to the rotational band ac-
cording to (46), which matches both the lowest and the highest energies exactly. On the left the
dashed line reproduces the exact rotational band, whereas on the right it only approximates it,
but to high accuracy. The solid line on the right corresponds to the approximation Eq. (47).

operator (23) can be rewritten as

H∼ = −J
(
~S∼
2 − ~S∼

2
13 − ~S∼

2
24

)
, (43)

~S∼13 = ~s∼(1) + ~s∼(3) (44)

~S∼24 = ~s∼(2) + ~s∼(4) , (45)

with all spin operators ~S∼
2, ~S∼

2
13 and ~S∼

2
24 commuting with each other and withH∼ , one can directly

obtain the complete set of eigenenergies, and these are characterized by the quantum numbers
S, S13 and S24. In particular, the lowest energy for a given total spin quantum number S occurs
for the choice S13 = S24 = 2s

Emin(S) = −J [S (S + 1)− 2 · 2s (2s+ 1)] = E0 − J S (S + 1) , (46)

where E0 = 4s(2s + 1)J is the exact ground state energy. The various energies Emin(S) form
a rigorous parabolic rotational band of excitation energies. Therefore, these energies coincide
with a parabolic fit (crosses connected by the dashed line on the left of Fig. 15) passing through
the antiferromagnetic ground state energy and the highest energy level, i.e., the ground state
energy of the corresponding ferromagnetically coupled system.
It turns out that an accurate formula for the coefficient D(N, s) of (46) can be developed using
the sublattice structure of the spin array [116]. As an example we repeat the basic ideas for
Heisenberg rings with an even number of spin sites [58]. Such rings are bipartite and can be
decomposed into two sublattices, labeled A and B, with every second spin belonging to the
same sublattice. The classical ground state (Néel state) is given by an alternating sequence
of opposite spin directions. On each sublattice the spins are mutually parallel. Therefore, a
quantum trial state, where the individual spins on each sublattice are coupled to their maximum
values, SA = SB = Ns/2, could be expected to provide a reasonable approximation to the true
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Fig. 16: The low-lying levels of a spin ring,N = 6 and s = 5/2 in this example, can be grouped
into the lowest (Landé) band, the first excited (Excitation) band and the quasi-continuum (QC).
For the spin levels of the L- and E-band k is given in brackets followed by the energy. Arrows in-
dicate strong transitions from the L-band. Associated numbers give the total oscillator strength
f0 for these transitions [117].

ground state, especially if s assumes large values. For rings with even N the approximation to
the respective minimal energies for each value of the total spin ~S∼ = ~S∼A + ~S∼B is then [58]

Eapprox
min (S) = −4 J

N

[
S(S + 1)− 2

Ns

2

(
Ns

2
+ 1

)]
. (47)

This approximation exactly reproduces the energy of the highest energy eigenvalue, i.e., the
ground state energy of the corresponding ferromagnetically coupled system (S = Ns). For all
smaller S the approximate minimal energy Eapprox

min (S) is bounded from below by the true one
(Rayleigh-Ritz variational principle). The solid curve displays this behavior for the example of
N = 6, s = 3/2 on the right of Fig. 15. The coefficient “4” in Eq. (47) is the classical value,
i.e. for each fixed even N the coefficient D(N, s) approaches 4 with increasing s [116, 120].
The approximate spectrum, (47), is similar to that of two spins, ~S∼A and ~S∼B, each of spin quan-
tum number Ns/2, that are coupled by an effective interaction of strength 4J/N . Therefore,
one can equally well say that the approximate rotational band considered in (47) is associated
with an effective Hamilton operator

H∼
approx = −4 J

N

[
~S∼
2 − ~S∼

2
A − ~S∼

2
B

]
, (48)

where the two sublattice spins, ~S∼A,
~S∼B, assume their maximal value SA = SB = Ns/2. Hamil-

tonian (48) is also known as Hamiltonian of the Lieb-Mattis model which describes a system
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Fig. 17: Structure of the icosidodecahedron (left) and the cuboctahedron (right).

where each spin of one sublattice interacts with every spin of the other sublattice with equal
strength [109, 121].
It is worth noting that this Hamiltonian reproduces more than the lowest levels in each subspace
H(S). At least for bipartite systems also a second band is accurately reproduced as well as
the gap to the quasi-continuum above, compare Fig. 16. This property is very useful since the
approximate Hamiltonian allows the computation of several observables without diagonalizing
the full Hamiltonian.

Magnetization jumps

Although the spectra of many magnetic molecules possess an approximate rotational band of
minimal energies Emin(S) and although in the classical limit, where the single-spin quantum
number s goes to infinity, the function Emin(S) is even an exact parabola if the system has co-
planar ground states [122], one finds that for certain coupling topologies, including the cuboc-
tahedron and the icosidodecahedron (see Fig. 17), that this rule is violated, e.g. for high total
spins [102,123,124]. More precisely, for the icosidodecahedron the last four points of the graph
of Emin versus S, i. e. the points with S = Smax to S = Smax − 3, lie on a straight line

Emin(S) = 60Js2 − 6Js(30s− S) . (49)

An analogous statement holds for the last three points of the corresponding graph for the cuboc-
tahedron. These findings are based on numerical calculations of the minimal energies for sev-
eral s both for the icosidodecahedron as well as for the cuboctahedron. For both these and other
systems a rigorous proof of the high spin anomaly can be given [102, 125].
The idea of the proof can be summarized as follows: A necessary condition for the anomaly is
certainly that the minimal energy in the one-magnon space is degenerate. Therefore, localized
one-magnon states can be constructed which are also of minimal energy. When placing a second
localized magnon on the spin array, there will be a chance that it does not interact with the
first one if a large enough separation can be achieved. This new two-magnon state is likely
the state of minimal energy in the two-magnon Hilbert space because for antiferromagnetic
interaction two-magnon bound states do not exist. This procedure can be continued until no
further independent magnon can be placed on the spin array. In a sense the system behaves
as if it consists of non-interacting bosons which, up to a limiting number, can condense into
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Fig. 18: Icosidodecahedron: Left: minimal energy levels Emin(S) as a function of total spin S.
Right: magnetization curve at T = 0 [102].

a single-particle ground state. In more mathematical terms: To prove the high-spin anomaly
one first shows an inequality which says that all points (S,Emin(S)) lie above or on the line
connecting the last two points. For specific systems as those mentioned above what remains to
be done is to construct particular states that exactly assume the values of Emin corresponding
to the points on the bounding line, then these states are automatically of minimal energy.
The observed anomaly (linear instead of parabolic dependence) results in a corresponding jump
of the magnetization curve M vs. B, see Fig. 18. In contrast, for systems which obey the
Landé interval rule the magnetization curve at very low temperatures is a staircase with equal
steps up to the highest magnetization. The anomaly could indeed be observed in magnetization
measurements of the Keplerate {Mo72Fe30}. Unfortunately, the magnetization measurements
[66, 101] performed so far suffer from too high temperatures which smear out the anomaly.
Nevertheless, it may be possible to observe truly giant magnetization jumps in certain two-
dimensional spin systems which possess a suitable coupling (e.g. Kagomé) [123, 126]. In such
systems the magnetization jump can be of the same order as the number of spins, i.e. the jump
remains finite – or in other words is macroscopic – in the thermodynamic limit N →∞. Thus,
this effect is a true macroscopic quantum effect. It is also related to so-called flat bands of
energy eigenvalues [124, 127–131].

5 Magnetocalorics

The use of magnetic molecules for sub-Kelvin cooling is one of the later ideas in the field of
molecular magnetism. The mean (internal) energy, the magnetization and the magnetic field are
thermodynamic observables just as pressure and volume. Therefore, we can design thermody-
namic processes which work with magnetic materials as a medium. This has of course already
been done for a long time. The most prominent application is magnetization cooling which is
mainly used to reach sub-Kelvin temperatures [132]. The first observation of sub-Kelvin tem-
peratures is a nice example of how short an article can be to win the Nobel prize (Giauque,
Chemistry, 1949). Nowadays magnetization cooling is used in ordinary refrigerators.
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Fig. 19: The first observation of sub-Kelvin temperatures [132] is a nice example of how short
an article can be to win the Nobel prize (Giauque, Chemistry, 1949).

In early magnetocaloric experiments simple refrigerants like paramagnetic salts have been used.
We will therefore consider such examples first. For a paramagnet the Hamiltonian consists of
the Zeeman term only. We then obtain for the partition function

Z(T,B,N) =

(
sinh[βgµBB(s+ 1/2)]

sinh[βgµBB/2]

)N
. (50)

Then the magnetization is

M(T,B,N) = NgµB

(
(s+ 1/2)coth[βgµBB(s+ 1/2)]− 1/2sinh[βgµBB/2]

)
, (51)

and the entropy reads

S(T,B,N) = NkBln
(

sinh[βgµBB(s+ 1/2)]

sinh[βgµBB/2]

)
− kBβBM(T,B,N) . (52)

Besides their statistical definition both quantities follow from the general thermodynamic rela-
tionship

dF =

(
∂ F

∂ T

)
B

dT +

(
∂ F

∂ B

)
T

dB = −SdT −MdB , (53)

where F (T,B,N) = −kBT ln[Z(T,B,N)].
Looking at Eq. (50) it is obvious that all thermodynamic observables for a paramagnet depend
on temperature and field via the combination B/T , and so does the entropy. Therefore, an
adiabatic demagnetization (S = const) means that the ratio B/T has to remain constant, and
thus temperature shrinks linearly with field, i.e.(

∂ T

∂ B

)para

S

=
T

B
. (54)
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E
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S=0, M=0

S=1, M=0

S=1, M=−1

S=1, M=+1

Fig. 20: Left: Sketch of an antiferromagnetically coupled spin dimer. Right: Dependence of
the energy levels on magnetic field for an antiferromagnetically coupled spin-1/2 dimer. At the
critical field Bc the lowest triplet level crosses the ground state level with S = 0.

This situation changes completely for an interacting spin system. Depending on the interactions
the adiabatic cooling rate ∂ T

∂ B
can be smaller or bigger than the paramagnetic one (54) and even

change sign, i.e. one would observe heating during demagnetization. It is nowadays understood
that the cooling rate acquires extreme values close to phase transitions due to the excess entropy
associated with such processes [133–136].

In the following this statement will be made clear by discussing the example of a simple an-
tiferromagnetically coupled spin-1/2 dimer, shown on the left of Fig. 20. In a magnetic field
such a system experiences a “quantum phase transition” if the lowest triplet level crosses the
original ground state with S = 0, see Fig. 20 on the right. Although one would hesitate to call
such an ordinary ground state level crossing quantum phase transition it nevertheless is one. At
T = 0 the magnetizationM(T = 0, B) is a non-analytic function of the magnetic field B. At
the critical field Bc where the levels cross the magnetization exhibits a step.

In addition the entropy, which at T = 0 is zero for the non-degenerate ground state acquires a
finite value at the critical fieldBc due to the degeneracy of the crossing levels. This enhancement
remains present even at temperatures T > 0, it is shown on the left of Fig. 21. In addition the
heat capacity varies strongly around the critical field as is shown on the right of Fig. 21.

Fig. 21: Left: Entropy of the dimer (Fig. 20) as function of B and T . Right: Heat capacity of
the dimer as function of B and T .
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Fig. 22: Isentropes of the spin dimer. The straight lines show the behavior of a paramagnet for
comparison. B is along the x-axis, T along the y-axis.

The behavior of the entropy as well as the heat capacity explains how the adiabatic cooling rate(
∂ T

∂ B

)
S

= −T
(
∂ S
∂ B

)
T

C
(55)

depends on field and temperature. Figure 22 shows the isentropes of the antiferromagnetically
coupled dimer both as function of field B and temperature T . The straight lines show the
behavior of a paramagnet for comparison. Three regions are highlighted.

• a: For low fields and high temperatures ∂ T
∂ B

is smaller than for the paramagnet.

• b: For high fields and high temperatures the interacting system assumes the paramagnetic
limit, i.e. ∂ T

∂ B
is the same in both systems.

• c: For low temperatures and fields just above the critical field ∂ T
∂ B

is much bigger than the
cooling rate of the paramagnet.

• Not highlighted but nevertheless very exciting is the region at low temperature just below
the critical field where the “cooling” rate ∂ T

∂ B
has the opposite sign, i.e. upon demagnetiz-

ing the system heats up and upon magnetizing the system cools down.

The rate ∂ T
∂ B

, Eq. (55), depends directly on the derivative of the entropy with respect to the
magnetic field. Therefore, it is clear that the effect will be enhanced if a high degeneracy can
be obtained at some critical field. This is indeed possible in several frustrated materials where
giant magnetization jumps to saturation are observed [123, 124, 135–137].
As a final example I would like to discuss the M=Cu and M=Ni members of the family of Gd4M8

molecules which were synthesized quite recently [13]. The eigenvalues of the respective spin
Hamiltonians could be determined numerically exactly for the case of Gd4Cu8 and by means of
the Finite-Temperature Lanczos Method for Gd4Ni8 [45].
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Fig. 23: Theoretical heat capacity per molecule for Gd4Cu8 (left) and Gd4Ni8 (right) at various
magnetic fields.

For Gd4Cu8 the model Hamiltonian (2) includes the following parameters: JGdGd = −0.1 cm−1,
JGdCu = +0.9 cm−1, JCuCu = −8.0 cm−1. The spectroscopic splitting factor was taken as
g = 2.0. For Gd4Ni8 the model parameters were chosen as: JGdGd = −0.1 cm−1, JGdNi =

+0.17 cm−1, JNiNi = +12.0 cm−1. Again we took g = 2.0. In order to provide a feeling for
the energy scale of inverse centimeters we would like to mention that one inverse centimeter
(wave number) corresponds to about 1.44 K in thermal energy. A coupling of about a tenth
of an inverse centimeter or Kelvin is typical for interactions between gadolinium ions. In the
following all other interactions or corrections such as temperature independent paramagnetism,
different g factors for different ions or a possible single-ion anisotropy in the case of nickel
have been neglected. Despite these approximations all theoretical curves agree nicely with the
experimental ones published in Ref. [13].
Figure 23 displays the theoretical heat capacity per molecule for Gd4Cu8 (left) and Gd4Ni8
(right) at various magnetic fields. The behavior is for both compounds qualitatively similar.
The isothermal magnetic entropy change, shown in 24, turns out to be very different; it is much

Fig. 24: Theoretical isothermal entropy change per molecule for Gd4Cu8 (left) and Gd4Ni8
(right) for various field differences:−∆S(T,B) = −[S(T,B)− S(T, 0)].
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Fig. 25: Theoretical isentropes for Gd4Cu8 (left) and for Gd4Ni8 (right) [13, 45].

larger for Gd4Ni8. The reason is that for Gd4Ni8 the low-lying multiplets belong to large total
spin quantum numbers which leads to larger entropies at low temperatures. This is made even
clearer by Fig. 25 displaying the isentropes as function of both temperature and magnetic field:
Gd4Cu8 (left) possesses a non-degenerate St = 0 ground state that is separated from a triplet
and a quintet, whereas Gd4Ni8 (right) has a ground state with St = 22. In the latter case all
isentropes with S ≤ kB log(45) run into absolute zero, which is clearly visible in Fig. 25. On the
contrary, since Gd4Cu8 possesses a non-degenerate St = 0 ground state all isentropes approach
temperatures T > 0 when B goes to zero.
Although this behavior suggests that Gd4Ni8 should be a very good refrigerant, this does not
need to be the case. At sub-Kelvin temperatures dipolar interactions become very important.
They prevent a closer approach of T = 0 [138]. Dipolar interactions could be tamed by
molecules that possess an St = 0 ground state, but a non-degenerate ground state would not
be helpful due to its vanishing entropy. Therefore, we suggest to investigate molecules which
have a degenerate – the more the better – ground state with St = 0. A ground state degeneracy
can be induced by frustration, thus a tetrahedron with antiferromagnetic coupling would be a
first candidate [45].
Summarizing, one can say that low-dimensional frustrated spin systems and especially magnetic
molecules are substances with an interesting magnetocaloric behavior and may turn out to be
useful new refrigerants for special applications.
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B. Hauptfleisch, A. Trautwein, and V. Schünemann,
Angew. Chem. Int. Ed. 38, 3238 (1999)

[15] E. Coronado, P. Delhaes, D. Gatteschi, and J. Miller (Eds.): Localized and Itinerant
Molecular Magnetism: From Molecular Assemblies to the Devices,
NATO ASI, Series E, Vol. 321 (Kluwer Academic, Dordrecht, 1996)

[16] M.N. Leuenberger and D. Loss, Nature 410, 789 (2001)

[17] A. Ardavan, O. Rival, J.J.L. Morton, S.J. Blundell, A.M. Tyryshkin, G.A. Timco, and
R.E.P. Winpenny, Phys. Rev. Lett. 98, 057201 (2007)



8.34 Jürgen Schnack

[18] A. Candini, G. Lorusso, F. Troiani, A. Ghirri, S. Carretta, P. Santini, G. Amoretti,
C. Muryn, F. Tuna, G. Timco, E.J.L. McInnes, R.E.P. Winpenny, W. Wernsdorfer, and
M. Affronte, Phys. Rev. Lett. 104, 037203 (2010)

[19] P. Santini, S. Carretta, F. Troiani, and G. Amoretti, Phys. Rev. Lett. 107, 230502 (2011)

[20] P. Gütlich, A. Hauser, and H. Spiering, Angew. Chem. 106, 2109 (1994)

[21] Y.-Z. Zheng, M. Evangelisti, and R.E.P. Winpenny, Chem. Sci. 2, 99 (2011)

[22] J.W. Sharples, Y.-Z. Zheng, F. Tuna, E.J.L. McInnes, and D. Collison,
Chem. Commun. 47, 7650 (2011)

[23] X. Chen, Y.-S. Fu, S.-H. Ji, T. Zhang, P. Cheng, X.-C. Ma, X.-L. Zou, W.-H. Duan,
J.-F. Jia, and Q.-K. Xue, Phys. Rev. Lett. 101, 197208 (2008)

[24] M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A.M. Ta-
larico, M.-A. Arrio, A. Cornia, D. Gatteschi, and R. Sessoli, Nat. Mater. 8, 194 (2009)

[25] M. Bernien, J. Miguel, C. Weis, M.E. Ali, J. Kurde, B. Krumme, P.M. Panchma-
tia, B. Sanyal, M. Piantek, P. Srivastava, K. Baberschke, P.M. Oppeneer, O. Eriksson,
W. Kuch, and H. Wende, Phys. Rev. Lett. 102, 047202 (2009)
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1 Introduction

The theoretical description of electronic materials in the crossover regime between fully local-
ized and fully itinerant electrons continues to be one of the greatest challenges in theoretical
physics. The most profound problem in this field – the origin of high-temperature superconduc-
tivity – remains unsolved despite more than a quarter century of research. Recently, however,
the experimental investigation of correlated-electron materials has made astounding progress,
based on advances in materials synthesis and experimental methodology. As a result, the overall
situation in this research field now looks very different than it did just ten years ago. Whereas
some theoretical challenges appear less formidable than they did at that time, unforeseen new
issues have been raised by the latest experiments. In this chapter, we will briefly summarize
some of these developments, and then discuss some concrete challenges for theoretical research
on cuprate superconductors in more detail. The emphasis will be on results obtained by spec-
troscopic methods.

A particularly influential development on the materials front has been the discovery and sub-
sequent exploration of high-temperature superconductivity in iron pnictides and chalcogenides.
Although these compounds exhibit a completely different chemical composition and lattice
structure from the copper oxides, the phase diagrams of both classes of materials are closely
related [1]. In particular, antiferromagnetically ordered phases at commensurate valence elec-
tron configuration are surrounded by superconducting phases at both lower and higher electron
density. The observation of closely analogous low-energy spin fluctuations (including the so-
called “resonant mode”) in the superconducting regimes of the phase diagram [2] has further
highlighted the analogy to the cuprates and the case for magnetic mechanisms of Cooper pair-
ing. At the same time, the antiferromagnetic state in the iron-based materials is a metallic spin
density wave, rather than a Mott insulator with fully localized electrons. This implies that high-
temperature superconductivity is not confined to “doped Mott insulators” – a class of systems
in which the combination of strong correlations and disorder poses particularly profound the-
oretical problems. A theoretical approach to the high-Tc problem from the metallic limit with
more effectively screened Coulomb interactions and a well-defined Fermi surface now appears
much more promising than it did before the discovery of the iron-based superconductors.

A related breakthrough on the experimental front was made possible by the recently devel-
oped capability of carrying out transport and thermodynamic measurements in magnetic fields
up to 100 T. Combined with the availability of single-crystal samples with very long transport
mean free paths (including especially the stoichiometric underdoped compounds YBa2Cu3O6.5

and YBa2Cu4O8), such experiments have led to the discovery of quantum oscillations indica-
tive of Landau quasiparticles in underdoped cuprates [3–8], adding to earlier data on over-
doped compounds [9, 10] above their respective critical fields. Quantum oscillations have also
been observed in several iron pnictide superconductors, including the stoichiometric compounds
LiFeAs and LiFeP [11]. Fermionic quasiparticles are thus a generic feature of high-temperature
superconductors over a wide range of doping levels. This speaks in favor of theories based
on Cooper pairing of conventional quasiparticles, and against various more exotic models of
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high-Tc superconductivity.
The last decade also saw increasingly insightful experiments with scanning tunneling spec-
troscopy on correlated-electron materials, including the copper-based, iron-based, and heavy-
fermion superconductors. These experiments opened our eyes to nanoscale inhomogeneities of
the electron density induced by randomly placed dopant atoms in some of the most extensively
investigated materials including superconducting Bi2Sr2CuO6+δ and Bi2Sr2CaCu2O8+δ [12,13].
Because of the low carrier density, the Coulomb potential of the ionized donor and acceptor
atoms is much more poorly screened than in conventional metals. This can lead to a pronounced
inhomogeneous broadening of spectroscopic features in volume-averaging experiments (includ-
ing especially photoemission spectroscopy) on non-stoichiometric materials. These extrinsic
effects must be considered before interpreting broad spectroscopic features as evidence of non-
Fermi-liquid behavior. Disorder and inhomogeneity have also led to the development of a new
technique, quasiparticle interference (QPI) spectroscopy [14], as a powerful phase-sensitive
probe of the superconducting order parameter in both copper- [15] and iron-based [16] super-
conductors.
Further, the research field has benefitted greatly from the increase in energy resolution of
spectroscopic probes such as inelastic neutron scattering (INS), angle-resolved photoemission
spectroscopy (ARPES), and (non-resonant) inelastic x-ray scattering (IXS), which can now
be performed with resolutions of 1 µeV in the former and 1 meV in the latter two. While
high-resolution INS is yielding new insights into “spin freezing” phenomena in both copper
oxides [17] and iron arsenides [18], high-resolution ARPES has not only led to a detailed de-
scription of the energy and momentum dependence of the superconducting gap function in
high-temperature superconductors [19], but has recently also provided equivalent data sets for
NbSe2 and other classical charge density wave materials with smaller gaps [20, 21]. Notably,
these experiments have led to the discovery of a “pseudogap” and “Fermi arcs” above the CDW
transition temperature in TaSe2 and NbSe2 [20, 21]. High-resolution IXS experiments provide
detailed insights into the role of the electron-phonon interaction in driving charge-density-wave
formation [22–24]. Following these developments, spectroscopic data on cuprates [22] can now
be calibrated against the behavior of their more conventional cousins [23, 24].
Over the past five years, resonant elastic (REXS) and inelastic (RIXS) x-ray scattering have
had a tremendous impact in research on correlated-electron systems. REXS allows the de-
termination of spin, charge, and orbital order of the valence electron system with very high
sensitivity [25], and has been instrumental for the recent discovery of charge density waves in
bulk copper-oxide superconductors [26–30]. RIXS, on the other hand, was known ten years ago
mainly as a momentum-resolved probe of interband transitions in the 1-5 eV range, quite sim-
ilar to electron energy loss spectroscopy. Following a phenomenal improvement of the energy
resolution by about an order of magnitude [31], RIXS experiments have resolved orbital and
spin excitations in a variety of metal oxides, including recently the copper-oxide [32–35] and
iron-pnictide [36] superconductors. With its high sensitivity to high-energy excitations, which
is complementary to INS, RIXS is becoming an increasingly powerful spectroscopic probe of
correlated-electron materials.
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These developments on the experimental front have opened up various new theoretical chal-
lenges that could hardly be foreseen a decade ago. First, the theoretical foundation for some
of the new techniques is far from complete, and it will sometimes go hand-in-hand with the
understanding of the systems to be investigated. Whereas the expression of the non-resonant
x-ray and neutron scattering cross sections in terms of density-density and spin-spin correla-
tions is generally understood and accepted, an analogous formalism for REXS and RIXS is still
under development. It is already clear that a comprehensive description of the photon energy
dependence of the REXS and RIXS cross sections will have to take Coulomb interactions into
account – the same interactions whose low-energy manifestation are the subject of investiga-
tion. Similarly, a comprehensive understanding of QPI in tunneling spectroscopy will require
detailed information about the defects that scatter the quasiparticles. Even more fundamen-
tal challenges are raised by the theoretical description of pump-probe techniques that take the
correlated-electron system far out of thermal equilibrium.
Here we will highlight some theoretical challenges from recent experiments that can be spelled
out independent of technical details of the experimental probes.

2 Magnetic order

The generic phase diagram of the copper oxides (Fig. 1) includes a Mott-insulating phase cen-
tered around the doping level p = 0 corresponding to a single hole per Cu site in the CuO2

planes, and a d-wave superconducting phase extending from p ∼ 0.05 to ∼ 0.25. In the Mott-
insulating phase, commensurate, collinear antiferromagnetic order is observed with ordering
wave vector q = (π, π) (in a notation in which the nearest-neighbor lattice parameter a ∼ 3.8 Å
is set to unity). Static magnetic order persists at low temperatures over some range of p, but the
ordering wave vector is shifted away from (π, π). In both La2−xSrxCuO4 and YBa2Cu3O6+x,
the two systems where the doping-induced commensurate-incommensurate transition has been
studied in detail, the amplitude of the magnetization in this state remains a substantial fraction of
the antiferromagnetic sublattice magnetization at p = 0, and the incommensurability δ increases
monotonically with p [17, 39, 40]. The direction of the propagation vector in both compounds
is different (along the Cu-O bond in YBa2Cu3O6+x, and 45◦ away from it in La2−xSrxCuO4 for
0.02 ≤ p ≤ 0.05).
High-resolution neutron scattering and muon spin rotation (µSR) studies of YBa2Cu3O6.35 with
p ∼ 0.06 have demonstrated that the incommensurate magnetic order at wave vector (π ±
δ, π) is highly unstable to thermal fluctuations [17]. Even at temperatures of a few Kelvin, the
signatures of static magnetic order in both sets of experiments are replaced by those of a slowly
relaxing local magnetization. The “wipeout” of the nuclear magnetic resonance signals in other
underdoped cuprates at low temperatures has also been attributed to slow spin fluctuations of
this kind [41, 42]. This behavior is consistent with the “critical slowing down” expected in
proximity to a zero-temperature phase transition in two-dimensional Heisenberg systems [43]
in combination with disorder due to dopant atoms that limit the exponential divergence of the
spin-spin correlation length at low temperatures [44].
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Fig. 1: Phase diagram of YBa2Cu3O6+x. The Néel temperature, TN , and superconducting
transition temperature, Tc, were taken from Refs. [37] and [38], respectively. The red line
indicates the stability range of static incommensurate magnetic order. Pink and purple shaded
regions indicate temperature and doping regimes with low-energy incommensurate spin and
charge correlations, respectively. The insets show diagrams illustrating INS and RIXS from
spin excitations, as well as sketches of the dispersion and spectral weight distribution of the
spin excitations around the antiferromagnetic ordering wavevector q = (π, π) in the different
regimes of the phase diagram.

Upon further heating, low-energy spin fluctuations persist, but the incommensurability δ de-
creases continuously with increasing temperature. At temperatures exceeding T ∼ 150 K, the
signature of the uniaxial magnetic modulation is no longer visible in the neutron scattering data,
and the magnetic response is centered at q = (π, π). The order-parameter-like temperature de-
pendence of δ is consistent with a proximate “nematic” phase transition where the fourfold
rotational symmetry of the CuO2 layers is spontaneously broken [45]. In the orthorhombic
crystal structure generated by the oxygen dopant atoms in YBa2Cu3O6+x with x ≥ 0.2, this
transition is expected to be broadened into a crossover. Thermodynamic singularities akin to
those associated with a nematic transition in tetragonal Sr3Ru2O7 [46] are indeed not observed
in the cuprates. However, the observation of a similar temperature-driven incommensurate-
commensurate transition in lightly doped La2−xBaxCuO4 [47] shows that it reflects an intrinsic
trend of the correlated electrons in the CuO2 planes, rather than subtleties of the crystal structure
of specific compounds such as the chains of oxygen dopant atoms in YBa2Cu3O6+x. Uniaxially
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modulated spin structures with unusual thermal properties thus appear to be a generic feature of
all cuprates at doping levels close to the Mott-insulating phase.
In some compounds with intrinsically low superconducting Tc, including especially materials
with composition La2−xBaxCuO4 and La2−x−ySrx(Nd,Eu)yCuO4 (“214 compounds”) that ex-
hibit the “low-temperature tetragonal” (LTT) crystal structure, uniaxial incommensurate mag-
netic order with wave vectors q = (π ± δ, π) and (π, π ± δ) has also been observed at higher
doping levels, in some cases up to p ∼ 0.15 [48–55]. Corresponding charge-modulation peaks
at q = (2δ, 0) and q = (0, 2δ) indicate that these magnetic peaks arise from a uniaxial (“stripe”)
modulation of the spin amplitude. Static stripe order is only observed in compounds with the
LTT structure whose primitive vectors are parallel to the stripe propagation vector – a situation
that favors pinning to the lattice. Orthorhombic La2−xSrxCuO4 does not exhibit stripe order, but
low-energy spin fluctuations with the same momentum-space signature have been interpreted
as evidence of fluctuating stripes [49, 51].
In all other cuprates investigated so far, static magnetic order disappears for p & 0.07, and the
magnetic excitation spectrum determined by neutron scattering develops a sizable spin gap [56],
as expected for a magnetic quantum critical point. However, spinless Zn impurities in the
CuO2 planes nucleate static incommensurate magnetic order with a correlation length of a few
unit cells in the spin-gap regime [57, 58]. Even at an impurity concentration of less than 1%,
this leads to inhomogeneous coexistence between different electronic phases. Dopant-induced
disorder, which is particularly pronounced in the 214 compounds [59], may contribute to the
stability of the “stripe” phase in nominally pristine members of this family.

3 Charge order

Resonant [26, 28, 30] and nonresonant [27, 29] x-ray diffraction experiments on YBa2Cu3O6+x

samples in the doping regime 0.07 ≤ p ≤ 0.13 have revealed biaxial, incommensurate charge
density wave (CDW) correlations. Similar CDW correlations were demonstrated very recently
in REXS experiments [60] on Bi2Sr2CuO6+δ, Bi2Sr2CaCu2O8+δ, and HgBa2CuO4+δ, indicat-
ing that incommensurate biaxial CDW correlations are a universal feature of the underdoped
cuprates. The recent REXS experiments are qualitatively consistent with prior STS measure-
ments that have revealed charge modulations in several cuprate families [61–63]. However,
since the CDW features are superposed by electronic reconstructions induced by incommen-
surate lattice modulations in the former two compounds (some of which have turned out to be
surface sensitive [64]), they are more difficult to interpret than those in YBa2Cu3O6+x.
The compilation of REXS data on YBa2Cu3O6+x in Fig. 2 shows a continuous increase of the
amplitude and a reduction of the wave vector of these correlations with increasing p. On a quali-
tative level, the doping dependence of the CDW wave vector (Fig. 3) tracks the distance between
the antinodal regions of the Fermi surface (Fig. 4), which shrinks as the Fermi surface expands
with increasing doping level. A quantitative comparison with ARPES data, however, reveals a
better agreement with the distance between the tips of the “Fermi arcs” where the density of
states is enhanced due to the opening of the pseudogap [60]. This suggests an intimate rela-
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Fig. 2: REXS scans with photon energy tuned to the L-absorption edges of planar copper atoms
in YBa2Cu3O6+x. The scans are along q = (0, K) in the CuO2 layers, where K is measured
in reciprocal lattice units (r.l.u.). The labels Ortho-II, III, and VIII refer to the arrangement of
oxygen dopant atoms [26, 28, 30].

tionship between the “Fermi arc” phenomenon and the CDW that should be further explored.
Both the intensity and the correlation length of the CDW peaks grow upon cooling and exhibit
pronounced maxima at the superconducting Tc [26–30]. This directly demonstrates competition
between superconductivity and CDW formation, which predominantly affects electronic states
near the antinodal regions of the Fermi surface. The strong competition between both types of
order implied by these findings also explains the well-known plateau in the Tc-versus-p relation.

Very recent high-resolution IXS data [22] have shown large anomalies of acoustic phonons as-
sociated with CDW formation, as well as a “central peak” indicative of static CDW regions
nucleated by lattice defects. Pinning of soft phonons associated with structural phase transi-
tions has also been observed in classical materials such as SrTiO3 and Nb3Sn, albeit over a
much narrower temperature range. The persistence of this domain state over a much wider tem-
perature range than corresponding phenomena in classical materials [65, 66] probably reflects
the strong competition between CDW correlations and superconductivity. The nanoscale CDW
domains revealed by these experiments will certainly contribute to the anomalous transport and
thermodynamic properties of the underdoped cuprates. Both the central peak and the acoustic-
phonon anomalies abruptly disappear in optimally doped YBa2Cu3O7 [22], indicating that the
nanoscale inhomogeneity is detrimental to high-temperature superconductivity. We note, how-
ever, that superconductivity-induced anomalies of the Cu-O bond-bending phonon around the
CDW wave vector have also been observed in YBa2Cu3O7 [67]. These findings indicate an
underlying zero-temperature CDW critical point [68], which deserves further experimental and
theoretical investigation.
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Fig. 3: Doping dependence of the CDW wavevector in YBa2Cu3O6+x [26, 28, 30], compared to
the wave vector characterizing charge order in the “striped” state of La2−xBaxCuO4 [55].

Whereas in zero magnetic field the competition between superconductivity and CDW order
appears to preclude true CDW long-range order, recent NMR [69] and ultrasound [70] exper-
iments have provided evidence of static CDW order and a thermodynamic CDW phase tran-
sition in high magnetic fields, where superconductivity is either greatly weakened or entirely
obliterated. This is consistent with the reduction of the CDW peak intensity observed in REXS
experiments in moderate magnetic fields [27, 29, 30]. In the presence of CDW long-range or-
der, a Fermi surface reconstruction leading to the formation of small pockets is expected. Al-
though this is an appealing explanation of the recent quantum oscillation data on stoichiometric
YBa2Cu3O6.5 and YBa2Cu4O8 [3,7], a comprehensive, quantitatively consistent explanation of
REXS and quantum oscillation data has not yet been reported.

4 Spin fluctuations

Since the discovery of the d-wave symmetry of the superconducting gap function, spin-fluc-
tuation-mediated Cooper pairing has been one of the leading contenders in the quest for the
mechanism of high-temperature superconductivity [1]. By combining INS and RIXS data, we
now have detailed and comprehensive information about the spin fluctuation spectrum, which
can be used as a basis for stringent tests of these models. We provide a brief survey of recent
results on the doping evolution of the spin excitations, before discussing their implications for
spin-fluctuation-mediated pairing theories.
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Fig. 4: Left panel: Kinematics of spin (red and green arrows) and charge (purple arrows)
fluctuation scattering of quasiparticles on the Fermi surface of a bilayer compound such as
YBa2Cu3O6+x. Black solid and dashed lines correspond to Fermi surfaces in antibonding and
bonding bands, respectively. The inset shows a sketch of the d-wave superconducting gap func-
tion. Right panel: Spin fluctuation intensity in YBa2Cu3O6.6 along the (H,H) direction in
the CuO2 planes. H is measured in reciprocal lattice units, so that H = 0.5 corresponds to
q = (π, π) [121].

In the Mott insulating state, the spin excitations determined by INS are well described as
magnon modes of the 2D Heisenberg model with nearest-neighbor superexchange interaction
J ∼ 130 − 140 meV. The magnons emerge from the antiferromagnetic ordering wave vector
q = (π, π) and are nearly gapless due to the weak magneto-crystalline anisotropy of the Cu ions
(Fig. 1) [39,40]. In bilayer compounds such as YBa2Cu3O6, an additional superexchange inter-
action between spins in directly adjacent CuO2 layers, J⊥ ∼ 0.1J , has to be taken into account.
This leads to a non-generic optical magnon branch with a gap of 70 meV at q = (π, π) [71,72].
All other exchange interactions are significantly weaker.
In compounds with incommensurate magnetic order, including lightly doped YBa2Cu3O6+x

and La2−xSrxCuO4, as well as moderately doped, stripe-ordered La2−xBaxCuO4 with x = 1/8,
gapless spin excitations emerge from the magnetic Bragg reflections (Fig. 1). Contrary to the
magnon excitations in the commensurate antiferromagnet, however, these excitations do not
follow the predictions of the linear spin wave theory, which for incommensurate magnets pre-
dicts spin wave “cones” with approximately uniform spectral weights along their rims, at least
at low energies [76]. Instead, intense low-energy excitations emanating from the incommen-
surate magnetic reflections first disperse towards q = (π, π), then bend over and approach
the magnon branch of the insulating cuprates. With increasing excitation energy, cuts of the
magnetic dispersion surface along the ordering wavevector thus resemble an “hourglass” with
an open neck around q = (π, π) at ~ω ∼ 30 − 50 meV [73, 75]. Similar hourglass disper-
sions have recently also been observed in insulating manganates [83] and cobaltates [84] with
incommensurate magnetic order.
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Whereas in the cuprates with 214 structure the magnetic excitations in the normal state re-
main nearly gapless even when static magnetic order is not present, the spectral weight of
low-energy spin excitations in YBa2Cu3O6+x and other compounds with higher maximal Tc is
strongly reduced, so that the excitation spectrum can be approximated as a gapped version of the
“open hourglass” spectrum in the state with incommensurate magnetic order (Fig. 1) [56, 74].
This is consistent with a quantum phase transition between magnetically ordered and quantum-
disordered phases.
The momentum distribution of the spin excitation intensity is similar in underdoped cuprates
with and without magnetic order. Below the neck of the hourglass, it exhibits a uniaxial
anisotropy, reflecting the uniaxial nature of the (real or proximate) ground state [74]. At ex-
citation energies above the neck, it displays fourfold symmetry. This aspect cannot be repro-
duced by calculations attributing the spin modulation to static “stripes” [77, 78], but it is cor-
rectly captured by models incorporating strong charge fluctuations on top of the “striped” back-
ground [79, 80], and by models of spin fluctuations in metals near a nematic instability [81].
Models based on a spiral ground state also reproduce many of the salient features of the mag-
netic excitations [82].
In the superconducting state of YBa2Cu3O6+x, the neck of the hourglass closes, and a sharp
“resonant” mode with a downward dispersion is formed below the superconducting energy gap
(Fig. 1). As a prominent signature of magnetically mediated Cooper pairing, this mode has been
studied very extensively [2,85–97]. Its energy increases with increasing p up to optimal doping,
and decreases in the overdoped state, qualitatively following the “dome” in the Tc-versus-p rela-
tion. Similar observations have been made in other compounds with optimal Tc around 90 K, in-
cluding Bi2Sr2CaCu2O8+δ [98–100], Tl2Ba2CuO6+δ [101], and HgBa2CuO4+δ [102]. Magnetic
resonant modes have also been observed in iron pnictide [106–108] and heavy-fermion super-
conductors [109–111], and thus appear generic to superconductors near an antiferromagnetic
instability. In overdoped cuprates, the spectral weight of the low-energy spin excitations around
q = (π, π), including the one of the resonant modes below Tc, is gradually reduced [103–105],
and disappears entirely (to within the sensitivity of INS) in strongly overdoped La1.78Sr0.22CuO4

(p = 0.22) [116, 117].
Based on these observations, and on related anomalies in fermionic spectral functions, the res-
onant mode has been attributed to a feedback effect of the Cooper pairing interaction on low-
energy spin fluctuations that mediate the pairing interactions [1,112,121]. Note that the BCS co-
herence factors in the dynamical spin susceptibility extinguish the spectral weight of the mode,
unless the sign of the superconducting gap function changes sign at the Fermi surface. The
observation of the resonant mode has therefore been taken as evidence for d-wave pairing sym-
metry in the cuprates [1,87,113], and of s± symmetry in the iron pnictides [106–108,114,115].
The spin dynamics for ~ω . 100 meV thus reflects the ground state of the spin system, which
strongly evolves with temperature and doping and is influenced by details of the crystal and
electronic structure of different cuprate families. On the other hand, recent RIXS measurements
on YBa2Cu3O6+x over a wide range of doping levels have shown that spin fluctuations with ex-
citation energies ~ω & 100 meV are weakly doping and temperature dependent, and that their
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dispersion relations and energy-integrated spectral weights remain closely similar to antifer-
romagnetic magnons in Mott-insulating YBa2Cu3O6+x [33]. Very recently, we have extended
these experiments to highly overdoped Tl2Ba2CuO6+δ (p = 0.27), a compound that features a
single, isolated CuO2 plane per formula unit and very low intrinsic disorder [34]. In analogy
to the spin excitations above the ordering temperature of insulating magnets, the “paramagnon”
excitations in the cuprates are indicative of short-range correlations between localized spins.
Since ARPES [118], angle-dependent magnetoresistance [9], and quantum oscillation [10] ex-
periments on Tl2Ba2CuO6+δ have demonstrated canonical Fermi-liquid behavior with a Fermi
surface that agrees quantitatively with the predictions of density functional theory, the persis-
tence of magnon-like excitations well into the Fermi-liquid regime of the cuprates is highly
surprising. Related results have been reported for highly overdoped La2−xCaxCuO4 [35].

5 Spin-fluctuation-mediated superconductivity

Are these spin excitations mediators of the Cooper pairing interaction, or are they simply by-
standers? The appearance of the magnetic resonant mode in the superconducting state indicates
that the low-energy excitations near q = (π, π) are intimately involved in the formation of the
superconducting state. The absolute spectral weight of the resonant mode translates into an ex-
change energy that is comparable to the superconducting condensation energy [88,97,119]. The
recently detected superconductivity-induced enhancement of the two-magnon Raman scattering
cross section (which is dominated by high-energy spin excitations near the antiferromagnetic
zone boundary) in HgBa2CuO4+δ indicates that higher-energy excitations also experience sig-
nificant feedback effects [120]. Feedback effects over the entire paramagnon spectrum are not
unexpected, because (unlike phonons in conventional superconductors) the spin excitations are
generated by the same electrons that form the Cooper pairs. Converse evidence gleaned from
photoemission [123] and optical [124–126] spectroscopies also indicate substantial coupling
between conduction electrons and bosonic excitations with a bandwidth of ∼ 300 meV (com-
parable to that of the paramagnon spectrum), although based on these data alone it is hard
to determine whether or not this coupling contributes positively to the d-wave Cooper pairing
interaction.
These results have encouraged us and our collaborators to go a step further towards a quanti-
tative description of spin-fluctuation mediated Cooper pairing. Specifically, we have taken the
experimentally measured spin fluctuation spectra of YBa2Cu3O6.6 [121] and YBa2Cu3O7 [33]
as input for Eliashberg calculations of the superconducting gap, ∆, and Tc. These calculations
are carried out in the framework of the “spin-fermion” model, which treats the spin excitations
in a manner analogous to phonons in conventional superconductors. Given the failure of similar
calculations to quantitatively describe the microscopic parameters of conventional superconduc-
tors, it is not unreasonable to be skeptical about their prospects for these highly correlated mate-
rials. One has to keep in mind, however, that most conventional superconductors have complex
Fermi surfaces and many phonon branches, and that the momentum-dependent electron-phonon
interaction is difficult to measure or compute accurately. Uncertainties in either of these quan-
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tities translate into large errors in ∆ and Tc. In the cuprates, only a single electronic band and
a single excitation branch is relevant near the Fermi surface (apart from minor complications in
materials with multilayer structures), and information about the spin-fermion coupling can be
extracted from spectroscopic data, greatly reducing the associated uncertainties.

The spin-fermion model ultimately needs to be rigorously justified. On a qualitative level,
however, it appears promising at least for optimally doped and overdoped materials, whose
spin excitations are gapped and do not exhibit quantum-critical behavior, and whose Fermi
surfaces are not strongly affected by the “pseudogap”. Herein lies the importance of the recent
RIXS experiments, which have supplied detailed information about the spin excitations in the
optimally and overdoped regimes of materials with intrinsically high Tc [33,34]. Lightly doped
materials with incommensurate magnetic order and 214 materials close to a “stripe” instability,
which have been extensively characterized by INS [39], clearly require a different theoretical
treatment.

In the Eliashberg calculations for YBa2Cu3O6+x, spin excitations extending from the spin gap at
q = (π, π) up to ~ω ∼ 200 meV, which scatter electrons between states in lobes of the d-wave
superconducting gap function with opposite sign, are pair forming [33,34]. The highest-energy
excitations near the antiferromagnetic zone boundary are indifferent to d-wave pairing, while
those near q = 0, which scatter electrons within the same lobe of the gap function, are pair
breaking. Since the latter excitations have much lower spectral weight than those near q =

(π, π), this pair-breaking effect only leads to a minor reduction of Tc. Because of kinematical
constraints, RIXS detects predominantly low-q spin excitations that are only weakly involved
in Cooper pairing. The recently reported weak doping-dependence of the RIXS cross section
in the overdoped regime [34,35], where Tc depends strongly on p, therefore does not contradict
spin fluctuation mediated Cooper pairing models. We note that INS data do in fact show a
strong decrease of the spectral weight of spin fluctuations near q = (π, π) at high p, consistent
with a reduction of the Cooper pairing strength [116, 117].

The Eliashberg calculations predict a superconducting transition temperature Tc ∼ 170 K
and gap ∆ ∼ 60 meV, about a factor of two larger than the experimental observations for
YBa2Cu3O7 [33, 121]. Interestingly, infrared conductivity experiments have provided evidence
of superconducting fluctuations in underdoped YBa2Cu3O6+x up to temperatures of order 180
K [127], suggesting that the outcome of the mean-field Eliashberg calculations is physically
meaningful. In view of the experimental data presented in the previous section, competition
from CDW order is likely to be a major factor in the suppression of Tc from its mean-field
value. The calculations also account for the “kinks” in the electronic band dispersions in a
quantitatively consistent manner [121, 122]. These results, along with other efforts along the
same lines [128, 129] give rise to the hope that a systematic improvement of these calculations
– combined with more complete and accurate experimental data – will finally lead to a quanti-
tative understanding of high-Tc superconductivity.
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6 Challenges for theory

In summary, advances in experimental research have yielded a detailed, consistent picture of the
phase behavior and spin dynamics of the cuprates over a wide range of doping levels. Although
our knowledge is still far from complete – further experimental work is required especially in
the overdoped regime – the data now at hand are already an excellent basis for the assessment of
spin-fluctuation-mediated pairing models. The recent experimental results present the following
specific challenges for theoretical research.
First, based on the most recent experimental data, the interplay between spin and charge exci-
tations, as well as the origin of the “pseudogap” and “Fermi arc” phenomena and their relation-
ship to the phase behavior of underdoped cuprates can now be addressed in a well defined and
quantitative manner. Recent analytical calculations have already yielded interesting insights in
this regard [128, 130]. Numerical work on strong-correlation models, which has shown that a
momentum dependent pseudogap can arise as a consequence of on-site Coulomb interactions,
should now be able to compute the momentum dependent charge susceptibility, and compare
the results with experimental data. Corresponding data on more weakly correlated metals such
as NbSe2 are available for comparison [20, 21].
Consideration of the competition between CDW order and superconductivity should lead to a
systematic improvement of the Eliashberg calculations for spin-fluctuation-mediated supercon-
ductivity [33, 121]. Along the same lines, theoretical work is required to explore the suitabil-
ity and limitations of the spin-fermion model underlying these calculations from microscopic
Hamiltonians such as the Hubbard model [1]. Analytical or numerical calculations of the Hub-
bard model should explore whether such models can explain the experimentally observed per-
sistence of magnon-like excitations up to at least p ∼ 0.3 [34].
The latest set of IXS measurements on acoustic-phonon energies and linewidths [22] show
that a complete understanding of the underdoped cuprates will require detailed knowledge of
the electron-phonon interaction. Combined with ARPES data on low-energy anomalies in the
electronic band dispersions, the IXS data will enable a new approach to the evaluation of the
electron-phonon coupling strength. Although earlier INS measurements on Cu-O bond-bending
and -stretching vibrations at energies 40-80 meV had yielded evidence of substantial electron-
phonon interactions [131–135], it has been difficult to correlate these data quantitatively with
ARPES, because multiple closely spaced phonon modes and spin fluctuations are present in this
energy range. The data on acoustic phonons now allow a detailed evaluation of the coupling
constants in the different channels (s- and d-wave Cooper pairing and CDW formation).
Collective excitations (such as phasons and amplitudons) associated with charge density wave
order, their hybridization with phonons, and their influence on thermodynamic and transport
properties should be explored theoretically. Specific predictions for the RIXS cross section
of such excitations will also be useful. The influence of disorder on incommensurate CDW
correlations and on the thermodynamic and transport properties should be addressed, in a man-
ner analogous to recent work on disordered incommensurate magnets [44, 57]. Specifically,
it should be interesting to explore how disorder influences the nature of the thermodynamic
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singularities associated with CDW formation.
What is the origin of the differences in spin- and charge-ordering patterns in the different cuprate
families? The “striped” phase with combined uniaxial spin and charge order in the 214 materi-
als, which has drawn an enormous amount of attention over the past two decades, now appears
to be atypical for the cuprates, whereas a spin-gapped state with biaxial incommensurate charge
order appears to be generic. Note, however, that the total amplitude of the charge modula-
tion in the striped and CDW states is closely similar [137]. In addition to differences in the
Fermi surface geometry (especially the nesting conditions) in different compounds, theoretical
work should address the role of soft phonons associated with low-temperature structural phase
transitions, which are unique to the 214 family [136].
Finally, both experimental and theoretical research is required to finally settle the issue of the
theoretically predicted loop-current order with q = 0 [138]. Progress in experimental research
is required to resolve the apparent contradiction between elastic neutron scattering experiments
(based on which discovery claims have been made), and NMR and µSR experiments (which
have led to null results). Likewise, theoretical work has led to divergent claims about the stabil-
ity of loop-current order, which need to be conclusively resolved.

7 Outlook

This brief review shows that we have come a long way in our understanding of the electronic
properties of the cuprates, and of the mechanism of high-Tc superconductivity. Of course, bona-
fide predictions will be the ultimate test of any theoretical understanding we believe to have
gained. The recently acquired capability to synthesize transition-metal oxide heterostructures
and superlattices with atomic-scale precision [139, 140] now offers many new perspectives in
this regard. Promising proposals include the manipulation of charge transfer across metal-oxide
interfaces [141, 142], and “re-engineering” of the cuprate Hamiltonian in nickelate perovskites
by strain and spatial confinement [143]. The latter proposal has stimulated efforts to control the
effective dimensionality [144], orbital degeneracy [145], and phase behavior [146] in nickelates.
Superconductivity has not yet been observed, but it is still early days.
Dynamical control of the cuprates by light stimulation is another field that is just beginning to be
explored. Among the early achievements in this newly emerging field are photoinduced super-
conductivity in a stripe-ordered 214 compound [147] and the enhancement of Tc in underdoped
YBa2Cu3O6+x [148]. With further development, controlled pumping of single excitations may
ultimately develop into a powerful new way of testing theories of correlated-electron materials.
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Phys. Rev. B 83, 092503 (2011)

[54] S.B. Wilkins, M.P.M. Dean, J. Fink, M. Hücker, J. Geck, V. Soltwisch, E. Schierle,
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Regroupement québécois sur les matériaux de pointe
Canadian Institute for Advanced Research
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1 Introduction

Band theory and the BCS-Eliashberg theory of superconductivity are arguably the most suc-
cessful theories of condensed matter physics by the breadth and subtlety of the phenomena they
explain. Experimental discoveries, however, clearly signal their failure in certain cases. Around
1940, it was discovered that some materials with an odd number of electrons per unit cell, for
example NiO, were insulators instead of metals, a failure of band theory [1]. Peierls and Mott
quickly realized that strong effective repulsion between electrons could explain this (Mott) in-
sulating behaviour [2]. In 1979 and 1980, heavy fermion [3] and organic [4] superconductors
were discovered, an apparent failure of BCS theory because the proximity of the superconduct-
ing phases to antiferromagnetism suggested the presence of strong electron-electron repulsion,
contrary to the expected phonon-mediated attraction that gives rise to superconductivity in BCS.
Superconductivity in the cuprates [5], in layered organic superconductors [6,7], and in the pnic-
tides [8] eventually followed the pattern: superconductivity appeared at the frontier of antiferro-
magnetism and, in the case of the layered organics, at the frontier of the Mott transition [9, 10],
providing even more examples of superconductors falling outside the BCS paradigm [11, 12].
The materials that fall outside the range of applicability of band and of BCS theory are often
called strongly correlated or quantum materials. They often exhibit spectacular properties, such
as colossal magnetoresistance, giant thermopower, high-temperature superconductivity etc.

The failures of band theory and of the BCS-Eliashberg theory of superconductivity are in fact
intimately related. In these lecture notes, we will be particularly concerned with the failure of
BCS theory, and with the understanding of materials belonging to this category that we call
strongly correlated superconductors. These superconductors have a normal state that is not a
simple Fermi liquid and they exhibit surprising superconducting properties. For example, in
the case of layered organic superconductors, they become better superconductors as the Mott
transition to the insulating phase is approached [13].

These lecture notes are not a review article. The field is still evolving rapidly, even after more
than 30 years of research. My aim is to provide for the student at this school an overview of
the context and of some important concepts and results. I try to provide entries to the literature
even for topics that are not discussed in detail here. Nevertheless, the reference list is far from
exhaustive. An exhaustive list of all the references for just a few sub-topics would take more
than the total number of pages I am allowed.

I will begin by introducing the one-band Hubbard model as the simplest model that contains
the physics of interest, in particular the Mott transition. That model is 50 years old this year
[14–16], yet it is far from fully understood. Section 3 will use antiferromagnetism as an example
to introduce notions of weak and strong correlations and to contrast the theoretical methods that
are used in both limits. Section 4 will do the same for superconductivity. Finally, Section 5
will explain some of the most recent results obtained with cluster generalizations of dynamical
mean-field theory, approaches that allow one to explore the weak and strong correlation limits
and the transition between both.
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2 The Hubbard model

The one-band Hubbard model is given by

H = −
∑
i,j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ (1)

where i and j label Wannier states on a lattice, c†iσ and ciσ are creation and annihilation operators
for electrons of spin σ, niσ = c†iσciσ is the number of spin σ electrons on site i, tij = t∗ji are
the hopping amplitudes, which can be taken as real in our case, and U is the on-site Coulomb
repulsion. In general, we write t, t′, t′′ respectively for the first-, second-, and third-nearest
neighbour hopping amplitudes.

This model is a drastic simplification of the complete many-body Hamiltonian, but we want
to use it to understand the physics from the simplest point of view, without a large number of
parameters. The first term of the Hubbard model Eq. (1) is diagonal in a momentum-space
single-particle basis, the Bloch waves. There, the wave nature of the electron is manifest. If the
interaction U is small compared to the bandwidth, perturbation theory and Fermi liquid theory
hold [17, 18]. This is called the weak-coupling limit.

The interaction term in the Hubbard Hamiltonian, proportional to U , is diagonal in position
space, i.e., in the Wannier orbital basis, exhibiting the particle nature of the electron. The mo-
tivation for that term is that once the interactions between electrons are screened, the dominant
part of the interaction is on-site. Strong-coupling perturbation theory can be used if the band-
width is small compared with the interaction [19–23].

Clearly, the intermediate-coupling limit will be most difficult, the electron exhibiting both wave
and particle properties at once. The ground state will be entangled, i.e. very far from a product
state of either Bloch (plane waves) of Wannier (localized) orbitals. We refer to materials in the
strong or intermediate-coupling limits as strongly correlated.

When the interaction is the largest term and we are at half-filling, the solution of this Hamil-
tonian is a Mott insulating state. The ground state will be antiferromagnetic if there is not
too much frustration. That can be seen as follows. If hopping vanishes, the ground state is
2N -fold degenerate if there are N sites. Turning-on nearest-neighbour hopping, second or-
der degenerate perturbation theory in t leads to an antiferromagnetic interaction JSi · Sj with
J = 4t2/U [24, 25]. This is the Heisenberg model. Since J is positive, this term will be small-
est for anti-parallel spins. The energy is generally lowered in second-order perturbation theory.
Parallel spins cannot lower their energy through this mechanism because the Pauli principle for-
bids the virtual, doubly occupied state. P.W. Anderson first proposed that the strong-coupling
version of the Hubbard model could explain high-temperature superconductors [26].

A caricature of the difference between an ordinary band insulator and a Mott insulator is shown
in Figure 1. Refer to the explanations in the caption.
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Fig. 1: Figure from Ref. [27]. In a band insulator, as illustrated on the top-left figure, the
valence band is filled. For N sites on the lattice, there are 2N states in the valence band,
the factor of 2 accounting for spins, and 2N states in the conduction band. PES on the fig-
ures refers to “Photoemission Spectrum” and IPES to “Inverse Photoemission Spectrum”. The
small horizontal lines represent energy levels and the dots stand for electrons. In a Mott in-
sulator, illustrated on the top-right figure, there are N states in the lower energy band (Lower
Hubbard band) and N in the higher energy band (Upper Hubbard band), for a total of 2N as
we expect in a single band. The two bands are separated by an energy U because if we add an
electron to the already occupied states, it costs an energy U . Perhaps the most striking differ-
ence between a band and a Mott insulator manifests itself when the Fermi energy EF is moved
to dope the system with one hole. For the semiconductor, the Fermi energy moves, but the band
does not rearrange itself. There is one unoccupied state right above the Fermi energy. This
is seen on the bottom-left figure. On the bottom-right figure, we see that the situation is very
different for a doped Mott insulator. With one electron missing, there are two states just above
the Fermi energy, not one state only. Indeed one can add an electron with a spin up or down on
the now unoccupied site. And only N − 1 states are left that will cost an additional energy U if
we add an electron. Similarly, N − 1 states survive below the Fermi energy.

3 Weakly and strongly correlated antiferromagnets

A phase of matter is characterized by very general “emergent” properties, i.e., properties that
are qualitatively different from those of constituent atoms [28–30]. For example, metals are
shiny and they transport DC current. These are not properties of individual copper or gold
atoms. It takes a finite amount of energy to excite these atoms from their ground state, so they
cannot transport DC current. Also, their optical spectrum is made of discrete lines whereas
metals reflect a continuous spectrum of light at low energy. In other words, the Fermi surface
is an emergent property. Even in the presence of interactions, there is a jump in momentum
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occupation number that defines the Fermi surface. This is the Landau Fermi liquid [17, 18].
Emergent properties appear at low energy, i.e., for excitation energies not far from the ground
state. The same emergent properties arise from many different models. In the renormalization
group language, phases are trivial fixed points, and many Hamiltonians flow to the same fixed
point.
In this section, we use the antiferromagnetic phase to illustrate further what is meant by an
emergent property and what properties of a phase depend qualitatively on whether we are dom-
inated by band effects or by strong correlations. Theoretical methods appropriate for each limit
are described in the last subsection.

3.1 Antiferromagnets: A qualitative discussion

Consider the nearest-neighbour Hubbard model at half-filling on the cubic lattice in three di-
mensions. At T = 0, there is a single phase, an antiferromagnet, whatever the value of the
interaction U . One can increase U continuously without encountering a phase transition. There
is an order parameter in the sense of Landau, in this case the staggered magnetization. This order
parameter reflects the presence of a broken symmetry: time reversal, spin rotational symmetry
and translation by a lattice spacing are broken, while time reversal accompanied by translation
by a lattice spacing is preserved.
A single-particle gap and spin waves as Goldstone modes are emergent consequences of this
broken symmetry. Despite the fact that we are in a single phase, there are qualitative differences
between weak and strong coupling as soon as we probe higher energies. For example, at strong-
coupling spin waves, at an energy scale of J , persist throughout the Brillouin zone, whereas at
weak coupling they enter the particle-hole continuum and become Landau damped before we
reach the zone boundary. The ordered moment is saturated to its maximum value when U is
large enough but it can become arbitrarily small as U decreases.
The differences between weak and strong coupling are also striking at finite temperature. This is
illustrated in a schematic fashion in Fig. 2a. The Néel temperature TN , increases as we increase
U because the instability of the normal state fundamentally comes from nesting. In other words,
thinking again of perturbation theory, the flat parts of the Fermi surface are connected by the
antiferromagnetic wave vector Q = (π, π) which implies a vanishing energy denominator at
that wave vector and thus large spin susceptibility χ with a phase transition occuring when Uχ
is large enough. At strong coupling, TN decreases with increasingU because the spin stiffness is
proportional to J = 4t2/U . Since we can in principle vary the ratio t/U by changing pressure,
it is clear that the pressure derivative of the Néel temperature has opposite sign at weak and
strong coupling. The normal state is also very different. If we approach the transition from the
left, as indicated by the arrow marked ”Slater”, we are in a metallic phase. We also say that the
antiferromagnet that is born out of this metallic phase is an itinerant antiferromagnet. On the
contrary, approaching the transition from the right, we come from an insulating (gapped) phase
described by the Heisenberg model. Increasing U at fixed T above the maximum TN , we have
to cross over from a metal, that has a Fermi surface, to an insulator, that has local moments, a
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J = 4t2 /U
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(a)

(b)

Fig. 2: Schematic phase diagram of the half-filled 3d Hubbard model in the temperature T
vs. interaction U plane for perfect nesting. (a) The solid red line is the Néel temperature TN
below which the system is antiferromagnetic. Coming from the left, it is a metallic state that
becomes unstable to antiferromagnetism by the Slater mechanism. Coming from the right, it
is a gapped insulator with local moments described by the Heisenberg model that becomes
unstable to antiferromagnetism. The dashed green line above the maximum TN indicates a
crossover from a metallic state with a Fermi surface to a gapped state with local moments.
That crossover can be understood in (b) where antiferromagnetism is prevented from occurring.
There dynamical mean-field theory predicts a first-order phase transition between a metal and
a Mott insulator, with a coexistence region indicated in blue.

gap, and no Fermi surface. This highly non-trivial physics is indicated by a dashed green line
in Fig. 2a and marked “Mott” [31].
Fig. 2b illustrates another way to understand the dashed green line. Imagine that antiferro-
magnetism does not occur before we reach zero temperature. This can be achieved in two di-
mensions where the Mermin-Wagner-Hohenberg [32,33] theorem prevents a broken continuous
symmetry at finite temperature. More generally antiferromagnetism can be prevented by frus-
tration [34]. Frustration can come either from longer-range hopping that leads to longer-range
antiferromagnetic interactions or from the geometry of the lattice (e.g. the triangular lattice). In
either case, it becomes impossible to minimize the energy of all the individual antiferromagnetic
bonds without entering a contradiction. In Dynamical Mean-Field Theory [35–37], which we
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will discuss later in more detail, antiferromagnetism can simply be prevented from occurring in
the theory. In any case, what happens in the absence of antiferromagnetism is a first-order tran-
sition at T = 0 between a metal and an insulator. This is the Mott phase transition that ends at a
critical temperature. This transition is seen, for example, in layered organic superconductors of
the κ-BEDT family that we will briefly discuss later [6, 7]. The dashed green line at finite tem-
perature is the crossover due to this transition. In the case where the antiferromagnetic phase is
artificially prevented from occurring, the metallic and insulating phases at low temperature are
metastable in the same way that the normal metal is a metastable state below the superconduct-
ing transition temperature. Just as it is useful to think of a Fermi liquid at zero temperature even
when it is not the true ground state, it is useful to think of the zero-temperature Mott insulator
even when it is a metastable state.

3.2 Contrasting methods for weak and strong coupling antiferromagnets
and their normal state

In this subsection, I list some of the approaches that can be used to study the various limiting
cases as well as their domain of applicability wherever possible. Note that the antiferromagnetic
state can occur away from half-filling as well, so we also discuss states that would be best
characterized as Fermi liquids.

3.2.1 Ordered state

The ordered state at weak coupling can be described for example by mean-field theory applied
directly to the Hubbard model [38]. Considering spin waves as collective modes, one can
proceed by analogy with phonons and compute the corresponding self-energy resulting from the
exchange of spin waves. The staggered moment can then be obtained from the resulting Green
function. It seems that this scheme interpolates smoothly and correctly from weak to strong
coupling. More specifically, at very strong coupling in the T = 0 limit, the order parameter is
renormalized down from its bare mean-field value by an amount very close to that predicted in
a localized picture with a spin wave analysis of the Heisenberg model: In two dimensions on
the square lattice, only two thirds of the full moment survives the zero-point fluctuations [39].
This is observed experimentally in the parent high-temperature superconductor La2CuO4 [40].
At strong coupling when the normal state is gapped, one can perform degenerate perturbation
theory, or systematically apply canonical transformations to obtain an effective model [41, 42]
that reduces to the Heisenberg model at very strong coupling. When the interaction is not strong
enough, higher order corrections in t/U enter in the form of longer-range exchange interactions
and so-called ring-exchanges [41–45]. Various methods such as 1/S expansions [46], 1/N
expansions [47] or non-linear sigma models [48] are available.
Numerically, stochastic series expansions [49], high-temperature series expansions [50], quan-
tum Monte Carlo (QMC) [51], world-line or worm algorithms [52, 53], and variational meth-
ods [54] are popular and accurate. Variational methods can be biased since one must guess a
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wave function. Nevertheless, variational methods [55] and QMC have shown that in two di-
mensions, on the square lattice, the antiferromagnetic ground state is most likely [56]. States
described by singlet formation at various length scales, so-called resonating valence bond spin
liquids, are less stable. For introductions to various numerical methods, see the web archives of
the summer schools [57] and [58].

3.2.2 The normal state

In strong coupling, the normal state is an insulator described mostly by the non-linear sigma
model [59,60]. In the weak-coupling limit, the normal state is a metal described by Fermi liquid
theory. To describe a normal state that can contain strong antiferromagnetic fluctuations [61],
one needs to consider a version of Fermi liquid theory that holds on a lattice. Spin propagates
in a diffusive manner. These collective modes are known as paramagnons. The instability of the
normal state to antiferromagnetism can be studied by the random phase approximation (RPA),
by self-consistent-renormalized theory (SCR) [62], by the fluctuation exchange approximation
(FLEX) [63,64], by the functional renormalization group (FRG) [65–67], by field-theory meth-
ods [68, 69], and by the two-particle self-consistent approach (TPSC) [70–72], to give some
examples. Numerically, quantum Monte Carlo (QMC) is accurate and can serve as benchmark,
but in many cases it cannot go to very low temperature because of the sign problem. That prob-
lem does not occur in the half-filled nearest-neighbor one-band Hubbard model, which can be
studied at very low temperature with QMC [73].
The limitations of most of the above approaches have been discussed in the Appendices of
Ref. [70]. Concerning TPSC, in short, it is non-perturbative and the most accurate of the analyt-
ical approaches at weak to intermadiate coupling, as judged from benchmark QMC [70,72,74].
TPSC also satisfies the Pauli principle in the sense that the square of the occupation number for
one spin species on a lattice site is equal to the occupation number itself, in other words 12 = 1

and 02 = 0. RPA is an example of a well known theory that violates this constraint (see, e.g.,
Appendix A3 of Ref. [70]). Also, TPSC satisfies conservation laws and a number of sum rules,
including those which relate the spin susceptibility to the local moment and the charge suscep-
tibility to the local charge. Most importantly, TPSC satisfies the Mermin-Wagner-Hohenberg
theorem in two dimensions, contrary to RPA. Another effect included in TPSC is the renor-
malization of U coming from cross channels (Kanamori, Brückner screening) [15, 75]. On a
more technical level, TPSC does not assume a Migdal theorem in the calculation of the self-
energy and the trace of the matrix product of the self-energy with the Green function satisfies
the constraint that it is equal to twice the potential energy.
The most important prediction that came out of TPSC for the normal state on the two-dimensional
square lattice, is that precursors of the antiferromagnetic ground state will occur when the
antiferromagnetic correlation length becomes larger than the thermal de Broglie wave length
~vF/kBT [76–78]. The latter is defined by the inverse of the wave vector spread that is caused
by thermal excitations ∆ε ∼ kBT . This result was verified experimentally [79] and it explains
the pseudogap in electron-doped high-temperature superconductors [72, 80, 81].
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4 Weakly and strongly correlated superconductivity

As discussed in the previous section, antiferromagnets have different properties depending on
whether U is above or below the Mott transition, and appropriate theoretical methods must
be chosen depending on the case. In this section, we discuss the analogous phenomenon for
superconductivity. A priori, the superconducting state of a doped Mott insulator or a doped
itinerant antiferromagnet are qualitatively different, even though some emergent properties are
similar.

4.1 Superconductors: A qualitative discussion

As for antiferromagnets, the superconducting phase has emergent properties. For an s-wave
superconductor, global charge conservation, or U(1) symmetry, is broken. For a d-wave su-
perconductor, in addition to breaking U(1) symmetry, the order parameter does not transform
trivially under rotation by π/2. It breaks the C4v symmetry of the square lattice. In both cases
we have singlet superconductivity, i.e., spin-rotational symmetry is preserved. In both cases,
long-range forces push the Goldstone modes to the plasma frequency by the Anderson-Higgs
mechanism [82]. The presence of symmetry-dictated nodes in the d-wave case is an emergent
property with important experimental consequences: for example, the specific heat will vanish
linearly with temperature and similarly for the thermal conductivity κ. The ratio κ/T reaches
a universal constant in the T = 0 limit, i.e., that ratio is independent of disorder [83, 84]. The
existence of a single-particle gap with nodes determined by symmetry is also an emergent prop-
erty, but its detailed angular dependence and its size relative to other quantities, such as the
transition temperature Tc, is dependent on details.
A possible source of confusion in terminology is that in the context of phonon mediated s-wave
superconductivity, there is the notion of strong-coupling superconductivity. The word strong-
coupling has a slightly different meaning from the one discussed up to now. The context should
make it clear what we are discussing. Eliashberg theory describes phonon-mediated strong-
coupling superconductivity [85–89]. In that case, quasiparticles survive the strong electron-
phonon interaction, contrary to the case where strong electron-electron interactions destroy the
quasiparticles in favour of local moments in the Mott insulator.
There are important quantitative differences between BCS and Eliashberg superconductors. In
the latter case, the self-energy becomes frequency dependent so one can measure the effect of
phonons on a frequency dependent gap function that influences in turn the tunnelling spectra.
Predictions for the critical field Hc(T ) or for the ratio of the gap to Tc for example differ. The
Eliashberg approach is the most accurate.
Let us return to our case, namely superconductors that arise from a doped Mott insulator
(strongly correlated) and superconductors that arise from doping an itinerant antiferromag-
net (weakly correlated). Again there are differences between both types of superconductors
when we study more than just asymptotically small frequencies. For example, as we will see
in Section 5, in strongly correlated superconductors, the gap is no-longer particle-hole sym-
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Fig. 3: Absorption spectrum for a sharp atomic level whose energy is about 0.5 keV below the
Fermi level. At half-filling, or zero doping x = 0, it takes about 530 eV to excite an electron
from the deep level to the upper Hubbard band. As one dopes, the upper Hubbard band still
absorbs, but new states appear just above the Fermi level, allowing the X-ray to be absorbed
at an energy about 2 eV below the upper Hubbard band. These states are illustrated on the
bottom right panel of Fig. 1. The important point is that the spectral weight in the states just
above the Fermi energy grows about twice as fast as the spectral weight in the upper Hubbard
band decreases, in agreement with the cartoon picture of a doped Mott insulator. Figure from
Ref. [102]

metric, and the transition temperature sometimes does not scale like the order parameter. A
strongly-coupled superconductor is also more resilient to nearest-neighbor repulsion than a
weakly-coupled one [90].

We should add a third category of strongly-correlated superconductors, namely superconductors
that arise, in the context of the Hubbard model, at half-filling under a change of pressure. This is
the case of the layered organics. There again superconductivity is very special since, contrary to
naive expectations, it becomes stronger as we approach the Mott metal-insulator transition [13].

Just as for antiferromagnets, the normal state of weakly-correlated and of strongly-correlated su-
perconductors is very different. Within the one-band Hubbard model as usual, the normal state
of weakly-correlated superconductors is a Fermi liquid with antiferromagnetic fluctuations. In
the case of strongly correlated superconductors, the normal state exhibits many strange proper-
ties, the most famous of which is probably the linear temperature dependence of resistivity that
persists well above the Mott-Ioffe-Regel (MIR) limit [91–93]. This limit is defined as follows:
Consider a simple Drude formula for the conductivity, σ = ne2τ/m, where n is the density,
e is the electron charge, m the mass, and τ the collision time. Using the Fermi velocity vF ,
one can convert the scattering time τ to a mean-free path `. The MIR minimal conductivity
is determined by stating that the mean-free path cannot be smaller than the Fermi wavelength.
This means that, as a function of temperature, resistivity should saturate to that limit. This is
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seen in detailed many-body calculations with TPSC [94] (These calculations do not include the
possibility of the Mott transition). For a set of two-dimensional planes separated by a distance
d, the MIR limit is set by ~d/e2. That limit can be exceeded in doped Mott insulators [93, 95].
The strange-metal properties, including the linear temperature dependence of the resistivity, are
often considered as emergent properties of a new phase. Since new phases of matter are difficult
to predict, one approach has been to find mean-field solutions of gauge-field theories. These
gauge theories can be derived from Hubbard-Stratonovich transformations or from assumptions
as to the nature of the emergent degrees of freedom [96].
As in the case of the antiferromagnet, the state above the optimal transition temperature in
strongly correlated superconductors is a state where crossovers occur. There is much evi-
dence that hole-doped high-temperature superconductors are doped Mott insulators. The high-
temperature thermopower [97,98] and Hall coefficient [99] are examples of properties that are as
expected from Mott insulators. We can verify the doped Mott insulator nature of the hole-doped
cuprates from the experimental results for soft X-ray absorption spectroscopy as illustrated in
Fig. 3. This figure should be compared with the cartoon in Fig. 1. More recent experimental
results on this topic [100] and comparison with the Hubbard model [101] are available in the
literature.

4.2 Contrasting methods for weakly and strongly correlated
superconductors

In most phase transitions, a simple analysis at weak coupling indicates that the normal state
is unstable towards a new phase. For example, one can compute an appropriate susceptibil-
ity in the normal state and observe that it can sometimes diverge at sufficiently low tempera-
ture, indicating an instability. For an antiferromagnet, we would compute the staggered spin-
susceptibility. Alternatively, one could perform a mean-field factorization and verify that there
is a self-consistent broken symmetry solution at low temperature. Neither of these two pro-
cedures however leads to a superconducting instability when we start from a purely repulsive
Hubbard model. In this section, we will discuss how to overcome this.
Surprisingly, a mean-field factorization of the Hubbard model at strong coupling does lead to
a superconducting d-wave ground state [103–105]. There are reasons, however, to doubt the
approximations involved in a simple mean-field theory at strong coupling.

4.2.1 The normal state and its superconducting instability

In the weakly correlated case, the normal state must contain slow modes that replace the
phonons to obtain a superconducting instability. It is as if the superconducting instability came
at a second level of refinement of the theory. This all started with Kohn and Luttinger [106,107]:
They noted that the interaction between two electrons is screened by the other electrons. Com-
puting this screening to leading order, they found that in sufficiently high angular-momentum
states and at sufficiently low temperature (usually very low) there is always a superconducting
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instability in a Fermi liquid (see, e.g., Ref. [108] for a review). It is possible to do calculations
in this spirit that are exact for infinitesimally small repulsive interactions [109].
Around 1986, before the discovery of high-temperature superconductivity, it was realized that
if instead of a Fermi liquid in a continuum, one considers electrons on a lattice interacting
with short-range repulsion, then the superconducting instability may occur more readily. More
specifically, it was found that exchange of antiferromagnetic paramagnons between electrons
can lead to a d-wave superconducting instability [110, 111]. This is somewhat analogous to
what happens for ferromagnetic fluctuations in superfluid 3He (for a recent exhaustive review
of unconventional superconductivity, see Ref. [112]). These types of theories [113], like TPSC
below, have some features that are qualitatively different from the BCS prediction [114, 115].
For example, the pairing symmetry depends more on the shape of the Fermi surface than on the
single-particle density of states. Indeed, the shape of the Fermi surface determines the wave
vector of the largest spin fluctuations, which in turn favor a given symmetry of the d-wave
order parameter, for example dx2−y2 vs. dxy [116], depending on whether the antiferromagnetic
fluctuations are in the (π, π) or (π, 0) direction, respectively. It is also believed that conditions
for maximal Tc are realized close to the quantum critical point of an apparently competing
phase, such as an antiferromagnetic phase [117, 118], or a charge ordered phase [119].
In the case of quasi-one-dimensional conductors, a more satisfying way of obtaining d-wave su-
perconductivity in the presence of repulsion consists of using the renormalization group [120,
121]. In this approach, one finds a succession of effective low-energy theories by eliminat-
ing perturbatively states that are far away from the Fermi surface. As more and more degrees
of freedom are eliminated, i.e., as the cutoff decreases, the effective interactions for the low-
energy theory can grow or decrease, or even change sign. In this approach then, all fluctuation
channels are considered simultaneously, interfering with and influencing each other. The ef-
fective interaction in the particle-particle d-wave channel can become attractive, signalling a
superconducting instability.
Whereas this approach is well justified in the one-dimensional and quasi one-dimensional cases
from the logarithmic behavior of perturbation theory, in two dimensions more work is needed.
Nevertheless, allowing the renormalized interactions to depend on all possible momenta, one
can devise the so-called functional renormalization group. One can follow either the Wilson
procedure [67], as was done orginally for fermions by Bourbonnais [122, 123], or a functional
approach [65,66] closer in spirit to quantum field-theory approaches. d-wave superconductivity
has been found in these approaches [124–126].
As we have already mentioned, in two dimensions, even at weak to intermediate coupling, the
normal state out of which d-wave superconductivity emerges is not necessarily a simple Fermi
liquid. It can have a pseudogap induced by antiferromagnetic fluctuations. Because TPSC
is the only approach that can produce a pseudogap in two dimensions over a broad range of
temperature, we mention some of the results of this approach [116,127]. The approach is similar
in spirit to the paramagnon theories above [110, 111, 113], but it is more appropriate because,
as mentioned before, it satisfies the Mermin-Wagner theorem, is non-perturbative, and satisfies
a number of sum rules. The irreducible vertex in the particle-particle channel is obtained from
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functional derivatives. Here are some of the main results:

1. The pseudogap appears when the antiferromagnetic correlation length exceeds the ther-
mal de Broglie wave length. This is why, even without competing order, Tc decreases
as one approaches half-filling despite the fact that the AFM correlation length increases.
This can be seen in Fig. 3 of Ref [127]. States are removed from the Fermi level and hence
cannot lead to pairing. The dome is less pronounced when second-neighbor hopping t′

is finite because the fraction of the Fermi surface where states are removed (hot spots) is
smaller.

2. The superconducting Tc depends rather strongly on t′. At fixed filling, there is an optimal
frustration, namely a value of t′ where Tc is maximum as illustrated in Fig. 5 of Ref. [116].

3. Fig. 6 of Ref. [116] shows that Tc can occur below the pseudogap temperature or above.
(The caption should read U = 6 instead of U = 4). For the cases considered, that include
optimal frustration, the AFM correlation length at the maximum Tc is about 9 lattice
spacings, as in Ref. [128]. Elsewhere, it takes larger values at Tc.

4. A correlation between resistivity and Tc in the pnictides, the electron-doped cuprates, and
the quasi one-dimensional organics was well established experimentally in Ref. [129].
Theoretically it is well understood for the quasi one-dimensional organics [121]. (It seems
to be satisfied in TPSC, as illustrated by Fig. 5 of Ref. [81], but the analytical continuation
has some uncertainties.)

5. There is strong evidence that the electron-doped cuprates provide an example where anti-
ferromagnetically mediated superconductivity can be verified. Figs. 3 and 4 of the paper
by the Greven group [79] show that at optimal Tc the AFM correlation length is of the
order of 10 lattice spacings. The photoemission spectrum and the AFM correlation length
obtained from the Hubbard model [80] with t′ = −0.175 t, t′′ = 0.05 t and U = 6.25 t

agree with experiment. In particular, in TPSC one obtains the dynamical exponent z = 1

at the antiferromagnetic quantum critical point [81], as observed in the experiments [79].
This comes from the fact that at that quantum critical point, the Fermi surface touches
only one point when it crosses the antiferromagnetic zone boundary. The strange discon-
tinuous doping dependence of the AFM correlation length near the optimal Tc obtained
by Greven’s group is however unexplained. The important interference between anti-
ferromagnetism and d-wave superconductivity found with the functional renormalization
group [121] is not included in TPSC calculations however. I find that in the cuprate
family, the electron-doped systems are those for which the case for a quantum-critical
scenario [117, 118, 130, 131] for superconductivity is the most justified.

In a doped Mott insulator, the problem becomes very difficult. The normal state is expected
to be very anomalous, as we have discussed above. Based on the idea of emergent behavior,
many researchers have considered slave-particle approaches [96]. The exact creation operators
in these approaches are represented in a larger Hilbert space by products of fermionic and
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bosonic degrees of freedom with constraints that restrict the theory to the original Hilbert space.
There is large variety of these approaches: Slave bosons of various kinds [132–134], slave
fermions [135,136], slave rotors [137], slave spins [138], or other field theory approaches [139].
Depending on which of these methods is used, one obtains a different kind of mean-field theory
with gauge fields that are used to enforce relaxed versions of the exact constraints that the
theories should satisfy. Since there are many possible mean-field theories for the same starting
Hamiltonian that give different answers, and lacking variational principle to decide between
them [140], one must rely on intuition and on a strong belief of emergence in this kind of
approaches.
At strong coupling, the pseudogap in the normal state can also be treated phenomenologically
quite successfully with the Yang Rice Zhang (YRZ) model [141]. Inspired by renormalized
mean-field theory, which I discuss briefly in the following section, this approach suggests a
model for the Green function that can then be used to compute many observable properties [142,
143].
The normal state may also be treated by numerical methods, such as variational approaches, or
by quantum cluster approaches. Section 5 below is devoted to this methodology.
It should be pointed out that near the Mott transition at U = 6 on the square lattice where TPSC
ceases to be valid, the value of optimal Tc that is found in Ref. [127] is close to that found with
the quantum cluster approaches discussed in Sec. 5 below [144]. The same statement is valid at
U = 4 [74, 127, 145], where this time the quantum cluster approaches are less accurate than at
larger U . This agreement of non-perturbative weak and strong coupling methods at intermediate
coupling gives us confidence in the validity of the results.

4.2.2 Ordered state

Whereas the Hubbard model does not have a simple mean-field d-wave solution, its strong-
coupling version, namely the t-J model does [103–105]. More specifically if we perform
second-order degenerate perturbation theory starting from the large U limit, the effective low-
energy Hamiltonian reduces to

H = −
∑
i,j,σ

tijPc
†
iσcjσP + J

∑
〈i,j〉

Si · Sj , (2)

where P is a projection operator ensuring that hopping does not lead to double occupancies. In
the above expression, correlated hopping terms and density-density terms have been neglected.
To find superconductivity, one proceeds like Anderson [26] and writes the spin operators in
terms of Pauli matrices ~σ and creation-annihilation operators so that the Hamiltonian reduces to

H = −
∑
i,j,σ

tijPc
†
iσcjσP + J

∑
〈i,j〉,α,β,γ,δ

(
1

2
c†iα~σαβciβ

)
·
(
1

2
c†jγ~σγδcjδ

)
. (3)

Defining the d-wave order parameter, with N the number of sites and unit lattice spacing, as

d =
〈
d̂
〉
=

1

N

∑
k

(cos kx − cos ky) 〈ck↑c−k↓〉 , (4)
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a mean-field factorization, including the possibility of Néel order m, leads to the mean-field
Hamiltonian

HMF =
∑
k,σ

ε (k) c†kσckσ − 4Jmm̂− Jd
(
d̂+ d̂†

)
. (5)

The dispersion relation ε (k) is obtained by replacing the projection operators by the average
doping. The d-wave nature of the order was suggested in Refs. [104,146] The superconducting
state in this approach is not much different from an ordinary BCS superconductor, but with
renormalized hopping parameters. In the above approach, it is clear that the instantaneous
interaction J causes the binding. This has led Anderson to doubt the existence of a “pairing
glue” in strongly correlated superconductors [147]. We will see in the following section that
more detailed numerical calculations give a different perspective [148, 149].
The intuitive weak-coupling argument for the existence of a d-wave superconductor in the pres-
ence of antiferromagnetic fluctuations [115, 150] starts from the BCS gap equation

∆p = −
∫

dp′

(2π)2
U (p− p′)

∆p′

2Ep′

(
1− 2f

(
Ep′
))

(6)

where Ep =
√
ε2p +∆2

p and f is the Fermi function. In the case of an s-wave superconductor,
the gap is independent of p so it can be simplified on both sides of the equation. There will be
a solution only if U is negative since all other factors on the right-hand side are positive. In the
presence of a repulsive interaction, in other words when U is positive, a solution where the order
parameter changes sign is possible. For example, suppose p on the left-hand side is in the (π, 0)
direction of a square lattice. Then if, because of antiferromagnetic fluctuations, U (p− p′) is
peaked near (π, π), then the most important contributions to the integral come from points such
that p′ is near (0, π) or (π, 0), where the gap has a different sign. That sign will cancel with the
overall minus sign on the right-hand side, making a solution possible.
Superconductivity has also been studied with many strong-coupling methods, including the
slave-particle-gauge-theory approaches [96], the composite-operator method [151], and the
YRZ approach mentioned above [141]. In the next section, we focus on quantum cluster ap-
proaches.

5 High-temperature superconductors and organics:
the view from dynamical mean-field theory

In the presence of a Mott transition, the unbiased numerical method of choice is dynamical
mean-field theory. When generalized to a cluster [152–154], one sometimes refers to these
methods as “quantum cluster approaches”. For reviews, see Refs. [74,155,156]. The advantage
of this method is that all short-range dynamical and spatial correlations are included. Long
range spatial correlations on the other hand are included at the mean-field level as broken sym-
metry states. The symmetry is broken in the bath only, not on the cluster. Long-wavelength
particle-hole and particle-particle fluctuations are, however, missing.
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After a short formal derivation of the method, we will present a few results for the normal and
for the superconducting state. In both cases, we will emphasize the new physics that arises in
the strong coupling regime.

5.1 Quantum cluster approaches

In short, dynamical mean-field theory (DMFT) can be understood simply as follows: In infinite
dimension one can show that the self-energy depends only on frequency [157]. To solve the
problem exactly, one considers a single site with a Hubbard interaction immersed in a bath of
non-interacting electrons [35–37]. Solving this problem, one obtains a self-energy that should
be that entering the full lattice Green function. The bath is determined self-consistently by
requiring that when the lattice Green function is projected on a single site, one obtains the same
Green function as that of the single-site in a bath problem. In practice, this approach works well
in three dimensions. In lower dimension, the self-energy acquires a momentum dependence and
one must immerse a small interacting cluster in a self-consistent bath. One usually refers to the
cluster or the single-site as “the impurity”. The rest of this subsection is adapted from Ref. [74];
for a more detailed derivation see the lecture of R. Eder. It is not necessary to understand the
details of this derivation to follow the rest of the lecture notes.
Formally, the self-energy functional approach, devised by Potthoff [158–161], allows one to
consider various cluster schemes from a unified point of view. It begins withΩt[G], a functional
of the Green function

Ωt[G] = Φ[G]− Tr((G−10t −G−1)G) + Tr ln(−G). (7)

The Luttinger Ward functional Φ[G] entering this equation is the sum of two-particle irreducible
skeleton diagrams. For our purposes, what is important is that (i) The functional derivative of
Φ[G] is the self-energy

δΦ[G]

δG
= Σ (8)

and (ii) it is a universal functional of G in the following sense: whatever the form of the one-
body Hamiltonian, it depends only on the interaction and, functionnally, it depends only on G
and on the interaction, not on the one-body Hamiltonian. The dependence of the functional
Ωt[G] on the one-body part of the Hamiltonian is denoted by the subscript t and it comes only
through G−10t appearing on the right-hand side of Eq. (7).
The functional Ωt[G] has the important property that it is stationary when G takes the value
prescribed by Dyson’s equation. Indeed, given the last two equations, the Euler equation takes
the form

δΩt[G]

δG
= Σ −G−10t +G−1 = 0. (9)

This is a dynamic variational principle since it involves the frequency appearing in the Green
function, in other words excited states are involved in the variation. At this stationary point, and
only there, Ωt[G] is equal to the grand potential. Contrary to Ritz’s variational principle, this
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variation does not tell us whether the stationary point of Ωt[G] is a minimum, a maximum, or a
saddle point.
Suppose we can locally invert Eq. (8) for the self-energy to write G as a functional of Σ. We
can use this result to write,

Ωt[Σ] = F [Σ]− Tr ln(−G−10t +Σ), (10)

where we defined

F [Σ] = Φ[G]− Tr(ΣG) (11)

and where it is implicit that G = G[Σ] is now a functional of Σ. We refer to this functional as
the Potthoff functional. Potthoff called this method the self-energy functional approach. Several
types of quantum cluster approaches may be derived from this functional. A crucial observation
is that F [Σ], along with the expression (8) for the derivative of the Luttinger-Ward functional,
define the Legendre transform of the Luttinger-Ward functional. It is easy to verify that

δF [Σ]

δΣ
=
δΦ[G]

δG

δG[Σ]

δΣ
−ΣδG[Σ]

δΣ
−G = −G . (12)

Hence, Ωt[Σ] is stationary with respect to Σ when Dyson’s equation is satisfied

δΩt[Σ]

δΣ
= −G+ (G−10t −Σ)−1 = 0 . (13)

We now take advantage of the fact that F [Σ] is universal, i.e., that it depends only on the
interaction part of the Hamiltonian and not on the one-body part. This follows from the universal
character of its Legendre transform Φ[G]. We thus evaluate F [Σ] exactly for a Hamiltonian H ′

that shares the same interaction part as the Hubbard Hamiltonian, but that is exactly solvable.
This Hamiltonian H ′ is taken as a cluster decomposition of the original problem, i.e., we tile
the infinite lattice into identical, disconnected clusters that can be solved exactly. Denoting the
corresponding quantities with a prime, we obtain,

Ωt′ [Σ
′] = F [Σ ′]− Tr ln(−G−10t′ +Σ ′) (14)

from which we can extract F [Σ ′]. It follows that

Ωt[Σ
′] = Ωt′ [Σ

′] + Tr ln(−G−10t′ +Σ ′)− Tr ln(−G−10t +Σ ′) . (15)

The fact that the self-energy (real and imaginary parts) Σ ′ is restricted to the exact self-energy
of the cluster problem H ′, means that variational parameters appear in the definition of the
one-body part of H ′.
In practice, we look for values of the cluster one-body parameters t′ such that δΩt[Σ

′]/δt′ =

0. It is useful for what follows to write the latter equation formally, although we do not use
it in actual calculations. Given that Ωt′ [Σ

′] is the grand potential evaluated for the cluster,
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∂Ωt′ [Σ
′]/∂t′ is cancelled by the explicit t′ dependence of Tr ln(−G−10t′ + Σ ′) and we are left

with

0 =
δΩt[Σ

′]

δΣ ′
δΣ ′

δt′
= −Tr

[(
1

G−10t′ −Σ ′
− 1

G−10t −Σ ′

)
δΣ ′

δt′

]
. (16)

Given that the clusters corresponding to t′ are disconnected and that translation symmetry holds
on the superlattice of clusters, each of which contains Nc sites, the last equation may be written

∑
ωn

∑
µν

N
Nc

(
1

G−10t′ −Σ ′(iωn)

)
µν

−
∑
k̃

(
1

G−10t (k̃)−Σ ′(iωn)

)
µν

 δΣ ′νµ(iωn)
δt′

= 0. (17)

5.1.1 Cellular dynamical mean-field theory

The Cellular dynamical mean-field theory (CDMFT) [153] is obtained by including in the clus-
ter Hamiltonian H ′ a bath of uncorrelated electrons that somehow must mimic the effect of the
rest on the lattice on the cluster. Explicitly, H ′ takes the form

H ′ = −
∑
µ,ν,σ

t′µνc
†
µσcνσ + U

∑
µ

nµ↑nµ↓aασ +H.c.) +
∑
α

εαa
†
ασaασ (18)

where aασ annihilates an electron of spin σ on a bath orbital labeled α. The bath is characterized
by the energy εα of each orbital and the bath-cluster hybridization matrix Vµα. The effect of the
bath on the electron Green function is encapsulated in the so-called hybridization function

Γµν(ω) =
∑
α

VµαV
∗
να

ω − εα
(19)

which enters the Green function as

[G′−1]µν = ω + µ− t′µν − Γµν(ω)−Σµν(ω). (20)

Moreover, the CDMFT does not look for a strict solution of the Euler equation (17), but tries in-
stead to set each of the terms between brackets to zero separately. Since the Euler equation (17)
can be seen as a scalar product, CDMFT requires that the modulus of one of the vectors vanish
to make the scalar product vanish. From a heuristic point of view, it is as if each component of
the Green function in the cluster were equal to the corresponding component deduced from the
lattice Green function. This clearly reduces to single site DMFT when there is only one lattice
site.
Clearly, in this approach we have lost translational invariance. The self-energy and Green func-
tions depends not only on the superlattice wave vector k̃, but also on cluster indices. By going
to Fourier space labeled by as many K values as cluster indices, the self-energy or the Green
function may be written as functions of two momenta, for example G(k̃ + K, k̃ + K′). In
the jargon, periodizing a function to recover translational-invariance, corresponds to keeping
only the diagonal pieces, K = K′. The final lattice Green function from which one computes
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observable quantities is obtained by periodizing the self-energy [153], the cumulants [162], or
the Green function itself. The last approach can be justified within the self-energy functional
mentioned above because it corresponds to the Green function needed to obtain the density
from ∂Ω/∂µ = −Tr(G). Periodization of the self-energy gives additional unphysical states
in the Mott gap [163]. There exists also a version of DMFT formulated in terms of cumu-
lants Ref. [164]. The fact that the cumulants are maximally local is often used to justify their
periodization [162]. Explicit comparisons of all three methods appear in Ref. [165].
The DCA [152] cannot be formulated within the self-energy functional approach [166]. It is
based on the idea of discretizing irreducible quantities, such as the self-energy, in reciprocal
space. It is believed to converge faster for q = 0 quantities, whereas CDMFT converges expo-
nentially fast for local quantities [167–170].

5.1.2 Impurity solver

The problem of a cluster in a bath of non-interacting electrons is not trivial. It can be attacked by
a variety of methods, ranging from exact diagonalization [171–177] and numerical renormaliza-
tion group [178] to Quantum Monte Carlo [152]. The continuous-time quantum-Monte-Carlo
solver can handle an infinite bath and is the only one that is in principle exact, apart from
controllable statistical uncertainties [179].
For illustration, I briefly discuss the exact diagonalization solver introduced in Ref. [171] in the
context of DMFT (i.e., a single site). For a pedagogical introduction, see also [180,181]. When
the bath is discretized, i.e., is made of a finite number of bath “orbitals”, the left-hand side of
Eq. (17) cannot vanish separately for each frequency, since the number of degrees of freedom in
the bath is insufficient. Instead, one adopts the following self-consistent scheme: (i) start with a
guess value of the bath parameters (Vµα, εα) and solve the cluster Hamiltonian H ′ numerically;
(ii) then calculate the combination

Ĝ−10 =

∑
k̃

1

Ĝ−10t (k̃)− Σ̂ ′(iωn)

−1 + Σ̂ ′(iωn) (21)

and (iii) minimize the following canonically invariant distance function

d =
∑
n,µ,ν

∣∣∣∣(iωn + µ− t̂′ − Γ̂ (iωn)− Ĝ−10

)
µν

∣∣∣∣2 (22)

over the set of bath parameters (changing the bath parameters at this step does not require a
new solution of the Hamiltonian H ′, but merely a recalculation of the hybridization function
Γ̂ ). The bath parameters obtained from this minimization are then put back into step (i) and the
procedure is iterated until convergence.
In practice, the distance function (22) can take various forms, for instance by adding a frequency-
dependent weight in order to emphasize low-frequency properties [172, 182, 183] or by using
a sharp frequency cutoff [172]. These weighting factors can be considered as rough approxi-
mations for the missing factor δΣ ′νµ(iωn)/δt

′ in the Euler equation (17). The frequencies are
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summed over a discrete, regular grid along the imaginary axis, defined by some fictitious inverse
temperature β, typically of the order of 20 or 40 (in units of t−1).

5.2 Normal state and pseudogap

Close to half-filling, as we discussed above, the normal state of high-temperature superconduc-
tors exhibits special properties. Up to optimal doping, roughly, there is a doping dependent
temperature T ∗, where a gap slowly opens up as temperature is decreased. This phenomenon
is called a ”pseudogap”. We have discussed it briefly above. T ∗ decreases monotonically
with increasing doping. The signature of the pseudogap is seen in many physical properties.
For example, the uniform magnetic spin susceptibility, measured by the Knight shift in nu-
clear magnetic resonance [184], decreases strongly with temperature, contrary to an ordinary
metal, where the spin susceptibility, also known as Pauli susceptibility, is temperature inde-
pendent. Also, the single-particle density of states develops a dip between two energies on
either side of the Fermi energy whose separation is almost temperature independent [185].
Angle-Resolved-Photoemission (ARPES) shows that states are pushed away from the Fermi
energy in certain directions [186, 187]. To end this non-exhaustive list, we mention that the
c-axis resistivity increases with decreasing temperature while the optical conductivity develops
a pseudogap [188]. For a short review, see Ref. [189]. An older review appears in Ref. [190].
There are three broad classes of mechanisms for opening a pseudogap:

1. Since phase transitions often open up gaps, the pseudogap could appear because of a
first-order transition rounded by disorder.

2. In two-dimensions the Mermin-Wagner-Hohenberg theorem prohibits the breaking of a
continuous symmetry. However, there is a regime with strong fluctuations that leads to
the opening of a precursor of the true gap that will appear in the zero-temperature ordered
state. We briefly explained this mechanism at the end of Sec. 3.2.2 and its application to
electron-doped cuprates, which are less strongly coupled than the hole-doped ones [191,
192]. Further details are in Ref. [72].

3. Mott physics by itself can lead to a pseudogap. This mechanism, different from the
previous ones, as emphasized before [191, 193], is considered in the present section. As
discussed at the end of Section 4.1 and in Fig. 3, the hole-doped cuprates are doped Mott
insulators, so this last possibility for a pseudogap needs to be investigated.

Before proceeding further, note that the candidates for the order parameter of a phase transi-
tion associated with the pseudogap are numerous: stripes [203], nematic order [200], d-density
wave [204], antiferromagnetism [205], . . . . There is strong evidence in several cuprates of
a charge-density wave [196, 198, 206], anticipated from transport [207] and quantum oscilla-
tions [208], and of intra-unit cell nematic order [209]. All of this is accompanied by Fermi
surface reconstruction [208, 210, 211]. Time-reversal symmetry breaking also occurs, as ev-
idenced by the Kerr effect [195] and by the existence of intra unit-cell spontaneous currents
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Fig. 4: In red, the experimental spin contribution to the Knight shift (on the right vertical
axis) for YBCO6.6. [194]. The illustrated phase transitions for superconducting transition tem-
perature, for the Kerr signal [195], and for the high-field CDW from NQR quadrupole ef-
fects [196] and ultrasound velocity data [197]. The CDW transition from X-Ray diffraction
in zero field [198] coincides with the onset of the Kerr effect. Recent resonant ultrasound mea-
surements, suggest a true phase transition at T ∗ [199], like the Nernst signal [200]. The sharp
drop in the superconducting fluctuation conductivity (SCF) [201] is also illustrated in blue with
the corresponding vertical axis on the left. Figure from Ref. [202].

as evidenced by polarized neutron scattering [212, 213]. Nevertheless, it seems that such or-
der appear at lower temperature than the pseudogap temperature [202]. The ordering seems
a consequence rather than the cause of the pseudogap [214]. This is illustrated by Fig. 4 and
discussed further in the corresponding caption. Clearly, some of these orders, such as intra-unit
cell spontaneous currents [212, 213], cannot be explained within a one-band model. Neverthe-
less, since the order generally appears below the T ∗ illustrated in the figure, see, however, the
caption of Fig. 4, it is worth investigating the predictions of the simple one-band model.

Early finite temperature DCA [215], and zero-temperature exact diagonalizations with cluster
perturbation theory [191] and with CDMFT [172, 175, 176, 216, 217], have shown that the cal-
culated pseudogap for ARPES is very close to experiment. Several recent calculations with
CDMFT [216, 218, 219] or DCA [218, 220] using continuous-time quantum Monte Carlo at
finite temperature as an impurity solver have found similar results.

Fig. 5 illustrates the essential features of the normal state phase diagram for the Hubbard model
with nearest-neighbor hopping only on a 2×2 plaquette [221,222]. When the doping δ vanishes



10.22 André-Marie S. Tremblay

Correlated metal

PG

(a)

(b)

Fig. 5: (a) Zero-temperature extrapolation of the normal-state phase diagram for a 2 × 2 pla-
quette for the Hubbard model with nearest-neighbor hopping. In addition to the Mott transition
at zero doping where the insulating phase is in yellow, there is a first-order transition line that
separates a phase with a pseudogap from a strongly correlated metal. Figure adapted by G.
Sordi from [222]. Signs of a first order transition have also been seen in Ref. [176]. (b) Filling
n versus chemical potential µ for different temperatures: At high temperature, T = 1/10, there
is a single curve represented by the blue line with triangles. At lower temperatures, T = 1/25
in green with squares, and at T = 1/50 in red with circles, there are clear signs of a first order
transition [221, 222].

in Fig. 5(a), the insulating phase, represented by the yellow line, begins around U = 5.8.
Hysteresis (not shown) occurs as a function of U . From this line, emerges another first-order
transition line that separates two types of metals: A metallic state with a pseudogap near half-
filling, and a correlated metal away from it. The transition between the two metals is well
illustrated in Fig. 5(b). Consider the n(µ) curve at T = 1/50 represented by circles on a red
line. Decreasing µ from µ = 0, the density remains fixed at n = 1 for a relatively large range
of µ because the Mott gap is opened and the chemical potential is in the gap. Around µ = −0.4
one enters a compressible phase, i.e., dn/dµ is finite. The rounded crossover is due to the finite
temperature. It should become a discontinuous change in slope at T = 0. The jump in filling
and the hysteresis is obvious near µ = −0.55.
Let us now fix the interaction strength to U = 6.2 and look at the phase diagram in the doping-
temperature plane in Fig. 6. This is obtained for the normal state, without allowing for antifer-
romagnetism [224] (Disregard for the moment the superconducting region in blue. It will be
discussed in the next subsection.1) The first-order transition is illustrated by the shaded region
between the red lines. Various crossovers are identified as described in the caption. Let us fo-
cus on the two crossover lines associated with the uniform magnetic susceptibility. The purple
solid line with circles that appears towards the top of the graph identifies, for a given doping,
the temperature at which the susceptibility starts to fall just after it reaches a broad maximum.
This was identified as T ∗ in Fig. 4.2 The purple line ends before it reaches zero temperature

1Recent progress on the ergodicity of the hybridization expansion for continuous-time quantum Monte Carlo
leads to results for the superconducting phase that are qualitatively similar but quantitatively different from those
that appear for this phase in Figs. 6 and 7(c). These results will appear later. [144].

2Note that T ∗ in Fig. 6 refers to the inflection point of the zero frequency density of states as a function of
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Fig. 6: Temperature vs. doping phase diagram for the nearest-neighbor Hubbard model for
U = 6.2. The vertical axis on the left-hand side is in units of hopping. The light blue region
delineates the superconducting phase. In the absence of that phase, i.e., in the metastable
normal state, one finds a first-order coexistence region between the two red lines terminating at
the critical point (δp, Tp). The pseudogap phase is near half-filling. Red right-pointing arrows:
maximum of the charge compressibility (Widom line); purple left-pointing arrows: inflection
point of the spin susceptibility; green diamonds (T ∗): inflection point in the zero-frequency
local density of states; orange triangles: inflection point in σc(µ); orange squares: minimum
in the c-axis resistivity; green crosses: maximum in the zero frequency density of states; purple
circles: maximum of the spin susceptibility. Figure taken from Ref. [223].

because at larger doping the maximum simply disappears. One recovers a Pauli-like suscep-
tibility at these dopings.3 The purple dashed line with left-pointing arrows identifies, at lower
temperature, the inflection point of the susceptibility. It is very close to other crossover lines that
all originate at the critical point (δp, Tp) of the first-order transition. The appearance of many
crossover lines that all merge to terminate at the critical point is a very general phenomenon in
phase transitions. It has been recently called a Widom line in the context of supercritical flu-
ids [225] and G. Sordi has suggested that the same concept applies for the electron fluid [219].
In the latter case, a thermodynamic quantity, namely the compressibility, has a maximum at the
right-pointing arrows along the red dashed line and dynamical quantities, such as the density of
states, the conductivity and so on, have rapid crossovers, all analogous to the supercritical fluid

temperature. It differs from T ∗ in Fig. 4.
3The lines at high temperature really end before zero temperature. They should not be extrapolated to zero

temperature as is often done in other theoretical work.
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case.
It is noteworthy that above the crossover line where a c-axis resistivity minimum occurs (orange
squares in Fig. 6), the temperature dependence is almost linear. In that regime, the c-axis resis-
tivity can exceed the appropriate version of the Mott-Ioffe-Regel criterion [226]. Also, at zero-
temperature in the pseudogap phase, it was demonstrated that very small orthorhombicity leads
to very large conductivity anisotropy in a doped Mott insulator. This called electronic dynamical
nematicity [227]. Such a very large anisotropy is observed experimentally in YBCO [228].
From the microcopic point of view, the probability that the plaquette is in a singlet state with
four electrons increases rapidly as temperature decreases, reaching values larger than 0.5 at the
lowest temperatures. The inflection point as a function of temperature of the probability for the
plaquette singlet coincides with the Widom line [219].
From the point of view of this analysis, the pseudogap is a distinct phase, separated from the
correlated metal by a first-order transition. It is an unstable phase at low temperature since it
appears only if we suppress antiferromagnetism and superconductivity. Nevertheless, as in the
case of the Mott transition, the crossovers at high-temperatures are remnants of the first-order
transition. The phase transition is in the same universality class as the liquid-gas transition. As
U increases, the critical point moves to larger doping and lower temperature. These calculations
were for values of U very close to the Mott transition so that one could reach temperatures low
enough that the first-order transition is visible. Although one sees crossover phenomena up to
very large values of U , the possibility that the first-order transition turns into a quantum critical
point cannot be rejected.
In summary for this section, one can infer from the plaquette studies that even with antiferro-
magnetic correlations that can extend at most to the first-neighbors, one can find a pseudogap
and, as I discuss below, d-wave superconductivity. The pseudogap mechanism in this case is
clearly related to short-range Mott physics, not to AFM correlation lengths that exceed the ther-
mal de Broglie wavelength. Similarly, the pairing comes from the exchange interaction J , but
that does not necessarily mean long wavelength antiferromagnetic correlations.

5.3 Superconducting state

When the interaction U is larger than that necessary to lead to a Mott insulator at half-filling,
d-wave superconductivity has many features that are very non-BCS like. That is the topic of
this section.
But first, is there d-wave superconductivity in the one-band Hubbard model or its strong-
coupling version, the t-J model? Many-methods suggest that there is [114, 128, 230–232].
But there is no unanimity [233]. For reviews, see for example Refs. [74,108,115]. In DCA with
large clusters and finite-size study, Jarrell’s group has found convincing evidence of d-wave
superconductivity [145] at U = 4t. This is too small to lead to a Mott insulator at half-filling
but even for U below the Mott transition there was still sometimes some dispute regarding the
existence of superconductivity. For larger U and 8-site clusters [229] one finds d-wave super-
conductivity and a pseudogap. It is remarkable that very similar results were obtained earlier
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with the variational cluster approximation on various size clusters [234–236] and with CDMFT
on 2 × 2 plaquettes [172, 216, 224]. With a realistic band-structure, the competition between
superconductivity and antiferromagnetism can be studied and the asymmetry between the hole
and electron-doped cuprates comes out clearly [172, 234–236].
Let us move back to finite temperature results. Fig. 6 shows that the superconducting phase
appears in a region that is not delimited by a dome, as in experiment, but that instead the tran-
sition temperature T dc becomes independent of doping in the pseudogap region [224]. There is
a first-order transition to the Mott insulator at half-filling. One expects that a mean-field treat-
ment overestimates the value of T dc . That transition temperature T dc in the pseudogap region is
interpreted as the temperature at which local pairs form. This could be the temperature at which
a superconducting gap appears in tunneling experiments [214, 237] without long-range phase
coherence. Many other experiments suggest the formation of local pairs at high temperature
in the pseudogap region [238–242]. Note, however, that T dc is not the same as the pseudogap
temperature. The two phenomena are distinct [224].
It is important to realize the following non-BCS feature of strongly correlated superconductivity.
The saturation of T dc at low temperature occurs despite the fact that the order parameter has a
dome shape, vanishing as we approach half-filling [172,224]. The order parameter is discussed
further below. For now, we can ask what is the effect of the size of the cluster on T dc . Fig. 7(a)
for an 8 site cluster [229] shows that T dc at half-filling is roughly 30% smaller than at optimal
doping, despite the fact that the low temperature superfluid density vanishes at half-filling, as
seen in Fig. 7(b). Again, this is not expected from BCS. Since it seems that extremely large
clusters would be necessary to observe a dome shape with vanishing T dc at infinitesimal doping,
it would be natural to conclude that long wavelength superconducting or antiferromagnetic
fluctuations are necessary to reproduce the experiment. The long-wavelength fluctuations that
could be the cause of the decrease of T dc could be quantum and classical phase fluctuations [243–
246], fluctuations in the magnitude of the order parameter [247], or of some competing order,
such as antiferromagnetism or a charge-density wave. Evidently, the establishment of long-
range order of a competing phase would also be effective [248]. Finally, in the real system,
disorder can play a role [249, 250].
Another non-BCS feature of strongly correlated superconductivity appears in the single-particle
density of states [224]. Whereas in BCS the density of states is symmetrical near zero frequency,
Fig. 7(c) demonstrates that the strong asymmetry present in the pseudogap normal state (dashed
red line) survives in the superconducting state. The asymmetry is clearly a property of the Mott
insulator since it is easier to remove an electron (ω < 0) than to add one (ω > 0). Very near
ω = 0, all the densities of states in Fig. 7(c) are qualitatively similar since they are dictated by
the symmetry-imposed nodes nodes that are an emergent property of d-wave superconductors.
Once the normal state is a correlated metal, for example at doping δ = 0.06, the (particle-hole)
symmetry is recovered.
The correlated metal leads then to superconducting properties akin to those of spin-fluctuation
mediated BCS superconductivity. For example, in the overdoped regime superconductivity dis-
appears concomitantly with the low frequency peak of the local spin susceptibility [149]. But in



10.26 André-Marie S. Tremblay

(a) (b)

(c)

(d)

Fig. 7: (a) Superconducting critical temperature of the Hubbard model with nearest neighbor
hopping calculated forU = 6 t using the 8-site DCA [229]. Dashed red line denotes a crossover
to the normal state pseudogap. Dotted blue lines indicate the range of temperatures studied.
Note that the temperature axis does not begin at zero. Figure from Ref. [229]. (b) Superfluid
stiffness at T = t/60. Figure from Ref. [229]. (c) Low frequency part of the local density of
states ρ(ω) at U = 6.2t, T = 1/100 for the normal state and the superconducting state (red
dashed and blue solid lines). Figure from Ref. [224]. (d) Cumulative order parameter, i.e., the
integral of the anomalous Green function (or Gork’ov function) IF (ω). The dashed green line
is IF (ω) for a d-wave BCS superconductor with a cutoff at ωc = 0.5, which plays the role of the
Debye frequency. In that case, the indices i and j in Eq. (23) are near-neighbor. The magenta
line is extracted [149] from Eliashberg theory for Pb in Ref. [89]. Frequencies in that case
are measured in units of the transverse phonon frequency, ωT . The scale of the vertical axis is
arbitrary. For the s-wave superconductors, one takes i = j in Eq. (23). Figure from Ref. [149].

the underdoped regime, where there is a pseudogap, the difference between the pairing mech-
anism in a doped Mott insulator and the pairing mechanism in a doped fluctuating itinerant
antiferromagnet comes out very clearly when one takes into account nearest-neighbor repul-
sion [90]. Indeed, the doped Mott insulator is much more resilient to near-neighbor repulsion
than a spin-fluctuation mediated BCS superconductor, for reasons that go deep into the nature
of superconductivity in a doped Mott insulator. This is an important result that goes much be-
yond the mean-field arguments of Eqs. (2) to (5). In this approach, when there is near-neighbor
repulsion, one finds that superconductivity should disappear when V > J . In cuprates, taking
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the value of the near-neighbor Coulomb interaction with a relative dielectric constant of order
10 we estimate that V , the value of near-neighbor repulsion, is of order V ≈ 400 meV while
J ≈ 130 meV. So, from the mean-field point of view, superconductivity would not occur in the
hole-doped cuprates under such circumstances.
To understand the resilience of strongly correlated superconductivity to near-neighbor repulsion
V , we need to worry about the dynamics of pairing. To this end, consider the function IF (ω),
defined through the integral

IF (ω) = −
∫ ω

0

dω′

π
ImFR

ij (ω
′) , (23)

where FR is the retarded Gork’ov function (or off-diagonal Green function in the Nambu for-
malism) defined in imaginary time by Fij ≡ −〈Tci↑(τ)cj↓(0)〉 with i and j nearest-neighbors.
The infinite frequency limit of IF (ω) is equal to 〈ci↑cj↓〉 which in turn is proportional to the
d-wave order parameter ψ. As should become clear below, IF (ω) is useful to estimate the
frequencies that are relevant for pair binding. The name “cumulative order parameter” for
IF (ω) [90] is suggestive of the physical content of that function.
Fig. 7(d) illustrates the behavior of IF (ω) in well known cases. The dashed green line is IF (ω)

for a d-wave BCS superconductor with a cutoff at ωc = 0.5. In BCS theory, that would be the
Debye frequency. In BCS then, IF (ω) is a monotonically increasing function of ω that reaches
its asymptotic value at the BCS cutoff frequency ωc [149]. The magenta line in Fig. 7(d) is
obtained from Eliashberg theory for Pb in Ref. [89]. The two glitches before the maximum
correspond to the transverse, ωT , and longitudinal, ωL, peaks in the phonon density of states. In
the Eliashberg approach, which includes a retarded phonon interaction as well as the Coulomb
pseudopotential µ∗ that represents the repulsive electron-electron interaction [149], the function
overshoots its asymptotic value at frequencies near the main phonon frequencies before decay-
ing to its final value. The decrease occurs essentially because of the presence of the repulsive
Coulomb pseudopotantial, as one can deduce [90] from the examples treated in Ref. [89].
The resilience of strongly correlated superconductors to near-neighbor repulsion is best illus-
trated by Figs. 8(a) to (c). Each panel illustrates the order parameter as a function of doping.
The dome shape that we alluded to earlier appears in panels (b) and (c) for U larger than the
critical value necessary to obtain a Mott insulator at half-filling. At weak coupling, U = 4t

in panel (a), the dome shape appears if we allow antiferromagnetism to occur [172]. Panel (a)
illustrates the sensitivity of superconductivity to near-neighbor repulsion V at weak coupling.
At V/U = 1.5/4 superconductivity has disappeared. By contrast, at strong coupling, U = 8t

in panel (b), one notices that for V twice as large as in the previous case and for the same ratio
V/U = 3/8 superconductivity is still very strong. In fact, the order parameter is not very sen-
sitive to V in the underdoped regime. Sensitivity to V occurs mostly in the overdoped regime,
which is more BCS-like. The same phenomena are observed in panel (c) for U = 16t.
To understand the behavior of the order parameter in the strongly correlated case, let us return
to the cumulative order parameter. If we define the characteristic frequency ωF as the frequency
at which the cumulative order parameter reaches half of its asymptotic value, one can check that
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(d)

(e)

(f)

(b)

(c)









Fig. 8: All results for these figures were obtained with CDMFT and the exact diagonalization
solver with the bath parametrization defined in Ref. [90]. The three panels on the left are for
the d-wave order parameter ψ obtained from the off-diagonal component of the lattice Green
function as a function of cluster doping for (a) U = 4t, (b) U = 8t and (c) U = 16t and
various values of V . The three panels on the right represent the integral of the anomalous
Green function (or Gork’ov function) IF (ω) obtained after extrapolation to η = 0 of ω + iη for
several values of V at (d) U = 8t, δ = 0.05 (e) U = 8t, δ = 0.2 (f) U = 16t, δ = 0.05 with δ
the value of doping. Frequency is measured in energy units with t = 1. The asymptotic value
of the integral, IF (∞), equal to the order parameter, is shown as horizontal lines. IF (ω) is the
cumulative order parameter defined by Eq. (23). The characteristic frequency ωF is defined as
the frequency at which IF (ω) is equal to half of its asymptotic value. The horizontal arrow in
panel (d) indicates how ωF is obtained.

this frequency scales as J . Hence, not only does the optimal value of the order parameter scale
as J , but so does the characteristic frequency over which the order parameter builds up.

The qualitative aspects of the effects of V , are clearer if we focus on the largest value U = 16t

in panel (f) for the underdoped case δ = 0.05. The red curve with filled circles is for V = 0. For
V = 8t, the black curve with open squares shows that the maximum of the cumulative order
parameter is larger by roughly a factor of 2 than for the V = 0 case. This is because at strong
coupling V also contributes to the effective J and thus to attraction at low frequencies. Indeed,
in the presence of V , J increases from 4t2/U at V = 0 to 4t2/(U − V ). That increase can
be understood by considering two singly-occupied neighboring spins on a square lattice. If all
other sites are occupied, the contribution to the potential energy from V is 7V . When one of the
two electrons is placed on the same site as its neighbor, they together now have three neighbors,
hence the potential energy contribution from V is 6V . The energy denominator in second-
order degenerate perturbation theory thus becomes U − 7V + 6V = U − V , which explains
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the increased value of J in the presence of V . The ratio of the effective J at U = 16t, V = 8t

to that at U = 16t, V = 0 is U/(U − V ) = 2, which explains the observed increase in the
maximum value of IF (ω) by a factor of two. At larger frequencies, however, V is detrimental
to superconductivity, leading to a Coulomb pseudopotential µ∗ that reduces the value of the
order parameter, just as in the case of lead described above. The effect of µ∗ is largest when V
is largest, as expected. Overall, the low-frequency contribution of J to the increase in binding
is compensated by the high-frequency detrimental effect of V .

It is also remarkable that the frequency scale over which the cumulative order parameter reaches
its asymptotic value seems to equal a few times J , just as it equals a few times the largest phonon
frequency in Fig. 7(d) for the Eliashberg theory of lead. This observation is consistent with the
fact that the order parameter reaches its asymptotic value for U = 16t in Fig 8(f) at a frequency
roughly half that where the asymptotic regime is reached for U = 8t in Fig 8(d). Indeed, at
V = 0, J is smaller by a factor of two when U increases by a factor of two.

By comparing Fig. 7(d) for the BCS and Eliashberg cases with Fig. 8(e) for the overdoped case
δ = 0.20 and Fig. 8(c) for the underdoped case δ = 0.05, both for U = 8t, one verifies that
the overdoped case is more BCS-like. This is consistent with the greater sensitivity of the order
parameter to V that one can observe in the overdoped regime of Figs. 8(b) and (c).

Let us end with one of the most striking properties of strongly-correlated superconductivity.
Layered organic superconductors of the κ-BEDT family can be modelled by the one-band Hub-
bard model on an anisotropic triangular lattice at half-filling [13, 251]. By changing pressure,
one can tune the normal state through a Mott transition. The metallic state is at high pressure.
At low temperature, pressure changes the insulating state, which can be either antiferromag-
netic [11] or spin liquid [252], to a superconducting state with a non s-wave order parameter.
See Ref. [253] for a review. One finds experimentally that the superconducting Tc is largest at
the transition, in other words, closest to the insulating phase. In addition, Tc is larger in the
compounds that have the largest mass renormalization in the normal metallic state, i.e., in the
most strongly correlated ones [13]. All of this is highly counter-intuitive. I have run out of
space to explain the theoretical situation on this issue. Let us just remark that at T = 0 with
an exact diagonalization solver, one finds with quantum cluster methods [254] that indeed the
order-parameter is largest near the first-order Mott transition [255]. If Tc scales with the order
parameter, this type of approach thus reproduces a counter-intuitive result. The existence of
unconventional superconductivity in the Hubbard model on the anisotropic triangular lattice is,
however, disputed [256].

In the model for the cuprates, the value of the order parameter at optimal doping increases with
U starting from small U and reaches a maximum at intermediate coupling before decreasing
with J at large U . In other words, as a function of U , the largest value that the order parameter
can take is for U ≈ 6t where the Mott transition occurs at half-filling. Analogously, as a func-
tion of doping, at U = 6.2, the maximum Tc occurs near the critical doping for the pseudogap
to correlated metal transition [224].
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6 Conclusion

Progress with numerical methods, especially cluster generalizations of DMFT, has shown in
recent years that much of the physics of strongly correlated superconductors is contained in the
one-band Hubbard model. Confidence in the method comes from extensive benchmarking, and
from the agreement at intermediate coupling with TPSC, which is also benchmarked and valid
up to intermediate coupling. The fact that both the cuprates and the layered organics are well
described gives additional confidence in the validity of the approach. Much physical insight can
be gained by these methods. In the future, it will be useful to use them to discriminate between
the various versions of mean-field theories based on slave-particle approaches. A mean-field
approach that would contain most of the features of numerical approaches might help us to
gain further insight into the problem. Variational wave functions, even if treated with numerical
methods, are also helpful to this end.
Much remains to be done. In the one-band model, it is necessary to develop methods that
allow us to reliably investigate long-wavelength instabilities, such as the CDW observed for
the cuprates. Investigating theoretically all the details of the highly unusual superconducting
properties of the layered organics also remains to be done. And the description of all features
of the cuprates at lower temperature calls for even more extensive studies of the three-band
model [115, 257–259].
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[254] P. Sahebsara and D. Sénéchal, Phys. Rev. Lett. 97, 257004 (2006)

[255] B. Kyung, G. Kotliar, and A.-M.S. Tremblay, Phys. Rev. B 73, 205106 (2006)

[256] S. Dayal, R.T. Clay, and S. Mazumdar, Phys. Rev. B 85, 165141 (2012)

[257] V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

[258] A. Macridin, T.A. Maier, M.S. Jarrell, and G.A. Sawatzky,
Phys. Rev. B 71, 134527 (2005)

[259] W. Hanke, M. Kiesel, M. Aichhorn, S. Brehm, and E. Arrigoni,
Eur. Phys. J. 188, 15 (2010)





11 Superconductivity: 2D Physics,
Unknown Mechanisms, Current Puzzles

Warren E. Pickett
Department of Physics, University of California Davis
Davis CA 95616, USA

Contents
1 Overview: Why this topic? What kinds of correlated states? 2

2 Very basic theoretical background 3
2.1 Weak coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Strong coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Doped 2D ionic insulators: general aspects 7
3.1 A broad view of the theoretical challenge . . . . . . . . . . . . . . . . . . . . 7
3.2 Density of statesN(E); generalized susceptibility χ(q) . . . . . . . . . . . . 7
3.3 Electronic screening by a sparse electron gas . . . . . . . . . . . . . . . . . . . 8
3.4 Dynamics of the coupled ion-electron system . . . . . . . . . . . . . . . . . . 8

4 Electron-phonon coupling in 2D HTS metal MgB2 class 9
4.1 The surprise of MgB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Superconductor design: attempts within the MgB2 class . . . . . . . . . . . . . 9

5 Doped 2D ionic insulators: examples 13
5.1 Transition metal nitridochlorides HfNCl and ZrNCl . . . . . . . . . . . . . . . 13
5.2 The TiNCl sister compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Overview of the transition metal nitridohalides . . . . . . . . . . . . . . . . . 15
5.4 Related classes of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Transition metal dichalcogenides and oxides: a class, or individuals? 17
6.1 LixNbO2: a triangular lattice, single band correlated superconductor . . . . . . 17
6.2 NaxCoO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Doped transition metal dichalcogenides; recently CuxTiSe2 . . . . . . . . . . . 20

7 NaAlSi: unusual self-doped semimetallic superconductor 21

8 Doped hydrocarbons: organic crystals 23

9 Summary of main points 24
E. Pavarini, E. Koch, and U. Schollwöck
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1 Overview: Why this topic? What kinds of correlated states?

Superconductivity has been beguiling and bedeviling physicists for a century while numerous
other quaint and curious collective phenomena have been discovered and analyzed, yet it main-
tains its mystery in spite of the enormous amount that has been learned and the vast competition
for the physical scientist’s attention and devotion. Levitation of a magnet over a superconduc-
tor that can be turned on and off by anyone using a liter of liquid N2 to vary the temperature
around Tc , fascinates the viewing public (and often us practitioners as well). The “mysteries”
of superconductivity – why do the high Tc members have such impressive behavior; can Tc be
elevated closer to, or even above room temperature – combine with the unfilled promises of
applications of room temperature superconductors to keep this area of study alive in the minds
and the laboratories of a large number of scientists.

Though it may surprise the reader, there will be no description or analysis in this lecture of
either the high temperature superconducting (HTS) cuprates, with Tc of 130+ K increasing to
160+ K under pressure, nor of the more recent Fe-based HTS superconductors (FeSCs) with Tc
as high as 56 K. Neither will heavy fermion superconductivity be discussed. The emphasis in
this overview will be on demonstrating that there are other classes of superconductors that are
perplexing: their pairing mechanisms are not understood but seem different from the heavily
studied classes, hence they are candidates to lead to new classes of high temperature supercon-
ductors. The focus here will be a much quieter area of superconducting materials and associated
phenomena: strongly two dimensional (2D) band insulators where doping leads to supercon-
ductivity and, at least for several, the mechanism seems unrelated to magnetism. We will ask:
what are the peculiar superconductors that beg for explanation; what are the characteristics that
set them apart from other classes; what types of electron-electron (and electron-ion) correla-
tions determine their behavior? An additional reason for this choice of emphasis is that, after
more than 25 years of intense study of the cuprate HTSs and a huge amount of publications, a
brief overview would serve little purpose. The intense study of the FeSCs is ongoing, involving
numerous issues, and one should have similar reservations about attempting a brief overview.

The pairing mechanism in the cuprate and iron-based HTSs must be magnetism-related, due to
the evident competition between magnetic order and superconductivity. Pinpointing the mech-
anism and why the cuprate and pnictide structures and characteristics are so special (HTS, with
Tc above 50 K, occurs only in these two classes), remains one of the outstanding theoretical
conundrums in materials physics. The Babel-istic situation was illuminated by Scalapino in his
synopsis of the Materials and Mechanism of Superconductivity M2S-HTSC conference (Dres-
den, 2006). He noted that, by his compilation, the “mechanisms” discussed at that conference
alone included: (a) Jahn-Teller bipolarons; (b) central role of inhomogeneity; (c) electron-
phonon+U ; (d) spin fluctuations; (e) charge fluctuations; (f) electric quadrupole fluctuations;
(g) loop current fluctuations; (h) d density wave; (i) competing phases; (j) Pomeranchuk in-
stabilities; (k) d-d electronic modes; (l) RVB-Gutzwiller projected BCS. Learning more about
these terminologies is left to the interested researcher, but it is clear that there is a profusion of
concepts and a paucity of consensus on the microscopic mechanism of pairing in cuprate HTS.
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Fig. 1: Plot of data relating to the main classes of high temperature superconductors. Note
the legend (upper part of figure): for each class, # means the number of members, Tc gives the
maximum critical temperature; bottom part of bar indicates pre-1986 (HTSC breakthrough),
upper part of bar indicates post-1986. The main relevance for this paper is emphasized by the
red ellipses, which identify the classes with substantial 2D character. The borocarbides have
been included as 2D because of the strong layered aspect of their crystal structures; they are
however 3D metals. Most of the classes of HTSs are quasi-2D, without any clear connections
between most of the classes. Courtesy of George Crabtree; based on data available in 2006.

2 Very basic theoretical background

Practically all theories of superconductivity draw on the basic, Nobel Prize winning theory of
Bardeen, Cooper, and Schrieffer (BCS theory [1]). They presumed that there is some effective
attraction between electrons (for them, it was due to exchange of virtual phonons, though such
details were peripheral) that provided the opportunity for Cooper pairs [2] to form and to spon-
taneously condense into a collective non-Fermi liquid state – the superconducting condensate
– in which these pairs become correlated into a coherent many-body phase. Cooper had just
demonstrated [2] that the Fermi liquid ground state is unstable toward the formation of a single
such pair, even if the pairing strength is arbitrarily small. A reading of the BCS paper [1] is
a must for any student of physics who wishes to acquire a basic understanding of the super-
conducting state, the spectra, and the low energy, low temperature (T ) thermodynamics. The
diligent student should even work her way through at least the first ten pages or so of the al-
gebra – it tremendously helps understanding to know something about how the processes are
described algebraically.
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2.1 Weak coupling

In BCS theory, there is an electronic density of states N(0) at the Fermi level, presumed to
vary slowly on the scale of the energy of the virtual boson that transmits the interaction (viz.
phonon, in conventional superconductors). The attractive effective interaction −V (V > 0) is
presumed to be constant up to a cutoff ~ωc of the order of a phonon energy. The approach used
by BCS was to guess the form of a correlated ground state wavefunction depending simply on
few parameters, and obtain the parameters via a mean-field minimization of the energy, first
at T = 0 and then at finite temperature. Conventional SCs, by the way, are exceedingly good
examples of “mean field transition” systems, the critical region around Tc being exponentially
small and unobservable. In the weak coupling limit, and only in that limit, Tc is exponentially
related to coupling strength λ:

kBTc = 1.14 ~ωc e−1/λ (1)

with
λ = N(0)V . (2)

At moderate λ ∼ 0.5-0.75, say, the equation must be solved numerically for Tc, and Tc(λ) is
quasilinear rather than exponential. The strong coupling regime must be treated separately and
is discussed below.
The superconducting gap∆k is constant over the nondescript Fermi surface (FS) in the broadest
form of BCS theory. The more general expression for the momentum dependence of ∆k over a
general FS is given by [3]

∆k = −
∑
k′

Vk,k′
∆k′

2
√
ε2
k′ +∆2

k′

tanh

√
ε2
k′ +∆2

k′

2kBT
(3)

→ −
FS∑
k′

Vk,k′
∆k′

2
√
ε2
k′ +∆k′

, (4)

where the last expression is the T → 0 expression. More generally, band indices are also
required. The tanh() term arises from Fermi-Dirac thermal distribution factors, εk is the non-
interacting band energy, and Vk′,k is the matrix element for scattering of pairs between k and k′

on the Fermi surface. The critical temperature Tc is determined from the linearized gap equation
in the limit of ∆k → 0:

∆k = −
FS∑
k′

Vk,k′
∆k′

2εk′
tanh

εk′

2kBT
(5)

Tc is the highest temperature for which there is a nonvanishing solution for ∆k.
Although these gap equations (finite T and the linearized version giving Tc) are in the weak
coupling limit (and subject to other simplifications made in BCS theory), they are very com-
monly applied, or at least cited, in situations where they have not been justified. This reflects
the confidence that theorists have that some “essence” of pairing superconductivity is contained
in these equations. The linearized equation (5) is especially prevalent in modern discussions.
With the discovery of the HTS cuprates, there quickly arose a great deal of interest in Fermi
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surface nesting, in hot spots on the Fermi surface (van Hove singularities extending toward in-
finity), and in pairing interactions in which there is strong anisotropy. This anisotropy usually
does not become important for electron-phonon pairing, but if one assumes that magnons can
induce pairing analogously to phonons – the virtual boson that is exchanged is a magnon rather
than a phonon – then anisotropy becomes paramount. In the cuprates, it is presumed that (i) the
strong Coulomb repulsion U on Cu keeps potentially pairing electrons off the same Cu site, and
(ii) the interaction is dominated by strong short-range AFM fluctuations.

The influence of the linearized gap equation Eq. (3) on contemporary superconductivity theory
can hardly be overemphasized. In BCS theory the (maximally isotropic) coupling must be
attractive to obtain solutions of the gap equation. When the interaction is anisotropic and even
repulsive on average, gap solutions (i.e. superconducting states) for non-zero ∆k can still be
obtained. The change of sign with angle of the pairing interaction can be compensated by a
change in sign of ∆k with angle. The quantity under the integral in Eqs. (3) and (5) is then
predominantly of one sign, as is the case for an attractive isotropic coupling and isotropic gap.
The interested student or postdoc will benefit in understanding when studying the above gap
equations by expanding the various functions in spherical (3D) or circular (2D) harmonics, and
making reasonable assumptions about the behavior with the magnitude of |k − kF | (constant
up to a cutoff, say). Looking at the linearized case T → Tc and contributions from the Fermi
surface (FS) εk → 0 are most useful. Expressions for general FSs (number and shape) can
be written down using the Fermi surface harmonics of Allen [4], although all but the simplest
situations will require numerical solution.

These anisotropic gap solutions are a realization of the “theorem” of Kohn and Luttinger [5],
which pointed out that such anisotropic solutions would exist for anisotropic coupling, although
at the time they were expected to have implausibly small values of Tc. Such exotic pairing, or
exotic order parameter, has become over the past two decades commonplace in theories and
have found strong confirmation in cuprates and some heavy fermion SCs. Several experiments
demonstrate (or strongly imply) that the hole-doped cuprates have a d-wave order parameter
(gap function ∆k), with angular dependence like sgn(x2 − y2); thus it is referred to as a dx2−y2
(angular momentum of the pair ` = 2) symmetry order parameter for the superconducting state.
In heavy fermion superconductors, ` = 3 pairing seems likely [6] in UPt3, which has hexagonal
symmetry that conspires against d-wave symmetry. In considering new superconductors, one
of the most valued characteristics is determining if pairing is “conventional” (isotropic ` = 0)
or “exotic” (anisotropic ` > 0), because this character is likely to reflect conventional electron-
phonon or unconventional pairing, respectively. In the latter case the gap (usually) has nodes on
the Fermi surface, hence there is no true gap in the superconductor’s excitation spectrum. This
aspect impacts thermodynamics strongly, and the temperature dependence of thermodynamic
quantities as T → 0 is the most common evidence quoted for the (an)isotropy of pairing. If
there is a gap, the heat capacity goes exponentially to zero as T → 0, if not it approaches zero
as a power law in temperature.
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2.2 Strong coupling

Strong coupling indicates the regime λ ≥ 1 where perturbation theory in the electron-phonon
coupling strength no longer holds, and many aspects of the physics are different. For the phonon
mechanism, the generalization of Eliashberg [7] of BCS theory to strongly coupled electron-
phonon models was extended into an extremely detailed and strongly nuanced, material-specific
formalism by Scalapino, Schrieffer, and Wilkins [8]. It is this generalization that is now com-
monly referred to as strong coupling Eliashberg theory (as opposed to weak coupling BCS
theory). Together with the introduction, at the same time, of density functional theory (DFT) by
Hohenberg, Kohn, and Sham [9,10] and its subsequent very extensive development, DFT-based
Eliashberg theory has been shown repeatedly to describe phonon-paired superconductors quite
reliably. The primary restriction for the applicability of Eliashberg theory is that the effective
Coulomb repulsion between electrons is retarded in time and is weak, and thus can be charac-
terized by a repulsive effective interaction strength µ∗ = 0.1 − 0.2. When the impact of the
Coulomb interaction is great, which usually manifests itself in magnetic behavior, no justifiable
theory of superconductivity exists.

Within DFT-Eliashberg theory the electron-phonon interaction (EPI) strength is given for an
elemental metal by

λ =
N(0)I2

M〈ω2〉
≡ Ke

K`

; I2 = 〈〈V 2
k,k′〉〉. (6)

Here Vk,k′ is matrix element for scattering from the FS (k) to the FS (k′) by an atomic displace-
ment, M is the ionic mass, and the phonon frequency average is weighted appropriately by
matrix elements. This expression is precisely true for elemental SCs (note that only one mass
enters) but survives as a guideline for compounds where the character of coupling can be much
richer. This form emphasizes that λ represents the ratio of an “electronic stiffness” Ke and the
(textbook) lattice stiffness K`, i.e. determined by the interatomic force constants. For a har-
monic lattice the product M〈ω2〉 is independent of mass, so the mass dependence of Tc comes
solely from the prefactor ωc ∝ 1/

√
M . This mass dependence reflects a crucial factor in EPI-

based pairing that has been recognized and exploited since the prediction that metallic hydrogen
should be a room temperature superconductor: other factors i.e. the electronic structure, being
the same, materials with lighter ions should have higher Tc simply because the fundamental
energy scale ωc is higher.

Strong coupling Eliashberg theory is much richer than BCS theory. Allen and Dynes [11] an-
alyzed materials trends and the Eliashberg integral equation for Tc and demonstrated, among
other results, that at large coupling Tc ∝

√
λ and thus is unbounded, providing strong encour-

agement for the likelihood of (much) higher Tc SCs. Since this lecture will not deal with issues
of strong coupling, this and other aspects of Eliashberg theory are not needed for the discussion
and will not be presented here.
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3 Doped 2D ionic insulators: general aspects

3.1 A broad view of the theoretical challenge

Conventional pairing, that is, electron-phonon, is fully attractive: every phonon contributes to
an attractive interaction between electrons on the Fermi surface. This attraction also operates
in unconventionally paired superconductors (such as the HTS cuprates) but seems to be inef-
fective. It may even be detrimental to the eventual superconducting state if the gap symmetry
is exotic. The always attractive electron-phonon interaction strongly favors a fully symmetric
gap, although highly anisotropic pairing and complex FSs might provide more interesting order
parameter symmetry. The screened Coulomb interaction between electrons is almost always
repulsive, but the average repulsion may become irrelevant if pairing is anisotropic, according
to current understanding, and the Kohn-Luttinger result mentioned earlier.

The purpose of this lecture is to provide an overview of a few classes of materials – 2D doped
ionic insulators – wherein the Coulomb interaction between electrons, normally repulsive, may
acquire new traits beyond what have been studied thoroughly so far. Two dimensionality may
play a special role [12], through the phase space that it carries and the manner in which interac-
tions are shaped. A relatively low density of doped-in carriers may introduce novel dynamical
effects. And when these two aspects are present in the background of highly charged, vibrating
ions, the underlying behavior may include unusual emergent aspects (to use a term much in
fashion these days).

3.2 Density of statesN(E); generalized susceptibility χ(q)

Near a band edge with normal quadratic dispersion in 2D, the density of states N(E) is a step
function. Thus small doping leads already to a large, metallic value of N(0) unlike in 3D
semimetals where N(0) increases monotonically with the carrier concentration and may be arbi-
trarily small at low doping. It is for this reason that B-doped diamond becomes superconducting
but with only a modest value of Tc (up to 11 K has been reported [13]). In other respects this sys-
tem is in the MgB2 class (more specifically, the hole-doped LiBC) class, where electron-phonon
matrix elements are large and the relevant phonon frequency is very large.

Due to the 2D character, the FSs are closed curves versus the closed surfaces that occur in
3D. Near a band edge these will be circles or nearly so, making their algebraic description and
even that of the complex generalized susceptibility χ(Q,ω) possible [14]. Thus the underly-
ing mean-field, static lattice electronic structure and linear response is straightforward, even
simple, to model. χ2D(Q,ω) is available analytically for a single circular FS, and for a few
symmetry-related FSs, which comprise a multi-valley system, this χ2D for a single band will
be supplemented by a sum of inter-FS terms χ2D(|Q − Qs|, ω), the same form but for initial
and final FSs separated by the spanning wavevector(s) Qs. (If band extrema do not occur at
high symmetry points, the FSs may be ellipsoidal instead of circular and the form of χ(Q,ω)
becomes anisotropic and correspondingly more involved.



11.8 Warren E. Pickett

3.3 Electronic screening by a sparse electron gas

Due to the electronics applications of 2D electron gases (2DEGs), their dynamical response has
been studied extensively. Within the random phase approximation (RPA), the plasmon disper-
sion is given implicitly by ε(Q,ωp) = 1 − v(Q)χ(Q,ωp) = 0 where v(Q) is the unscreened
Coulomb repulsion; that is, a “response” can occur in the absence of any perturbing potential
when the screening ε−1 diverges. Whereas the usual long wavelength plasmon in 3D behaves
as ω2

p(Q) = ω2
p(0)+BQ

2 + ... , in 2D the much stronger dispersion ωp = A
√
Q+ ... holds. The

plasmon vanishes at Q = 0, leading to strong dynamical behavior (screening, perhaps over-
screening, or other unconventional behavior) in at least a small region around Q = 0. The idea
that 2DEGs might be fertile ground for superconductivity has been around for some time [12].

Ionic insulators have high frequency transverse (TO) and longitudinal (LO) optical modes also
around Q = 0 that will cross and interact with the plasmon, leading to coupled modes that are
candidates for unconventional dynamical behavior and possible pairing of electrons. Layered
crystals do not present strict 2DEGs however; they are instead (naturally occurring, or nowa-
days sometimes grown atomic layer by layer) multilayers. In the multilayer case the Coulomb
interaction couples the response of neighboring layers (even in the absence of electron hopping
between layers) and the Q → 0 plasmon remains finite [15] but may still be very soft and
strongly coupled to ionic dynamics.

3.4 Dynamics of the coupled ion-electron system

Allen, Cohen, and Penn [16] (ACP) have emphasized that the total interaction between two
electrons in a crystal involves the combined dynamic polarizability (i.e. the total dielectric func-
tion) of the electronic system and the lattice, and they have provided a firm background for the
study of such systems. When the conduction electron density is low, the competition between
weak dynamically screened repulsive (electron-electron, cation-cation, anion-anion, electron-
anion) and attractive (electron-cation, anion-cation) interactions may produce new “regions”
of effective attraction. They derived within a general formalism that can be approached in a
material-specific, first principles way (such as by using a DFT starting point) that, even taking
into account interactions between electrons, between ions, and between ions and electrons, the
polarizability of the system is the sum of two terms: that of the vibrating ions, and that resulting
between electrons interacting through the dynamically screened Coulomb interaction.

Bill and collaborators [17,18] have constructed the most detailed model of 2D superconductiv-
ity arising from coupled phonon-plasmon modes, giving particular attention to special aspects
of plasmonics in two dimensions. Related themes appear occasionally elsewhere in the liter-
ature, for example that of Askerzade and Tanatar [19] and of Falter and coworkers [20, 21].
Other unconventional interaction channels may arise is such systems. Ashcroft has emphasized
polarization waves due to flexible semicore electrons [22] as possibly contributing to pairing.
In 2D lattices where there is a natural axis (the c axis), polarization modes (“ferroelectric fluc-
tuations”) may have more impact than in 3D lattices.
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4 Electron-phonon coupling in 2D HTS metal MgB2 class

One focus of this lecture is two dimensionality and its relation to superconductivity and Tc, so
it is important to review (albeit briefly) the spectacular surprise presented by the discovery of
superconductivity in MgB2 by Akimitsu’s group in 2001 [23]. The account of the quest for
other MgB2-like materials, following in Sec. 4.2, is both intriguing and sobering.

4.1 The surprise of MgB2

MgB2, as a standard sp HTS metal, has Tc = 40 K when the light isotope of B is used. It is
described well by Eliashberg theory (in its multiband extension) as implemented in DFT-based
electron-phonon calculations [24–28]. It provided many lessons by violating nearly all of the
conventional wisdom of the time: (a) it is an sp, not dmetal; (b) it is strongly 2D rather than 3D;
(c) it becomes a HTS superconductor due to extremely strong coupling to extremely few (3%) of
the phonons, rather than having the strength spread rather uniformly over the phonon spectrum.
It is best regarded not a standard metal, but as a self-doped semimetal; the crucial σ-bonding
band is nearly filled. The basic aspects of the electronic structure and coupling – that high
frequency B-B stretch modes are extremely strongly coupled to the strongly bonding B-B states
at the Fermi surface – can be well understood in terms of simple formal expressions, which
provides an explicit recipe [14, 29] for the type of extension from MgB2 that could provide
much higher Tc within this class of metal. The concept is provided briefly in Fig. 2 and its
caption. Simply put, change the Fermi surfaces to make use of coupling to more phonon modes
and provide a larger electronic density of states, while retaining the structure that gives very
strong bonding (large electron-phonon matrix elements).

4.2 Superconductor design: attempts within the MgB2 class

The simplicity of the crucial features of MgB2 has encouraged discovery or design of additional
members of this class of superconductor, as described briefly in this subsection.

4.2.1 Hole-doped LiBC

The first such proposed extension fits in with the focus of this lecture in many respects, except
for the fact that electron-phonon coupling is not really a focus. LiBC is isostructural and “isova-
lent” with MgB2 (Li having one less electron than Mg, C having one more electron than B), but
it is insulating due to the inequivalence of B and C on the honeycomb sublattice. Hole-doping
in this covalent/ionic insulator by partial removal of Li, while retaining the crystal structure and
obtaining a black (likely conducting) sample, was reported by Wörle et al. [30] in 1995. Cal-
culations of the electron-phonon coupling strength by Rosner et al. predicted that such doping
would lead to Tc of 75 K or higher [31, 32]. Li1−xBC is a MgB2 look-alike system, with the
increase in Tc over that of MgB2 resulting from the stronger B-C bonding compared to B-B
bonding in MgB2, giving both larger matrix elements and a higher phonon energy scale. Work
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Design of higher Tc superconductors: is it viable? 
Rational Design/Search for new hTS 

Example of 
 one design 
 criterion 

Select band structure �
to enable the phonons �
to use more of the �
Brillouin zone 

Fig. 2: A proposal for rational design of higher Tc materials. Rational design is possible be-
cause the electron-phonon interaction and resulting superconductivity is extremely well under-
stood (in weakly correlated Fermi liquid metals). MgB2 makes use of extremely strong coupling
λqν=20-25 to only 2-3% of the phonon modes: the two bond stretch modes polarized in the
plane (hence 2 of 9 branches) in only 8% of the zone (where q < 2kF ). Adding Fermi surfaces
in other parts of the zone provides coupling from branches at other values of q: Q1, Q2, Q3

connecting the various sheets of Fermi surface. A nearly ideal scenario is pictured on the two
zone figures on the right. See Refs [14, 29] for further description.

on this system, with the most extensive being done by the Rosseinsky group [33], indicates un-
fortunately that the doped system is prone to (structural and phase separation) instabilities that
prevent realization of the desired phase. The report of Wörle et al. has never been confirmed.
Lazicki and collaborators [34] pursued the possibility that pressure might close the gap and
induce metallization and thereby superconductivity. The structure remained stable to 60 GPa,
and density functional calculations predicted that metallization in this structure would not oc-
cur until at least 345 GPa. This system illustrates how higher Tc is in practice often limited by
instabilities that can appear in assorted flavors, while the underlying theory provides no upper
limit [11] on the possible value of Tc.

4.2.2 Transforming graphite into pseudo-MgB2

Simultaneously with the study of Li1−xBC, our group considered a different means to obtain
a MgB2-like material. MgB2 is, after all, graphite with an extra three dimensional band in the
background. The difference is that MgB2 has a different potential between the honeycomb layer
and the interstitial, or Mg, layer. The σ-bonding band is present in graphite, but its upper edge
is 2 eV below the Fermi level, which is determined by the positioning of the π-bonding band at
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Fig. 3: Left panel: the orthorhombic crystal structure of MgB2C2 in perspective view. Mg, B and
C are represented by pink (small spheres) blue, and light yellow (larger) spheres, respectively.
The buckling of the visualized covalent B-C bond causing the deviation from the ideal hexagonal
plane is visible. Right panel: Band structure for the undistorted (upper subpanel) and B-C σ
’fat bands’ for a frozen-in bond stretching phonon (middle and lower subpanels) with a bond
elongation around the rms value. The large energy difference between the 2px orbitals (middle
panel) and the 2py orbitals (lower panel) indicates the very strong deformation potential for
this mode. From H. Rosner, A. Kitaigorodsky, and W.E. Pickett, unpublished.

symmetry point K in the Brillouin zone, which has in the meantime asserted its infamy in the
plethora of graphene research of the past decade. Our idea was simple – in hindsight, it was
simplistic. What seemed to be necessary was to lower the Fermi level by 2 eV in graphene. This
could be done by intercalating it with a highly electronegative ion. The most electronegative
one, and also a small one, is fluorine. Joonhee An [35] carried out the calculation of FC2 in
the MgB2 structure. Fluorine did become a negative ion of course, but another change that we
had not anticipated was a shift in Madelung potential. This shift counteracted to a great degree
the charge transfer, and left the Fermi level well away from the σ-bonding bands. Thus this
approach to HTS design did not work.

4.2.3 Hole-doped MgB2C2

The (unsuccessful) example of LiBC has encouraged further exploration into this direction of
finding MgB2-like materials. The borocarbide compound MgB2C2 is isovalent, and structurally
similar, to the (super)conductor MgB2 and to insulating LiBC. The structure [36] is pictured
in Fig. 3. Due to the placement of Mg ions, the honeycomb B-C layers are dimpled some-
what. Density functional based electronic structure calculations and electron-phonon coupling
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strength calculations [37–41] show that MgB2C2 (i) is insulating like LiBC due to the mod-
ulation of the honeycomb B-C layers, (ii) exhibits a rather high B-C σ-band density of states
close to the Fermi level when slightly hole doped, and (iii) shows a strong deformation poten-
tial with respect to the B-C bond stretching modes, as demonstrated in Fig. 3. If large enough
hole doping of the system can be achieved, such as by replacement of Mg by Li, it should
be superconducting at temperatures comparable to MgB2. Mori and Takayama-Muromachi re-
ported attempts to hole dope this compound both on the Mg site and within the B-C network,
but found no indication that the dopants actually entered the crystal structure [42]. Yan and
collaborators [43] have recently provided an extensive density functional study of the structural
and thermodynamic properties of insulating MgB2C2.

4.2.4 Hole-doped BeB2C2

Forty years after the compound was first synthesized, the structure of BeB2C2 was finally
solved by Hoffman et al. [44]. While possessing the same honeycomb B-C layers as LiBC
and MgB2C2, it has a specific, non-intuitive stacking due the the position of the interlayer Be,
which likes to coordinate on one side with a single C atom. Before the structure was known,
Moudden calculated the electronic structure and electron-phonon coupling strength for a differ-
ent structure also based on the B-C honeycomb rings [45]. Although the bands at the bottom
of the gap, which are the active states when hole-doped, are considerably more intricate than
MgB2C2, Moudden obtained a larger coupling strength and Tc than for MgB2, for the same
reasons as for hole-doped LiBC and MgB2C2. In our unpublished work [46] using the experi-
mental structure, we find that the relevant bands are simpler than those obtained by Moudden,
and in fact much more MgB2-like. Not surprisingly, we also obtain very strong coupling to the
B-C stretch modes and a probable Tc higher than in MgB2.

4.2.5 Comments on this class of doped insulators

MgB2 has spawned the study of these hole-doped ABC and AeB2C2 insulators (A = alkali; Ae
= alkaline earth), which has led to theoretical predictions of high temperature superconductivity.
This activity has been disappointingly unproductive so far: in the cases attempted experimen-
tally progress has been stymied by the inability to introduce the dopant (or the vacancy) in a
random alloy fashion as presumed by the theory – chemistry gets in the way. A further member,
CaB2C2, also exists [47]. It also sports a 2D B-C network. Its structure is, however, composed
of of B-C octagons and B-C diamonds rather than the honeycomb network of the others. This
system certainly seems worthy of study and attempts at doping.
This progression from the 2D B-B net of MgB2 to the B-C nets of the Ae compounds can be
taken a step further: the network components can be changed from B-C to Be-N, substantially
increasing their distance in the periodic table and thereby reducing the degree of covalency
while retaining the overall isovalent nature. The compounds are indeed insulating, andAe = Ca,
Sr, Ba have the same structure as CaB2C2. The Ae = Mg compound has a distinctive structure
built on a strongly puckered Be-N bilayer with Mg ions distributed between the layers [48].
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5 Doped 2D ionic insulators: examples

5.1 Transition metal nitridochlorides HfNCl and ZrNCl

The class T NCl, where T is a group IV-B transition metal Hf, Zr, and Ti (there are also a few
Br (instead of Cl) members) is the prime example of the type of superconductor that will receive
emphasis in the remainder of this lecture. These three isovalent compounds display Tc up to
25.5, 15.5, and 17.5 K, respectively, when electron doped [49–54]. None have been hole doped,
and the active states in that case would be very different, being N 2p states. Undoped, they are
highly ionic T 4+N3−Cl+, moderate gap (∼2-3 eV) insulators with strongly layered structures.
The T = Hf and Zr members, which are extremely similar in electronic structure, have a some-
what dimpled BN-like alternating honeycomb -Hf-N-Hf-N- bilayer with Hf-N bonds coupling
the bilayers. Cl caps the honeycomb holes above and below, resulting in neutral layers that are
van der Waals bonded.

The covalence between the d and the N 2p states in these ionic compounds is evident in their
Born effective charges (BECs). The BECs are highly anisotropic, often differing by a factor of
two between in-plane and out-of-plane, and in some cases the values are well above (in mag-
nitude) their formal charges [55]. The trend in magnitudes increases from 5d to 3d. It is these
values, and the resulting internal electric fields, that a low density of carriers will experience.

Alkali ions, without or with larger organic molecules, can be intercalated between the layers to
induce conductivity and superconductivity, and recently it has been shown that (trivalent) rare
earths can also be used for the doping, with Tc remaining the same. Once somewhat beyond
the insulator-superconductor transition [56], Tc is almost independent of the carrier density (the
doping level). The layering and bonding of the TiNCl compound is very similar, although the
crystal symmetry is orthorhombic rather than hexagonal/rhombohedral as are the others. We
return to TiNCl in the next subsection. Schurz et al. [57] have provided a recent experimental
overview of these materials, primarily on synthesis and structure.

It was shown by Weht and coauthors [58] that the doped electrons are accommodated at the
bottom of the T d-band, which has substantial in-plane dispersion (the effective mass is of the
order of unity) as shown in Fig. 4. Thus due both to the broad d band and the small carrier
concentration (far from half filling) the type of strong correlation effects that are ubiquitous in
transition metal oxides appear not to be dominant in this transition metal nitride, and there is no
experimental evidence of correlation effects such as magnetic moments and magnetic ordering,
or orbital or charge ordering, etc. It was also found that the electronic structure of isostructural
HfNCl and ZrNCl are extremely similar, yet their transition temperatures have consistently been
observed to differ by a factor of two: 25 K versus 12-13 K for ZrNCl over most of the doping
range. The difference in Tc is opposite to what would be expected from a BCS isotope effect.
It must then be related to other features: to differences in force constants or electronic response
(viz. Born effective charges, or higher frequency response) though the similar band structures
suggest they should not differ much, or to the factor of two difference in T -mass (178 amu
versus 91 amu) that affects lattice polarization.
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Fig. 4: Left panel: Band structure of Na0.25HfNCl along the hexagonal symmetry lines, cal-
culated in the virtual crystal approximation. The five bands above the gap are heavily Hf 5d
in character, while the bands below are filled N3− 2p bands. The Cl 3p bands lie somewhat
deeper. The flatness along Γ -A indicates the very strong 2D character of the bands of interest.
Right panels: The total, atom projected, and 5d and 2p projected densities of states. Note that
the Fermi level lies in a region of rather low DOS of dxy, dx2−y2 character. The other three 5d
bands lie ∼1 eV higher due to ligand field splitting. From Weht et al. [58].

Heid and Bohnen [59] carried out density functional linear response calculations of the el-ph
coupling strength and character in AxZrNCl in the same manner as is commonly done for Fermi
liquid metals, and found the electron-phonon coupling λ ≈ 0.5 is much too small to account
for the observed value of Tc. Akashi et al. [60] have provided an application of “DFT for
superconductors” to these nitridochlorides, and also conclude that something besides the usual
Eliashberg theory is required to understand their superconductivity. This theoretical approach
presupposes that (i) carriers are present in a weakly correlated Fermi liquid, and (ii) doping
can be treated in the virtual crystal approximation (VCA). The VCA corresponds to adding
charge without much concern how it got there and treating it self-consistently, which can be
important [61]. It is clear, however, that the materials are more complex than that. The most
obvious evidence is from the observation that, in LixZrNCl, metallic conduction does not occur
until a critical concentration xcr = 0.06 is reached [56]. It is noteworthy that xcr = 0.15

is different for the doped HfNCl compound [62], however it should be kept in mind that the
doping was done in a different manner. The VCA band structure remains, by supposition, that
of a conventional Fermi liquid, however, to arbitrarily small doping levels. The interactions that
keep the carriers localized at low doping are surely essential to address this class of materials
theoretically. For this, the Born effective charges [55] and perhaps nonlinear effects should be
important. In addition, Tc(x) in the Zr compound is maximum at xcrit [56], about 25% higher
than the value of ∼12 K over most of the measured range of x.

5.2 The TiNCl sister compound

α-TiNCl is an orthorhombic (Pmmn, space group 59) member of this class with the FeOCl
prototype structure, with similarities and differences when comparing with the nitride halides
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in the previous subsection. It is a strongly layered compound including a double layer of Ti-N
nets analogous to those of HfNCl and ZrNCl. Each net however has the topology of a single
NaCl (001)-layer rather than a honeycomb type, but the layers are displaced so Ti is coordinated
with four N ions (two in the same layer, two in the other) and with two Cl layers above (or
below). The layers are strongly buckled. The Ti-N bilayer is decoupled electronically from the
bilayers above and below, giving it 2D character, but the coordination and bonding are quite
distinct from that of ZrNCl and HfNCl. More description, and references, are provided by Yin
et al. [63].
The band gap of TiNCl is much smaller (0.5 eV) than that of its cousins, and also differs in
having the gap occur at Γ rather than at the zone corner. Thus when electron-doped, there is a
single cylindrical Fermi surface surrounding Γ -Z rather than two at the K and K’ points. The
character is again in-plane (3dxy) and the band is ∼2 eV wide. The DOS near EF , N(0), is
similar to those of ZrNCl and HfNCl. And, of course, there is the fact that Tc lies in the same,
impressively high, range (17 K).
Yin et al. [63] assembled a tight binding model Hamiltonian based on Wannier functions and
a Hubbard on-site repulsive interaction, and proceeded to calculate the charge and spin sus-
ceptibilities χc,sijkl(~q), where the subscripts label the Wannier functions. They presented a few
elements that are expected to have the most weight in the full susceptibility, and noted that the
approximate square symmetry of the Ti-N bilayer (at least when viewed from above) is strongly
broken by some elements of this susceptibility matrix. The calculated Born effective charges
are also strongly anisotropic in-plane as well as out-of-plane. The q-dependence of χc,sijkl(~q) will
be useful when measurements of the charge and spin fluctuation spectrum are available. They
will also be useful if electronic, rather than phononic, pairing mechanisms are considered.

5.3 Overview of the transition metal nitridohalides

It will be instructive to make a list of salient aspects of this class of superconductors, which
is part of the broader class of transition metal pnictide halides that has been labeled “under
explored” [64]. Such a list should contain several clues about the origin of their remarkable
superconductivity and more generally about the importance of two dimensionality and doping
into ionic insulators.

• The occurrence of superconductivity and the value of Tc is weakly dependent on the type
and amount of doping, indicating a robust feature that is insensitive to details such as
stacking of successive (T NCl)2 layers, or manner of doping. ZrNCl can even be doped
with Cl− vacancies to superconduct at 12-14 K [65], which is the same range of Tc that
arises from alkali atom intercalation.

• In-plane symmetry seems to be of little consequence. The Hf and Zr members have
hexagonal, isotropic symmetry in the a-b plane, while the Ti member has strongly aniso-
tropic Born effective charges and susceptibilities with rectangular, i.e., anisotropic sym-
metry.
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• A relatively large critical concentration of carriers (xcr = 0.06 for LixZrNCl) is required
for the insulator-to metal/superconductor transition. At lower concentrations, the doped-
in electrons are “solvated” into the transition metal bands, presumably as immobile po-
larons. This concentration corresponds to two carriers per 4×4 supercell of ZrN bilayers,
a low but not truly sparse carrier density. The 2D density parameter is rs ∼ 20/

√
ε, where

ε is the background dielectric constant of the insulator.

• Tc is maximum in Li1−xNCl at the metal-insulator transition, xcr = 0.06, as discussed
above. This is surely an important clue, given that Tc is so insensitive to other factors
(interlayer spacing, type of dopant, doping level). This fact also prompts the question:
can xcr be decreased in some (otherwise innocuous) manner, and if so, will Tc continue
to rise as the doping level decreases?

• The N isotope effect has been reported [66] to be 0.07±0.04, reflecting little dependence
on N mass. This is quite small and uncertain, but possibly nonzero. Note that the actual
shift ∆Tc was 0.06± 0.03 K, which is nearing the limit of clear detectability. In any case,
the N isotope effect is at least extremely small.

• The factor-of-two difference in Tc between the Hf and Zr compounds invites study; so
far there are not even any reasonable speculations on the origin of this difference. The
electronic structures are nearly indistinguishable. Interpreted as an isotope effect, (I) the
value is very large but also of the wrong sign, and (ii) the difference in Tc is as large as
one of the Tcs, so an isotope exponent that assumes ∆Tc/Tc is small is an inappropriate
representation. Since the electron-phonon λ (evaluated in the usual manner) is seemingly
small, there is little reason to expect this to be a standard isotope shift anyway.

• TiNCl has an analogous band structure and a metal-nitride bilayer also, and a Tc midway
between its two cousins. Yet the lattice symmetry and the Fermi surfaces are different.
Supposing the pairing mechanism is the same, these similarities and differences provide
clues and potential insight for the microscopic behavior impacting superconductivity.

• The Born effective charges [55] provide the electrodynamic effects of vibrating charged
ions in the weakly screened limit. If some correlation can be found between them and su-
perconducting characteristics, it could provide important clues to the pairing mechanism.

5.4 Related classes of materials

One can guess that there must be a substantial number of 2D ionic band insulators that make
reasonable candidates for superconductors when doped. We provide some brief comments here.
BaHfN2 seems to be a minor variant of the T NCl class. It structure is analogous, having tran-
sition metal nitride (Hf-N) layers bounded by the more ionic layers, which in this case contain
BaN [55]. The electronic structure is analogous: N 2p states are filled, and the conduction band
states that are available for electronic carriers above a (calculated) gap of 0.7 eV are Hf 5d

states, hybridized with N 2p states. This compound differs from the T NCl class in a way that
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may be important for synthesis: it has only a single reactive anion (N). Many 2D materials are
grown layer by layer by sputtering, plasma laser deposition, or molecular beam epitaxy. Much
experience has been gained in dealing with multiple cations in the chamber, but usually a single
anion is used (and that is almost always oxygen).
The sister compounds SrZrN2 and SrHfN2 have also been synthesized [67]. The growth in ni-
tride synthesis has led to an expanding number of transition metal nitrides, many of which have
strongly 2D structures of the type of interest here, while other have “low dimensional” or some-
what open structures that are not strictly 2D [64, 68]. Given the impressive superconductivity
in the T NCl class, doping these materials may well provide unusual insulator-metal transitions
and perhaps some even more impressive superconductors.

6 Transition metal dichalcogenides and oxides:
a class, or individuals?

Superconductivity has “emerged” in several layered transition metal oxides and dichalcogenides,
including new members in the last decade or so. The unusual and perhaps unique, single band
triangular lattice system, LixNbO2 is discussed immediately below. This one, along with several
others that have unusual characteristics, has Tc ∼ 5 K as shown in Fig. 5. This range of Tc is not
impressive in itself, but the observation that superconductivity continues to pop up in strongly
2D TM oxides and chalcogenides where correlation effects are moderate to strong, suggests
new physics. The systems we briefly discuss now are shown in Fig. 5 versus date of discovery.
These materials do not seem to be very strongly connected to the cuprates (perhaps not at all),
where Tc is a factor of 20–25 greater. But there are several examples. In the dichalcogenides,
superconductivity arises in the same sort of systems, if not the same systems, where charge den-
sity waves (CDWs) and spin density waves (SDWs) are observed. These systems – at least the
SDW members – display ordering wavevectors that are connected with Fermi surface calipers,
and therefore are considered as Fermi surface instabilities. However, they are instabilities at q
away from ~q = 0, whereas superconductivity is a ~q = ~k − ~k′ = 0 instability (because pairing
couples ~k with ~k′ = −~k) since no translational symmetry is broken. Although superconduc-
tivity with pairing wavevector q different from zero is discussed more and more, this exotic
FFLO (Fulde-Farrell-Larkin-Ovchinnikov [69, 70]) type of pairing is yet to be established in
any system. The main idea behind FFLO pairing, for a system with spin imbalance and thus
somewhat different up- and down-FSs, is that a loss of kinetic energy by forming pairs with
non-zero center of mass can be compensated by retaining partial “nesting” of electron and hole
FSs.

6.1 LixNbO2: a triangular lattice, single band correlated superconductor

The discovery of HTS in the cuprates in 1986 enlivened interest not only in layered cuprates
but also in layered transition metal oxides more generally. The cuprates provided many-body
theorists with a palette to study strong correlation effects in doped 2D antiferromagnets within
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Fig. 5: Display of four classes of layered transition metal dioxides or dichalcogenides, showing
Tc versus year of discovery. Each has its specific peculiarities: the dichalcogenides also host
spin- and charge-density waves; the niobate is a unique single band triangular lattice system;
the cobaltate must be hydrated to become superconducting. Their critical temperatures are all
in the neighborhood of 5 K.

a single band model. The intricate physics that occurs in the low carrier density regime has
come at the cost of a more direct effort to focus on identifying the pairing mechanism. (In more
recent times multiband models have become more popular for the cuprates.)

Another favorite of many-body modelers is the triangular lattice, because with antiferromag-
netic coupling magnetic order (in addition to simple charge and orbital order) is frustrated, and
the observed or calculated phenomena become very rich. However, true single band systems
are sparse, and finding one on a triangular lattice is rare indeed.

In 1990 Geselbracht et al. [71, 72] reported superconductivity up to 5.5 K in the LixNbO2 sys-
tem, synthesized and characterized structurally earlier by Meyer and Hoppe [73]. This system
has been found [74] to be a single Nb 4d-band, triangular lattice system, which promises to
display correlated electron behavior [75] because the calculated bandwidth is smaller than the
anticipated intraatomic repulsion U on Nb. At stoichiometry, LiNbO2 should be a d2 low-spin
(i.e. nonmagnetic) ionic band insulator. With all Li removed (x = 0 at fixed layered structure,
see below), NbO2 would be a d1 compound and an excellent candidate as a Mott insulator;
however, a rutile-related crystal structure is energetically favored in this limit. At intermedi-
ate concentrations it should conduct, unless charge order or some other exotic phase arises at
certain band fillings.

This is, so far, a single member class – a unique example; cuprates after all have several
subclasses and dozens of members – which unfortunately has seen little further experimental
study [76] but a fair amount of theoretical investigation [74,75,77–79]. The charge carriers hop
amongst the Nb sites, which form a triangular lattice such that electron dispersion is strongly
two dimensional [74]. The unique aspect is that the triangular prismatic coordination creates
a strong crystal field that leaves the 4dz2 orbital lowest in energy and well separated from the
other 4d bands above and the O 2p bands below. It becomes a single band, triangular lattice
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Fig. 6: Left panel: Band structure of LiNbO2 for the experimental structure. The two central Nb
dz2 bands arise from the two Nb atoms in the unit cell, and lie within a 6 eV gap separating the
valence O 2p bands from the other Nb 4d bands above. The result is a triangular lattice single
band system. Right panel: Isosurface plot of the the dz2-symmetry Wannier function. The top
subpanel provides a top view, revealing the large “fan blades” extending toward neighboring
Nb ions, represented by small aqua-colored spheres. The bottom subpanel shows the dz2 lobe
projecting perpendicular to the Nb layers, and small contributions from neighboring O ions.
Red and blue indicate opposite signs of the Wannier function. The Wannier function as a whole
has “s-like” (fully symmetric) symmetry of the Nb site.

system with formal charge Nb(4−x)+ : d1+x. As mentioned above, the x = 0 limit, which is
not reached experimentally, corresponds to a triangular lattice Mott insulator according to the
anticipated parameters [74] for this system: Hubbard U of 3–4 eV, DFT bandwidth of 1 eV.
The observed Tc up to 5.5 K is reported to be insensitive to the band filling, according to the
(somewhat sparse) data.
Being a very light element, Li is almost invisible to X-rays and, when samples are not of ideal
quality (as these are not), Li concentration must be determined by other means. The multiphase
nature of samples results in further uncertainty in the Li content of a given phase. Two other
methods of doping the NbO2 layer have been reported. One is that H is introduced into LiNbO2.
The same Tc = 5.5 K results, and the supposition by Kumada et al. [80] is that this procedure
also produces hole-doping (from the stoichiometric x = 1 compound), presumed to be due to
formation of H−. This supposition needs confirmation. In addition, Mg0.5NbO2 has been syn-
thesized; this compound is structurally “identical” [81] to isovalent LiNbO2. A sharp negative
swing in the susceptibility occurred at 4.4 K, but the authors declined to interpret this neces-
sarily as superconductivity (although a small volume fraction of superconductivity seems to be
another possible source). It is intriguing to note that Mg0.5NbO2 ≡ MgNb2O4 has one more
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electron per transition metal than LiV2O4, which is one of the very few 3d based heavy fermion
compounds. The theoretical studies strongly suggest that the conducting phases of LixNbO2

should be rather strongly correlated.
In 2009 a startling development in this system was announced. Xue et al. [82] reported values
of Tc in the 14-17 K range, three times larger than earlier reports. Purity of the samples was
sufficient to rule out NbC1−yNy, which has Tc in this same range, as the origin of the supercon-
ductivity. Moreover, the volume fraction of superconductivity was sufficient also to rule out the
carbonitride phase. If confirmed (data always need independent confirmation) this higher range
of Tc makes LixNbO2 a much more interesting and important case.

6.2 NaxCoO2

This celebrated and heavily studied system is frustrating, in both senses of the word. As with
the other triangular lattice compounds covered in this section, the transition metal (Co) sublat-
tice [83] is frustrated for AFM coupling: the simplest way to see this is to note that around a
triangle spin-ordering cannot proceed up-down-up-down because the 1st and 4th sites are the
same. This fact, and extensions that arise from it, form the core of much of the interest in
triangular lattice systems. NaxCoO2 is doubly frustrating for those hoping to understand its be-
havior because the superconductivity itself continues to present awkward aspects. Two criteria
are necessary for superconductivity to appear: (i) the Na concentration must be near (usually
somewhat larger than) x ∼ 1/3, and (ii) the sample must be hydrated (i.e. dropped in water,
or otherwise exposed to a great deal of water vapor H2O). The observation that x = 1/3 might
be special is supported by correlated band theory studies [84] that show a strong tendency in
such a system, if strongly correlated, toward

√
3×
√
3 charge and/or spin ordering (and perhaps

orbital ordering). Ordering is also predicted at half filling, and indeed an ordered, Mott insu-
lating phase is observed at x = 1/2. The frustrating thing is that it remains mysterious what
incorporation of H2O does – beyond the expectation that the molecule decomposes – still it is
essential for superconductivity.
It is not in the purview of this lecture to survey the extensive experimental work on this system,
nor the also rather extensive theoretical work. We do however point out that several experimen-
tal studies have tried to ascertain the oxidation state of the Co ion, versus the “doping level”
x of Na. All have concluded that the oxidation state of Co is characteristic of a doping level
(Na concentration plus things that H2O might cause) of xeff ∼ 0.55 − 60, that is, moderately
electron-doped above half filling of the relevant Co 3d band. This system remains a conundrum,
one for which there are few if any solid models.

6.3 Doped transition metal dichalcogenides; recently CuxTiSe2

This transition metal dichalcogenide class of quasi-2D materials, mostly metals, has a long his-
tory and large literature. Many examples of CDW and SDW materials occur in this system, and
a glimpse of the many phenomena that occur in this system can be obtained from a recent report
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on 1T-Ta1−xFexS2 [85], which contains a normal metal phase at high temperature and charge-
ordered, superconducting, and correlated insulator phases at lower temperature. (The “1T,”
“2H,” etc. designations indicate symmetry and stacking of the TaS2 motifs.) SDW materials
usually have a magnetic-order wavevector that can be identified with a Fermi surface caliper.
The same had been suggested for CDW phases early on, and presumed for many years, since
the generalized (Lindhard) susceptibility is expected to peak at wavevectors spanning the Fermi
surface. This viewpoint has been questioned in recent years, and the complexity of the phase
diagrams in dichalcogenides rivals those of oxides. Calculations of the susceptibility, including
the relevant matrix elements, seem in several cases not to bear out earlier expectations: CDW
wavevectors and Fermi surface calipers sometimes do not match up [86]. Recent evidence indi-
cates that states not only near the Fermi surface but also some distance away (on an eV energy
scale) contribute almost as heavily.
The electron-doped system CuxTiSe2 system has caused some attention to return to this class
of materials. The doping by Cu is proposed to allow study of the relevant phase diagram via
simple (synthetic) means [87]; however, the solubility limit is only 11% for this compound. The
superconducting Tc peaks in this system just above 4 K. The many questions greatly outweigh
the few answers. One important experimental result is that the superconductivity is reported to
be s-wave [88]; given the plethora of indications that electronic correlation effects are strong in
this system, this “conventional” form of gap should not be interpreted as a strong indicator of
electron-phonon pairing.

7 NaAlSi: unusual self-doped semimetallic superconductor

Occasionally a semimetal is encountered that is self-doped: a semimetal arising from “acciden-
tally” overlapping bonding valence and antibonding conduction bands. It was noted in Sec. 4
that MgB2 can also be regarded as a self-doped semimetal. Much more occasionally such a
material is a superconductor; elemental Bi with its distorted fcc lattice it a well known, though
not understood, example. NaAlSi which superconducts at 7 K [89], interestingly possesses the
crystal structure of the “111” iron pnictide superconductors although their electronic structures
have nothing in common. Another intriguing, but surely irrelevant, aspect of this compound is
that moving each element to the next higher row (smaller Z, but isoelectronic) gives LiBC, the
MgB2-like material that was discussed briefly earlier in this lecture.
Structurally, the AlSi4 tetrahedra replace the FeAs4 tetrahedra that form the basic feature of the
“111” materials, while the buckled layer of interstitial Na ions simply contributes its electrons to
the Al-Si bands. This provides 8 valence electrons per formula unit, which encourages covalent
bonding and the formation of bonding valence and antibonding conduction bands. This indeed
occurs although a simple characterization of the bonding-antibonding distinction has not yet
been constructed. It is established that the bonding bands are strongly Si in character while the
conducting bands are primarily Al. The gap is small, however, and the bands overlap slightly
[90] near ~k = 0, giving a semimetallic band structure.
The resulting density of states, shown in Fig. 7, is predicted from DFT studies to display an
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Fig. 7: Left panel: Density functional based band structure of NaAlSi near the Fermi level. The
band structure was calculated with the two methods (all-electron, and pseudopotential) that are
designated in the caption. The conduction bands at and above the Fermi level are strongly Al
in character, while the bands extending below the Fermi level are Si-derived. The energy scale
is in eV. Right panel: Pictured in a 20 eV wide region, the total and atom- and orbital-projected
density of states of NaAlSi. Note the pseudogap around the Fermi energy, with the sharp peak
at the minimum. The middle subpanel provides an expanded view of the very narrow and sharp
peak spanning the Fermi energy. The lower subpanel shows no contribution of Al states to the
density of states peak.

extremely sharp and narrow peak overlapping the Fermi level [90]. The scale of strong variation
ofN(E) is similar to that of the largest phonon frequency, implying that the Born-Oppenheimer
approximation underlying electron-phonon- and hence Eliashberg theory cannot necessarily
be relied on. The superconductivity in NaAlSi requires further developments in theory. An
attempt to evaluate the electron-phonon coupling strength using conventional theory (including
the Born-Oppenheimer approximation) was thwarted by the small Fermi surfaces, which require
finer ~k and ~Qmeshes than were possible with even rather large computer clusters and memories.
Another conundrum is presented by this system. The isostructural and isovalent sister com-
pound NaAlGe has also been synthesized. Its electronic structure is virtually identical to that
of NaAlSi. Nonetheless, it is found not to be superconducting (above 2 K). This fact revives
the question occurring in the HfNCl and ZrNCl system: can the difference in superconducting
behavior arise from the small and seemingly negligible differences in the electronic structure,
or is it due to the mass difference – in this case Ge (73 amu) versus Si (28 amu), or to some
other as yet undetermined origin? Another point of interest that we mention in passing is the
relation, or perhaps not, to its relative, CaAlSi [91, 92], that has one more valence electron.
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Fig. 8: Left panel: Structures of the four hydrocarbon molecules that, when condensed to crys-
talline form and electron-doped with alkali atoms, superconduct. The coronene closed wheel
of benzene rings is structurally distinct from the other “benzene chains.” Right panel: Crystal
structure of picene, showing the herringbone alignment of molecules; only carbon atoms are
pictured in both panels. The box outlines a primitive cell. The non-intuitive orientation and
alignment of molecules results in the low symmetry monoclinic P21 space group.

8 Doped hydrocarbons: organic crystals

A recent development, coming after the data used for Fig. 1 was available and which is only now
beginning to create a stir, is the demonstration of Tc up to 33 K in electron-doped hydrocarbon
solids. Superconductivity in organometallic compounds has been under study for well over two
decades, and the originally low values of Tc had been raised to the 10 K regime. For reviews see
the book by Ishiguro, Yamaji, and Saito [93] and the overview by Jerome [94]. These materials
are strongly 2D in their electronic properties, and seem to show a combination of considerable
correlated electron behavior as well as strong electron-phonon coupling. A coherent picture is
lacking.
The recent developments center on molecular solids built of the aromatic hydrocarbon molecules
phenanthrene C14H10, picene C22H14, and dibenzopentacene C30H18, comprising three, five, and
seven connected benzene rings, respectively. For Kxpicene, Tc up to 18 K was reported in 2010
by Mitsuhashi et al. [95], and this has been followed by Xue et al. in 2012 reporting Tc = 33 K
in Kxdibenzopentacene [96]. These latter authors have noted that the maximum Tc so far ap-
pears to be linear in the number of benzene rings (each ring adding∼7 K) and they suggest that
“delocalization” of the conduction electron wavefunctions over the molecule is a relevant fac-
tor. The molecules are sometimes described heuristically as tiny flakes or ribbons of H-capped
graphene; however, they differ in containing C-C double bonds, see Fig. 8.
These systems, especially the picene-based one, are attracting active study from both experi-
mentalists and theorists, and an overview is inadvisable at this time. It is relevant to this lecture,
however, that density functional based linear response calculation of the phonon dispersion and
electron-phonon interaction strength and spectral distribution have been reported by Subedi and
Boeri [97]. They obtain strong coupling to H-C bend modes at 1400 cm−1 and C-C stretch
modes around 1600 cm−1 and for various doping levels obtain coupling strength values in the
range λ ≈ 0.65 − 0.75, which is enough to account for the observed values of Tc. Whether
these materials are really Fermi liquid metals (needed for the validity of Eliashberg theory) is
currently being explored using several experimental techniques.
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9 Summary of main points

From the data shown in Fig. 1, two dimensionality clearly seems to be special in producing
classes of high temperature superconductors. Doped insulators account for a substantial number
of these classes; the insulators may be either magnetic insulators (cuprates) or band insulators
(T NCl). Beyond these two categories, the phenomena (and likely the pairing mechanisms)
vary. The doped nitridochlorides do not display indications of the usual sort of strong electron
correlation (enhancements; magnetic moments), while the doped insulators discussed in Sec. 6
fall within the categorization of electronically correlated materials. It is well recognized that the
strongly correlated systems require more extensive study and that pairing mechanisms remain
to be identified. One of the main purposes of this lecture is to point out that the transition metal
nitridochlorides and similar materials are different, and seem to require their own distinct means
of pairing.
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1 Introduction

Electrons and ions are the fundamental building blocks of solids. The understanding of most
solid state properties rests on the knowledge of the related quantum objects, electronic quasipar-
ticles and phonons, respectively. Solving the quantum mechanical problem of the electron-ion
coupling for extended systems is, however, a formidable task. Still, because of the large mass-
difference between electrons and ions, they can be treated to a first approximation as indepen-
dent dynamical subsystems. In the last decades, highly efficient numerical methods have been
developed to solve the electronic part of the problem from first principles. Most of them are
based on density functional theory and allow nowadays a routine investigation of the electronic
structure of many compounds. The phonon problem took longer to be tackled from first prin-
ciples, because an accurate solution of the electronic structure is a prerequisite for calculating
the fundamental vibrational properties with sufficient accuracy. The development of a linear-
response scheme, the so-called density functional perturbation theory, more than 20 years ago
opened the door to efficient and accurate approaches and has matured into powerful numerical
tools.
The interaction among these constituents, the electron-phonon coupling, influences or even
dominates a variety of physical phenomena in solids. This is most noticeable in metals, where
low-energy electronic excitations are strongly influenced by lattice vibrations – with important
consequences for, e.g., electronic transport and thermodynamical properties. It also represents
a natural source for electron pairing underlying the macroscopic quantum phenomenon of su-
perconductivity.
In these lecture notes, I will give an introduction to the basic concepts underlying the modern
numerical techniques to calculate phonons and electron-phonon coupling from first-principles
within the framework of density functional theory. In Section 2, I will present an overview
of the perturbational scheme to calculate phonon properties, and discuss some peculiarities of
current implementations. Section 3 is devoted to the first principles approach to the electron-
phonon coupling. Connection will be established to experimentally accessible quantities, like
quasi-particle renormalization, and to the electron pairing interaction which enters the theory of
superconductivity.

1.1 Electron-ion Hamiltonian and adiabatic approximation

We consider a solid to be build up from electrons and ions, where an ion consists of the nucleus
and the tightly bound core electrons. The dynamics of electrons and ions in a crystal is described
by the total Hamiltonian

H = Te + Vee + Ti + Vii +He−i , (1)

where Te and Ti are the kinetic energies of electrons and ions, respectively, Vee denotes the
Coulomb interaction among electrons, Vii the interaction energy between ions, and He−i the
interaction between electrons and ions.
The task of finding solutions for the Schrödinger equationHΨ(r,R) = EΨ(r,R), where r and
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R stand for the set of electron and ion coordinates, respectively, can be drastically simplified
due to the large difference of the electron mass m and the ion mass M : The light electrons
can be considered as moving much faster than the heavy ions. They follow instantaneously the
motion of the ions, while the latter perform small vibrations around their rest positions. As first
shown by Born and Oppenheimer [1] for molecules and later applied to solids by Chester and
Houghton [2], this picture can be proven by introducing a small parameter κ which scales to
0 for M → ∞. To this end, they considered small displacements of the ions from their rest
positions of the form

Ri = R0
i + κui . (2)

A proper form for κ can be inferred from the requirement, that the kinetic energy of the ions
should be of the same order as the potential term: quadratic in u. This leads to the choice
κ = (m/M)1/4, which is less than 0.1 for all elements except H and He. One can now perform
a systematic expansion of the Hamiltonian and wavefunctions in terms of this small parameter.
To lowest order, the total wavefunction can be written as a product Ψ(r,R) = χ(R)ψ(r;R),
where the electronic wavefunction depends only parametrically on the ion coordinates. The
electronic wavefunction obeys the equation

[Te + Vee +He−i(R)]ψn(r;R) = En(R)ψn(r;R) , (3)

where the dependence on R enters via the interaction He−i. The ion wavefunction is a solution
of

[Ti + Vii + En(R)]χ(R) = Eχ(R) . (4)

This level of approximation is called the adiabatic or Born-Oppenheimer approximation. It
describes a decoupling of the dynamics of the electrons and ions and neglects electronic exci-
tations induced by the ionic motion. The electron system enters in (4) via the energies En(R)

of the n-th eigenstate. Usually, one can resort to the ground state and drop the index n, because
”normally” encountered excited states at finite temperatures do not deviate much on the scale
relevant for the ionic motion. Nevertheless this term includes the important effect of screening
of the ionic motion by the valence electrons, which is, however, the same for the ground state
as for the excited states.
To go beyond the adiabatic approximation, one uses the solutions of (3) to expand the wave-
function of the solid in the form

Ψm(r;R) =
∑
n

χmn(R)ψn(r;R) . (5)

The eigenvalue problemHΨm = EmΨm leads to the following equation for the ionic part

[Ti + Vii + En(R)]χmn(R) +
∑
n′

∆Hnn′χmn′(R) = Emχmn(R) . (6)

The new feature with respect to (4) is the appearance of two additional terms ∆H = ∆H(1) +
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∆H(2) given by

∆H
(1)
nn′ = − 1

M

∑
i

∫
dr3N ψ∗n(r;R)∇Riψn′(r;R) · ∇Ri (7)

∆H
(2)
nn′ = − 1

2M

∑
i

∫
dr3N ψ∗n(r;R)∇2

Ri
ψn′(r;R) . (8)

They contain derivatives of the electronic wavefunctions with respect to the ion coordinates,
and take into account possible excitations in the electronic subsystem due to the motion of the
ions. Among these two non-adiabatic terms ∆H(1) is typically the dominant one, because from
the expansion of ψn it contains terms of order κ, while ∆H(2) involves terms of order κ2 .
Corrections to Ψ(r,R) beyond the adiabatic approximation can be shown to be of order κ3

and corrections to the energy are of order κ6. The expansion parameter κ only depends on
the mass ratio and not on the strength of the electron-phonon interaction. Thus the adiabatic
approximation is adequate for both free-electron-like systems and for compounds possessing
tighter bound valence electrons like transition metals.

1.2 Phenomenological theory of lattice dynamics

Within the adiabatic approximation, the statics and dynamics of the ions are governed by an
effective potential

Ω(R) = Vii(R) + E0(R) , (9)

where E0(R) denotes the electronic ground-state energy for a given ion configuration R. The
effective potential Ω builds the starting point of the microscopic theory of lattice dynamics,
which has been outlined in a number of review articles [3–5].
Dynamical properties are derived by a systematic expansion of Ω for atom displacements u

around a chosen reference configuration, Ri = R0
i + ui, leading to

Ω(R) = Ω(R0) +
∑
iα

Φa(i)uiα +
1

2

∑
iαjβ

Φαβ(i, j)uiαujβ + . . . . (10)

Greek indices α and β denote Cartesian coordinates, while i and j are atom indices. The term
of first order is the negative of the force acting on an atom in the reference configuration

Fiα = − ∂Ω

∂Riα

∣∣∣∣
0

= −Φα(i) . (11)

It vanishes if one chooses as reference the equilibrium configuration that minimizes Ω. The
second-order coefficients are given by

Φαβ(i, j) =
∂2Ω

∂Riα∂Rjβ

∣∣∣∣
0

. (12)

Their physical meaning becomes more evident when one considers the case where only a single
ion at site i is displaced from the equilibrium position by uiα. Then the force felt by an atom at
site j is given by:

Fjβ = −
∑
iα

Φαβ(i, j)uiα . (13)
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Thus, to lowest order, Φαβ(i, j) describes a linear relationship between displacement and re-
sulting force. They are the 3D equivalent of a spring constant and are called harmonic force
constants. Higher-order coefficients are denoted as anharmonic force constants. The harmonic
approximation is based on truncating the sum after the second order.
In periodic crystals, the atoms are characterized by two indices i = (lκ), which denote the unit
cell (l) and the atoms inside a unit cell (κ), respectively. For periodic boundary conditions, the
Fourier transform of the force constant matrix is related to the dynamical matrix

Dκακ′β(q) =
1√

MκMκ′

∑
l

Φαβ(lκ, 0κ
′)e−iq(R0

lκ−R
0
0κ′ ) , (14)

which determines the equation for the normal modes or phonons,∑
κ′β

Dκακ′β(q)ηκ′β(qj) = ω2
qjηκα(qj) . (15)

ωqj and ηκα(qj) denote the energy and polarization of the normal mode determined by the
wavevector q and branch index j.
These quantities enter into the relationship between the atom displacements and the usual
phonon annihilation and creation operators bqj and b†qj describing quantized normal modes

ulκα = eiqR
0
lκ

1√
Nq

∑
qj

Aqj
κα(bqj + b†−qj) with Aqj

κα =
ηκα(qj)√
2Mκωqj

. (16)

A complete characterization of the harmonic vibrational spectrum requires the knowledge of
either the normal modes for the whole Brillouin zone, or the force constants for all atom bonds.
For a metallic system, the latter representation is often more economical since the lattice inter-
action in real space is rather short ranged due to electronic screening.

2 Density functional perturbation theory

2.1 Lattice dynamics from first principles

The goal is now to calculate the basic quantities determining the dynamics of the ions. The first
term in the effective potential (9) is the Coulomb interaction among the ions, whose contribution
to the force constants can be readily obtained. The second term represents the electronic con-
tribution, which incorporates all important physical properties like bonding and screening. It
requires a sophisticated and accurate treatment of the electronic system, as provided by density
functional theory.

2.1.1 Basics of density functional theory

The foundations of density functional theory (DFT) have been worked out by Hohenberg, Kohn,
and Sham [6, 7] in the mid 60’s, and are outlined in numerous reviews [8–10]. Here we only
mention the essential features which we need later.
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In DFT, the ground-state energy of a system of interacting electrons moving in an external
potential vext is obtained by minimizing the functional

E[n] = F [n] +

∫
d3r vext(r)n(r) (17)

with respect to the electron density n(r). At its minimum, n(r) is the true electron density
of the interacting system. The functional F [n] is universal, i.e. independent of the external
potential. For practical applications, the scheme developed by Kohn and Sham has proven to be
very useful. They showed that the minimum principle allows us to map the complex many-body
problem onto a fictitious system of non-interacting electrons that in its ground state possesses
the same inhomogeneous density as the interacting system [7]. They expressed the energy
functional as

F [n] = Ts[n] + EH [n] + Exc[n] , (18)

where Ts represents the kinetic energy of the non-interacting electrons (we adopt Rydberg
atomic units defined by ~2 = 2m = e2/2 = 1)

Ts[n] =
∑
i

fi

∫
d3r ψ∗i (r)

(
−∇2

)
ψi(r) (19)

and EH [n] the Hartree energy

EH [n] =

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
(20)

with the single-particle representation of the density

n(r) =
∑
i

fi|ψi(r)|2 . (21)

Here fi denotes the occupation number of the single-particle state ψi. The wavefunctions of the
fictitious electrons obey a single-particle equation (Kohn-Sham equation){

−∇2 + veff(r)
}
ψi(r) = εiψi(r) . (22)

The effective potential veff(r) is a functional of the density and given as a sum of the external
potential and a screening potential

veff [n] = vext + vscr[n] = vext + vH [n] + vXC [n] . (23)

The screening potential is obtained via functional derivatives of the last two terms in the total
energy functional (18). It consists of the Hartree potential

vH(r)[n] =
δEH
δn(r)

=

∫
d3r′

2n(r′)

|r− r′|
(24)

which describes an average electrostatic potential originating from the other electrons, and the
exchange-correlation potential vXC(r) = δEXC/δn(r).
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By this formulation, the original many-body problem has been cast into a set of single-particle
equations (21)–(23) that has to be solved self-consistently. The complexity of the original many-
body problem is transferred to the task of determining the exchange-correlation energy EXC .
The big success of DFT partly rests on the empirical fact that already simple approximations to
vXC often give very accurate results. The most widely used ansatz is the local-density approxi-
mation (LDA)

vLDA
XC (r) =

d(nεhom
XC (n))

dn

∣∣∣
n=n(r)

, (25)

where εhom
XC (n) represents the exchange-correlation energy density of the homogeneous inter-

acting electron gas. For εhom
XC various parametrizations derived from analytical and numerical

studies exist [9]. Another popular ansatz is the generalized-gradient approximation (GGA),
where in addition to LDA a dependence of vXC on the local gradient of the electron density is
considered to better account for inhomogeneous density distributions [11–13].

2.1.2 Application to lattice dynamics

As we have seen in Sec. 1.2, lattice-dynamical properties are determined by the adiabatic lattice
potential Ω, which equals the ground-state energy for a fixed ion configuration. Hence, lattice
dynamics depends only on ground-state properties of the electronic system, and is accessible
in the framework of density functional theory. An overview of the various methods to extract
lattice-dynamical properties from ab-initio calculations have been given in [14]. One can divide
them into two main classes: (i) direct methods and (ii) linear-response techniques.
The direct methods are based on ground-state calculations for the ideal crystal and for geome-
tries with ions displaced from their equilibrium position. The frozen-phonon (FP) technique is
conceptually the simplest and historically the first-applied method and uses the quadratic depen-
dence of the total energy from the displacement to extract the frequency of a normal mode [15].
Since this requires a priori knowledge of the phonon eigenvector, it can typically be used only
in cases where symmetry completely determines its form.
A more efficient scheme employs the linear relationship (13) between an ionic displacement
and the forces felt by other ions in the unit cell [16–18]. This can be achieved with little
numerical expenses, as forces can be derived directly from quantities obtained in a ground-state
calculation with the help of the Hellman-Feynman theorem. A single calculation then gives
information about a complete row of the dynamical matrix. The complete dynamical matrix
can be constructed using a few appropriately chosen displacements. Hence, this approach does
not require any a priori information about the normal modes. Since frozen-phonon calculations
employ finite displacements of ions, their results principally contain all anharmonic effects,
which could be used to extract higher anharmonic coupling constants.
A disadvantage of the direct methods is the need to resort to supercells to extract properties
for non-zero wavevector phonons. A complete determination of the phonon spectrum requires
supercells with sizes larger than the effective range of the lattice interactions [19–22].
The alternative approach consists of calculating the derivatives of the total energy directly within
perturbative schemes. In particular, the dynamical matrix is obtained from the second deriva-
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tives via Eq. (12). It has the big advantage that it works directly in reciprocal space and gives
access to the dynamical matrix at arbitrary wavevectors without the need for supercells. We
will discuss this scheme in some detail now.

2.2 Linear response formulation

Here we show how the perturbative approach is set up within the DFT framework. We will first
present some general considerations before applying them to the specific case of perturbations
induced by ionic displacements in periodic crystals.

2.2.1 Energy derivatives

Let us consider a situation where the external potential vext depends on a set of adiabatic per-
turbation parameters Λ = {λa, a = 1, . . . , p}. Each vΛext determines an electronic ground state
with density nΛ(r) and total energy EΛ = F [nΛ] +

∫
d3r nΛ(r)vΛext(r), which depends on the

perturbation via the external potential and implicitly via the density. Its derivative then contains
two contributions

∂EΛ

∂λa
=

∫
d3r nΛ(r)

∂vΛext(r)

∂λa
+

∫
d3r

δEΛ

δn(r)

∂nΛ(r)

∂λa
. (26)

Due to the variational principle, the second term vanishes for each finite Λ. Thus the first
derivative depends on the ground-state density only. This represents the DFT equivalent of the
well known Hellman-Feynman-Theorem [23].
The second-order derivatives are then given by

∂2EΛ

∂λa∂λb
=

∫
d3r

∂nΛ(r)

∂λb

∂vΛext(r)

∂λa
+

∫
d3r nΛ(r)

∂2vΛext(r)

∂λa∂λb
. (27)

For practical purposes it is important that the second derivatives require only the knowledge of
the first-order variations of the electron density. Therefore, it is sufficient to consider only the
linear response of the electron system.

2.2.2 Linear response within the Kohn-Sham scheme

The linear response within the DFT scheme is obtained by standard perturbation techniques
under the condition that the effective potential entering the Kohn-Sham equations depends on
the ground-state density itself. Thus its linear variation is given by

δveff(r) = δvext(r) + δvscr(r) = δvext(r) +

∫
d3r′I(r, r′)δn(r′)

I(r, r′) ≡ δvscr(r)

δn(r′)
=
δvH(r)

δn(r′)
+
δvXC(r)

δn(r′)
=

2

|r− r′|
+

δ2EXC
δn(r)δn(r′)

. (28)

This induces a first-order variation of the single-particle wavefunctions

δψi(r) =
∑
j(6=i)

〈j|δveff |i〉
εi − εj

ψj(r) . (29)
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Using a similar expression for δψ∗i (r) gives

δn(r) =
∑
i

fi[ψ
∗
i (r)δψi(r) + δψ∗i (r)ψi(r)]

=
∑
i6=j

fi − fj
εi − εj

〈j|δveff |i〉ψ∗i (r)ψj(r) . (30)

Eqs. (28) and (30) must be solved self-consistently to obtain the first-order variation of the
density. To proceed, one can write the linear relationship (30) between δn and δveff more
explicitly

δn(r) =

∫
d3r′χ0(r, r

′)δveff(r
′) (31)

χ0(r, r
′) =

∑
i6=j

fi − fj
εi − εj

ψ∗i (r)ψj(r)ψ
∗
j (r
′)ψi(r

′) . (32)

Here, χ0 represents the charge susceptibility of the non-interacting Kohn-Sham system. It is
expressed solely by ground-state quantities [24]. In the case of a periodic system, this is just
the well-known Adler-Wiser form [25, 26]. Although obtained by perturbation theory, Eq. (32)
is exact because the Kohn-Sham equations describe non-interacting electrons.
In combination with Eq. (28) this leads to

δveff = δvext + Iχ0δveff , (33)

which can be solved for δveff

δveff = [1− Iχ0]
−1δvext = ε−1δvext , (34)

where ε = 1− Iχ0 denotes the static dielectric matrix and describes the screening of the ”bare”
perturbation from the external potential.
The problem is now reduced to a calculation of ε−1. Historically this was the first route to
be explored [27, 28]. Direct application of these equations, however, has several practical dis-
advantages. It requires an inversion of the matrix ε(r, r′), which for periodic systems is most
conveniently done in Fourier space. This inversion turns out to be the bottleneck of this scheme,
as a proper convergence often requires a large number of Fourier components. Attempts to per-
form this inversion in direct space using a Wannier representation did not lead to significant
improvements [29]. In the calculation of χ0 in Eq. (32), unoccupied orbitals do enter, which are
not available for bandstructure methods employing minimal basis sets (e.g. LMTO).

2.2.3 Modern formulation: Density functional perturbation theory

An important progress has been achieved by a new formulation of the linear-response approach
that avoids some of the aforementioned problems of the dielectric matrix approach. It is called
density functional perturbation theory (DFPT) and has been proposed independently by Zein et
al. [30–32] and Baroni et al. [33, 34]. A concise description can be found in [35]. We will give
a short outline for the case of a non-metallic system.
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The expression (30) for the first-order density variation contains a double sum over electronic
states. The prefactor (fi− fj)/(εi− εj) restricts it to combinations where one state comes from
the valence space and the other from the conduction space. Using time-reversal symmetry, this
can be rewritten as

δn(r) = 2
∑
vc

1

εv − εc
〈c|δveff |v〉ψ∗v(r)ψc(r) . (35)

To avoid summation over the conduction states, one rewrites

δn(r) = 2
∑
v

ψ∗v(r)∆v(r) (36)

with
|∆v〉 =

∑
c

1

εv − εc
|c〉〈c|δveff |v〉 . (37)

This quantity fulfills the following linear equation:

(H − εv)|∆v〉 = −
∑
c

|c〉〈c|δveff |v〉 = −Pcδveff |v〉 = (Pv − 1)δveff |v〉 . (38)

Here Pc =
∑

c |c〉〈c| denotes the projector onto the conduction space, and Pv = 1 − Pc is the
projector onto the valence space. By this reformulation, only valence-state quantities enter the
equation for ∆v, and one avoids an expensive summation over conduction states.

2.2.4 Beyond linear response: (2n+ 1) theorem

As shown above, the first derivative of the energy depends solely on the unperturbed ground-
state density, while second-order derivatives require knowledge of the density and its first-order
derivatives. Both results are special cases of the so-called (2n+1) theorem, which states that all
derivatives of the total energy up to (2n+ 1)-th order with respect to the adiabatic perturbation
can be calculated from the knowledge of all derivatives of the Kohn-Sham eigenstates and
density up to n-th order. In the framework of density-functional theory this theorem also holds
for nonlocal external potentials and is thus applicable within pseudopotential methods. The
proof given by Gonze et al. [36–38] essentially rests on the variational property of the energy
functional.
As a corollary of this theorem, harmonic as well as third-order anharmonic force constants
merely require calculation of the linear variations of the Kohn-Sham eigenstates and the density.
Both are accessible by linear-response calculations.

2.3 Phonons in periodic lattices

Here we discuss the details of the calculations of the interatomic force constants within the
density functional perturbation approach. To this end, we consider periodic displacements of
the ions from their equilibrium positions, Rlκ = R0

lκ + ulκ, of the form

ulκα = dκαe
iqR0

lκ + d∗καe
−iqR0

lκ , (39)
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where l denotes the unit cell, κ specifies the ion inside a unit cell, and α indicates Cartesian co-
ordinates. The complex amplitudes dκα allow us to vary the relative phase of the displacement.
It is convenient to denote the corresponding derivatives by δqκα ≡ ∂

∂dκα
and δ−qκ′β ≡ ∂

∂d∗κα
. The

electronic contribution to the dynamical matrix can be then written as a mixed derivative

Dκακ′β(q) =
1√

MκMκ′
δqκαδ

−q
κ′βE

∣∣∣∣
u=0

. (40)

Usually, the external potential is expressed as a superposition of atomic potentials vκ centered
at the instantaneous positions of the ions

vext(r) =
∑
lκ

vκ(r−Rlκ) . (41)

Its first-order variation, evaluated at the equilibrium positions, is given by

δqκαvext(r) = −
∑
l

∇r
αvκ(r−R0

lκ)e
iqR0

lκ

= −eiqr
∑
l

eiq(R0
lκ−r)∇r

αvκ(r−R0
lκ) . (42)

The quantity defined by the lattice sum has the periodicity of the original lattice. Thus the
derivative δqκα can be considered to carry a momentum q.
When using a Bloch representation for the electronic eigenstates, the variation of the effective
potential, δqκαveff , connects states of momentum k with those of momentum k+ q. The Fourier
transform of the first order density variation takes the form

δqκαn(q+G) = − 4

V

∑
kv

〈kv|e−i(q+G)r|∆q
κα(kv)〉 , (43)

where V denotes the crystal volume. The quantity appearing on the right hand side is closely
related to the first-order variation of the valence state |kv〉 and is defined by (see Eq. (37))

|∆q
κα(kv)〉 =

∑
c

|k+ qc〉〈k+ qc|δqκαveff |kv〉
εc(k+ q)− εv(k)

. (44)

It is obtained by solving the inhomogeneous linear equations (see Eq. (38))

(Hk+q
KS − εv(k))|∆

q
κα(kv)〉 = (P k+q

v − 1) δqκαveff |kv〉 . (45)

Eqs. (43) and (45) together with (28) constitute a set of equations that is solved self-consistently
for a fixed q to obtain δqκαn. As a by-product, δqκαveff is also calculated.
The electronic contribution to the dynamical matrix takes the form

δqκαδ
−q
κ′βE =

∑
G

[
δqκαn(G+ q)δ−qκ′βvext(G+ q) + δqκαδ

−q
κ′βvext(G)

]
. (46)

Typically, first principles calculations along these lines are performed on a grid of q-points that
form a regular lattice and span the whole Brillouin zone. Discrete Fourier transforms are then
applied to interpolate dynamical matrices on arbitrary points in between.
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2.3.1 Technical aspects and extensions

The above derivation sketched the main ideas behind the perturbative approach. Practical im-
plementations in existing band structure techniques require a variety of extensions and general-
izations, which will be briefly discussed here.
Metals: Originally, the scheme was formulated for non-metallic systems and first applied in
the framework of the plane-wave pseudopotential method. An extension to metallic systems
has been derived by de Gironcoli, which contains essentially technical modifications related to
the appearance of fractional occupation numbers for electronic states with energies close to the
Fermi energy [39].
Non-local potentials: The above derivation assumed a local external potential. Modern pseu-
dopotential approaches typically use also non-local forms, for which the above derivation is
not strictly valid. It can be modified to include these forms, with the caveat that the dynamical
matrix (46) cannot be expressed solely in terms of the density variation anymore but explicitly
involves first-order variations of the wavefunctions, too.
Basis-set corrections: In many implementations, the electronic states are expanded in terms of a
basis set. If the basis functions do not depend on the ionic positions, as is true of plane waves, the
formulation given above is essentially unchanged. However, if the basis set depends explicitly
on the position of the ions, it gives rise to additional contributions related to the change of the
basis functions under an ionic displacement. These basis set corrections are known as Pulay
corrections in the context of force calculations. Similar correction terms occur for methods
based on ultrasoft pseudopotentials, as their construction requires the introduction of auxilliary
charges centered at ionic sites.
Spin polarization: Extension to spin-polarized DFT is straightforward. The two spin sectors can
be treated independently in the perturbation calculation, because the perturbation potential δqv
connects states of equal spins only. The dynamical matrix is then given as a sum of contributions
from each spin.
Relativistic corrections: Extensions of the semi-relativistic framework, where spin-orbit cou-
pling is neglected, have recently been worked out in the context of pseudopotentials [40, 41].
Here spin-orbit coupling can be easily incorporated by an additive term in the pseudopotential
vext → vSR + vSOC . It depends on the ion positions and gives rise to additional terms in δvext

which entangle spatial and spin degrees of freedom.

3 Electron phonon coupling

3.1 Density functional perturbation approach to electron phonon vertex

3.1.1 Form of electron-phonon vertex

In the previous section, we have shown how the dynamics of the ions can be calculated quanti-
tatively within the DFT approach. This was done on the basis of the adiabatic approximation,
where the electronic subsystem entered the ionic equation-of-motion via a static screening term
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only. Now we go one step further and consider the effect of a dynamical coupling between the
electronic and phononic subsystems. Here, only the main ideas to derive the basic form of the
electron-phonon vertex are sketched. A more elaborate discussion can be found in the book of
Grimvall [42].
Let us consider again the general Hamiltonian of a solid given in Eq. (1) and look at the matrix
element

〈nα|H|n′α′〉 , (47)

where a state |nα〉 denotes the product of separate electronic and phononic wavefunctions. In
the adiabatic approximation, only diagonal elements n = n′ and α = α′ are present. Non-
vanishing off-diagonal elements come from the non-adiabatic terms ∆H in Eq. (6). For the
most important one, ∆H(1), one obtains

〈nα|∆H(1)|n′α′〉 =
∫
χ∗α(ψ

∗
n∇Rψn′) · ∇Rχα′ . (48)

As before one assumes that all quantities are expanded around the equilibrium positions R =

R0 + u in a fast converging expansion in terms of u. To get an explicit expression, we describe
the change in the electronic wavefunction by an effective potential V (R) due to small ionic
displacements, giving ∫

ψ∗n∇Rψn′ ∝ 〈n|∇RV |n′〉 , (49)

where |n〉 and |n′〉 denote unperturbed electronic states. The remaining ionic matrix element∫
χ∗α∇Rχα′ is proportional to the momentum operator, which depends linearly on the phonon

creation and annihilation operators.
Thus the off-diagonal matrix elements in (47) describe the probability of emission or absorption
of a phonon under a simultaneous excitation in the electronic subsystem. The electronic tran-
sition probabilities are determined by the first-order variation of the effective potential V (R)

with respect to the ion coordinates as the perturbation operator.

3.1.2 Electron-phonon vertex in density functional perturbation theory

In the context of DFT, the electron-phonon coupling (EPC) matrix elements are defined as tran-
sition probabilities of Kohn-Sham states induced by a change in the potential due to a small ion
displacement. If one would choose the electron-ion interaction potential, one obtains according
to Eq. (42)

〈k+ qν ′|δqκαvext|kν〉 = −〈k+ qν ′|eiqr
∑
l

eiq(R0
lκ−r)∇r

αvκ(r−R0
lκ)|kν〉 . (50)

It is convenient to switch to the normal-mode representation

g
(0)qj
k+qν′,kν =

∑
κα

Aqj
κα〈k+ qν ′|δqκαvext|kν〉 , (51)

where qj denotes the normal modes with momentum q and mode index j, and the coefficients
Aqj
κα are defined in (16). This expression describes a rigid shift of the ionic potential, and
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Fig. 1: Diagrammatic representation of the screened electron-phonon vertex within the DFT
framework. Blue zigzag lines represent phonons, black lines electron propagators, and the
dashed lines the effective electron-electron interation.

constitutes the so-called bare electron-phonon coupling matrix elements. Such a rigid-ion ap-
proximation is only justified in cases where all electrons are tightly bound to the ions as in an
ionic crystal. For metals, in particular, this approximation typically fails, because it neglects
the reaction of the electrons on the disturbance, which tend to screen the perturbation of the
potential.
Within DFT the screened electron-phonon matrix elements are given by the variation of the
effective potential

gqλk+qν′,kν =
∑
κα

Aqj
κα〈k+ qν ′|δqκαveff |kν〉 . (52)

It is instructive to look at it from a many-body perturbation perspective. Fig. 1 shows a diagram-
matic representation of the screened vertex. The bare vertex is screened by virtual electron-hole
excitations coupled via an effective interaction. From the relationship (34) between the external
(bare) and effective (screened) perturbation, we can see that within the DFPT framework, the
electron-hole bubble is represented by the charge-susceptibility of the non-interacting Kohn-
Sham system (32). The effective interaction is given by the kernel I defined in Eq. (28) and
incorporates both the Coulomb interaction and contributions from exchange and correlation.
We have seen in Sec. 2.3 that the first-order variation of the effective potential is calculated as
a by-product in the DFPT self-consistent procedure. As the EPC matrix elements contain only
this quantity and the unperturbed Kohn-Sham states, they can be calculated by a comparatively
small numerical effort after a DFPT cycle is converged. They provide detailed microscopic
information about how the coupling depends on the momenta of the electronic and phononic
states as well as on the character of the electronic wavefunctions and the displacement pattern
of the normal mode, respectively.
The spin dependence is incorporated in the EPC vertex in a straightforward way. In the semi-
relativistic framework, when spin-orbit coupling is neglected, spin and spatial degrees-of-free-
dom are independent, and the perturbation due to the ion displacements does not flip the spin.
As a consequence the EPC vertex is spin-diagonal. The EPC vertex in the presence of spin-orbit
coupling has a more complex form. In the context of the pseudopotential method, it was shown
that a second additive contribution to the perturbation operator appears, δveff → δvSReff + δvSOC ,
which results in off-diagonal spin terms [43].
The EPC matrix elements are the essential ingredients for a numerical approach to a variety of
physical properties. In the following I will discuss in some detail (i) renormalization of phonon
properties, (ii) phonon-mediated pairing interaction and superconductivity, and (iii) self-energy
effects for electronic states. Emphasis will be on how one can connect theoretical predictions
with experimental observations to test the accuracy of the first principles EPC matrix elements,
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Fig. 2: (a) Diagrammatic representation of the phonon self-energy up to second order in the
electron-phonon vertex. Blue zigzag lines represent phonons, black lines electron propagators,
and the dashed lines the effective electron-electron interaction. The leading contributions in the
limit ω → 0 can be summed up with the help of the screened vertex introduced in Fig. 1. They
are shown for (b) real part and (c) imaginary part of Π , respectively.

which by themselves are not directly measurable.
In these applications one frequently encounters the problem that one needs EPC matrix elements
on momentum grids, which are finer than the ones used in the DFPT cycle. Denser k grids can
be applied in a straightforward way because the calculation of the EPC matrix elements is done
separately from the DFPT part, so that only additional Kohn-Sham states need to be calculated.
This is a numerically rather cheap procedure. In contrast, the DFPT calculation of δqκαveff is
much more demanding. Therefore, matrix elements gqjk+qν′,kν for intermediate q are obtained
by interpolation techniques. One way is to interpolate δqiveff given on a regular qi-grid and use
exact Kohn-Sham states to evaluate the matrix elements. An alternative route is to use electron
and phonon Wannier functions to represent the EPC matrix elements and utilize their spatial
localization to interpolate them on very fine momentum grids [44, 45].

3.2 Phonon self-energy and linewidth

On the level of DFPT in the harmonic approximation, phonons are elementary excitations of the
lattice, which do not interact and therefore have infinite lifetime. The interaction with electrons
results in renormalized quasiparticle properties expressed by the phonon self-energy Π . The
renormalized phonon Greens function is obtained from the bare Greens function D0,qj(ω) =

1/(ω − ωqj)− 1/(ω + ωqj) via the Dyson equation D−1 = D−1
0 −Π as

Dqj(ω) =
2ωqj

ω2 − ω2
qj − 2ωqjΠqj(ω)

. (53)

For not too large self-energies, the renormalization of the phonons leads to (i) a broadening of
the quasiparticle peak of the spectral function, i.e. a finite linewidth, which is proportional to
the inverse lifetime, and (ii) to a shift of the peak position. The linewidth is connected to ImΠ ,
and the peak shift to ReΠ .
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In the following, we briefly sketch the approach to the phonon renormalization in the DFPT
framework. It basically focuses on the lowest-order corrections beyond the adiabatic approx-
imation. The starting point is a diagrammatic representation of the self-energy contributions
coming from second-order EPC as sketched in Fig. 2(a). In general, the electron-hole bubble
depends on the frequency ω and varies on the scale of electronic energies. These are usually
much larger than typical phonon frequencies relevant for the renormalization. Therefore, to
lowest order, one can take the static limit ω = 0, and the series of diagrams can be summed up
with the help of the screened vertex introduced above in Fig. 2(b). This gives a contribution to
ReΠ only, which has the form

ReΠqj(0) =
1

Nk

∑
kνν′

gqjk+qν′,kν

(
g

(0)qj
k+qν′kν

)∗ f(εkν)− f(εk+qν′)

εkν − εk+qν′
. (54)

Here f(ε) = (1 + e(ε−µ)/kBT )−1 denotes the Fermi distribution function. Eq. (54) involves
both the screened and bare vertices due to fact that the screening enters in a symmetric way,
and using the screened vertex on both sides would result in a double counting of the diagrams
containing the dashed lines.
It is now instructive to see that this static renormalization is already included in the DFPT
procedure. This can be seen by using the definitions of the screened and bare vertices

ReΠqj(0) =
1

Nk

∑
kνν′

gqjk+qν′,kν

(
g

(0)qj
k+qν′kν

)∗ f(εkν)− f(εk+qν′)

εkν − εk+qν′

=
1

Nk

∑
kνν′

∑
κακ′β

Aqj
καA

−qj
κ′β 〈k+ qν ′|δqκαveff |kν〉〈kν|δ−qκ′βvext|k+ qν ′〉

×f(εkν)− f(εk+qν′)

εkν − εk+qν′

=
1

Nk

∑
kνν′

∑
κακ′β

Aqj
καA

−qj
κ′β

∫
d3rδqκαn(r)δ

−q
κ′βvext(r) . (55)

In the last step the linear-response expression (30) for the first-order variation of the electronic
density was applied. Comparison with Eq. (46) shows that this term corresponds to the first
contribution to the dynamical matrix which comes from the variation of the density. Thus this
renormalization is already taken into account on the level of DFPT.
The situation is different for ImΠ . This is a true non-adiabatic property, and one has to go
beyond the static approximation. The dominant contribution in the limit ω → 0 is obtained by
replacing in each term of the series in Fig. 2(a) one electron-hole bubble by its imaginary part
and taking the static limit for all others. Then again, the series can be summed up, but now both
vertices in the diagram are screened (Fig. 2(c)). This leads to the following expression for the
linewidth (half-width at half maximum)

γqj = −2 ImΠqj(ωqj)

= 2π
1

Nk

∑
kνν′

∣∣gqjk+qν′,kν

∣∣2 (f(εkν)− f(εk+qν′)
)
δ
(
ωqj + (εkν − εk+qν′)

)
. (56)
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Fig. 3: Phonon dispersion (left panel) and linewidths (right panel) for two high-frequency
branches of YNi2B2C along the [001] direction. Shown are inelastic neutron scattering results
(symbols) together with first principles predictions (lines) [47].

This expression contains the T -dependence via the Fermi distribution functions f . It can be
further simplified as long as the electronic structure has no peculiarities on the scale of phonon
energies. The δ-function forces the energy difference εkν − εk+qν′ to be small, hence the dif-
ference of the Fermi distribution functions can be approximated with the help of its energy
derivative f ′ = df/dε

f(εkν)− f(εk+qν′) ≈ f ′(εkν)(εkν − εk+qν′)→ −f ′(εkν)ωqj . (57)

Finally, the phonon frequency is neglected in the δ function.
At low temperatures, the energy derivative of the Fermi distribution function is strongly peaked
at the Fermi energy. In the limit T → 0, it can be replaced by f ′(εkν) → −δ(εkν − εF ). We
finally arrive at an expression for the EPC-induced phonon linewidth valid in the limit T → 0

γqj = 2πωqj
1

Nk

∑
kνν′

|gqjk+qν′,kν |
2δ(εkν − εF )δ(εk+qν′ − εF ) . (58)

It contains only quantities that are available within the DFPT approach to the EPC. The deriva-
tion of (58) was first given by Allen [46]. This form of the linewidth is most often used in
first-principles calculations. One must, however, be aware of the approximations underlying its
derivation. It is only valid in the limit T → 0 and also breaks down in the limit q→ 0 for met-
als because intraband scattering events involve arbitrarily small energy differences εkν− εk+q,ν ,
and the phonon frequency cannot be neglected anymore.
Phonon linewidths can be measured by, e.g., inelastic neutron or x-ray scattering experiments.
However, when comparing theory and experiment, one should keep in mind that the above
formula only represents the contribution to the linewidth coming from EPC. Experimentally,
one needs to separate it from other possible contributions to the linewidth, most importantly
those related to anharmonic decay processes, which often is not easy to achieve.
An example is shown for two high-frequency modes of the superconductor YNi2B2C in Fig. 3.
Measurements were done at low T , where anharmonic contributions are supposed to play a
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minor role. The calculations do predict the size and momentum dependence of the linewidths
reasonably well, demonstrating that even for compounds with rather complex lattice structure
these calculations are reliable.
As we will see in the discussion of superconductivity given below, the same expression (58)
enters the pairing properties. As such Eq. (58) provides a link between the pairing strength of a
phonon mode and the linewidth, the latter being an experimentally accessible quantity.
As discussed in Sec. 3.1, the concept of electron-phonon coupling goes beyond the adiabatic
approximation, and we leave the firm base of DFT. The above derivation showed, however, that
to a first approximation the phonon linewidth can still be calculated within the DFPT scheme.
To include further non-adiabatic corrections as for, e.g., the frequency renormalization, a more
general framework like the time-dependent DFT is required. Such a generalization was outlined
recently by Saitta et al. [48].

3.3 Phonon mediated pairing interaction and superconductivity

Superconductivity is a macroscopic quantum phenomenon of the electron system. Its origin lies
in an instability of the Fermi liquid state and leads to a new ground state of correlated paired
electrons (Cooper pairs). In their seminal paper, Bardeen, Cooper, and Schrieffer (BCS) [49]
have shown that this state is stabilized when there is a small attractive interaction among two
electrons. Such an attractive interaction is always provided by the electron-phonon coupling,
which thus represents a natural source for pairing in any metal. EPC is known to be the pairing
mechanism in most superconductors, which are commonly termed classical superconductors
to distinguish them from more exotic materials where other types of pairing mechanism are
suspected.
The BCS theory treated the EPC only in a simplified form appropriate for the weak coupling
limit. Soon after a more complete theory was worked out, applying many-body techniques (for
a review see, e.g., Scalapino [50]) . The resulting Eliashberg theory [51] extends the framework
of BCS into the strong coupling regime and allows a quantitative prediction of many proper-
ties of the superconducting state. An important property of the superconducting state is that
the quasiparticle spectrum is gapped. The size of the gap plays the role of an order parame-
ter. It is determined from a self-consistent solution of a set of equations which generalize the
BCS gap equations. An important feature of these so-called Eliashberg gap equations is that
only normal-state properties enter, which specify a particular material. These include details
about the electronic structure and the phonon-mediated pairing interaction, quantities which are
readily accessible within the first principles approach to EPC outlined above.
As the Eliashberg theory will be presented in detail in another lecture of this Autumn School,
I will focus here on the procedure to calculate the effective electron-electron interaction. The
physical process behind the phonon-mediated interaction is the exchange of a phonon between
two electrons, shown schematically in Fig. 4. This translates into the so-called Eliashberg
function

α2Fkν,k′ν′(ω) = N(εF )
1

Nq

∑
qj

|gqjk′ν′,kν |
2 δ(ω − ωqj) . (59)
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Fig. 4: Diagrammatic representation of the effective electron-electron interaction mediated by
the exchange of a phonon.

Here N(εF ) is the electronic density-of-states at the Fermi energy per spin. The sum extends
over all phonon modes mediating the interaction, which also determine its frequency depen-
dence. Both coupling vertices are represented by screened matrix elements, and its implicit
momentum conservation restricts the sum to q = k′ − k. For the superconducting pairing, this
interaction is most effective for electronic states with energies |εkν − εF | ≤ ωphonon. Thus, in
practice one evaluates (59) only for states right at the Fermi surface (for an elaborate discussion
of the underlying assumptions and approximations see [52]).
Most superconductors exhibit surprisingly isotropic superconducting gaps. The reason is that
defects, which are always present in real materials, tend to wash out the momentum dependence
of the interaction. In many cases, it is sufficient to consider the Fermi surface average leading
to the isotropic Eliashberg function α2F (ω) =

∑
kν,k′ν′ wkνwk′ν′α

2Fkν,k′ν′(ω) with wkν =

δ(εkν − εF )/N(εF ). Taking momentum conservation into account, this is typically cast into the
form

α2F (ω) =
1

N(εF )

1

Nq

∑
qj,kνν′

|gqjk+qν′,kν |
2δ(ω − ωqj)δ(εkν − εF )δ(εk+qν′ − εF ) . (60)

Within Eliashberg theory, important characteristics like the superconducting transition temper-
ature often depend on integrated quantities only. One such quantity is the isotropic coupling
constant defined by

λ = 2

∫
dω

α2F (ω)

ω
, (61)

which is the dimensionless measure of the average strength of the coupling. Commonly, values
larger than 1 are characterized as strong coupling. The factor 1/ω in the integral indicates
that low-energy modes are generally more effective than high-energy modes in mediating the
pairing.
At this stage it is useful to make a connection to the expression for the phonon linewidth derived
in the limit T → 0. Using Eq. (58), the isotropic Eliashberg function can be written as

α2F (ω) =
1

2πN(εF )

1

Nq

∑
qj

γqj
ωqj

δ(ω − ωqj) (62)

and the isotropic coupling constant as

λ =
1

πN(εF )

1

Nq

∑
qj

γqj
ω2
qj

. (63)
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The dimensionless prefactor γqj/ωqj in (62) can be interpreted as a measure of the coupling due
to an individual phonon mode. The Eliashberg function is then given as a sum over all phonon
branches and averaged over phonon momentum.
Commonly, DFPT based calculations of the Eliashberg function are done by first calculating
γqj and then performing the sum over the phonon spectrum. The appearance of a product of
δ-functions in the expression (58), however, requires a careful numerical approach. Usually
the δ-functions are replaced by smoother functions like Gaussians, but to reach convergence
the k-summation has to be carried out on meshes which are denser than the one used for the
calculation of the phonon properties.
The strong-coupling superconductor Pb illustrates this general approach well because the effects
of EPC are especially pronounced and relativistic corrections are necessary for a satisfactory
quantitative description. Fig. 5(a) shows the phonon dispersion along high-symmetry directions,
comparing semi-relativistic (SR) results and those including the spin-orbit coupling (SOC) with
data from inelastic neutron-scattering experiments. The experimental scale of phonon frequen-
cies, and in particular the pronounced anomalous dips observed at various points along the
dispersion curves are fingerprints of strong EPC. They are much better reproduced when SOC
is included, which in addition improves the whole spectrum by lowering the frequencies as
compared to the SR calculation. Phonon linewidths shown in Fig. 5(b) for the same branches
exhibit a strong variation as a function of momentum. The values are generally larger for the
SOC calculation, indicating that the matrix elements are enhanced significantly. This is re-
flected in an enhanced α2F shown in Fig. 5(c), which much better agrees with the Eliashberg
function derived from tunneling spectroscopy experiments. The isotropic coupling constant λ
is increased from 1.08 to 1.56 by SOC, which matches well the experimental value of 1.55. A
closer look at the different contributions to λ reveals that about half of this increase originates
in the softening of the spectrum (due to the factor 1/ω in the expression for λ), while the other
half comes from an increase of the coupling matrix elements. This example demonstrates that
SOC can substantially modify the EPC [43].
Anisotropic superconducting states can be handled using the full momentum dependence of the
Eliashberg function (59). This has been done rarely in the past, as the fully anisotropic gap
equations are difficult to solve. A special class of anisotropic superconductors are multiband
superconductors, which possess several Fermi surface sheets. The superconducting gap can
vary among the different sheets but is approximately isotropic on a single sheet. In this case, a
partially averaged pairing function is appropriate

α2Fνν′(ω) =
1

N(εF )

1

Nq

∑
qj,k

|gqjk+qν′,kν |
2δ(ω − ωqj)δ(εkν − εF )δ(εk+qν′ − εF ) . (64)

The isotropic Eliashberg function is replaced by a matrix describing intraband and interband
pairing contributions.
A textbook example of such a multiband superconductor is MgB2. Here two types of electronic
states are present at the Fermi level: σ and π states, which are derived mainly from the boron p
states. Calculations of the band-resolved Eliashberg functions shown in Fig. 6 revealed that the



Electron-Phonon Coupling 12.21

0

10

X W X K L0

2

4

6

8

10

Fr
eq

ue
nc

y 
(m

eV
)

Pb

L

LL

T
T T1

T2

(a)

[100] X [110] [111] L0

0.01

0.02

0.03

0.04

0.05

Li
ne

w
id

th
  

(m
eV

) Pb

T

L

T1 T

L

L

T2

(b)

0 2 4 6 8 10
Frequency (meV)

0

0.5

1

1.5

2

2 F

Pb

(c)

Fig. 5: Phonon and electron-phonon coupling properties for the elemental superconductor Pb.
Figures show (a) the phonon dispersion, (b) the mode-dependent linewidth, and (c) the Eliash-
berg function (c). Black lines indicate results of calculations without spin-orbit coupling, and
red lines with spin-orbit coupling included. For comparison, blue symbols show experimental
results for (a) phonon frequencies obtained from inelastic neutron scattering experiments [53]
and (c) the Eliashberg function extracted from tunneling spectroscopy data [54].

pairing interaction is predominantly driven by the intraband σ-σ contribution. It originates from
a strong coupling to in-plane B vibrations which drive a large softening of branches connected to
the E2g modes (left panel in Fig. 6). This peculiar pairing interaction leads to a superconducting
state with gaps of different magnitude for the σ and π Fermi surfaces whose signature could be
found, e.g., in specific heat measurements. Tunneling spectroscopy gave strong support for the
predicted multiband pairing spectrum [55], too.



12.22 Rolf Heid

0 20 40 60 80 100 120
 (meV)

0

0.2

0.4

0.6

0.8

1

2 F

total
MgB2

Fig. 6: Left panel: Calculated phonon dispersion of the multiband superconductor MgB2. The
large frequency softening of the E2g-related branches due to a very strong EPC is indicated
by red arrows. Right panel: Calculated total and band-resolved Eliashberg functions of MgB2

demonstrating that the dominant coupling originates from a large intraband σ-σ pairing inter-
action.

3.4 Electron self-energy effects

Another important physical consequence of EPC is the renormalization of electronic quasiparti-
cles. This has particularly profound consequences for metals, as it strongly modifies electronic
states whose energy distance to the Fermi level is of the order of the phonon energies. Although
this is a small energy compared to typical electronic scales, it significantly influences Fermi
surface related properties like transport or thermodynamics.
Nowadays, there are a variety of experimental techniques that can probe the properties of elec-
tronic quasiparticles in fine detail. A well known example is angle-resolved photoemission
spectroscopy (ARPES), which essentially measures the quasiparticle spectral function of occu-
pied states, while unoccupied states can be accessed by, e.g., pump-probe experiments. Such
studies provide information about the energy and momentum dependence of the renormalization
due to EPC. As these techniques are rather surface sensitive, most applications were devoted to
surface electronic states (for a recent review, see [56]).
The renormalization is described by the electron self-energy, which via the Dyson equation
enters the renomalized electronic Green’s function as

G(kν, ε) =
(
ε− (εkν − µ)−Σ(kν, ε)

)−1
. (65)

For not-too-large self-energies, the spectral function Akν(ε) = −ImG(kν, ε + iδ) possesses a
well defined peak at a shifted quasiparticle energy determined by the real part of Σ

εkν = εkν − ReΣ(kν, εkν) . (66)

The quasiparticle acquires a finite lifetime leading to a linewidth (FWHM)

Γkν = −2ImΣ(kν, εkν) (67)

that is determined by the imaginary part.
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Fig. 7: Diagrammatic representation of the lowest-order contribution to the electron self-energy
from the electron-phonon coupling.

The relevant lowest order diagram due to EPC is shown in Fig. 7. It describes a virtual exchange
of a phonon. Note that in this case both coupling vertices are screened. This leads to the
following expression

Σ(kν, ε) =
1

Nq

∑
qj

∑
ν′

∣∣gqjk+qν′,kν

∣∣2( b(ωqj)+f(εk+qν′)

ε+ ωqj − εk+qν′ + iδ
+
b(ωqj)+1−f(εk+qν′)

ε− ωqj − εk+qν′ + iδ

)
. (68)

The T dependence now enters via both Fermi and Bose distribution functions, f(ε) and b(ω) =
[eω/kBT − 1]−1, respectively.
From Eq. (68) one can readily derive the expression for the imaginary part. It is convenient to
introduce two spectral functions which depend explicitly on the electronic state (kν)

α2F±kν(ε, ω) =
1

Nq

∑
qj

δ(ω − ωqj)
∑
ν′

∣∣gqjk+qν′,kν

∣∣2δ(ε− εk+qν′ ± ω) . (69)

Then the imaginary part can be cast in the form

ImΣkν(ε) = −π
∫ ∞

0

dω
{
α2F+

kν(ε, ω)[b(ω)+f(ω+ε)]+α
2F−kν(ε, ω)[b(ω)+f(ω−ε)]

}
. (70)

The appearance of δ-functions in (69) allows a straightforward numerical evaluation of Eq. (70).
In contrast, a direct calculation of ReΣ(kν, ε) via Eq. (68) requires a summation over many
intermediate electronic states, which converges slowly. Therefore, in practice, one obtains ReΣ
by making use of the Kramers-Kronig relation

ReΣ(kν, ε) =
1

π

∫
dε′

ImΣ(kν, ε′)

ε− ε′
. (71)

From (70) one readily obtains an expression for the EPC-induced quasiparticle linewidth

Γkν = 2π

∫ ∞
0

dω
{
α2F+

kν(εkν , ω)[b(ω)+f(ω+εkν)]+α
2F−kν(εkν , ω)[b(ω)+f(ω−εkν)]

}
. (72)

The two terms in this expression represent two different scattering processes, which are sketched
in Fig. 8. When a quasiparticle hole is created at the state (kν), electrons can scatter from
states with higher or lower energies, respectively. To conserve the total energy, the first process
is connected with the emission of a phonon and is described by α2F−kν . On the other hand,
α2F+

kν describes the scattering of an electron from a lower-energy state with the simultaneous
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Fig. 8: Illustration of the scattering processes contributing to the self-energy of a hole quasi-
particle with momentum k and band index ν. Electrons (red lines) can scatter virtually from
states with higher or lower energies under simultaneous emission or absorption of a phonon
(blue lines), respectively.

absorption of a phonon. A similar interpretation can be given if a quasiparticle is created at
energies ε > εF .
While the emission and absorption spectra differ in principle, it is often found in practice that
the differences are small. This is due to the fact that the electronic energy scale is typically
much larger than the phonon energies. Therefore, emission or absorption of a phonon mainly
changes the momentum of the electron, while the energy change is negligible. In this case the
phonon energy in the δ-function of (69) can be dropped resulting in α2F±kν ≈ α2Fkν , with the
spectral function

α2Fkν(ε, ω) =
1

Nq

∑
qj

δ(ω − ωqj)
∑
ν′

∣∣gqjk+qν′,kν

∣∣2 δ(ε− εk+qν′) . (73)

This so-called quasielastic approximation leads to the simplified expression of the linewidth

Γkν = π

∫ ∞
0

dω
{
α2Fkν(εkν , ω)[2b(ω) + f(ω + εkν) + f(ω − εkν)]

}
. (74)

The coupling parameter is defined via

λkν = 2

∫
dω

α2Fkν(εkν , ω)

ω
. (75)

This dimensionless quantity characterizes the interaction strength of a specific electronic state
to the whole phonon spectrum, and depends both on the momentum and band character of the
electronic state. Numerical evaluation of the sum in (73) requires typically rather dense q-
meshes to reach convergence. To get the related matrix elements one resorts to interpolation
techniques mentioned in Sec. 3.1.2.
The Eliashberg function discussed in Sec. 3.3 is related to this state-dependent spectral function
via appropriate momentum averages at the Fermi energy. For the isotropic Eliashberg function
the relation α2F (ω) =

∑
kν wkνα

2Fkν(εF , ω) holds with weights wkν = δ(εkν − εF )/N(εF ),
and the isotropic coupling constant is given by λ =

∑
kν wkνλkν .
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Fig. 9: Illustration of the renormalization of an electronic band for a model coupling to an
Einstein-type phonon branch with energy Ω. (a) Real and imaginary part of the electron self-
energy. (b) Renormalized quasiparticle dispersion, showing a kink at the phonon frequency.

Experimentally, the coupling strength of individual electronic states can be probed in two dif-
ferent ways. The first is related to the T -dependence of the linewidth. In Eq. (74), it is contained
solely in the Bose and Fermi distribution functions. One can easily derive its behavior for the
two limiting cases, T → 0 and large T . For T → 0, n(ω) vanishes and one obtains

Γkν → 2π

∫ ωmax

0

dω α2Fkν(εkν , ω) . (76)

With increasing temperature, the linewidth increases for all energies. For temperatures larger
than the maximum phonon frequency, this T -dependence becomes linear, and its slope is deter-
mined by the average coupling parameter defined above

Γkν ≈ 2πλkνkBT . (77)

This relationship has been widely used to extract λkν from measurements of Γkν(T ) for surface
electronic states. The analysis is, however, complicated by the fact that the measured linewidth
also contains contributions from other decay channels, most noticeably due to electron-electron
interaction and due to elastic scattering at defects.
A second route to connecting theory and experiment are ARPES measurements of the spectral
function of electronic bands close to the Fermi energy. They provide more direct information
about the renormalization and the underlying self-energy. It is instructive to first look at a
simple model where only a single dispersionless phonon branch is involved in the coupling, i.e.
α2Fkν(ω) possesses one δ-type peak at the phonon frequency Ω (Einstein model). Fig. 9(a)
shows the resulting self-energy for T → 0. Its imaginary part exhibits a step at Ω because, for
ω < Ω, no phonons are available to promote the scattering, while for ω > Ω this scattering
channel is opened. The real part of the self-energy exhibits a peak at the phonon frequency,
which shows that the largest shifts of the quasiparticle peaks occur for electronic states with
ε − εF ≈ Ω. As a consequence, the renormalized dispersion shown in Fig. 9(b) exhibits a
kink-like structure right at the phonon energy.
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Fig. 10: Electronic-state dependent coupling constants for Pb. Left panel: band structure
along the high-symmetry directions KΓ and ΓL. Right panels: Momentum-dependent coupling
constants for the two bands crossing the Fermi level. Spin-orbit coupling was taken into account
in the calculations.

In the general case, many phonon modes of different energies contribute to α2Fkν(ω) resulting
in a broadened self-energy and kink structure. The coupling parameter is related to the slope of
ReΣ at the Fermi energy, and the exact relation

λkν =
∂ReΣ(kν, ε)

∂ε

∣∣∣∣
ε=εF ,T=0

, (78)

holds. It has been used to extract the coupling parameter from measurements of the renormal-
ized electronic bands.
Application of the first principles approach to a real system is exemplified for the case of lead
[57]. Fig. 10 shows the results for the coupling constant of electronic states for two bands
crossing the Fermi surface. One can observe that λkν can be significantly smaller or larger than
the Fermi-surface average of λ = 1.56 discussed in Sec. 3.3. The variations partly reflect that
the availability of intermediate states contributing to the renormalization depends on the binding
energy and partly result from a momentum dependence of the EPC matrix elements.
Connection to experiment can be established by comparing the self-energy of states at the Fermi
level. Fig. 11 shows data from angle-resolved photoemission spectroscopy experiments for the
state of band #8 at the crossing with the Fermi level along the K-Γ direction. The calculations
describe the data rather satisfactorily. For this state they predict a coupling constant of λk =

1.79, which is 15% larger than the Fermi-surface average.
The above-given analysis rests on a simplified solution of the Dyson equation which is justified
as long as the coupling does not become too large. A generalized treatment has been presented
by Eiguren et al. [59] that employs a self-consistent solution of the Dyson equation in the
complex plane. They showed that for larger coupling the renormalization process becomes
much more involved. It can lead to a complex structure of the electronic spectral function,
indicating a break-down of the quasiparticle picture.
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Fig. 11: Electronic self-energy for Pb. Compared are calculated and measured results for the
electronic state at the Fermi-surface crossing of band #8 along the KΓ direction (see Fig. 10).
Calculations (red lines) include spin-orbit coupling. Angle-resolved photoemission data (blue
symbols) were taken from Reinert et al. [58].

4 Summary

In this tutorial, I have given an introduction to the first principles approach to phonons and
electron-phonon interaction within the linear-response framework of density functional theory,
the so-called density functional perturbation theory. We have seen that adiabatic lattice vi-
brations are linked directly to electronic ground-state properties, and their properties can be
calculated efficiently within the DFPT scheme. In contrast, electron-phonon coupling is a truly
non-adiabatic property. Nevertheless, DFPT provides a simple way to quantify the screened
electron-phonon vertex, which is one of the central quantities determining physical observables
like phonon linewidth, electron renormalization, or phonon-mediated pairing interaction. This
approach is valid as long as the electronic structure does not possess peculiarities on the energy
scale of phonons.
This technique has been applied in recent years to a large variety of compounds. Its most com-
mon use was devoted to quantitative estimates of the pairing interaction for superconductors,
providing valuable information about the basic question of the pairing mechanism. Measure-
ments of quasiparticle renormalization are a more direct tool to gain information about the
energy and momentum dependence of the electron-phonon vertex, and offer the possibility to
check the accuracy of the DFPT predictions in greater detail. This route should be pursued
more systematically in the future. A current challenge in this field is to incorporate more so-
phisticated treatments of electron correlations in order to extend applications to systems where
strong correlations play a crucial role.
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1 Introduction

The first microscopic theory for superconductivity was proposed in 1957 by Bardeen, Cooper
and Schrieffer [1] almost 50 years after the discovery of Kamerlingh Onnes of the zero elec-
tric resistance of the mercury below 4.1 K. The theory of superconductivity can be divided
into two separate areas: first the establishment of a pairing formalism, which leads to a su-
perconducting condensate, given some attractive particle-particle interaction, and secondly, a
mechanism by which two electrons might attract one another. BCS [2], by simplifying the in-
teraction, succeeded in establishing the pairing formalism. Indeed, one of the elegant outcomes
of the BCS pairing formalism is the universality of various properties; at the same time this
universality means that the theory really does not distinguish one superconductor from another,
and, more seriously, one mechanism from another. Luckily, while many superconductors do
display universality, some do not, and these, as it turns out, provide very strong support for the
electron-phonon mechanism. Before one establishes a theory of superconductivity, one requires
a satisfactory theory of the normal state [3]. In conventional superconductors, the Fermi liquid
theory appears to work very well, so that, while we cannot solve the problem of electrons inter-
acting through the Coulomb interaction, experiment tells us that Coulomb interactions give rise
to well-defined quasiparticles, i.e., a set of excitations which are in one-to-one correspondence
with those of the free-electron gas. The net result is that one begins the problem with a reduced
Hamiltonian

Hred =
∑
kσ

εkc
†
kσckσ +

∑
kk′

Vk,k′c
†
k↑c
†
−k↓c−k′↓ck′↑ , (1)

where, for example, the electron energy dispersion εk already contains much of the effect due
to Coulomb interactions. The important point is that well-defined quasiparticles with a well
defined energy dispersion near the Fermi surface are assumed to exist, and are summarized by
the dispersion εk with a pairing interaction Vk,k′ ≡ V (k, k′). The BCS equations is

∆k = −
∑
k′

Vk,k′
∆k′

2Ek′
tanh

Ek′

2T
, (2)

where

Ek =
√
ε2k +∆2

k (3)

is the quasiparticle energy in the superconducting state, ∆k the variational parameter used by
BCS, N(0) the normal density of states at the chemical potential EF , which is set to zero. An
additional equation which must be considered together with the gap equation is the number
equation,

n = 1− 1

N(0)

∑
k′

εk
Ek′

tanh
Ek′

2T
. (4)

Given a pair potential and an electron density, one has to solve these equations to determine
the variational parameter ∆k and the chemical potential, generally with an iterative numeri-
cal method. For conventional superconductors the chemical potential hardly changes from the
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normal to the superconducting state, and the variational parameter is much smaller than the
chemical potential, with the result that the second equation was usually ignored. BCS then
modeled the pairing interaction as a negative (and therefore attractive) constant potential V
with a sharp cutoff in momentum space at the Debye energy ωD

Vk,k′ ≈ −V θ
(
ωD − |εk|

)
θ
(
ωD − |εk′|

)
. (5)

Using this potential in the BCS equation (2) with (3), along with a constant density of states
assumption over the entire range of integration,

1

λ
=

ωD∫
0

tanh(E/2T )

E
dε (6)

where λ = N(0)V . At T = 0 K, the integral can be done analytically to give

∆ = 2ωD
exp(−1/λ)

1− exp(−1/λ)
. (7)

Close to the critical temperature, Tc, the BCS equation becomes

1

λ
=

ωD/2Tc∫
0

tanhx

x
dx (8)

which cannot be solved in terms of elementary functions for arbitrary coupling strength. Nonethe-
less, in weak coupling, one obtains

Tc = 1.13ωD exp(−1/λ). (9)

It is clear that Tc or the zero temperature variational parameter∆ depends on material properties
such as the phonon spectrum ωD, the electronic structure N(0) and the electron-ion coupling
strength V . However, it is possible to form various thermodynamic ratios, that turn out to be
independent of material parameters. The obvious example from the preceding equations is the
ratio 2∆/Tc. In weak coupling (most relevant for conventional superconductors), for example,

2∆

Tc
= 3.53, (10)

that is a universal result, independent of the material involved. Many other such ratios can
be determined within BCS theory, and the observed deviations from these universal values
contributed to the need for an improved formulation of BCS theory.
In the ’60s the first discrepancies between the experimental results and the theoretical predic-
tions began to be observed and the BCS theory [2] turned out to be inadequate for supercon-
ductors in which the electron-phonon interaction is strong. A primary reason for this is the
instantaneous nature of the BCS interaction which does not incorporate enough of the physics
of the electron-phonon system. For example, the electron-phonon interaction causes a mass
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2∆/Tc (Cs − Cn)/Cs λ TC
Al 3.535 1.43 0.43 1.18
Sn 3.705 1.68 2.77 3.75
Pb 4.497 2.77 1.55 7.22
Hg 4.591 2.49 1.62 4.19

Table 1: Deviations from the universality of BCS theory for some elemental superconductors.

enhancement of electron states near the Fermi level, seen in the specific heat, and a finite life-
time of electron quasiparticle states. In many material these effects are really, strong and well-
defined quasiparticles no longer exists. Nevertheless, Migdal [4] showed that Feynman-Dyson
perturbation theory can solve the electron-phonon problem to high accuracy, because the small
parameter λΩD/EF ≈ 10−3 keeps higher order corrections small.

Table 1 shows the values of the principal quantities for some characteristic elements. They
differ more and more from the BCS predictions as the of coupling constant λ increases. Ac-
cording to BCS theory, the expected values are 2∆/TC = 3.53 and (Cs − Cn)/Cs = 1.43.
These deviations arise when the interaction between electrons and phonons is strong, while
in the weak-coupling approximation the properties of the lattice and the dispersion of phonon
curves do not enter directly into the BCS theory.

The prediction of superconducting properties such as the critical temperature or the supercon-
ducting energy gap remains one of the outstanding challenges in modern condensed matter the-
ory. Owing to the complex nature of the superconducting state, a quantitative understanding of
the pairing mechanism in superconductors requires a very detailed knowledge of the electronic
structure, the phonon dispersions, and the interaction between electrons and phonons. For ex-
ample, in conventional superconductors below the critical temperature electron pairing results
from a subtle interplay between the repulsive Coulomb interaction and the attractive electron-
phonon interaction. Starting from the BCS theory several approaches to the calculation of the
superconducting properties have been proposed for arriving at first-principles Green’s function
methods such as the Migdal-Eliashberg [5] formalism that provides a very accurate description
of the superconducting state in almost all superconductors.

The electron-phonon coupling provided by Eliashberg theory is local in space and retarded in
time, reflecting the delay in the development of lattice overscreening. The result is in contrast
to the non local, instantaneous nature of the BCS model interaction, attractive for any pair of
electrons within the Debye energy ωD of the Fermi surface. Eliashberg theory is valid only
when λωD/EF ('

√
m∗/M) � 1, where EF is the Fermi level. This is the range of Migdal’s

theorem.
Migdal [4] argued that all vertex corrections areO(

√
m∗/M), wherem∗ is the electron effective

mass andM the ion mass, compared to the bare vertex, and therefore can be ignored; this means
that only single phonon scattering terms will contribute to the electronic self energy.
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2 Imaginary-axis Eliashberg equations

2.1 Nambu formalism

The Fröhlich interaction is formally very similar to the electron-electron interaction via Coulomb
forces, thus the mutual scattering of two electrons can be explained through the electron-
phonon-electron interaction in the same way. But the phase transition to the superconducting
state invalidates the perturbation theory developed for a metal in the normal state. However, in
1960, Nambu showed [6] how the formalism used in the normal state can be rewritten in such
a way that the diagrams used to deal with the normal state are applicable also to the supercon-
ducting state. The inclusion of Coulomb interactions causes the electron-phonon interaction to
be screened and this can constitute a considerable reduction.
In spite of the strong electron-phonon coupling, it remains true that phonon corrections to the
electron-phonon vertex are small. In contrast, Coulombic corrections are not necessarily small,
but are more or less constant factors, so they can be included in the coupling constant. In the
Nambu formalism a 2-component spinor for the electron

ψk =

(
ck↑

c†−k↓

)
, ψ†k =

(
c†k↑ c−k↓

)
(11)

and a bare-phonon field operator
ϕqν = bqν + b†−qν (12)

are defined. The Hamiltonian of an electron-phonon interacting system can be written [3] in
terms of ψ and ϕ. Including Coulomb interactions and it becomes

H =
∑
k

εkψ
†
kεkψ

†
kσ3ψk +

∑
qλ

Ωqλb
†
qλbqλ

∑
kk′λ

gk,k′λϕk−k′λψ
†
k′σ3ψk

+
1

2

∑
k1k2k3k4

〈k3k4|VC |k1k2〉
(
ψ†k3

σ3ψk1

)(
ψ†k4

σ3ψk2

)
, (13)

where εk is the one-electron Bloch energy relative to the Fermi levelEF , σ3 is a Pauli matrix,1Ω
is the bare phonon energy of wavevector q and mode ν, gkk′ν are electron phonon matrix ele-
ments, and VC is the Coulomb potential.
Translational invariance of VC restricts k1 + k2 − k3 − k4 to be either zero or a reciprocal
lattice vector K. The electrons are described in an extended zone scheme and the phonons
are described in a reduced zone scheme which is extended periodically throughout q-space.
In order to apply perturbation methods to superconductors the possibility of the existence of
Cooper pairs has to be included. This can be done taking the anomalous propagators. Using the

1The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
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Nambu formalism the Green function [7] becomes

G(k, τ) = −〈T {ψk(τ)ψ†k(0)}〉, (14)

Dλ(q, τ) = −〈T {ϕqλ(τ)ϕ†k(0)}〉 (15)

and the average is over the grand canonical ensemble (β = 1/T , where T is the temperature)

〈Q〉 =
Tr e−βHQ

Tr e−βH
, (16)

where the operators evolve in imaginary time and T is the time-ordering operator. As the matrix
operator ψk(τ)ψ†k(0) does not conserve the number of particles the definition of a new operator
U that adjusts the number of particles is necessary:

U = 1 +R† +R, (17)

whereR converts a given state in anN -particle system into the corresponding state in theN+2

particle system.
By this definition, the Green function for electrons is a 2× 2 matrix, the diagonal elements are
the conventional Green functions for spin-up electrons and spin-down holes, while G12 and G21

describe the pairing properties. It is defined as

G(k, τ) = −

(
〈T {ck↑(τ)c†k↑(0)}〉 〈UT {ck↑(τ)c−k↓(0)}〉

〈UT {c†−k↓(τ)c†k↑(0)}〉 〈T {c†−k↓(τ)c−k↓(0)}〉

)
. (18)

The diagonal elements are the ‘normal’ propagators. The off-diagonals elements are Gor’kov’s
F and F̄ , respectively.
The phonon and electron Green function could be expanded in a Fourier series

Dλ(q, τ) =
1

β

∞∑
n=−∞

e−iνnτDλ(q, iνn) (19)

G(k, τ) =
1

β

∞∑
n=−∞

e−iωnτG(k, iωn), (20)

where where νn = 2nπ/β and ωn = (2n+1)π/β with integer n are the Matsubara frequencies.
They are odd multiples of π/β for Fermions while for Bosons they are even.

2.2 Migdal-Eliashberg theory

The basic components of a many-body system are the propagators and the Migdal-Eliashberg
theory [8–14] is no exception. The one-electron Green function for the non-interacting system,
in momentum space at imaginary frequencies, is given by

G0(k, iωn) =
[
iωn1− εkσ3

]−1 (21)

and for the phonons
D0(q, iνn) =

[
M
(
ω2(q) + ν2n

)]−1
, (22)



Eliashberg Theory 13.7

Fig. 1: Feynman diagrams (a) and (b) are the corrections of second order in the electron-
phonon interaction to the electron propagator. Diagram (a) is included in Migdal theory while
(b) is the first omitted diagram. Panels (c) and (d) shown schematic Fermi surfaces and partic-
ular k-states that contribute to (a) and (b), respectively. The last term, in general, will involve
large energy denominators (as 3-4 and 1-4) such that it is negligible. This theorem may fail in
two circumstances: (i) when either phonon has |q| small, or (ii) when the Fermi surface has a
one-dimensional topology.

where M is the ion mass and ω(q) the phonon dispersion.
From a diagrammatic analysis a Dyson-like equation for the electron and phonon Green func-
tions can be written, though now for the electron it will be a 2× 2 matrix equation

[G(k, iωn)]−1 = [G0(k, iωn)]−1 −Σ(k, iωn), (23)

[D(q, iνn)]−1 = [D0(q, iνn)]−1 −Π(q, iνn) . (24)

where Σ is the electronic and Π the phonon self-energy. In principle, in these self-energies,
contain the full electron-phonon vertex. Migdal’s theorem states that vertex corrections are
small. It is therefore a good approximation to set the vertex to the bare vertex, meaning that the
electron-phonon interaction is truncated at order

√
m/M ∼ ωD/EF . The self energy is then

approximated as

Σ(k, iωn) = − 1

β

∑
k′n′ν

σ3G(k′, iωn′)σ3

[∣∣gk,k′,ν∣∣2Dν(k − k′, iωn − iωn′) + VC(k − k′)
]
,

(25)
where VC(k − k′) is the screened Coulomb potential, cf. (13), which has been taken to depend
only on the momentum transfer k − k′.
It is important to remember that Σ̂ is a 2× 2 matrix. It can be rewritten using the Pauli matrices

Σ(k, iωn) = iωn [1− Z(k, iωn)]1 + χ(k, iωn)σ3 + φ(k, iωn)σ1 + φ̄(k, iωn)σ2 . (26)

We can now use the Dyson equation to replace the Green function matrix in the Migdal approx-
imation to the self-energy (25). Solving the resulting system of equations for the components
of the self-energy will give us the Eliashberg equations.
Using the notation of (26), the electronic Dyson becomes

[G(k, iωn)]−1 = iωnZ1− (εk + χ)σ3 − φσ1 − φ̄σ2 . (27)
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Inverting this 2× 2 matrix, we obtain the Green matrix

G(k, iωn) =
1

Θ

[
iωnZ1 + (εk + χ)σ3 + φσ1 + φ̄σ2

]

=
1

Θ

(
iωnZ + (εk + χ) φ− iφ̄

φ+ iφ̄ iωnZ − (εk + χ)

)
, (28)

with the determinant of (27)

Θ = (iωnZ)2 − (εk + χ)2 − φ2 − φ̄2 . (29)

We see that the poles of the Green function matrix, i.e., the electron (and hole) elementary
excitations, are given by detG(k, ω) = Θ(k, ω) = 0

Ek =

√(
εk + χ

Z

)2

+
φ2 + φ̄2

Z2
, (30)

thus the gap function is given by

∆(k, iωn) =
φ− iφ̄
Z

. (31)

Inserting (27) in the Migdal approximation to the self-energy (25), we obtain a system of non-
linear equations for the components of the self-energy. For φ = φ̄ = 0 the system is diagonal
and a solution always exists. It corresponds to the normal state. In this case Z and χ are
determined by the normal-state self-energy: χ shifts the electronic energies and Z is a renor-
malizazion function [8].
If an additional solution with non-zero φ or φ̄ exists, it has lower free energy and describes a su-
perconducting state with gap function (31). Actually, it can be shown that, if in the Hamiltonian
there are no terms describing spin-dependent interactions, φ and φ̄ satisfy identical nonlinear
equations hence the solution will have φ = φ̄, except for a proportionality factor.2

The explicit form of the system of equations for the components of the self-energy is

iωn [1− Z(k, iωn)] =
1

β

∑
k′n′ν

|gk,k′,ν |2Dν(k − k′, iωn − iωn′)
iωn′Z(k′, iωn′)

Θ(k′, iωn′)

χ(k, iωn) =
1

β

∑
k′n′ν

|gk,k′,ν |2Dν(k − k′, iωn − iωn′)
χ(k′, iωn′) + ε′k
Θ(k′, iωn′)

φ(k, iωn) = − 1

β

∑
k′n′ν

[
|gk,k′,ν |2Dν(k − k′, iωn − iωn′)− VC(k − k′)

] φ(k′, iωn′)

Θ(k′, iωn′)

φ̄(k, iωn) = − 1

β

∑
k′n′ν

[
|gk,k′,ν |2Dν(k − k′, iωn − iωn′)− VC(k − k′)

] φ̄(k′, iωn′)

Θ(k′, iωn′)

n = 1− 2

β

∑
k′n′

χ(k′, iωn′) + εk′

Θ(k′, iωn′)

2The arbitrary phase comes from the one of the one-electron state. Normally, the physical quantities cannot
depend on this phase. However, it is measured by Josephson tunnelling. Thus BCS theory exhibits a broken gauge
symmetry.
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These are the Eliashberg equations. The last equation gives the electron density and determines
the chemical potential µ.
The general Eliashberg equations couple all momenta k. To simplify them, they are usually
averaged over by replacing the sums over momenta by integrals over energy, weighted with the
density of states. The result is a single set of equations. This approximation turns out to be
good for elemental superconductors, but fails in describing more complex systems.
The k-dependence in G comes mainly from the explicit εk dependence of Θ, while it can be
averaged out in Z and φ (fixing εk = EF because these quantities are non-zero only near the
Fermi surface), so

Z(k, iωn) → 〈Z(k, iωn)〉ε=EF = Z(iωn)

φ(k, iωn) → 〈φ(k, iωn)〉ε=EF = φ(iωn)

χ(k, iωn) → 〈χ(k, iωn)〉ε=EF = χ(iωn)

On the right hand side of the Eliashberg equations the same k average can be obtained by ap-
plying the operator 1

N(0)

∑
k δ(εk) where N(0) is the normal density of states at the Fermi level

and introducing a unity factor
∫
dω δ(ω − ωq,ν), where q = k − k′ is the phonon wavevector3

[1− Z(iωn)] iωn = − 1

βN 2(0)

∑
n′

∫
dω
∑
kk′ν

|gk,k′,ν |2 δ(εk′)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε)iωn′Z(iωn′)

Θ(ε, iωn′)

φ(iωn) =
1

βN 2(0)

∑
n′

∫
dω
∑
kk′ν

|gk,k′,ν |2 δ(ε′k)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε)φ(iωn′)

Θ(ε, iωn′)

χ(iωn) = − 1

βN 2(0)

∑
n′

∫
dω
∑
kk′ν

|gk,k′,ν |2 δ(ε′k)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε) [ε+ χ(iωn′)]

Θ(ε, iωn′)

n = 1− 2

βN(0)

∑
n′

∫ ∞
−∞

dε
N(ε) [ε+ χ(iωn′)]

Θ(ε, iωn′)
.

as the phonon interaction is very low, the sum over k′ has been split up into an angular average
for εk = EF and an integration in ε on the ε dependence of the electronic Green function.
Only the states near the Fermi level will contribute to this integral, because of the εk terms in
Θ(ε, iωn). When the density of states can be considered constant in this region, a further simpli-
fication can be introduced usingN(0) instead ofN(ε) and performing the integrals analytically.
In this way the final result is χ(iωn) = 0 and n = 1 (half-filling approximation).

3The equation for χ will be omitted from now on because, in many cases, its contribution can be neglected.
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It is useful to define the electron-boson spectral function, the positive-definite function

α2F (ω) = N(0)
∑
qν

g2q,νδ(ω − ωq,ν)

=
1

N(0)

∑
kk′

∑
ν

|gk,k′,ν |2 δ(εk′)δ(εk)δ(ω − ωq,ν), (32)

where
g2q,ν =

1

N2(0)

∑
k′

|gk,k′,ν |2 δ(εk+q)δ(εk) (33)

is the q-dependent electron-phonon coupling. With this the Eliashberg system takes the form

[1− Z(iωn)] iωn = −π
β

∑
n′

Z(iωn′)iωn′

Ξ(iωn′)

∫
dΩ

2Ωα2F (Ω)

(ωn − ωn′)2 +Ω2

φ(iωn) =
π

β

∑
n′

φ(iωn′)

Ξ(iωn′)

[ ∫
dΩ

2Ωα2F (Ω)

(ωn − ωn′)2 +Ω2
−N(0)V̄C

]
Ξ(iωn) =

√
[Z(iωn)ωn]2 + [φ(iωn)]2 ,

where V̄C represents an appropriate Fermi surface average of the screened Coulomb potential
VC . The sum over Matsubara frequencies can be cut off at an energy ωC . Solving these equa-
tions, we obtain the electron self-energy at the Fermi level.

2.3 Coulomb pseudopotential

Including the repulsive term in the Eliashberg equations is a hard task. The Coulomb interaction
cannot be introduced with the same accuracy of the electron-phonon one, since it does not
have a natural cut-off to ensure a convergent sum over the Matsubara frequencies. While the
electron-electron interaction has a large energy scale and a correspondingly short interaction
time, the electron-phonon interaction has a timescale typical of the much larger inverse phonon
frequencies. The time scale difference is normally dealt using an energy window ωC with a
renormalized electron-electron interaction [13]

µ∗ =
µ

1 + µ ln (EF/ωC)
, (34)

which is called Morel-Anderson pseudopotential. In this formula, µ is an average electron-
electron matrix element times the density of states at the Fermi level.
In the normal state self-energy the Coulomb potential is already included, so that only the off-
diagonal term will be affected by this correction, giving

φC(iωn) = −µ∗π
β

∑
n′

φ(iωn′)

Ξ(iωn′)
θ(ωC − |ωn′|). (35)

Including this contribution in the Eliashberg equation for φ, we obtain

∆(iωn)Z(iωn) =
π

β

∑
n′

∆(iωn′)√
ω2
n′ +∆2(iωn)

[λ(iωn′ − iωn)− µ∗(ωC)] θ(ωC − |ωn′ |)

Z(iωn) = 1 +
π

ωnβ

∑
n′

ωn′√
ω2
n′ +∆2(iωn)

λ(iωn′ − iωn)
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where λ(iωn′−iωn) is related to the electron-boson spectral density α2F (ω) through the relation

λ(iωn − iωn) =

∫ ∞
0

dΩ
2Ωα2F (Ω)

Ω2 + (ωn′ − ωn)2
. (36)

3 Real-axis Eliashberg equations

The Green function can be analytically continued onto the real-frequencies axis, by using the
expression ω + iδ, with an infinitesimal δ. The density of states is contained in the imaginary
part of G(k, ω + iδ).

In their real-axis formulation, the Eliashberg equations are a set of two non-linear integral equa-
tions for a complex frequency-dependent gap∆(ω) and a renormalization function Z(ω), which
exists also in the normal state. Both ∆(ω) and Z(ω) are temperature dependent.

∆(ω, T )Z(ω, T ) =

∫ ωC

0

dω′<

[
∆(ω′, T )√

ω′2 −∆2(ω′, T )

]∫ ∞
0

dΩα2F (Ω)

×
{

[n(Ω) + f(−ω′)]
[

1

ω + ω′ +Ω + iδ+
− 1

ω − ω′ −Ω + iδ+

]
− [n(Ω) + f(ω′)]

[
1

ω − ω′ +Ω + iδ+
− 1

ω + ω′ −Ω + iδ+

]}
−µ∗

∫ ωC

0

dω′<

[
∆(ω′, T )√

ω′2 −∆2(ω′, T )

]
[1− 2f(ω′)]

[1− Z(ω, T )]ω =

∫ ∞
0

dω′<

[
ω′√

ω′2 −∆2(ω′, T )

]∫ ∞
0

dΩα2F (Ω)

×
{

[n(Ω) + f(−ω′)]
[

1

ω + ω′ +Ω + iδ+
− 1

ω − ω′ −Ω + iδ+

]
− [n(Ω) + f(ω′)]

[
1

ω − ω′ +Ω + iδ+
− 1

ω + ω′ −Ω + iδ+

]}
.

Here, ωC is the boson energy cut-off introduced in the Coulomb pseudo potential and f(ω) =

1/(eβω + 1) is the Fermi, n(Ω) = 1/(eβΩ − 1) the Bose function. The real part of the prod-
uct ∆(ω, T )Z(ω, T ) and of Z(ω, T ) is determined by the principal-value integrals, while the
imaginary part comes from the delta-function parts.

The denominators can vanish for particular energies. Then the integrals must be done carefully
when a numerical approach is used. The low frequency behaviour of the various functions is,
at T = 0, <[∆(ω)] = c, =[∆(ω)] = 0, <[Z(ω)] = d and =[Z(ω)] = 0 while, at T 6= 0,
<[∆(ω)] ∝ ω2, =[∆(ω)] ∝ ω, <[Z(ω)] = d(T ) and =[Z(ω)] ∝ 1/ω where c and d are con-
stants.
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4 Simplified approaches

4.1 BCS limit

In order to better understand the Eliashberg equations, it can be useful to reduce them to BCS
limit. To achieve this aim further approximations are introduced: First of all, the bosons factor
in the real-axis Eliashberg equations are ignored, i.e., real bosons scattering are not taken into
account. Further, the imaginary parts of ∆ and Z must be neglected. We set

∆(ω, T ) =

{
∆0(T ) for ω < ωD
0 for ω ≥ ωD

, (37)

where ∆0(T ) is a real number and ωD is the Deybe energy and replace Z(ω, T ) by its value in
the normal state at ω = 0 and T = 0. Then

Z(0, T )− 1 = 2

∫ ∞
0

dω′
∫ ∞
0

dΩ α2F (Ω)

[
f(−ω′)

(ω′ +Ω)2
+

f(ω′)

(ω′ +Ω)2

]
≡ λ(T ) , (38)

which in the T → 0 limit is

Z(0, 0)− 1 =

∫ ∞
0

dΩ α2F (Ω)

∫ ∞
0

2dω′

(ω′ +Ω)2
≡ λ . (39)

The gap equation becomes

∆0(T ) =

∫ ωD

∆0(T )

dω′
∆0(T )√

ω′2 −∆2
0(T )

λ− µ∗

1 + λ

[
1− 2f(ω′)

]
. (40)

It is interesting to note that now ωD is important for both the λ and the µ∗ contribution.

With ε =
√
ω′2 −∆2

0, the equation can be rewritten as

∆0(T ) =
λ− µ∗

1 + λ

∫ ωD

0

dε
∆0(T )√
ε2 +∆2

0(T )

[
1− 2f

(√
ε2 +∆2

0(T )
)]

, (41)

which is the usual BCS equation at finite temperature. In the the T → 0 limit it becomes

∆0 =
λ− µ∗

1 + λ

∫ ωC

0

dε
∆0√
ε2 +∆2

0

, (42)

which corresponds to the BCS gap equation if we define λBCS = (λ− µ∗)/(1 + λ). The renor-
malization factor 1/(1 +λ) comes from the Z term in the Eliashberg equation, i.e., from having
included electron-phonon effects.

4.2 Critical temperature

Solving the Eliashberg system, even in the isotropic form, is a quite demanding task. However
the most relevant results can be obtained using a simpler approach proposed by McMillan [15].
Through a fit of a large set of results obtained using the spectral function of lead and solving the
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Eliashberg equations in a small range of the parameter space (λ < 2 and µ∗ < 0.15), McMillan
obtained an analytic formula for the critical temperature:

TC =
ΘD

1.45
exp

[
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
, (43)

where ΘD is the Debye temperature and the number λ has the same meaning as the electron-
phonon coupling parameter, and can be derived from the Eliashberg function as

λ = 2

∫
dΩ

α2F (Ω)

Ω
. (44)

Later, this formula was refined by Allen and Dynes [15], who substituted the factor ΘD/1.45

with Ωlog/1.2, with the much more representative frequency

Ωlog = exp

[
2

λ

∫
dΩ logΩ

α2F (Ω)

Ω

]
, (45)

which is a weighted average of the phonon frequencies. The McMillan formula predicts an up-
per limit for TC even if λ increases indefinitely. However this was a wrong conclusion because
the equation (43) was not derived analytically but obtained by numerical solutions in a fixed
range of the coupling constant and then it is not possible to consider the limit for λ → ∞. For
λ � 1, taking the limit of the Eliashberg equations the following expression for TC can be
obtained in an analytical way

TC = 0.183ωD
√
λ (46)

and it is clear that in Eliashberg theory there is no upper limit for the critical temperature.
In general the Eliashberg equations are solved numerically with an iterative method until you
reach self-consistency. The numerical procedure is very simple in the formulation on imaginary
axis, much less so on the real one. The critical temperature can be calculated or by solving an
eigenvalue equation [8] or, more easily, by giving a very small test value to superconducting gap
(for the Pb it is ∆ = 1.4 meV at T = 0 K so, for example, ∆(T ) = 10−7 meV) and checking at
which temperature the solution converges. In this way, Tc is obtained with accuracy superior to
experimental error bars.

5 Relation between real- and imaginary-axis formulation

5.1 Padé method for analytic continuation

The Eliashberg equations on the real axis are very difficult to solve, while their formulation
on the imaginary axis, while simpler to solve, can be used almost only to evaluate the critical
temperature. Therefore, a procedure which allows obtaining the real-axis gap and the renor-
malization function by analytically continuing ∆(iωn) and Z(iωn) is often used [16]. This
procedure makes use of Padé approximants. It speed up the numerical solution of Eliashberg
equations. However the Padé method is valid only at T < TC/10, thus it is often necessary
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Fig. 2: Validity check of Padé approximants methods. Here real and imaginary part of ∆(ω)
and Z(ω) are shown at T < TC/10.

to still solve for ∆(ω) directly from the real-frequency equations. Also when the Eliashberg
equations contain some terms that describe the presence of impurities in the superconductor the
accuracy of the Padé approximants can leave something to be desired.
The N -point Padé approximant to a complex function u(z) of the complex variable z, whose N
values ui = ui(zi) (i = 1, ..., N) are given at N complex points zi, is defined as the continued
fraction

CN(z) =
a1

1 +
a2(z − z1)

1 +
a3(z − z2)

1 +
a4(z − z3)

...
1+an(z−zn−1)

(47)

such that
CN(zi) = ui, i = 1, ..., N. (48)

The coefficients ai are given by recursive formula ai = gi(zi), where

g1(zi) = ui with i = 1, ..., N

gp(z) =
gp−1(zp−1)− gp−1(z)

(z − zp−1)gp−1(z)
for p ≥ 2

It can be shown that the continued fraction can be evaluated order-by-order via CN(z) =

AN(z)/BN(z) where AN and BN are polynomials given by the recursion relation

An+1(z) = An(z) + (z − zn)an+1An−1(z) with n = 1, 2, ..., N − 1

Bn+1(z) = Bn(z) + (z − zn)an+1Bn−1(z) with n = 1, 2, ..., N − 1

with starting values A0 = 0, A1 = a1, and B0 = B1 = 1.
A comparison of results obtained with the real-axis equations and results obtained with the Padé
method is shown in Fig. 2.
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5.2 Marsiglio, Schossmann, and Carbotte formulation

A more recent method [10] for solving the Eliashberg equations on the real axis introduces two
equations for the renormalized frequency ω̃(z) = zZ(z) and the pairing function φ(z)

ω̃(ω) = ω + iπT
∞∑
m=1

ω̃(iωm)√
ω̃2(iωm) + φ2(iωm)

[
λ(ω − iωm)− λ(ω + iωm)

]
+ iπ

∫ ∞
−∞

dz
ω̃(ω − z)√

ω̃2(ω − z)− φ2(ω − z)
α2F (z)

[
n(z) + f(z − ω)

]
(49)

φ(ω) = iπT

∞∑
m=1

φ(iωm)√
ω̃2(iωm) + φ2(iωm)

[
λ(ω − iωm)− λ(ω + iωm)− 2µ∗θ(ωC − |ωm|)

]
+ iπ

∫ ∞
−∞

dz
φ(ω − z)√

ω̃2(ω − z)− φ2(ω − z)
α2F (z)

[
n(z) + f(z − ω)

]
. (50)

These equations give solutions for the real-axis gap and renormalization function that are iden-
tical to those obtained from the solution of the real-axis equations. Then they are valid at any
temperature, but their numerical solution presents problems completely analogous to those of
the formulation on the real axis. The choice between these equations and those on the real axis
is thus just a matter of personal taste.

6 Tunneling inversion of the standard Eliashberg equations

In the past α2F (Ω) and µ∗ were obtained by experimental data or were considered as free
parameters. As shown in the lecture of R. Heid, now they can actually be calculated by density
functional theory [17] so, the theory does not contain free parameters.
When such calculations are not possible, the standard method to obtain these physical input
parameters involves single-particle tunneling spectroscopy, which is perhaps the simplest, most
direct probe of the excitations of a solid. In these experiments electrons are injected into (or
extracted from) a sample, as a function of bias voltage V . The typical example is a planar
junction SIN (superconductor, thin layer of insulating and a metal in the normal state) [18]. The
resulting current is proportional to the superconducting density of states [19]

IS(V ) ∝
∫
dω<

[
|ω|√

ω2 −∆2(ω)

]
[f(ω)− f(ω + V )] , (51)

where we have used the gap function, ∆(ω), defined as ∆(ω) ≡ φ(ω)/Z(ω). The propor-
tionality constant contains information about the density of states of the normal metal and the
tunneling matrix element. They are usually assumed to be constant.
In the zero temperature limit the derivative of the current with respect to the voltage is simply
proportional to the superconducting density of states(

dI

dV

)
S

/(
dI

dV

)
N

∝ <

{
|V |√

V 2 −∆2(V )

}
, (52)
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Fig. 3: Upper panel: Energy dependence of the lead density of states in the superconducting
states at very low temperature (T � Tc). The dashed line represents experimental data ob-
tained from tunneling, while BCS weak-coupling theory yields the dash-dotted line. The Eliash-
berg strong coupling result is shown by a solid line. Lower panel: Calculated electron phonon
spectral function of Pb (solid line) determined by inversion of Eliashberg equations compared
with the measured phonon density of states (dashed line) for the same material.

where S and N denote superconducting and normal state, respectively. The right hand side is
simply the density of states, computed within the Eliashberg framework. From the experimen-
tally measured quasiparticle density of states at very low temperature Nm(V ) = ( dI

dV
)S/(

dI
dV

)N ,
where the subscript m denotes ”measured”, it is possible, through a complicated mathematical
procedure, to obtain the electron-phonon spectral function α2F (ω) and the Coulomb pseudopo-
tential µ∗, not only for superconductors but also for normal metals via the proximity effect [19].

The procedure followed is conceptually simple but mathematically involved [20, 21]. A first
guess is made for the two quantities, namely α2F0(ω), i.e., starting with a generic function
greater than zero in a finite range and with a Coulomb pseudopotential parameter, µ∗0 ' 0.1. So
the Eliashberg equations (at T = 0) can be solved numerically with these two input parameters
in order to obtain the complex function ∆(ω) necessary for calculating the superconductive
density of states N0

c (ω) denoted by the subscript c (calculated) and 0 (for a first choice). Next,
the functional derivative δN0

c (ω)
δα2F (ν)

which give the infinitesimal response of N0
c (ω) to the change

in α2F (ν) is computed. This is used to make a second guess for α2F (ν) through the equation
δα2F0(ν) =

∫
dω[ δN

0
c (ω)

δα2F (ν)
]−1[Nm(ω) − N0

c (ω)]. The new electron phonon spectral function is
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α2F1(ν) = α2F0(ν) + δα2F0(ν). This procedure is continued until convergence is reached.
Unique α2F (ν) and µ∗ result. They are refered to as the measured microscopic parameters for
that particular material. It is not at all apparent that the structures of the density of states, as can
be seen in the upper panel of Fig. 3, reflect the shape of the electon-phonon spectral function,
through the function ∆(ω).
At zero temperature the gap function ∆(ω) is real and roughly constant up to a certain energy
equal to that constant. This implies that the density of states will have a gap, as in BCS theory.
At finite temperature the gap function has a small imaginary part starting from zero frequency
(and, in fact the real part approaches zero at zero frequency so that in principle there is no
gap, even for an s-wave order parameter. In practice, a very well-defined gap still occurs for
moderate coupling, and disappears at finite temperature only when the coupling strength is
increased significantly.
McMillan and Rowell were able to deconvolve their measurement, to produce the single elec-
tron density of states. Since the superconducting density of states is given by the right hand
side of (52), the structure in the data must reflect the structures in the gap function, ∆(ω), that
originate from the input function, α2F (ω). In other words, the dI/dV curve can be viewed as
as a highly nonlinear transform of α2F (ω). Thus the, usually very small, structure present in
the density of states contains important information (in coded form) concerning the electron-
phonon interaction as can be seen in the lower panel of Fig. 3, where the calculated electron
phonon spectral function of Pb determined by inversion of the Eliashberg equations is compared
with the neutron scattering measurements of the phonon density of states for the same material:
this is the most clear way to determine the mechanism of superconductivity in a material.
Once α2F (ω) (and µ∗) has been acquired in this way one can use the Eliashberg equations
to calculate other properties, for example, Tc or many others physical quantities (temperature
dependence of the gap, of the upper critical field, of the specific heat etc). These can then be
compared to experiment, and the agreement in general tends to be fairly good.
One may suspect, however, a circular argumentation, since the theory was used to produce the
spectrum (from experiment), and now the theory is used as a predictive tool, with the same spec-
trum. There are a number of reasons, however, for believing that this procedure has produced
meaningful information. First of all, the spectrum obtained comes out to be positive definite, as
is physically required. Second, the spectrum is non-zero precisely in the phonon region, as it
should be and it agrees very well with the measured spectrum. Moreover, as already mentioned,
various thermodynamic properties are calculated with this spectrum, with good agreement with
experiments. Finally, the density of states itself can be calculated in a frequency regime beyond
the phonon region. The agreement with experiment is spectacular.
None of these indicators of success can be taken as definitive proof of the electron-phonon
interaction. For example, even the excellent agreement with the density of states could be
understood as a mathematical property of analytic functions. This procedure has not been so
straightforward or possible in all superconductors.
An alternate inversion procedure, which utilizes a Kramers-Kronig relation to extract ∆(ω)

from the tunneling result and remove µ∗ from the procedure has been provided [22]. At last a



13.18 Giovanni A.C. Ummarino

procedure exists for obtaining the electron-phonon spectral density by inversion of optical con-
ductivity data, a process very similar in spirit to the McMillan-Rowell inversion of tunnelling
data. This procedure has the advantage that it can be utilized also in the normal state [23].

7 Approximations of the standard Eliashberg equations

As mentioned before, the standard Eliashberg theory has been formulated within a lot of ap-
proximations. Here a list of these simplifications with possible generalizations:

• validity of Migdal’s theorem: In almost all superconductors the condition ωD/EF � 1

is fulfilled. In HTCS and fullerenes ωD/EF ∼ 10−1 and the it is necessary to include
vertex corrections in the self-energy [24].

• single conduction band: Before the discovery of MgB2 the known superconductors
could be described within one-band models. Then the theory has been generalized to
two (MgB2) [25] ore more bands (iron pnictides).

• isotropic order parameter: In the oldest superconductors the order parameter does not
depend on the position on the Fermi surface, i.e., ∆ ≡ ∆(k). There is experimental
evidence that this is not true in HTCS [26–28].

• singlet superconductivity: Usually the spin of Cooper pairs is equal to zero, but in
Sr2RuO4 [29] probably it equals one, implying a different spatial symmetry (p-wave) [8].

• infinite conduction bandwidth: In almost all superconductors the width of the conduc-
tion band is much larger then the representative energy of the boson mediating the Cooper
pairs interaction (phonons, antiferromagnetic spin fluctuations) so that it can be consid-
ered to be infinite. In HTCS and Fullerenes this approximation breaks down and the real
bandwidth has to be included in the theory [13].

• half filling: Typically the occupation of the conduction band is symmetric. In HTCS this
is not true and the number of the Eliashberg equation increases because of χ(ω) 6= 0 [13].

• flat normal density of states: Generally the normal density of states can be approximated
by a constant around the Fermi level. In PuCoGa5 and in a small number of other com-
pounds this approximation is not valid [30]. Also in this case the number of Eliashberg
equations increases [8].

• no disorder or magnetic impurities: A material can be disordered with chemical doping
or neutron irradiation, moreover magnetic impurities can be added. To describe these
physical situations, new terms have to be introduced in the Eliashberg equations [31].

• no proximity effect: A thin layer of a noble metal on top of a superconductor can be
described by means of a generalization of Eliashberg equations [14].
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8 Cuprate high-temperature superconductors

The standard Eliashberg equations have been derived for superconductors where the energy gap
showed an s-wave symmetry and the Cooper pairing was mediated by the electron-phonon in-
teraction. This type of interaction allows the application of Migdal’s theorem, which states that
vertex corrections in the electron-phonon interaction can be neglected to order λωD/EF . On
the other hand, it is now widely accepted that the high Tc cuprates have an energy gap with d
symmetry [26]. As concerns the microscopic mechanism leading to Cooper pairs, in these ma-
terials, there is still no consensus, even though there are indications that antiferromagnetic spin
fluctuations can play an important role [28, 29]. In principle, different mechanisms can provide
a transition to the superconducting state without any phonon participation. But a scenario where
superconductivity occurs through a joint contribution of the phonon and electronic mechanisms
is also perfectly realistic. If different mechanisms are considered the Migdal’s theorem does
not work a priori. In this case the vertex corrections, at least in principle, cannot be neglected
and a new type of Eliashberg equations could be necessary. The simplest model of cuprates
uses a single-band approximation in a two-dimensional case, thus referring, for example, to the
a-b planes of the layered superconductors and neglecting the band dispersion and the gap in the
c-direction. For simplicity, one can consider the Fermi surface as circle in the a-b plane and
the wave vectors k and k′ completely determined by the respective azimuthal angles φ and φ′,
since their length is, as usual, taken equal to kF . The d-wave one-band Eliashberg equations in
the imaginary axis representation are [32]

ωnZ(iωn, φ) = ωn +
T

2

∑
m

∫ 2π

0

dφ′Λ(iωn − iωm, φ, φ′)NZ(iωm, φ
′) + Γ

NZ(iωn)

c2 +NZ(iωn)2

Z(iωn, φ)∆(iωn, φ) =
T

2

∑
m

∫ 2π

0

dφ′[Λ(iωn−iωm, φ, φ′)−µ∗(φ, φ′, ωc)ϑ(ωc−ωm)]N∆(iωm, φ
′)

where ϑ is the Heaviside function, ωc a cut-off energy,

Λ(iωn − iωm, φ, φ′) = 2

∫ +∞

0

dΩα2F (Ω, φ, φ′)/[(ωn − ωm)2 +Ω2],

N∆(iωm, φ) =
∆(iωm, φ)√

ω2
m +∆2(iωm, φ)

,

NZ(iωm, φ) =
ωm√

ω2
m +∆2(iωm, φ)

,

and

NZ(iωn) =
1

2π

∫ 2π

0

NZ(iωn, φ)dφ.

Γ is proportional to the impurity concentration or disorder and c is related to the electron phase
shift for scattering off an impurity. The Born limit is found when c = ∞ but Γ/c2 constant,
and the unitary limit when c = 0. In the Born limit there is a different behavior between s-
and d-symmetries: in the s-wave symmetry a non magnetic impurities do not affect the critical
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Fig. 4: The calculated superconductive density of states in the d-wave (red solid line) and
s-wave (black dashed line) case.

temperature while in the d-wave symmetry the critical temperature is strongly reduced. In
the simplest model the electron-boson spectral function α2(Ω)F (Ω, φ, φ′) and the Coulomb
pseudopotential µ∗(φ, φ′) to lowest order contain both s- and d-wave contributions,

α2F (Ω, φ, φ′) = α2Fs(Ω) + α2Fd(Ω)
√

2 cos(2φ)
√

2 cos(2φ′) (53)

µ∗(φ, φ′) = µ∗s + µ∗d(Ω)
√

2 cos(2φ)
√

2 cos(2φ′). (54)

A solution with a pure d-wave gap function ∆(ω, φ′) = ∆d(ω)cos(2φ) and a pure s-wave
renormalization function Z(ω, φ′) = Zs(ω) can be obtained. Indeed the equation for Zd(ω) is
a homogeneous integral equation whose only solution in the weak-coupling regime is Zd(ω) =

0. Even though in the strong-coupling limit a non-zero solution could exist above a certain
coupling strength threshold, but usually one does not consider this rather exotic case and then
the stable solution corresponds to Zd(ω) = 0 for all the couplings.
By assuming d-wave symmetry for the gap function, the parameter µ∗s does not enter into the
two relevant Eliashberg equations. Therefore, although it is certainly larger than µ∗d and so
drives the system towards d-wave symmetry, it does not influence the solution.
The superconductive density of statesNd(ω) can be easily obtained from the calculated frequency-
dependent gap function as

Nd(ω) =

∫ 2π

0

dφ

2π
<

{
ω√

ω2 −∆2
d(ω)cos2(2φ)

}
. (55)

In Fig. 4 the superconductive density of states calculated in s- and d-wave cases are compared.
The black-dotted line is the solution obtained for lead, the red-solid line is an ideal solution
where the input parameters are kept the same of the case of lead, but d-wave symmetry has
been imposed.
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9 Multi-band Eliashberg theory

The equations seen so far (in all their formulations) are suitable to describe only a relatively
small number of superconductors. There are many materials which are less trivial and show
a multi-band structure. Consider a superconductor containing several different groups of elec-
trons occupying distinct quantum states. The most typical example is a material with several
overlapping energy bands. One can expect that each band will possess its own energy gap.
This means that the density of states of the superconducting pairs contains several peaks. Of
course if the energy gap were defined as the smallest quantum of energy that can be absorbed
by the material, then only the smallest gap of the system would satisfy this definition. Thus
to avoid misunderstandings when talking about the multi-gap structure of a spectrum we will
mean explicitly the aforementioned multi-peak property of the density of states. For this case
the previous equations must be generalized.
Considering a two band system [25] as the MgB2, the parameters multiply: there are now four
separate electron-phonon spectral functions α2

ijF (Ω) and four Coulomb pseudopotentials µ∗ij ,
where i, j = 1, 2.
The isotropic Eliashberg equations generalized to n bands (i = 1, ..., n), are written on the imag-
inary axis as

ωnZi(iωn) = ωn + πT
∑
mj

λij(iωn, iωm)NZ
j (iωm) +

+
∑
j

[
Γij + ΓM

ij

]
NZ
j (iωn) (56)

Zi(iωn)∆i(iωn) = πT
∑
mj

[
λij(iωn, iωm)− µ∗ij(ωc)

]
×

×Θ(ωc − |ωm|)N∆
j (iωm) +

∑
j

[Γij + ΓM
ij ]N∆

j (iωn) (57)

where Γij and ΓM
ij are the non magnetic and magnetic impurity scattering rates, and, in a manner

quite similar to the single band case,

λij(iωm − iωn) ≡ 2

∫ ∞
0

dΩ
Ω α2

ijF (Ω)

Ω2 + (ωn − ωm)2
(58)

and

N∆
j (iωm) = ∆j(iωm) ·

[√
ω2
m +∆2

j(iωm)
]−1

, NZ
j (iωm) = ωm ·

[√
ω2
m +∆2

j(iωm)
]−1

.

The diagonal elements describe the intra-band coupling, while the off-diagonal the inter-band
one. The values of the inter-band coupling constants are not completely free, but there is a
constraint

λij
λji

=
Ni(0)

Nj(0)
. (59)

This means that the ratio of the interband coupling constant λ12 and λ21 is equal to the ratio of
density of states.
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Fig. 5: Temperature dependence of the gaps ∆1 and ∆2 in a two-band model, calculated in the
cases of (i) no intraband coupling (solid lines), (ii) weak intraband coupling (dotted lines), and
(iii) strong interband coupling (dash-dot lines). The intraband coupling constants are arbitrary;
here we used those for MgB2

It is interesting and propedeutic for the subsequent chapters to analyze different situations, as
the coupling constants change: the limit of small inter-band coupling and the opposite case, i.e.,
a pure inter-band case [25] will be considered. The first case is interesting because it allows
understanding that an, even small, interband coupling leads to the correlation of the two bands,
otherwise completely independent as it is shown Fig. 5.

In a superconductor without interband coupling (λij = λji = 0) the bands behaves as n different
superconductors that have n different transition temperatures, TC1 and TC2 , each associated with
the respective band. The resulting superconducting state that results will be given by the sum of
the n bands contributions which are completely independent. As the off-diagonal components
grow the n bands become connected. However, this does not means that the superconductor
behaves as a one-band system. As long as each band has different a spectral function, and a
different coupling constant, they will give different contributions. Changing the off-diagonal
elements λij results in different temperature of the upper and lower gaps. Each band contains
its own set of Cooper pairs. Since, generally speaking, kFi

and kFj
(here kFi

and kFj
are on the

Fermi surface for different bands), there is no pairing of electrons belonging to different energy
bands i.e. λij , of course, does not represent a pairing between electrons of different bands.
This does not mean, however, that the pairing within each band is completely insensitive to the
presence of the other. On the contrary, a peculiar interband interaction and the appearance of
nonlocal coupling constants are fundamental properties of the multiband model. Consider two
electrons belonging to band i. They exchange phonons and form a pair as a result. There exist
two pairing scenarios. In one of them, the first electron emits a virtual phonon and makes a
transition into a state within the same energy band. The second electron absorbs the phonon
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and also remains in the same energy band, forming a bound pair with the first one. This is the
usual pairing picture, described by a coupling constant λii. However, the presence of the other
energy band gives rise to an additional channel. Namely, the first electron, originally located in
band i, can emit a virtual phonon and make a transition into band k. The phonon is absorbed by
the second electron, which also is scattered into band k, where it pairs up with the first electron.
As we know, there is no energy conservation requirement for single virtual transitions; such
conservation, however, must hold for the initial and final states. In our case this criterion is
met. Indeed, the initial and final states correspond to particles on the Fermi surface. Note
that, in addition, the initial and final total momenta are equal to zero. Thus the initial state had
two electrons in band i, while the final state finds a pair in band k. Interband charge transfer
processes are described by nondiagonal coupling constants λij , and because of them the system
is characterized by a single critical temperature. Otherwise, each band would have its own Tc.
There is a formal similarity between the Eliashberg equations for a proximity system [14] and
those for a two band system: if the mathematical expression of Eliasberg theory for a system
with two gaps is compared with a proximity system it is possible to notice a profound formal
analogy between these two situations. In both cases there is induced superconductivity because
in the second band, as in a noble metal film, a very weak intrinsic pairing can be chosen so this
band alone would not become superconducting. However the mechanisms giving rise to induced
supercondutivity are very different. In the two band model the systems are “separated” in
momentum space and the second band acquires an order parameter thanks to phonon exchange.
The phase space for phonons is effectively increased. In the proximity effect, on the other hand,
the systems are spatially separated and superconductivity is induced by the tunnelling of Cooper
pairs.
The multiband Eliashberg model developed above can also be used to explain the temperature
dependence of the upper critical magnetic field [33]. For the sake of completeness, the lin-
earized gap equations in the presence of magnetic field, for a superconductor in the clean limit
are reported. In the following, vFj

is the Fermi velocity of the j-th band, and Hc2 is the upper
critical field

ωnZi(iωn) = ωn + πT
∑
mj

λij(iωn − iωm)sign(ωm)

Zi(iωn)∆i(iωn) = πT
∑
mj

[
λij(iωn − iωm)− µ∗ij(ωc)

]
×

×θ(|ωc| − ωm)χj(iωm)Zj(iωm)∆j(iωm)

χj(iωm) =
2√
βj

∫ +∞

0

dq exp(−q2)×

× tan−1

[
q
√
βj

|ωmZj(iωm)|+ iµBHc2sign(ωm)

]
.

Here βj = πHc2v
2
Fj
/(2Φ0) and Φ0 is the unit of magnetic flux. In these equations the bare Fermi

velocities vFj
[33] are the input parameters.
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10 Iron pnictide superconductors

10.1 Gaps, critical temperature, and upper critical magnetic field

The new class of superconductive Fe-based compounds [34, 35] shows similar characteristics
to the cuprates and the heavy fermions, for example the high values of the rate 2∆/Tc or the
presence of the pseudogap. For all three classes of materials it is proposed that superconduc-
tivity is mediated by antiferromagnetic spin fluctuations [28]. The most obvious difference is
that almost all the iron compounds present a multiband behavior while in HTCS and in heavy
fermions this behavior was detected only in some particular cases. The multi-band nature of Fe-
based superconductors may give rise to a multi-gap scenario [36] that is indeed emerging from
different experimental data with evidence for rather high gap ratios, ≈ 2 − 3. In this regard
neither a three-band BCS model is adequate (it can only account for the gap ratio and Tc but
not for the exact experimental gap values) nor a four-band Eliashberg model with small values
of the coupling constants and large boson energies because the calculated critical temperature
has turned out to be larger than the experimental one. The high experimental value of the larger
gap suggests that high values of the coupling constants might be necessary to explain the exper-
imental data within a three-band model [37]: one has therefore to employ the Eliashberg theory
for strong coupling superconductors. At the beginning a three-band Eliashberg model allowed
reproducing various experimental data, indicating that these compounds can represent a case of
dominant negative interband-channel superconductivity (s± wave symmetry) with small typi-
cal boson energies (≈ 10 meV) but too high values of the electron-boson coupling constants
(1.9 ≤ λtot ≤ 5.9). The way to solve this problem is suggested by experiments of Inosov and
coworkers [38]: they found that the temperature evolution of the spin resonance energy follows
the superconducting energy gap and this fact should indicate a feedback effect [28,39,40] of the
condensate on the spin fluctuations.
Then the experimental low temperature spin resonance can be chosen as the representative bo-
son energy and the two remaining free parameters can be fixed in order to reproduce the exact
experimental gap values. After this, with the same parameters, the critical temperature T ∗c can
be calculated. Generally it is always T ∗c � T exp

c where T exp
c is the experimental critical tem-

perature. In the next step the same temperature dependence of the superconductive gap has to
be imposed to the representative boson energy while the other input parameters used before are
kept fixed.
Of course, at T = T ∗c the energy peaks of the spectral functions (the representative boson en-
ergy) is equal to zero while at T = 0 K the new spectral functions are equal to the old ones. In
this way, by taking into account the feedback effect of the condensate [28,39,40] on the antifer-
romagnetic spin fluctuations it is possible to explain the experimental data (the gap values and
the critical temperature) in a model with only two free parameters in a moderate strong coupling
regime (λtot ≈ 1.5− 2).
Four representative cases are reported (three hole type and one electron type): LaFeAsO1−xFx,
SmFeAsO1−xFx, Ba1−xKxFe2As2, and Ba(FexCo1−x)2As2. The electronic structure of the hole
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type compounds can be approximately described by a three-band model with two hole bands
(indicated in the following as bands 1 and 2) and one equivalent electron band (3) [37] while
for one electron type compound the model contains one hole band (indicated in the following as
band 1) and two equivalent electron bands (2 and 3) [41]. The s-wave order parameters of the
hole bands∆1 and∆2 have opposite sign with respect to that of the electron band∆3 [42] in the
hole type case while ∆1 has opposite sign with respect to that of the two electron bands, ∆2 and
∆3 in the electron type case [41]. In such systems, in the first approximation, intraband cou-
pling could only be provided by phonons ph, and interband coupling only by antiferromagnetic
spin fluctuations sf [37, 39]. The experimental data concerning the four compounds considered
can be summarized as follow [39]:

1. LaFeAsO0.9F0.1 (LaFeAsOF) with TAc = 28.6 K where point-contact spectroscopy mea-
surements gave ∆1(0) ≈ 8.0 meV and ∆2(0) ≈ 2.8 meV;

2. Ba0.6K0.4Fe2As2 (BaKFeAs) with Tc = 37 K where ARPES measurements gave∆1(0) =

12.1± 1.5 meV, ∆2(0) = 5.2± 1.0 meV and ∆3(0) = 12.8± 1.4 meV

3. SmFeAsO0.8F0.2 (SmFeAsOF) with TAc = 52 K (T bulk
c = 53 K) where point-contact

spectroscopy measurements gave ∆1(0) = 18± 3 meV and ∆2(0) = 6.15± 0.45 meV;

4. Ba(FexCo1−x)2As2 (BaFeCoAs) with TAc = 22.6 K (T bulk
c = 24.5 K) where point-contact

spectroscopy measurements gave ∆1(0) = 4.1± 0.4 meV and ∆2(0) = 9.2± 1 meV.

TAc is the critical temperature obtained by Andreev reflection measurements [36] and T bulk
c is the

critical temperature obtained by transport measurements. Note that only in the case of ARPES
the gaps are associated to the relevant band since point-contact spectroscopy measurements
generally gives only two gaps, the larger one has been arbitrarily indicated as ∆1 supposing
that ∆1 ∼ |∆3|. To obtain the gap-values and the critical temperature within the s± wave,
one has to solve six coupled equations for the gaps ∆i(iωn) and the renormalization functions
Zi(iωn), where i is the index of the bands and ranges from 1 to 3. The solution of the system
of multiband Eliashberg equations requires a huge number of input parameters (18 functions
and 9 constants); however, some of these parameters are related to one another, some can be
extracted from experiments and some can be fixed by suitable approximations. In the case of
the pnictides several assumptions can be made: (i) the total electron-phonon coupling constant
is small, (ii) phonons mainly provide intraband coupling [42], (iii) spin fluctuations mainly
provide interband coupling [42]. The simplest way to take take these assumptions into account
is to set λphii = λphij = λsfii = 0. Indeed the upper limit of the phonon coupling in these
compounds is ≈ 0.35 [43], and the intraband spin-fluctuation coupling can be negliected [42].
Moreover, the phonon couplings and the Coulomb pseudopotentials roughly compensate each
other, then µ∗ii(ωc) = µ∗ij(ωc) = 0 [37]. Within these approximations, the electron-boson
coupling-constant matrix λij becomes [37, 39, 41]:

λij =

 0 λ12 λ13
λ21 = λ12ν12 0 λ23
λ31 = λ13ν13 λ32 = λ23ν23 0

 (60)
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λtot λoldtot λ12/21 λ13/31 λ23/32 Ω0 (meV)

1.87 0.76/0.85 1.21/5.44 0.00/0.00 9.04

BaFeCoAs 2.83 1.93 0.91/1.02 2.08/9.35 0.00/0.00 9.04

1.72 0.77/0.87 1.05/4.72 0.00/0.00 9.04

2.52 0.90/1.01 1.76/7.91 0.00/0.00 9.04

1.75 0.00/0.00 2.11/1.91 0.40/0.21 11.44

LaFeAsOF 2.38 2.53 0.00/0.00 2.93/2.66 0.46/0.24 11.44

2.04 0.00/0.00 2.27/2.27 0.56/0.28 14.80

BaKFeAs 2.84 3.87 0.00/0.00 3.21/3.21 0.67/0.34 14.80

1.72 0.00/0.00 1.55/3.88 0.42/0.84 20.80

SmFeAsOF 2.39 5.90 0.00/0.00 2.23/5.58 0.49/0.98 20.80

Table 2: The values of Ω0 and λij , that allow reproducing the experimental gap values, are
shown. λtot is compared with λoldtot that is the value determined in the previous works [37, 41].
In the first rows the sf spectral functions used have usual shape while in the second ones have
Lorentzian shape.

where νij = Ni(0)/Nj(0) and Ni(0) is the normal density of states at the Fermi level for the
i-th band. In the hole case λ21 = λ12 = 0 while in the electron case λ23 = λ32 = 0.

In the numerical simulations the standard form for the antiferromagnetic spin fluctuations is
used: α2

ijF
sf (Ω) = BijΩΩijΘ(Ωmax − Ω)/(Ω2 + Ω2

ij) where Bij are the normalization con-
stants necessary to obtain the proper values of λij while Ωij are the peak energies. In all the
calculations, for simplicity, Ωij = Ω0. The maximum spin-fluctuation energy is Ωmax = 10Ω0,
the cut-off energy is ωc = 30Ω0 and the maximum quasiparticle energy is ωmax = 40Ω0. The
typical sf energy Ω0 is the spin resonance energy that has been measured and the empirical
relation Ω0 = (2/5)Tc available in literature [44] is assumed to be correct for all compounds
examined.
Bandstructure calculations provide information about the factors νij that enter the definition
of λij . In the case of LaFeAsO0.9F0.1, ν13 = 0.91 and ν23 = 0.53; for Ba0.6K0.4Fe2As2,
ν13 = 1 and ν23 = 2; in SmFeAsO0.8F0.2, ν13 = 0.4 and ν23 = 0.5 and in Ba(FexCo1−x)2As2,
ν12 = 1.12 and ν13 = 4.50 [39].

First of all the imaginary-axis Eliashberg equations are solved in order to calculate the low-
temperature values of the gaps (which are actually obtained by analytical continuation to the
real axis by using the technique of the Padé approximants) and so the two free parameters
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∆1(meV) ∆2(meV) ∆3(meV) Tc(K) T ∗c (K)

6.63 -4.07 -9.18 26.07 33.00

BaFeCoAs 7.02 -4.12 -9.18 23.73 28.95

5.89 -3.78 -8.17 23.43 29.69

6.19 -3.79 -8.19 21.72 26.41

8.01 2.82 -7.75 29.37 37.22

LaFeAsOF 8.01 2.77 -7.71 26.86 31.81

12.04 5.20 -12.00 43.66 55.26

BaKFeAs 12.04 5.24 -11.91 38.33 46.18

14.86 6.15 -18.11 58.53 74.13

SmFeAsOF 15.51 6.15 -18.00 52.80 63.82

Table 3: The calculated values of the gaps and of the two critical temperature with and without
feedback effect. In the first rows the sf (spin-fluctuation) spectral functions used have the usual
shape while in the second line they have Lorentzian shape.

of the model are fixed: λ13 and λ23 (λ12). By properly selecting the values of λ13 and λ23
(λ12) it is relatively easy to obtain the experimental values of the gaps with reasonable val-
ues of λtot =

∑
ij Ni(0)λij/

∑
ij Ni(0) (between 1.72 and 2.04). However, in all the materi-

als examined, the high 2∆1,3/kBTc ratio (of the order of 8-9) makes it possible to reproduce
also the values of the large gap(s) only if the calculated critical temperature T ∗c is consider-
ably higher than the experimental one. For solving this problem, that is also present in the
HTCS, it is necessary to assume the existence a feedback effect [28, 39] of the condensate
and, in a phenomenological way, a temperature dependence of the representative boson energy
Ω0(T ) = Ω0 tanh(1.76

√
T ∗c /T − 1) that is, approximately, the temperature dependence of the

gap in the strong coupling case, is introduced in the Eliashberg equation.
The primary effect of this assumption is the reduction of the critical temperature without changes
in the gap values at T � T ∗c . For a completely consistent procedure it should be used Ω0(T ) =

Ω0η(T ) where η(T ) is the temperature dependent part of the superfluid density ρ(T ) = ρ(0)η(T )

and ρ(0) is the superfluid density at T = 0 K. η(T ) is a function of ∆i(iωn) and so, in this way,
the numerical solution of the Eliashberg equations becomes remarkably more complex and time
consuming.
For a general picture of the physical landscape the Eliashberg equations have to be solved in
three different situations: (i) only sf inter-band coupling is present and the sf spectral functions
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Fig. 6: Calculated critical temperature Tc with feedback effect versus standard critical tem-
perature T ∗c in three different situations: only interband sf coupling with standard spectral
functions (black squares), interband sf coupling with standard spectral functions and small
intraband ph coupling (red circles) and only interband sf coupling with Lorentz spectral func-
tions (dark blue triangles). The insert shows the sf spectral function, for Ba(FexCo1−x)2As2 at
different temperatures (T < T ∗c ) with the feedback effect.

have the usual shape of the normal state (ii) sf interband coupling with a small ph intra-band
contribution is present and sf spectral functions have the usual shape, and (iii) only sf interband
coupling is present and the sf spectral functions have Lorentz shape.

In the first case the coupling constant λtot is in the range 1.72-2.04. The results are almost
independent from Ωmax. The agreement with the experimental critical temperature is good. It is
important to notice that the coupling parameters almost do not change in these considered case.
In the second case there is also an intra-band phonon contribution, equal in each band and in
each compound for simplicity, with λphii = 0.35 and Ωph

0 = 18 meV that are the upper limits
for the ph coupling constants and the representative ph energies [43]. The ph spectral functions
have Lorentzian shape [37]. The phonon peaks are all in Ωij = Ωph

0 , and the antiferromagnetic
spin fluctuations peak in Ωij = Ωsf

0 and the half-width4 is always 2 meV [39] and ωc = 12Ωph
0 .

λtot and Tc are practically the same as the previous case. This last fact indicates that the effect
of intraband phonon contributions is negligible. In the third case (Lorentz shape of sf spectral
functions) the agreement with the experimental critical temperatures is very good in all com-
pounds but the total coupling is larger (2.38 ≤ λtot ≤ 2.84).

4In more recent work the half-width of the Lorentzian functions describing antiferromagnetic spin fluctuations
is equal to Ωsf

0 /2 [38].
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Fig. 7: Calculated temperature dependence of |∆i| from the solution of real axis Eliashberg
equations in the standard case (open symbol) and when the feedback effects are present (solid
symbol): |∆1| black, |∆2| red, and |∆3| dark blue. The experimental data [39] are shown as
big solid bullets.

Fig. 6 shows the linear relation between Tc and T ∗c in all three cases examined. In Table 2 the
input parameters of the Eliashberg equations in the first and third case examined for the four
compounds are listed. Table 3 summarizes the calculated values of the gaps and critical temper-
atures Tc and T ∗c obtained by numerical solution of the Eliashberg equations. Once the values
of the low-temperature gaps were obtained, the temperature dependence can be calculated by
directly solving the three-band Eliashberg equations in the real-axis formulation instead of us-
ing the analytical continuation to the real axis of the imaginary-axis solution. Of course, the
results of the two procedures are virtually identical at low temperature.

In Fig. 7 the calculated temperature dependence of |∆i| is compared with the experimental data
and the agreement is very good. In all cases, their behavior is rather unusual and completely
different from the BCS since the gaps slightly decrease with increasing temperature until they
suddenly drop close to Tc. This arises from a complex non-linear dependence of the ∆ vs. T
curves on the λij values and is possible only in a strong-coupling regime [45]. Curiously, in
all four compounds the rate T ∗c /Tc is the same, 1.27. The three-band Eliashberg equations for
the upper critical field [40] are solved. Here the three bare Fermi velocities vFj are the input
parameters. The number of adjustable parameters can be reduced to one by assuming that, as in
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Fig. 8: Experimental temperature dependence of the upper critical field in Ba(FexCo1−x)2As2,
LaFeAsO0.9F0.1, Ba0.6K0.4Fe2As2, and SmFeAsO0.8F0.2 (symbols), and the relevant fitting curves
(lines) obtained by solving the Eliasberg equations. H ‖ ab: Solid symbols, solid line and
H ‖ c: open symbols, dashed line.

a free-electron gas, vFj
∝ Nj(0) so that vF2 = vF1ν2/ν1 and vF3 = vF1/ν1, thus leaving vF1 as

the only free parameter.

Fig. 8 depicts the experimental values of the upper critical field measured [40] in the case of
Ba(FexCo1−x)2As2, Ba0.6K0.4Fe2As2, LaFeAsO0.9F0.1, and SmFeAsO0.8F0.2 compared to the
best-fitting curve obtained by solving the Eliashberg equations as discussed above. The quality
of the fit is rather good in almost all cases, which is a remarkable result of the model in spite
of the crudeness of the free-electron approximation. The phenomenology of iron-pnictides
superconductors can be explained in the framework of a three-band s± wave Eliashberg theory
with only two free parameters plus a feedback effect i.e., the effect of the condensate on the
antiferromagnetic spin fluctuactions responsible of the superconductivity in these compounds.
Indeed in the four iron compounds discussed, it is possible to reproduce the experimental critical
temperature, the gap values and the upper critical field in a moderate strong-coupling regime:
λtot ≈ 1.7 − 2.0. The large value of the rate between the gaps and the critical temperature
finds a natural justification in this model. Eventually, for describing the phenomenology of the
iron compound LiFeAs, it is necessary to use s± four-band Eliashberg equations in a moderate
strong coupling regime λtot = 1.6 and also in this case the agreement with the experimental
data is good [46].
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Fig. 9: (a) Normalized experimental conductance curve (circles) obtained in a
Ag/SmFeAsO0.8F0.2 point-contact. The dashed line is a BTK fit to the experiment, obtained
using the constant BCS values for the gaps. The solid line is a theoretical curve obtained by
introducing in the BTK model the energy-dependent gap functions calculated within the three-
band Eliashberg theory. (b) Temperature dependence of the −d2I/dV curves obtained from
the same contact as in (a), showing the displacement of the bosonic structures with increasing
temperature. The dashed line is obtained from the theoretical curve shown in (a). Inset: tem-
perature dependence of the energy peak, Ep (full symbols) extracted from (b) together with the
corresponding boson energy Ωb(T ) = Ep(T )−∆max(T ). Lines are guides to the eye.

10.2 Interaction mechanism

In moderate- or strong-coupling superconductors the tunneling or the Andreev refrection [36]
conductance curves can show signatures of the energy dependence of the superconducting gap.
These structures are more easily observable if the amplitude of the Andreev signal is large;
their signature in the second derivative of the I-V curve can be related to the electron-boson
spectral function. In the following, results obtained in an iron compound that provide examples
of such strong-coupling effects and of their analysis will be shown, they strongly support a
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spin-fluctuation-mediated origin of superconductivity if compared with the inelastic neutron
scattering measurements.
Fig. 9 shows a normalized experimental conductance curve obtained on an optimally doped
SmFeAsO0.8F0.2 polycrystal (circles). The amplitude of the Andreev signal in this contact is
exceptionally high [36] (about 80%) and, in addition to the clear two-gap features (peaks and
shoulders), additional structures or small kinks can be seen around 27 and 40 meV. The dashed
line is a BTK [36] fit to the experiment using the two-band 2D BTK model with BCS gap
values (i.e. independent of energy). The fit reproduces very well the experiment in the central
part of the curve (and allows obtaining reliable values of the gaps) but fails at higher energies.
The solid line is instead the result of inserting in the same BTK model the energy-dependent
order parameters obtained by solving the three-band Eliashberg equations in which, as usual,
the electron-boson spectral function is modeled by a Lorentzian curve [36]. Since to the best
of the present knowledge no spin-resonance energy value is available for this compound, the
characteristic energy has been chosen, following [44], by extrapolating the relationship Ω0 =

2Tc/5 ≈ 20 meV. Although the theoretical curve shows no structure at 27 meV, the feature at 40

meV is remarkably well reproduced as can be observed in Fig. 9 (a) and (b) (dashed line). Only
the structure present at approximatelyΩ0+∆max is reproduced and this indicates that the model
has to be investigated further or that additional features of the spectral function are playing an
important role. As expected, both structures shift in energy on increasing temperature, partly
because the amplitude of the superconducting gaps is also decreasing.
The inset to Fig. 9 (a) reports the position of the energy peak in the second derivative, Ep
(full symbols) and the values of the characteristic energy of the boson spectrum Ωb = Ep −
∆max(open symbols) as a function that decreases in temperature. This means that Ωb cannot
be the energy of a phonon mode (in that case it would not tend to zero!) and thus rules out
a phononic origin of this feature. Instead, the trend of Ωb is very similar to that of the spin-
resonance energy peak reported in the paper of Inosov et al. [38] and thus strongly supports a
spin-fluctuation mediated pairing mechanism in these compounds.
This three bands Eliashberg model has only two free parameter λ13 and λ23 and it is able to
explain the values of the gaps, the structures after the gaps in the point-contact spectra the
critical temperature, the dependence of temperature of the upper critical field etc. Similar results
can be obtained [41] for Ba(FexCo1−x)2As2.

11 Conclusion

The theory of Eliashberg is, in principle, a theory without free parameters, because the two
input parameters, the electron-phonon spectral function and the Coulomb pseudopotential can
be calculated via the Density Functional Theory (DFT). From the solution of the Eliashberg
equations on the real axis all the physical observables can then be calculated through, almost
always, simple functions of complex quantities ∆(ω, T ) and Z(ω, T ) that, of course, have to be
calculated numerically. Obviously, in the majority of cases, the materials of interest can not be
described by a s-wave model. However, using the appropriate generalizations, the phenomenol-
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ogy of almost all superconductors (except HTCS underdoped for now) can be reproduced by
this formalism. This theory, strictly speaking, is neither a theory from first principles nor a
purely phenomenological theory, and this is both its strength – it has a very close relationship
with the experimental observation – and its weakness – no one has ever discovered a new su-
perconductor based on the Eliashberg theory. 5 To be sure, no one has ever discovered a new
superconductor reasoning on any theory.
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14.2 David M. Ceperley

This lecture gives a brief overview of the path integral picture of degenerate quantum systems.

The path integral method is explicitly formulated at non-zero temperature. Including effects of

temperature in calculations is important because many, if not most, measurements and practical

applications involve significant thermal effects. One might think that to do calculations at a

non-zero temperature, we would have to explicitly sum over excited states. Such a summation

would be difficult to accomplish once the temperature is above the energy gap because there

are so many possible excitations in a many-body system. As we will see, path integral methods

do not require an explicit sum over excitations. As an added bonus, they provide an interesting

and enlightening window through which to view quantum systems. For fermion systems we

encounter, however, the sign problem. The fixed-node approximation can be used to solve it.

We first start by introducing imaginary time path integrals for distinguishable particles, i.e.,

particles without Bose or Fermi statistics. We then discuss the generalization to Bose and

Fermi statistics, and consider how this applies to superfluid bosonic systems and to exchange

in quantum crystals (solid 3He and super-solid 4He). I am only going to discuss the continuum

models; many other authors have discussed the equivalent methods for lattice models. Much

of the material comes from a chapter in the book Interacting Electrons to be published by

Cambridge University Press [1].

1 The path integral formalism

To introduce path integrals, we first review properties of the thermal N-body density matrix.

The coordinate space representation is defined in terms of the exact N-body eigenstates Φi(R)

and energies Ei

ρ(R,R′; β) =
∑
i

Φ∗
i (R)e−βEiΦi(R

′). (1)

Here R = {r1, . . . rN} is the 3N dimensional vector of particle coordinates. In addition to the

inverse temperature β = 1/(kBT ), the N-body density matrix depends on two sets of N-body

coordinates, R and R′. It is “off-diagonal” if R 6= R′. The partition function is its trace, the

integral over the diagonal density matrix1

Z(β) =

∫
dRρ(R,R; β) =

∑
i

e−βEi. (2)

Thermodynamic properties are obtained as

〈O〉 = 1

Z(β)

∫
dRdR′ 〈R|O|R′〉ρ(R′, R; β) (3)

or by differentiating the partition function.

The operator identity exp(−βH) = [exp(−∆τH)]M where ∆τ = β/M , relates the density

matrix at a temperature kB/∆τ to the density matrix at a temperature M times lower. Writing

1This can include tracing over spin or particle number depending on the ensemble.
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this identity in the coordinate representation gives

ρ(R0, RM , β) =

∫
dR1 . . . dRM−1

M∏
t=1

ρ(Rt−1, Rt;∆τ). (4)

The sequence of intermediate points {R1, R2, . . . , RM−1} is the path, and ∆τ is the time step.

Trotter’s formula [2] is a rigorous mathematical result that underpins quantum Monte Carlo:

Consider two operators, T̂ and V̂ . Under general conditions2 Trotter’s formula holds

e−β(T̂+V̂ ) = lim
n→∞

(
e−βT̂ /ne−βV̂ /n

)n
. (5)

An intuitive justification of this formula is to note that the corrections to an individual term are

proportional to the commutator [T̂ /n, V̂ /n] which scales as O(1/n2). The error of the right

hand side of Eq. (5) will contain n such corrections so the total error is O(1/n) and vanishes

as n → ∞. Now take V̂ and T̂ to be the potential and kinetic3 operators and evaluate them in

coordinate space

〈R|e−∆τV̂ |R′〉 = exp(−∆τV (R)) δ(R−R′) (6)

〈R|e−∆τT̂ |R′〉 = (4λπ∆τ)−3N/2 exp
(
−(R− R′)2/(4λ∆τ)

)
. (7)

Note that we have set ∆τ = β/n and λ ≡ ~
2/2m. Putting Eq. (6) and (7) together and

integrating over the intermediate coordinate4 we obtain the so-called “primitive approximation”

to the action

SP (R,R′;∆τ) = − ln ρ(R,R′;∆τ) ≈ 3N

2
ln(4πλ∆τ) +

(R− R′)2

4λ∆τ
+∆τV (R′) . (8)

Substituting the action, Eq. (8), into the path integral expression, Eq. (4), the partition function

is given by

ZD(β) = lim
M→∞

∫
dR1 . . . dRM exp

[
−

M∑
t=1

SP (Rt−1, Rt; β/M)

]
(9)

with the condition R0 = RM to obtain the trace. In this formula, Boltzmann or distinguishable

particle statistics are assumed and its partition function is written as ZD. We will consider Bose

and Fermi statistics in the next section.

If the potential energy is real, the integrand of Eq. (9) is non-negative and can thus be interpreted

as a classical system with an effective classical potential given by the sum in its exponent.

This defines an exact mapping of a quantum system onto a classical equilibrium system: the

quantum system of N particles in M time slices becomes an NM-particle classical system. The

classical system is composed of N “polymers” each having M “beads” with harmonic springs

2In particular if T̂ is the non-relativistic kinetic operator and V the Coulomb interaction.
3The kinetic Green’s function has to be modified in periodic boundary conditions to make it periodic, but these

effects are negligible when ∆τ < L2.
4This form is not symmetric with respect to R and R’. One can make better symmetric approximations, but the

“primitive” form defined here is sufficient for convergence.
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Fig. 1: Typical paths of six quantum particles in a 2D periodic square. The large black dots rep-

resent the positions of the particles at the start of their paths. The paths have been smoothed by

zeroing their short wavelength Fourier components since a picture with all Fourier components

would be a space-filling fractal curve, see ref. [3]. The left panel is the identity permutation,

the right panel is a three particle permutation with a path “winding” in the horizontal direction

across the periodic boundaries as indicated by the inner dotted square.

between neighboring beads (the second term in Eq. (8)) and an inter-polymer potential between

different polymers (the third term in Eq. (8)). To calculate the partition function, and most

thermodynamic properties, the polymers must close on themselves. The left panel of Fig. 1

shows a typical example of such paths. A lower temperature means a longer polymer, i.e., with

more beads. Note that an individual polymer does not interact with itself except via the springs,

and the inter-polymer potential (the third term in Eq. (8)) is not like for a real polymer: it only

interacts with beads with the same path integral time-slice “index”.

To evaluate properties of the quantum system, we must perform the 3NM dimensional inte-

gral of Eq. (9) over all paths using either a generalized Metropolis Monte Carlo or molecular

dynamics simulation. To obtain exact results within the statistical sampling error, we must cal-

culate the results for several values of M and extrapolate to M → ∞. In the following we use

the notation for coordinates: Rt = {r1,t, r2,t . . . rN,t}: the first index is the particle index, the

second index is the time-slice index.

For efficient computation, we need to improve the sampling and the action so as to reduce

the needed number of time slices, as described in detail in Ref. [3]. To improve the action, it

is advisable to use the pair action, i.e., the numerical solution to the 2-body problem [3]. For

example, the divergence of the Coulomb potential when two unlike charges approach each other

can wreak havoc on the stability of the algorithm since paths can fall into the region at small

rij and never escape. A simple approach is to cut off the potential for rij < ∆τ
1

2 , however, it

is much better to use the exact two-body density matrix since it does not diverge as the charges

approach each other, and its derivative obeys the cusp condition.
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To compute the internal energy there are several approaches [3]. Differentiating the partition

function with respect to temperature gives the thermodynamic form. The kinetic energy estima-

tor is

K =
3N

2∆τ
−
∑
i,t

〈
(ri,t − rr,t−1)

2

4λ∆τ 2

〉
. (10)

The second term is the negative spring energy of the classical polymer system but has the

disadvantage that it diverges at small ∆τ as ∆τ−2, causing loss of efficiency if the time-step is

extrapolated to zero. A form that has the same average value, the virial [4] estimator

K =
3NkBT

2
− 1

2

〈
N∑
i=1

(ri,t − r̄i) · Fi,t

〉
(11)

does not have this problem. Here r̄i is the centroid position5 of particle i and Fi,t is the classical

force on particle i at time t. Note that the first term is simply the classical kinetic energy.

Quantum corrections are given in the second term and will vanish at high temperature since

|ri,t − r̄i| → 0.

To perform an efficient sampling of Eq. (9) with Metropolis Monte Carlo, one needs to use

collective moves [3] because single bead moves will make the whole procedure slow, i.e., re-

quire many steps to converge to the equilibrium distribution. For details on the path integral

molecular dynamics approach, see [5].

2 Quantum statistics with path integrals

The most interesting consequences of quantum physics, e.g., superfluidity, Bose condensa-

tion, superconductivity, Fermi liquid behavior, come from the Fermi or Bose statistics of the

particles. In the previous section, we did not consider particle statistics. The way to treat

statistics is quite simple: we ignore the identities of particles so that when we close the paths

in imaginary time, they can close on a permutation of themselves, i.e., RM = P̂R0 where

P̂R ≡ {rP1
, rP2

, . . . rPN
, } is a relabeling of the coordinates. To understand this pictorially,

compare the left and right panels of Fig. 1.

To show that this procedure is correct, we first note that the wavefunctions of fermions (bosons)

are antisymmetric (symmetric): their density matrix is defined by summing only over antisym-

metric (symmetric) states6 in Eq. (1). In the following, we will denote the statistics of the par-

ticles by subscripts: ρF will denote the fermion density matrix,ρB the boson density matrix, ρD
the Boltzmann (distinguishable particle) density matrix.The relabeling operator 1

N !

∑
P(±1)PP̂

projects out the states of correct symmetry. Here the upper sign (+1) is for bosons, and the

lower sign (−1) is for fermions, where (−1)P stands for the signature of the permutation: If a

permutation is made of an odd number of pair exchanges it is negative, otherwise it is positive.

5The centroid is the center of mass of a given polymer, r̄i ≡ β−1
∫ β

0
dt ri,t. See [3] for the generalization to

identical particles.
6A similar procedure can be used for other symmetries such as momentum or spin.
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We use this operator to construct the path integral expression for bosons or fermions in terms of

the Boltzmann density matrix

ρB/F (R,R′; β) =
1

N !

∑
P

(±1)PρD(P̂R,R′; β). (12)

Note that we could apply this relabeling operator to the first argument, the last argument or both;

since the particles are identical the resulting density matrix would be the same. The connection

between the Boltzmann density matrix and the bosonic or fermionic density matrix is important

because it is the Boltzmann density matrix that arises naturally from paths. Including statistics,

the path integral expression of the partition function becomes

ZB/F (β) =
1

N !

∑
P

(±1)P
∫

dR1 . . . dRM exp

(
−

M∑
t=1

S(Rt−1, Rt;∆τ)

)
(13)

with R0 = P̂RM .

2.1 Bosons

For bosons, the integrand in Eq. (13) is positive, but for large N it is very difficult to evaluate

directly the permutation sum since it has N ! terms. However, we can enlarge the space to be

sampled in the Monte Carlo random walk by including how the paths are connected, i.e., P .

One such connection is shown on the right panel of Fig. 1. With Monte Carlo techniques, this

extra sampling does not necessarily slow down the calculation, but we need to include moves

that are ergodic in the combined space of paths and connections as discussed in Ref. [3].

A macroscopic “percolation” of the polymers (i.e., a network of connected polymers spanning

a macroscopic volume) is directly related to superfluidity [6]. Recall that any permutation can

be decomposed into permutation cycles, i.e., into 2-, 3-, ... N-body exchange cycles. Superfluid

behavior results when exchange cycles extending across a macroscopic distance appear at low

temperature as we discuss now.

One of the fundamental properties of a Bose condensed system is superfluidity: a superfluid can

flow without viscosity similiar to how a superconductor can carry a current without resistance.

The superfluid density is defined experimentally as follows: suppose the walls of a container

are moved with a small velocity V and the momentum acquired by the enclosed system in equi-

librium is measured. In a normal liquid or solid, the enclosed system will move with the walls

so that the acquired momentum will equal MV with M its total mass. However, a superfluid

can shield itself from the walls. The superfluid fraction is defined in terms of the mass not

contributing to the momentum:

ρs
ρ

= 1− P

MV
7→ 〈W2〉

2λβM
. (14)

The expression on the right is how we calculate the superfluid fraction with imaginary-time path

integrals in periodic boundary conditions [7]. In this expression we use “‘the winding number”
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of a given path defined as

W =
N∑
i=1

1

~

∫ β

0

dtmi
dri,t
dt

. (15)

It is the number of times a path wraps around the periodic boundaries in the x, y, or z directions.

This remarkable formula relates the real-time linear response of moving the boundaries (or an

impurity) to a topological property of imaginary-time path integrals. Since the size of a path

of a single atom is its thermal de Broglie wavelength ~
√
mkBT , which is always microscopic

even at very low temperatures, the only way to have winding paths for a macroscopic cell, and,

hence a non-zero superfluid density, is to have a permutation cycle that includes on the order

of N2/3 atoms (in 3D) such that the atoms, if linked together, can stretch across a macroscopic

distance. There are interesting connections between the exchange of electrons in an insulator

and the exchanges of bosonic paths which we will touch upon in the next section.

Bose condensation is another key property of superfluids that can be interpreted with path inte-

grals. In a superfluid, a certain fraction of the particles will condense into the zero momentum

state, or in a inhomogeneous system, into a single natural orbital. To determine the single par-

ticle density matrix, we need to sample paths where one particle does not close on itself; the

two ends of an open “polymer” are free to move around the system. The single particle density

matrix is defined as

n(r, r′; β) =
1

Z

∫
dr2 . . . drN ρ(r, r2, . . . , rN , r

′, r2, . . . , rN ; β). (16)

For a homogeneous system the momentum distribution is its Fourier transform:

nk(β) =
1

(2π)3

∫
dr dr′ e−ik(r−r

′)n(r, r′; β) . (17)

For a normal, i.e., not Bose condensed, system the two ends in the single particle density matrix

remain within a thermal de Broglie wavelength, implying that its Fourier transform, the momen-

tum distribution is also localized. However, once macroscopic exchanges in the path can occur,

the two ends can separate by a macroscopic distance so that lim|r−r′|→∞ n(r, r′) → n0 > 0

implying that nk = n0 δ(k) where n0 is the condensate fraction, the number of atoms with

precisely zero momentum. The macroscopic exchange of particles is how the phase of the

wavefunction is communicated.

Using Path-Integral Montecarlo (PIMC) one can calculate equilibrium properties of many-body
4He at all temperatures both in the liquid phase above and below the superfluid transition, and

in the solid phase. For details on the path integral theory of Bose superfluids and the PIMC

calculations see ref. [3]. The worm algorithm [8] allows the sampling of a superfluid phase

to be done more efficiently, particularly for systems with more than a few hundred bosons. It

works in the grand canonical ensemble and can compute also unequal-time correlation functions

such as the one particle Green’s function in imaginary time.
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Fig. 2: Left panel: The ratio of superfluid density to total density: solid line, measured value

for bulk 4He at saturated vapour pressure; open circles, PIMC calculations with 64 atoms in

PBC; solid circles, calculations for a droplet of 64 4He atoms. Right panel: The single-particle

density matrix of 4He above and below the lambda transition at temperatures 1.18, 2.22 and 4

K (from top to bottom) .

2.2 Fermions

Suppose we do a path integral calculation of a fermion system by summing over permutations

just as for bosonic systems but including the factor (−1)P as a weight in the numerator and de-

nominator of any expectation value. If one performs an integration over a function having both

positive and negative regions with Monte Carlo, the signal-to-noise-ratio, i.e., the efficiency,

is much reduced. Doing a direct sampling of the boson paths and permutations and using the

permutational sign to estimate properties of the fermion system leads [9] to a computational

efficiency of the fermion system (ξF ) that scales as

ξF = ξBe
−2Nβ(µF−µB) , (18)

where µF (µB) is the free energy per particle of the fermion (boson) system and ξB the efficiency

of the boson system. The direct fermion method, while exact, becomes exceedingly inefficient

as Nβ = N/kBT increases – precisely when the physics becomes interesting.

2.3 Restricted path integral method

The restricted path identity (19) allows one to keep only “positive” paths at the cost of making an

uncontrolled approximation. It is the generalization of the ground state fixed-node method: the

nodes of the exact fermion density matrix give a rule for deciding which paths can contribute.7

The method is based on the identity

ρF (Rβ, R∗; β) =

∫
dR0 ρF (R0, R∗; 0)

∮

R0→Rβ∈Υ (R∗)

dRt e
−S[Rt] , (19)

7For this we need the path to be continuous. Lattice models or non-local Hamiltonians do not have continuous

trajectories so this method is not as straightforward for those systems.
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Fig. 3: Right panel: Space-time cartoon for proof of the restricted PIMC identity. The horizon-

tal axis represents the spatial coordinates, the vertical axis imaginary time. The usual boundary

conditions are delta functions at t = 0 represented as dots on the horizontal axis; positive val-

ues for even permutations (full circles) and negative values for odd permutations (open circles).

However, it is sufficient to work in the strictly positive domain (shaded), if the nodal domain

is correct. Shown are two allowed paths in this domain, one from the identity permutation,

the other from a 3-body permutation. Left panel: Depiction of path integrals for distinguish-

able ions (top), ortho- and para- hydrogen (middle) and restricted paths for ortho-hydrogen

(bottom); its reference point is the large dot.

where the subscript on the path integration means that we integrate only over paths that start

at R0, end at Rβ and are node-avoiding, i.e., for which ρF (Rt, R∗; t) 6= 0 for all 0 < t < β;

here the “reference point” R∗ defines the nodes. To prove this identity, we note that the fermion

density matrix satisfies the Bloch Equation

∂ρF (R; β)

∂β
= λ

N∑
i=1

∇2
iρF (R; β)− V (R)ρF (R; β) (20)

with the initial conditions

ρF (R,R∗; 0) =
1

N !

∑
P

(−1)P δ(R− P̂R∗) . (21)

Hence, the path starts at a permutation, P , of the reference point, R0 = P̂R∗ and carries a

weight 1
N !
(−1)P . The solution of the Bloch equation is uniquely specified by its boundary

conditions, just like the Poisson equation in electrostatics [10]. Normally, one uses the values at

zero imaginary time, i.e., infinite temperature, as boundary conditions. We can, however, also

take the nodal surfaces: ρF (R,R∗; β) = 0 as boundary conditions as illustrated in Fig. 3: we
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want the solution of the Bloch equation that vanishes on a preselected nodal surface. We enforce

this solution by putting an infinite repulsive wall on this surface, or, equivalently, restricting the

allowed paths to remain on the interior of a given nodal domain, Υ (R∗). The solution is exact

if the assumed nodes are correct. For the diagonal elements of the density matrix, Rβ = R∗,

the contributions of all paths must be positive, hence, the sum over permutations is restricted to

even permutations.8

Calculations with restricted paths have been done on a variety of simple fermion systems. Re-

cently the energy of the homogenous electron gas throughout its phase diagram has been de-

termined. Earlier calculations have been performed [11] on liquid 3He and hot dense hydro-

gen [12–15].

The restricted path picture is a novel way of analyzing fermion systems [9, 11]. First consider

a Fermi liquid. That a Fermi liquid has exchange paths can be understood by considering

its momentum distribution, nk: By definition a Fermi liquid has a discontinuity in nk at kF .

Using properties of Fourier transforms, this implies ρ(r, r′) ∝ |r − r
′|−3 at large separations.

Such a slow decay can only come from macroscopic exchanges of even permutations. In a

superconductor with Cooper pairs of electrons, there will be paired up-spin and down-spin

macroscopic exchanges [16]. Krüger and Zaanen [17] have interpreted other quantum phase

transitions in terms of the restricted path formalism.

The problem we now face for calculation is that the unknown fermion density matrix appears

on the right-hand side of Eq. (19), since it is used to define the criterion of node-avoiding, as

well as the left-hand side. To apply the formula directly, we would have to self-consistently

determine the nodes. In practical calculations, we make an ansatz for the nodal surfaces, such

as using the nodes of the density matrix from a mean-field theory.

The reference point, R∗ plays a very special role in restricted path integrals since it restricts the

paths as illustrated in the example below. For boson or distinguishable particle path integrals,

all time slices are equivalent, but restricted paths break this time symmetry. For fermions we

can use a “ground-state” restriction that does not depend on the reference point. This can be

achieved by using an antisymmetric trial wavefunction Ψ (R) and requiring that Ψ (Rt) 6= 0

throughout the path.

3 Exchange of localized particles

We now discuss a specialized application of PIMC, namely the computation of exchange fre-

quencies between electrons localized on different lattice sites. First we discuss a simple model:

we confine a single electron to the interior of the union of two spheres as shown in Fig. 4. Be-

cause of mirror symmetry, the quantum states can be classified by parity. The splitting between

8 We have done more than simply restricting the sum over permutations to even permutations. We only take

those even permutations that also stay in the nodal domain. The reason that restriction gives the same result is that

negative paths can be paired with positive paths and canceled. The gradient of the density matrix at the node is the

flux of path and since the gradient is continuous across the node, the positive paths crossing at a given nodal point

will precisely cancel against the negative paths.
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Fig. 4: Left panel: The imaginary time path confined to the interior of two spheres (shown with

dashed lines). Right panel: the same path shown as a function of imaginary time. The electron

stays inside one sphere for a long period, until it finds the duct to the other sphere.

the lowest even and odd parity states defines the exchange frequency, J = (E1 −E0)/2 > 0. A

wavefunction, initially localized in one of the spheres, will oscillate back and forth with a fre-

quency given by J/~. Let us suppose that the splitting energy is much less than the zero-point

energy, so that higher excitations can be neglected.

Here we show how to calculate this frequency using path integrals. In Fig. 4 we show an

example of a world-line diagram of the imaginary-time paths in the double-sphere model. We

see that the electron spends a long time in a single sphere, but occasionally “tunnels”9 over to

the other sphere. The tunneling is rapid, since the wavefunction is squeezed as it passes from

one sphere to the other, costing energy.

Let us denote the coordinates of the centers of the two spheres as Z and P̂Z; the motivation for

this notation will become clear when we discuss the multi-electron generalization. Now define

fP as the ratio of the imaginary-time matrix element connecting Z to P̂Z with that connecting

Z to itself:

fP(β) =
ρD(Z, P̂Z; β)

ρD(Z,Z; β)
. (22)

If we now assume that β is large enough that only the lowest two states contribute to the density

matrix, then:

fP(β) =

{
0 if β < β0 ,

tanh(J(β − β0)) if β > β0 .
(23)

Here β0 = ln(ϕ1(Z)/φ0(Z))/J with ϕ1 and ϕ0 being the eigenstates corresponding to energies

E1 and E0. The rate in imaginary time (in units of ~) for the electron to cross from one sphere

to the other is J . In the polymer (imaginary time path integrals) language, J is related to the

free energy it takes to pull a single end of a “linear polymer” from one sphere to the other and

can be estimated with special techniques [18, 19].

9Tunnels is in quotes because we are in imaginary time, not real time. The imaginary-time transversal of the

barrier is called an “instanton” because it takes place so quickly.
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Now, let us generalize from the two-sphere model to a many-body system. We follow the theory

of Thouless [20], based on the earlier work of Dirac [21] on electronic exchange. Consider a

system of spinless electrons in a perfect crystal when the electrons are localized with a single

electron per unit cell. Because exchange is rare for localized electrons, we can label the posi-

tions of electrons in a crystalline lattice by localized Wannier orbitals: Z denotes the N-body

coordinates resulting in one such assignment of N electrons to N orbitals, P̂Z the effect of ap-

plying the permutation P̂ to that assignment. If there are N electrons and N Wannier functions,

there are N ! such assignments, so there is an N ! degeneracy of the ground state in the absence

of electron exchange. The splitting induced by tunneling between states Z and P̂Z is defined

to be 2JP as in the example above. All of the previous discussion concerning how to calculate

JP with path integrals, Eqs. (22) and (23), then applies.

Following Dirac and Heisenberg, electronic exchange couples the electron spins on different

atoms and for pair exchange results in a Heisenberg spin Hamiltonian

Ĥ = −
∑
P

JP (−1)PP̂σ = −J2

∑
(i,j)

σi · σj , (24)

where in the first summation P ranges over all N ! permutations,10 (−1)P is the sign of the

permutation, and P̂σ permutes spins. With this argument Thouless [20] showed that exchange

of an even number of spins favors antiferromagnetism while exchange of an odd number of

spins favors ferromagnetism. The second equation, the conventional Heisenberg Hamiltonian,

applies if the only exchanges allowed involve two- and three- body permutations. A clear

discussion is given by Roger [22].

PIMC calculations have been used to determine the Heisenberg exchange coefficients in the

Wigner crystals [23, 24] and in solid 3He. The PIMC method to determine the exchange fre-

quencies is much superior to one based on Projector Monte Carlo, i.e., Diffusion Monte Carlo,

since one can determine directly the terms in the underlying spin Hamiltonian and the results

are accurate even if the exchange frequencies are very small. Calculations of the exchange fre-

quencies of the 2D Wigner crystal suggest a frustrated spin liquid phase may be stable [23].

These methods have not yet been applied to realistic electronic materials.

The methods have been applied extensively to solid 3He which forms a bcc crystal. If pair

exchanges dominated, the bipartite lattice structure would order into an antiferromagnetic state.

However, experimentally the ground state is found to be in a symmetry-broken spin state with

8 atoms per unit cell. Using PIMC, we found that this structure results from a competition

between even and odd ring exchanges. As the density of the crystal is lowered near to the

melting density, it is found that long exchanges become probable (cycles of up to 10 atoms

were considered [25]). This suggests a picture for how a metal/insulator transition could occur:

as a localized system gets near the metal-insulator transition, the energy to create a vacancy-

interstitial pair goes to zero, and longer and longer ring exchange cycles become important.

Once the transition occurs, this picture of ring exchanges breaks down.

10One need only consider cyclic permutations of neighboring electrons, otherwise JP will be much smaller.

Hence we need only consider ring exchanges.
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4 PIMC calculations of supersolid helium

Recent torsional-oscillator observations by E. Kim and M.H.W. Chan on solid 4He [26], have

revived interest in the supersolid phase. In this phase, one has both long-range crystalline order

and superfluidity. Using PIMC, we examined [27] whether crystaline hcp helium, assumed to

be free of defects such as impurities and vacancies, could have a supersolid phase. One might

think that there would always be ground state defects, arising from the large quantum zero point

fluctuations. Near melting, the root-mean-square vibration about the lattice site is 30%, so that

at any instant of time, a good fraction of atoms are closer to a neighboring site than to their

home site. However, the absence of an atom from a lattice site is not sufficient for having a

supersolid; if the empty site is always accompanied by a nearby doubly occupied site, there will

be no mass current.

Path integrals give a much cleaner framework for determining whether bulk helium could be

supersolid. They can be used to compute the superfluid density and the momentum distribution

without the assumption of a trial wave function or any other uncontrolled approximation. Using

methods [18,19] developed for solid 3He described above, we calculated the exchange frequen-

cies for solid 4He and estimated how close they were to the critical value for superfluidity. The

frequencies for 2, 3, and 4 atom exchanges were very small [3], e.g., , J2 ∼ 3µK at melting

density. However, small cyclic exchanges are quite different from the long exchanges needed to

get a supersolid. Fig. 5 shows the results of calculations of the frequency of the simplest straight

line winding exchanges in the basal plane of the hcp crystal. We found that the exchange fre-

quencies decreased exponentially with the number of atoms in the exchange. Using a model for

all exchanges we concluded that in solid 4He only localized exchanges will be present and thus

it should not exhibit the property of nonclassical rotational inertia. We also computed the single

particle density matrix from Eq. 16 (see Fig. 5) and found that, since it goes exponentially to

zero at large separation, the condensate fraction will vanish. Thus, based on other PIMC calcu-

lations, we think it unlikely that the observed phenomena of Kim and Chan are due to vacancies

or 3He impurities. Recent experiments have confirmed these computational findings.

5 Lexicon of the quantum-classical isomorphism

As we have mentioned earlier, there is an exact correspondance between quantum statistical

mechanics and the classical statistical mechanics of imaginary time path integrals. There is an

exact, systematic procedure for understanding many properties of quantum systems purely in

terms of classical statistical mechanics. Note that there is a curious shift of vocabulary in going

from the quantum system to the polymer model. Scientists discussing path integrals sometimes

resemble children playing the game of “opposites,” where the child says the opposite of what

is intended (“I do not want a cookie.”) Usually the game quickly degenerates into confusion

because common language is ambiguous and not entirely logical as the opposite of a given

statement is non-unique. Discussions of path integrals should be clearer since path integrals are

based on mathematics, but the translation is complicated by several features.
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Fig. 5: Left panel: The exchange frequencies J in K versus the exchange length Lp for straight

line exchanges in the basal plane that wind around the periodic cell (see inset) [27]. Right

panel: Single particle density matrix in solid helium [28].

The same word applied to the quantum system and the classical system can mean quite different

things, e.g., it is confusing to refer to the “energy” of the polymer model or its entropy. The en-

tropy of a quantum system decreases with temperature but at low temperature, the correspond-

ing polymer system becomes more disordered. The confusion arises because the “temperature”

of the polymer model is not equal to the quantum temperature. To translate what we mean by

temperature into the polymer model we must find how β appears in the action.11 The lower

the temperature, the more beads are on the polymer. Zero temperature corresponds to infinitely

long chains.

Time is a word that can have at least three different meanings: real time in the quantum system,

the “imaginary time” of the path integrals, or the time related to how the path is moved in the

computer program. If we confuse the first two meanings of time, a word can have exactly the

opposite meaning in the quantum and polymer systems. For example, the “velocity” of a bead

is usefully defined as its displacement from one time slice to the next, divided by τ . But with

this definition atoms that are “fast” correspond to low-energy atoms because they are spread out

and their kinetic energy is small. On the other hand, particles that are trapped in a small region

have a small “velocity” and a high energy. It is possible for a single realization of a path to have

a negative kinetic energy by being spread out more than usual, but the average over all paths

must be positive. The inversion of meaning comes because path integrals are in imaginary time.

Any observable corresponding to a scalar function of coordinates maps trivially from the quan-

tum system into the polymer model. For example, the particle density is simply the average

density of the beads

〈ρ(r)〉 =
〈

N∑
i=1

δ(r− rim)

〉
. (25)

11It is best not to see how the time step appears in the action because the time step is fixed by requiring that the

action be accurate. Hence the spring constant and the interbead potential should be fixed as temperature varies.

This means that β will be proportional to the number of time slices.
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There are often several different ways of mapping a quantum concept onto the classical system.

A concept such as superfluidity is very general and related to many quantum-mechanical ob-

servables. In a few words, superfluidity is equivalent to the presence of macroscopic polymers

in the classical model.

This aspect of figuring out different ways of calculating quantum properties in some ways re-

sembles experimental physics. The theoretical concept may be perfectly well defined, but it is

up to the ingenuity of the experimentalist to find the best way of doing the measurement. Even

what is meant by “best” is subject to debate. Many important quantities of quantum systems

are really defined as dynamical quantities, while the quantum-classical correspondence is re-

stricted to imaginary time. Often, one can reformulate the quantum property in imaginary time,

but not always. There is still much to be done in learning how to exploit the quantum-classical

correspondence. To conclude, we summarize the relationship between quantum concepts and

the classical polymer language with the following lexicon:

Bose condensation : delocalization of ends of an open polymer

Boson statistics : allowing the possibility that polymers can hook up in any possible way

Cooper pairing : paired fermion (restricted) polymers

degeneracy temperature : a condition in which polymers are dense enough and extended

enough that they touch and can exchange

density : the bead density

exchange energy : logarithm of the fraction of monomers (times kBT )

exchange frequency in a crystal : free energy to link polymers in a polymer crystal

Fermi liquid : winding fermion (restricted) polymers

free energy : free energy of a system of ring polymers

imaginary velocity : bond vector

insulator : localized exchanging polymers

kinetic energy : negative spring energy

moment of inertia : the mean-squared area of ring polymers

momentum correlation function : bond-bond correlation

momentum distribution : Fourier transform of end-end distribution

pair-correlation function : pair-correlation function between beads at the same “time”

Pauli principle : restricted polymers
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particle : ring polymer

potential energy : iso-“time” potential between beads

single particle density matrix : the end-to-end distribution of an open polymer

superfluid density : the mean-squared winding number

superfluid state : a state in which a finite fraction of polymers are hooked together in polymers

of macroscopic size

temperature :

1. inverse polymer length,

2. inverse coupling constant for the inter-polymer potential,

3. spring constant between neighboring beads

thermal wavelength : polymer extension
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Emergent Phenomena in Correlated Matter
Modeling and Simulation Vol. 3
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1 Introduction

Predicting materials properties requires robust and reliable calculations at the most fundamental
level. Often the effects being studied or designed originate from electron correlations, and small
errors in their treatment can result in crucial and qualitative differences in the properties. Ac-
curate treatment of electron correlations and collective behaviors is one of the great challenges
in modern science [1, 2]. Explicit solution of the many-body Schrödinger equation leads to
rapidly growing computational cost as a function of system size: exponential, as in configura-
tion interaction (CI) [3], or at the minimum, a high power, e.g.,O(N7) as in the coupled-cluster
CCSD(T) [3], the preeminent quantum chemistry method.
To circumvent the problem, most computational quantum mechanical studies of large, realis-
tic systems rely on simpler independent-particle approaches based on density-functional theory
(DFT) [2, 4], using an approximate energy functional to include many-body effects. These re-
place the electron-electron interaction by an effective potential, thereby reducing the problem
to a set of one-electron equations. These methods have often been extremely effective in com-
plex molecules and solids [4], and are the standard in electronic structure, widely applied in
condensed matter, quantum chemistry, and materials science.
Despite the tremendous successes of DFT (most noticeably through its Car-Parrinello molecu-
lar dynamics implementation [5]), the treatment of electronic correlation is approximate. For
strongly correlated systems (e.g., high-temperature superconductors, heavy-fermion metals,
magnetic materials, optical lattices), where correlation effects from particle interaction cru-
cially modify materials properties [6–9], the approximation can lead to qualitatively incorrect
results. Even in moderately correlated systems when the method is qualitatively correct, the re-
sults are sometimes not sufficiently accurate. For example, in ferroelectric materials the usually
acceptable 1% errors in DFT predictions of the equilibrium lattice constant can lead to almost
full suppression of the ferroelectric order.
The development of alternatives to independent-particle theories is therefore of paramount fun-
damental and practical significance. Quantum Monte Carlo (QMC) methods [10–15] are among
the most promising candidates for post-mean-field calculations. By using stochastic sampling
rather than explicit integration over phase space, these methods have computational costs that
scale gracefully (N3-N4) with system size and exceptional potential for parallel scaling [16].
For fermion systems, however, QMC methods suffer from the so-called “sign” problem [17–
19]. In these systems, the Pauli exclusion principle requires that the states be anti-symmetric
under interchange of two particles. As a consequence, negative signs appear, which cause
cancellations among contributions of the Monte Carlo (MC) samples of phase space. In fact, as
the temperature is lowered or the system size is increased, such cancellation becomes more and
more complete. The net signal thus decays exponentially. The algebraic scaling is then lost, and
the method breaks down. Clearly the impact of this problem on the study of correlated electron
systems is extremely severe.
To date most applications of QMC methods to correlated electron systems have either lived
with the sign problem or relied on some form of approximation to overcome the exponential
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scaling. The former is seen more often in the community studying lattice models for strongly
correlated systems where, understandably, it is more difficult to make approximations and more
demanding of insensitivity of the many-body method to a priori input. However, this approach
clearly has severe limitations in the systems that can be examined. The latter has been more
prevalent in electronic structure, where without some control of the sign problem it is difficult
to sustain signal in even the simplest realistic Hamiltonian. This approach loses exactness and
the results can be biased by the approximation.

The approach we take in these lecture notes is in some sense to combine the two approaches.
The sign/phase problem will be controlled approximately. We cast the MC random walks in a
space of over-complete Slater determinants, which significantly reduces the severity of the sign
problem. In this space we formulate constraints on the random-walk paths which lead to better
approximations that are less sensitive to the details of the constraint. We then develop internal
checks and constraint release methods to systematically improve the approach.

These methods have come under the name of constrained path Monte Carlo (CPMC) [20] for
systems where there is a sign problem (for example, Hubbard-like models where the local in-
teractions lead to auxiliary-fields that are real). For electronic systems where there is a phase
problem (as the Coloumb interaction leads to complex fields), the methods have been referred
to as phaseless or phase-free auxiliary-field QMC (AFQMC) [15, 21]. In both cases, the idea
is to constrain the sign or phase of the overlap of the sampled Slater determinants with a trial
wave function. It eliminates the sign or phase instability and restores low-power (typically to
the third power of system size) computational scaling. Applications to a variety of systems have
shown that the methods are very accurate, even with simple trial wave functions taken directly
from mean-field calculations (see, e.g., Refs [22] and [23] references therein). As an example,
in Ref. [23], an 8 × 128 lattice in a doped repulsive Hubbard model (with over 900 electrons)
is studied to calculate the ground-state magnetic and charge-correlations. The dimension of the
Hilbert space for this system is O(10600)!

With these notes, we will give a pedagogical introduction to the AFQMC method, starting
from the forms without any constraint [13, 14], then discussing the sign and phase problem
[18, 19, 24], and ideas for constraining the paths in the path integral in AF space [15, 20, 25]
to eliminate the problem. The chapter is not meant to be a comprehensive review. Rather,
we focus on several basic algorithmic aspects, given the length restrictions of the chapter, to
complement the lectures. We will cover ground-state calculations in Hubbard-like models [19,
20, 26] and in realistic materials [15, 21, 27]. We will not cover finite-temperature calculations,
although corresponding methods have been developed [28, 29], nor will we discuss boson or
mixture systems, although the algorithms share many common features and some of the papers
on boson systems [29–31] contain details that can serve as useful references. Some of the more
pedagogical materials in this chapter are based on Refs. [19] and [24]. The references cited
are sources where we have drawn materials for the lectures, and point to possible additional
reading; they are by no means a literature survey.
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2 Formalism

2.1 Ground-state projection

The Hamiltonian for any many-fermion system with two-body interactions (e.g., the electronic
Hamiltonian under the Born-Oppenheimer approximation) can be written as

Ĥ = Ĥ1 + Ĥ2 = − ~2

2m

M∑
m=1

∇2
m +

M∑
m=1

Vext(rm) +
M∑
m<n

Vint(rm − rn) (1)

where rm is the real-space coordinate of the mth fermion, Vext(rm) is the effect of the external
potential on it, and Vint(rm − rn) is the interaction between fermions m and n. We have repre-
sented the external potential as local, although this does not have to be the case. For example,
in plane-wave calculations we will use a norm-conserving pseudopotential. This will lead to a
non-local function Vext [27]. The total number of fermions, M , will be fixed in the calculations
we discuss. For simplicity, we have suppressed spin-indices, but the spin will be made explicit
when necessary. In that case, Mσ is the number of electrons with spin σ (σ = ↑ or ↓). We
assume that the interaction is spin-independent, so the total Sz, defined by (M↑ −M↓), is fixed
in the calculation, although it will be straightforward to generalize our discussions to treat other
cases, for example, when there is spin-orbit coupling.
With any chosen one-particle basis, for example lattice sites (Hubbard model), plane-waves (as
in solid state calculations) [27], or Gaussians (as in quantum chemistry) [21, 32], the Hamilto-
nian can be written in the general form

Ĥ = Ĥ1 + Ĥ2 =
N∑
i,j

Tijc
†
icj +

1

2

N∑
i,j,k,l

Vijklc
†
ic
†
jckcl, (2)

whereN is the size of the chosen one-particle basis, and c†i and ci are the corresponding creation
and annihilation operators. The one-body matrix elements, Tij , contain the effect of both the
kinetic energy and external potential, while the two-body matrix elements, Vijkl, are from the
interaction. The matrix elements are integrals expressed in terms of the basis functions and
the potentials. We will assume that they have been evaluated and are known as we begin our
many-body calculations. Examples are given below.
One of the simplest Hamiltonians of this form is the Hubbard model, which has played an
important role in many-body physics and whose properties are still not fully understood:

Ĥ = K̂ + V̂ = −t
N∑
〈i,j〉σ

c†iσcjσ + U
N∑
i

ni↑ni↓ . (3)

Here N is the number of lattice sites, c†iσ and cjσ are creation and annihilation operators of an
electron of spin σ on the i-th lattice site, t is the nearest-neighbor hopping energy, niσ = c†iσciσ
is the density operator, and U is the interaction strength. Two parameters, the interaction U/t
and the electron density (M↑+M↓)/N , determine the physics given the topology of the lattice.
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Most ground-state QMC methods are based on

|Ψ0〉 ∝ lim
τ→∞

e−τĤ |ΨT 〉; (4)

that is, the ground state |Ψ0〉 of a many-body Hamiltonian Ĥ can be projected from any known
trial state |ΨT 〉 that satisfies 〈ΨT |Ψ0〉 6= 0. In a numerical method, the limit can be obtained
iteratively by

|Ψ (n+1)〉 = e−∆τĤ |Ψ (n)〉, (5)

where |Ψ (0)〉 = |ΨT 〉. Ground-state expectation 〈Ô〉 of a physical observable Ô is given by

〈Ô〉 = lim
n→∞

〈Ψ (n)|Ô|Ψ (n)〉
〈Ψ (n)|Ψ (n)〉

. (6)

For example, the ground-state energy can be obtained by letting Ô = Ĥ . A so-called mixed
estimator exists, however, which is exact for the energy (or any other Ô that commutes with Ĥ)
and can lead to considerable simplifications in practice:

E0 = lim
n→∞

〈ΨT |Ĥ|Ψ (n)〉
〈ΨT |Ψ (n)〉

. (7)

QMC methods carry out the iteration in Eq. (5) by Monte Carlo sampling. The difference
between different classes of methods amounts primarily to the space that is used to represent
the wave function or density matrix and to carry out the integration. The auxiliary-field QMC
(AFQMC) methods work in second quantized representation and in an auxiliary-field space,
while Green’s function Monte Carlo (GFMC) or diffusion Monte Carlo (DMC) works in first-
quantized representation and in configuration space [10, 11].
Let us assume that |ΨT 〉 is of the form of a single Slater determinant or a linear combination of
Slater determinants. A Slater determinant is the form of a mean-field solution to Ĥ (see next
section) expressed in terms of the basis functions chosen in Eq. (2). The operation of e−τĤ1 on a
Slater determinant is straightforward to calculate, and it simply yields another determinant. The
ground-state projection would therefore turn into the propagation of a single Slater determinant
if it were somehow possible to write the two-body propagator e−τĤ2 as the exponential of a
one-body operator. This is realized in mean-field methods. In the Hartree-Fock (HF) approx-
imation Ĥ2 is replaced by one-body operators times expectations with respect to the current
Slater determinant wave function, schematically:

c†ic
†
jckcl → c†icl〈c

†
jck〉 − c

†
ick〈c

†
jcl〉 . (8)

A decomposition that includes pairing is also possible, leading to a Hartree-Fock-Bogoliubov
calculation. In the local density approximation (LDA) in DFT [4], Ĥ2 is replaced by the density
operator in real-space times a functional of the local density calculated with respect to the cur-
rent Slater determinant in the self-consistent process. In both these cases, an iterative procedure
can be used, following Eq. (5), to project out the solution to the approximate Hamiltonians, as
an imaginary-time evolution of a single Slater determinant [33].
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2.2 Slater determinant space

The building blocks of Slater determinants are single-particle basis states. These single-particle
basis states can be plane waves, or lattice sites in the Hubbard model, Gaussians, or energy
eigenstates in a mean-field potential. Often the space of single-particle basis states is truncated.
Single-particle wave functions (orbitals) are formed with the basis states. Slater determinants
are then built from the single-particle orbitals.
We define some notations that we will use throughout the discussion [24]:

• N : number of single-electron basis states. For example, N can be the number of lattice
sites (L× L) in the two-dimensional Hubbard model.

• |χi〉: the ith single-particle basis state (i = 1, 2, · · · , N ). For example, |χG〉 can be a
plane wave basis state with χG(r) ∝ eiG·r, where r is a real-space coordinate.

• c†i and ci: creation and annihilation operators for an electron in |χi〉. ni ≡ c†ici is the
corresponding number operator.

• M : number of electrons (if we omit spin index, e.g., if the system is fully polarized). In
the more general case, Mσ is the number of electrons with spin σ (σ = ↑ or ↓). Of course,
the choice of N above must ensure that Mσ ≤ N .

• ϕm: single-particle orbital (we include an index m for discussions below to distinguish
different single-particle orbitals). A single-particle orbital ϕm, given in terms of the
single-particle basis states {|χi〉} as

∑
i ϕi,m|χi〉 =

∑
i c
†
iϕi,m|0〉, can be conveniently

expressed as an N -dimensional vector:
ϕ1,m

ϕ2,m

...
ϕN,m


Given M different single-particle orbitals, we form a many-body wave function from their anti-
symmetrized product:

|φ〉 ≡ ϕ̂†1ϕ̂
†
2 · · · ϕ̂

†
M |0〉 (9)

where the operator
ϕ̂†m ≡

∑
i

c†i ϕi,m (10)

creates an electron in the mth single-particle orbital {ϕ1,m, ϕ2,m, · · · , ϕN,m}. The many-body
state |φ〉 in Eq. (9) can be conveniently expressed as an N ×M matrix:

Φ ≡


ϕ1,1 ϕ1,2 · · · ϕ1,M

ϕ2,1 ϕ2,2 · · · ϕ2,M

...
...

...
ϕN,1 ϕN,2 · · · ϕN,M
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Each column of this matrix represents a single-particle orbital that is completely specified by
its N -dimensional vector. It is straightforward to keep the different columns orthonormalized.
If the real-space coordinates of the electrons are R = {r1, r2, · · · , rM}, the many-body state in
Eq. (9) gives (see Sec. 2.4)

〈R|φ〉 = φ(R) = det


ϕ1(r1) ϕ2(r1) · · · ϕM(r1)

ϕ1(r2) ϕ2(r2) · · · ϕM(r2)
...

...
...

ϕ1(rM) ϕ2(rM) · · · ϕM(rM)

 ,

where ϕm(r) =
∑

i ϕi,mχi(r).
The many-body state |φ〉 is known as a Slater determinant. One example of a Slater determinant
is the HF solution |φHF〉 =

∏
σ |φσHF〉, where |φσHF〉 is defined by a matrix ΦσHF whose columns

are the Mσ lowest HF eigenstates. We can now add the following to our list of notations above:

• |φ〉: a many-body wave function which can be written as a Slater determinant.

• Φ: an N ×M matrix which represents the Slater determinant |φ〉. Φij will denote the
matrix element of the matrix Φ in the ith row and jth column. For example, Φij = ϕi,j
above in Φ. Below when a Slater determinant |φ〉 is referred to, it will often be helpful to
think in terms of the matrix representation Φ operationally.

• |Ψ〉: a many-body wave function which is not necessarily a single Slater determinant,
e.g., |Ψ (n)〉 in Eq. (5).

Several properties of the Slater determinant are worth mentioning. For any two non-orthogonal
Slater determinants, |φ〉 and |φ′〉, it can be shown that their overlap integral is

〈φ|φ′〉 = det(Φ†Φ′). (11)

The operation on any Slater determinant by any operator B̂ of the form

B̂ = exp
(∑

ij

c†iUijcj
)

(12)

simply leads to another Slater determinant [34], i.e.,

B̂|φ〉 = φ̂′ †1 φ̂
′ †
2 · · · φ̂

′ †
M |0〉 ≡ |φ

′〉 (13)

with φ̂′ †m =
∑

j c
†
j Φ
′
jm and Φ′ ≡ eUΦ, where U is a square matrix whose elements are given by

Uij and B ≡ eU is therefore an N ×N square matrix as well. In other words, the operation of
B̂ on |φ〉 simply involves multiplying an N ×N matrix by an N ×M matrix.
We can define the expectation of an operator Ô with respect to a pair of non-orthogonal Slater
determinants:

〈Ô〉 ≡ 〈φ|Ô|φ
′〉

〈φ|φ′〉
. (14)
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The “bar” distinguishes it from the true interacting many-body expectations in Eq. (6), which
we wish to compute with QMC. The simplest example of Eq. (14) is the single-particle Green’s
function Gij ≡ 〈cic†j〉. In the ground-state formalism,

Gij ≡
〈φ|cic†j|φ′〉
〈φ|φ′〉

= δij − [Φ′(Φ†Φ′)−1Φ†]ij. (15)

Given the Green’s function G, the general expectation defined in Eq. (14) can be computed
for most operators of interest. This is an important property that will be used in our QMC
calculations. For example, we can calculate the expectation of a general two-body operator,
Ô =

∑
ijklOijklc

†
ic
†
jckcl, under the definition of Eq. (14):

〈Ô〉 =
∑
ijkl

Oijkl(G
′
jkG

′
il −G′ikG′jl), (16)

where the matrix G′ is defined as G′ ≡ 1−G.
Recently the use of a projected BCS wave function as a trial wave function in AFQMC has
been formulated [35]. The overlap between a projected BCS wave function |ΨBCS〉 and a Slater
determinant |φ〉, and the corresponding ”Green’s function” of Eq. (15) can be evaluated at a
cost similar to that between two Slater determinants.

2.3 Hubbard-Stratonovich transformation

In order to carry out Eq. (5) in the Slater-determinant space we have introduced above, we write
the many-body propagator e−∆τĤ in single-particle form. With a small ∆τ > 0, the Trotter
approximation can be used:

e−∆τĤ ≈ e−∆τĤ1e−∆τĤ2 , (17)

which introduces a Trotter error. For actual implementation of the algorithms we discuss here,
higher order Trotter break-ups are often used. The Trotter error can be further reduced with an
extrapolation procedure after separate calculations have been done with different values of ∆τ .
The Ĥ1 part of the propagator in (17) is the exponential of a one-body operator. The Ĥ2 part is
not. It is, however, possible to rewrite e−∆τĤ2 in this desired form through a so-called Hubbard-
Stratonovich (HS) transformation [36]. For example, for the Hubbard model in Eq. (3), an
exact, discrete HS transformation [37] exists for the repulsive on-site repulsion

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑
xi=±1

1

2
eγxi(ni↑−ni↓), (18)

where the constant γ is determined by cosh(γ) = exp(∆τU/2). Similarly, for an attractive
interaction V ni↑ni↓ with V < 0

e−∆τV ni↑ni↓ = e−∆τV (ni↑+ni↓−1)/2
∑
xi=±1

1

2
eγxi(ni↑+ni↓−1), (19)

where cosh(γ) = exp(∆τ |V |/2).
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In general, if Ĥ2 can be written as a sum of squares of one-body operators, of the form

Ĥ2 =
1

2

Nγ∑
γ=1

λγ v̂
2
γ, (20)

we can apply the HS transformation to each term (after Trotter break-up):

e−(∆τ/2) λ v̂2 =
1√
2π

∫ ∞
−∞

dx e−x
2/2 ex

√
−∆τλ v̂, (21)

where x is an auxiliary-field variable. The constant in front of v̂ in the exponent on the right-
hand side can be real or imaginary, depending on the sign of λ. The key is that the quadratic
form (in v̂) on the left is replaced by a linear one on the right. In Eq. (20), λγ is a constant and
v̂γ is a one-body operator similar to Ĥ1. Each γ leads to one auxiliary-field in Eq. (21).
We now show one way to manipulate a general Ĥ2 into the form in Eq. (20). Let us cast Vijkl in
Eq. (2) in the form of a Hermitian matrix by introducing two indices α = (i, l) and β = (k, j):
Vαβ = V(i,l),(k,j) = Vijkl. The Hermitian matrix V can then be diagonalized and written as
V = RΛR†, where R is a matrix whose columns are the eigenvectors of V and Λ is a diagonal
matrix containing the corresponding eigenvalues λα. That is

Vαβ =
∑
γ

RαγλγR
∗
βγ. (22)

The two-body operator V̂ can therefore be written as

Ĥ2 =
∑
ijkl

Vijkl c
†
iclc

†
jck −

∑
ijkl

Vijkl c
†
ick δjl

=
∑
γ

λγ

(∑
il

R(i,l)γc
†
icl

)(∑
jk

R∗(k,j)γc
†
jck

)
−
∑
ik

(∑
j

Vijkj

)
c†ick.

Noting that Ĥ2 is Hermitian, we can put the above in a more symmetric form

Ĥ2 =
1

2

∑
γ

λγ{ρ̂γ, ρ̂†γ}+ ρ̂0, (23)

where the one-body operators are defined as ρ̂γ ≡
∑

ilR(i,l)γc
†
icl and ρ̂0 ≡ −

∑
ik[
∑

j(Vijkj +

Vjijk)/2]c†ick. Since

{ρ̂γ, ρ̂†γ} =
1

2
[(ρ̂γ + ρ̂†γ)

2 − (ρ̂γ − ρ̂†γ)2] ≡ v̂2
γ − v̂′γ

2
, (24)

we have succeeded in writing Ĥ2 in the desired form.
The way to decompose Ĥ2 above leads to approximately 2N2 auxiliary fields. Often the in-
teraction simplifies Ĥ2 and the number of auxiliary fields can be much reduced. For example,
straightforward applications to molecular systems using Gaussian basis sets employed the above
decomposition, except that the matrix elements are all real [21, 38] (and terms with λ below a
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small threshold can be discarded). A modified Cholesky decomposition has been used which
leads to O(N) fields [32]. In a plane-wave basis, the two-body part is the Fourier transform of
1/|rm − rn| which leads to 1/Q2 [27].
Different forms of the HS transformation exist [39], and can affect the performance of the QMC
method. For example, subtracting a mean-field “background” from the two-body term prior to
the decomposition improves the calculations [21, 31, 40]. Indeed experience shows that they
can not only impact the statistical accuracy, but also lead to different quality of approximations
under the constrained-path methods that we discuss below. Therefore, although we discuss the
algorithms under the generic form of Eq. (25), we emphasize that it is worthwhile to explore
different forms of the HS transformation in an actual implementation [41].
If we denote the collection of auxiliary fields by x and combine one-body terms from Ĥ1 and
Ĥ2, we obtain the following compact representation of the outcome of the HS transformation:

e−∆τĤ =

∫
dx p(x)B̂(x), (25)

where p(x) is a probability density function (PDF), for example, a multi-dimensional Gaussian.
The propagator B̂(x) in Eq. (25) has a special form, namely, it is a product of operators of the
type in Eq. (12), with Uij depending on the auxiliary field. The matrix representation of B̂(x)

will be denoted by B(x).
In essence, the HS transformation replaces the two-body interaction by one-body interactions
with a set of random external auxiliary fields. In other words, it converts an interacting system
into many non-interacting systems living in fluctuating external auxiliary-fields. The sum over
all configurations of auxiliary fields recovers the interaction.

2.4 A simple example

We now study in some details the ground-state of the one-dimensional Hubbard model with 4
sites and with open boundary conditions We can think of the lattice as a crude representation of
particles in a one-dimensional box, with only four equally-spaced grid points to discretize the
continuous space inside the box and the kinetic energy written in terms of finite difference. We
will consider N↑ = 2 and N↓ = 1. This can be thought of as a chain of 4 hydrogen atoms, with
one of them ionized to H+, in a minimal basis. We label the four sites 1 through 4.
First let us examine the trivial case of free electrons, i.e. U = 0. We can write down the
1-electron Hamiltonian matrix, based on Eq. (3), which is of dimension 4× 4:

H =


0 −1 0 0

−1 0 −1 0

0 −1 0 −1

0 0 −1 0

 . (26)

The eigenstates of H can be obtained by direct diagonalization. With these eigenstates, we
immediately obtain the ground-state wave function |ψ0〉 of the 3-electron system from the Pauli
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exclusion principle:

|ψ0〉 =


0.3717 −0.6015

0.6015 −0.3717

0.6015 0.3717

0.3717 0.6015

⊗


0.3717

0.6015

0.6015

0.3717

 ,

where the first matrix contains two single-particle orbitals (two columns) for the two ↑ electrons
and the second matrix contains one single-electron orbital for the one ↓ electron. Each single-
electron orbital is an eigenvector of H . Note the second and third lowest single-electron states
are degenerate, causing the 3-electron system to be open shell and |ψ0〉 to be degenerate. We
have simply picked one particular linear combination for the second ↑-electron in |ψ0〉 above.
An object of the form of |ψ0〉 is of course nothing more than a Slater determinant. For example,
the amplitude of the configuration |R〉 = |↓ ↑ 0 ↑〉, i.e., two ↑ electrons on sites 2 and 4 and the
one ↓ electron on site 1, is given by

〈R|ψ0〉 = det

(
0.6015 −0.3717

0.3717 0.6015

)
· det

(
0.3717

)
.

That is, more formally,

|R〉 =


0 0

1 0

0 0

0 1

⊗


1

0

0

0


and 〈R|ψ0〉 = det(R† · Ψ0) is a number, where R and Ψ0 denote the matrices corresponding to
|R〉 and |ψ0〉, respectively.
For this non-interacting system, an alternative (albeit indirect and indeed circular) way of ob-
taining |ψ0〉 is by the power method. From the eigenvalues and eigenvectors of K̂, we can easily
construct the matrix for e−∆τK̂ , which has the same structure asH in Eq. (26) above (i.e., a 4×4

matrix e−∆τH). Denote this matrix by BK . With an arbitrarily chosen initial Slater determinant
|ψ(0)〉 (with non-zero overlap with |ψ0〉), we can then repeatedly apply e−∆τĤ to carry out the
iterative process in Eq. (5), which means multiplying both the 4 × 2 ↑ matrix and the 4 × 1 ↓
matrix by BK . The process will lead to |ψ0〉 as n→∞.
Note that the solution remains a single Slater determinant during the iteration, as discussed at
the end of Sec. 2.1. We could obtain the self-consistent solution of a mean-field equation via
this procedure, which looks like a (imaginary-)time-dependent HF or DFT calculation. The
orbitals in the determinant (in this example the two ↑-spin orbitals) must be periodically re-
orthonormalized to avoid the loss of numerical precision. This procedure is often done with a
modified Gram-Schmidt, and is standard in mean-field calculations. Incidentally, the tendency
for the orbitals to collapse to the lowest energy single-particle orbital is intimately related to the
sign problem. In any simulation without the use of Slater determinant (second quantization) as
its random walker, for example in standard DMC, this is the driving force for the sign problem.
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Now let us consider the many-body case, by turning on the interaction U . The first approach of
directly diagonalizing H is the method of exact diagonalization. The size of the matrix is now
the size of the Hilbert space (not just N ), which in this example is 24. Thus the computational
cost of this approach grows exponentially with system size. The power method of Eq. (5),
on the other hand, can still apply if we can write e−∆τĤ in some one-electron form. The HS
transformation does just that. Assuming∆τ is small and applying the Trotter break-up, we have

e−∆τĤ ⇒
∑
x

p(x)


eγx1 0 0 0

0 eγx2 0 0

0 0 eγx3 0

0 0 0 eγx4

 ·BK ⊗


e−γx1 0 0 0

0 e−γx2 0 0

0 0 e−γx3 0

0 0 0 e−γx4

 ·BK ,

where x = {x1, x2, x3, x4}. This is just Eq. (25). Note that B(x) has an ↑ and a ↓ component,
each of which is a 4 × 4 matrix. Applying each B(x) to a Slater determinant means precisely
the same as in the non-interacting case (with BK⊗BK). In other words, B(x) operating on any
Slater determinant |φ〉 simply involves matrix multiplications for the ↑ and ↓ components sep-
arately, leading to another Slater determinant |φ′〉, as in Eq. (13). Starting from a single Slater
determinant, e.g., |Ψ (0)〉 = |ψ0〉, we would end up with a multi-determinant representation of
|Ψ (1)〉, and so on. We will maintain a constant population as described below.

3 Ground-State AFQMC Methods

In this section, we discuss the ground-state AFQMC method. The CPMC and its generalization
to the phase problem are free of the decay of the average sign. The methods are approximate,
relying on what we will generally refer to as the constrained path approximation.

3.1 Free-projection AFQMC

In this section we briefly describe the ground-state AFQMC method without any constraints.
We will rely on the machinery established in the previous section. Our goal is to illustrate
the essential ideas, in a way which will facilitate our discussion of the sign problem and help
introduce the framework for the constrained path Monte Carlo methods. We will not go into
details such as how to efficiently sample the auxiliary fields or how to stabilize the matrices.
They are described in the literature. We write the usual path-integral and Metropolis form
explicitly here to show that it is the same as the open-ended random walk approach we take in
CPMC, as far as understanding the sign problem is concerned.
We want to compute ground-state expectation values 〈Ô〉 using (6) and (25). The denominator
in (6) is

〈ψ(0)|e−n∆τĤ e−n∆τĤ |ψ(0)〉 =

∫
〈ψ(0)|

[ 2n∏
l=1

dx(l)p(x(l))B̂(x(l))
]
|ψ(0)〉

=

∫ [∏
l

dx(l)p(x(l))
]

det
(

[Ψ (0)]†
∏
l

B(x(l))Ψ (0)
)
. (27)
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In the standard ground-state AFQMC method [13], a value of n is first chosen and fixed
throughout the calculation. If we use X to denote the collection of the auxiliary-fields X =

{x(1),x(2), . . . ,x(2n)} and D(X) to represent the integrand in Eq. (27), we can write the expec-
tation value of Eq. (6) as

〈Ô〉 =

∫
〈Ô〉D(X) dX∫
D(X) dX

=

∫
〈Ô〉

∣∣D(X)
∣∣ s(X) dX∫ ∣∣D(X)

∣∣ s(X) dX
, (28)

where
s(X) ≡ D(X)/

∣∣D(X)
∣∣ (29)

measures the “sign” of D(X). The non-interacting expectation value for a given X is that
defined in Eq. (14)

〈Ô〉 ≡ 〈φL|Ô|φR〉
〈φL|φR〉

(30)

with

〈φL| = 〈ψ(0)| B̂(x(2n))B̂(x(2n−1)) · · · B̂(x(n+1))

|φR〉 = B̂(x(n))B̂(x(n−1)) · · · B̂(x(1)) |ψ(0)〉,

which are both Slater determinants.
D(X) as well as 〈φL| and |φR〉 are completely determined by the path X in auxiliary-field
space. The expectation in Eq. (28) is therefore in the form of Eq. (62), with f(X) = |D(X)|
and g(X) = 〈Ô〉. The important point is that, for each X , |D(X)| is a number and g(X) can
be evaluated using Eqn. (15) and (16). Often the Metropolis Monte Carlo algorithm [42] is
used to sample auxiliary-fields X from |D(X)|. Any 〈Ô〉 can then be computed following the
procedure described by Eq. (61) in the appendix.
We will carry out free-projection calculations with an open-ended random walk [20, 40] simi-
lar to the CP approach, instead of using Metropolis sampling as outlined above [14, 43] which
keeps an entire path of a fixed length 2n as the object to sample. (An example of free-projection
is shown in Fig. 2 in Sec. 3.3.) The open-ended random walk framework does not have any
ergodicity issues, and it is straightforward to project to longer imaginary-time in order to ap-
proach the ground state. This approach also allows a natural implementation of importance
sampling and the constraint, as we discuss below.

3.2 Why and how does the sign problem occur?

The sign problem occurs because of the fundamental symmetry between the fermion ground-
state |Ψ0〉 and its negative −|Ψ0〉 [19,44]. For any ensemble of Slater determinants {|φ〉} which
gives a Monte Carlo representation of the ground-state wave function, this symmetry implies
that there exists another ensemble {−|φ〉}which is also a correct representation. In other words,
the Slater determinant space can be divided into two degenerate halves (+ and−) whose bound-
ing surface N is defined by 〈Ψ0|φ〉 = 0. This surface is in general unknown.
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In some special cases symmetry prohibits any crossing ofN in the random walk. The AFQMC
calculation is then free of the sign problem. An example [45] is the half-filled (M↑ +M↓ = N )
repulsive Hubbard model, which via particle-hole symmetry can be mapped to an attractive
model with no spin polarization: M↑ = M↓. It is easy to see this in the latter case: if we choose
an initial population of walkers of the form |φ↑〉 ⊗ |φ↓〉 with |φ↑〉 = |φ↓〉, the structure will be
preserved by the propagation. (In general when there is a twist to the boundary condition, the
symmetry between ↑- and ↓-spins should be of opposite momenta [35].) The overlap of each
walker with a wave function |Ψ0〉 which observes the same symmetry will be a square and thus
always non-negative. In more general cases, however, walkers do cross N in their propagation
by e−∆τĤ . The sign problem then invariably occurs.
In Fig. 1, we illustrate the space of Slater determinants by a one-dimensional (horizontal) line.
The “node” N is the (red) dot in the middle. Imaginary time (or n) is in the vertical direction
and increases as the arrow suggests. That is, as the walker moves in the horizontal line, we
stretch out continuously “snapshots” of its position along the vertical direction. Now we follow
an initial Slater determinant. With no loss of generality, we assume it has a positive overlap
with |Ψ0〉. At time n = 0 it is indicated by the (green) dot on the right. As the random walk
evolves, the walker can reach the node, which is the (red) vertical line. At the instant it lands on
N , the walker will make no further contribution to the representation of the ground state, since

〈Ψ0|φ〉 = 0 ⇒ 〈Ψ0|e−βĤ |φ〉 = 0 for any β. (31)

Paths that result from such a walker have equal probability of being in either half of the Slater
determinant space. A few of these possible paths are shown by dashed lines. Computed ana-
lytically, they would cancel and not make any contribution in the ground-state wave function,
as indicated by their symmetric placement with respect to the node line. But since the random
walk has no knowledge of N , these paths continue to be sampled (randomly) in the random
walk and become MC noise. Only paths that are completely confined to the right-hand side, as
shown by the solid (green) line, will lead to contributions to the ground state, but the relative
number of such confined paths decreases exponentially with n. Asymptotically in n, the MC
representation of the ground-state wave function consists of an equal mixture of the + and −
walkers, regardless of where the random walks originated. The Monte Carlo signal is therefore
lost. The decay of the signal-to-noise ratio, i.e. the decay of the average sign of 〈ΨT |φ〉, occurs
at an exponential rate with imaginary time.
To eliminate the decay of the signal-to-noise ratio, we impose the constrained-path approxi-
mation. Fahy and Hamann first used [25] such a constraint in the framework of the standard
AFQMC method. However, the non-local nature of such a constraint proved difficult to imple-
ment efficiently in the “path-integral-like” scheme. Here, with the open-ended random walk
formalism, the constraint only needs to be imposed one time-step at a time and is extremely
simple to implement. It requires that each random walker at each step have a positive overlap
with the trial wave function |ΨT 〉:

〈ΨT |φ(n)
k 〉 > 0. (32)
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n

Fig. 1: Schematic illustration of the sign problem [19]. The top line represents Slater determi-
nant space; the dot represents the “node” N , where a determinant is orthogonal to the ground
state |Ψ0〉. As the projection continues (increasing n), Slater determinants undergo random
walks, tracing out “paths” as shown. When a walker reaches N , its future paths will collec-
tively cancel in their contribution to |Ψ0〉, indicated by the symmetric distribution of dashed
paths about the nodal line. The Monte Carlo sampling, with no knowledge of this cancellation,
continues to sample such paths randomly. The relative number of paths with real contributions
(solid paths) decreases exponentially as n increases.

This yields an approximate solution to the ground-state wave function, |Ψ c0〉 =
∑

φ |φ〉, in which
all Slater determinants |φ〉 satisfy (32).
From (31), it follows that the constrained path approximation becomes exact for an exact trial
wave function |ΨT 〉 = |Ψ0〉. The overall normalization of walkers remains a constant on the
average, since the loss of walkers at N is compensated by the branching of walkers elsewhere;
that is, the eigenvalue problem with N as boundary has a stable solution.
To implement the constrained-path approximation in the random walk, we define the importance
function (see next section) by:

OT (φ) ≡ max{〈ΨT |φ〉, 0}. (33)

This prevents walkers from crossing the trial nodal surface N and entering the “−” half-space
as defined by |ΨT 〉. A walker k in the nth-step is eliminated (assigned weight zero) for the
(n + 1)st-step when its OT (φ

(n+1)
k ) becomes zero. In the limit ∆τ → 0, Eq. (33) ensures

that the walker distribution vanishes smoothly at N and the constrained-path approximation is
properly imposed. With a finite ∆τ , the procedure eliminates walker k when OT (φ

(n+1)
k ) ≤ 0.

The error that results is a form of Trotter error [24] which can be further reduced using what is
known as a mirror correction [20, 24].
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3.3 The constrained path Monte Carlo method

The constrained path Monte Carlo (CPMC) method [19,20,46] incorporates the idea discussed
above into a natural and efficient algorithm. The approach applies to Hubbard-like Hamilto-
nians where the auxiliary-field is real. Even in the case where a twist angle is applied to the
boundary condition and the hopping matrix elements are complex, a simple generalization of
this condition is sufficient [46]. Using (25), we write Eq. (5) as

|Ψ (n+1)〉 =

∫
dx p(x)B̂(x)|Ψ (n)〉. (34)

In the random walk realization of this iteration, we represent the wave function at each stage by
a finite ensemble of Slater determinants, i.e.,

|Ψ (n)〉 ∝
∑
k

w
(n)
k |φ

(n)
k 〉, (35)

where k labels the Slater determinants and an overall normalization factor of the wave function
has been omitted. A weight factor w(n)

k is introduced for each walker, even though in Eq. (34)
the kernel p is normalized. This is because single-particle orbitals in a Slater determinants cease
to be orthogonal to each other as a result of propagation by B̂. When they are re-orthogonalized
[19, 20], an overall factor appears, which we will view as the w term in the integral equation
Eq. (64) of the appendix.
The structure of the random walk now resembles that of Eq. (64). For each random walker we
sample an auxiliary-field configuration x from the PDF p(x) and propagate the walker to a new
one via Φ(n+1)

k = B(x)Φ
(n)
k . If necessary, a re-orthogonalization procedure is applied to Φ(n)

k

prior to the propagation: Φ(n)
k = [Φ

(n)
k ]′R, whereR is anM×M upper-triangular matrix. [Φ

(n)
k ]′

is then used in the propagation instead; the weight of the new walker is w(n+1)
k = w

(n)
k det(R).

The simple random walk procedure is sufficient and convenient for thinking about many con-
ceptual issues. It is, however, not efficient as a practical algorithm in most cases of interest,
because the sampling of x is completely random with no regard to the potential contribution to
D(X). The idea of importance sampling is to iterate a modified equation with a modified wave
function, without changing the underlying eigenvalue problem of (34). Specifically, for each
Slater determinant |φ〉, we define an importance function as given in Eq. (33) that estimates its
overlap with the ground-state wave function. We can rewrite Eq. (34) as

|Ψ̃ (n+1)〉 =

∫
dxp̃(x)B̂(x)|Ψ̃ (n)〉, (36)

where the modified “PDF” is

p̃(x) =
OT (φ(n+1))

OT (φ(n))
p(x) . (37)

With the new kernel p̃, the probability distribution for x vanishes smoothly as OT (B̂(x)φ(n))

approaches zero, and the constraint is naturally imposed. As expected, p̃(x) is a function of
both the current and the next position in Slater-determinant space. Further, it modifies p(x)
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Fig. 2: Controlling the sign problem with a systematically improvable approximation. The
total energy is plotted vs. imaginary-time for a 4 × 4 Hubbard model with N↑ = N↓ = 7
electrons (i.e., density n = 0.875) and U/t = 8, which is in the regime important for magnetism
and superconductivity, and where the sign problem is severe. The left panel shows the sign
problem in free-projection [15, 22] (yellow), results with constraint [20, 46] (blue), and exact
diagonalization (magenta). The right panel illustrates constraint release [41]. To the left of
the vertical bar, a magnified view is shown of the exact and constrained path results. The error
from the constraint is roughly half of the Trotter error with the typically recommended value of
∆τ = 0.05. Releasing the constraint removes the small bias and converges to the exact answer,
with growing computational cost, as seen on the right.

such that the probability is increased when x leads to a determinant with larger overlap and is
decreased otherwise. It is trivially verified that Eqs. (34) and (36) are identical. If |ΨT 〉 = |Ψ0〉,
the normalization

∫
p̃(x)dx becomes a constant, which means that the weights of walkers will

remain a constant and the random walk will have no fluctuations, as should be the case with
perfect importance sampling.
In the random walk, the ensemble of walkers { |φ(n)

k 〉 } now represents the modified wave func-
tion: |Ψ̃ (n)〉 ∝

∑
k w

(n)
k |φ

(n)
k 〉. The true wave function is then given formally by

|Ψ (n)〉 ∝
∑
k

w
(n)
k

|φ(n)
k 〉

OT (φ
(n)
k )

, (38)

although in actual measurements it is |Ψ̃ (n)〉 that is needed and division by OT does not appear.
The random walk process is similar to that discussed for Eq. (34), but with p(x) replaced by
p̃(x). The latter is in general not a normalized PDF, and we denote the normalization constant
for walker k by N(φ

(n)
k ) and rewrite the iterative relation as

|φ(n+1)
k 〉 ← N(φ

(n)
k )

∫
dx

p̃(x)

N(φ
(n)
k )

B(x)|φ(n)
k 〉. (39)

Thus, for each walker |φ(n)
k 〉, one step of the random walk consists of:
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1. sampling an x from the PDF p̃(x)/N(φ
(n)
k ). With discrete, Ising-like auxiliary-fields for

a Hubbard interaction, the sampling is achieved by a heatbath-like algorithm, sweeping
through each field xi [20]

2. constructing the corresponding B(x) and then propagating the walker Φ(n)
k to generate a

new walker

3. assigning a weight w(n+1)
k = w

(n)
k N(φ

(n)
k ) to the new walker.

In contrast with the primitive algorithm in Eq. (34), the weight of a walker does not need to be
modified here when the re-orthogonalization procedure is applied. This is because the upper-
triangular matrix R only contributes to the overlap OT , which is already represented by the
walker weight. After each re-orthonormalization [24, 47], R can simply be discarded [20, 24].
To calculate the expectation value of an observable which does not commute with the Hamil-
tonian, the back-propogation technique [20, 30] is used. The idea is to create two coupled
populations to represent the bra and ket in Eq. (6), respectively. Because the population in the
random walk is importance-sampled, two independent populations which are uncoupled would
lead to large fluctuations in the estimator after the importance functions have been ”undone.”
In back-propagation, we choose an iteration n and store the entire population { |φ(n)

k 〉 }. As
the random walk proceeds from n, we keep track of the following two items for each new
walker: (1) the sampled auxiliary-field values that led to the new walker from its parent walker
and (2) an integer label that identifies the parent. After an additional m iterations, we carry
out the back-propagation: For each walker l in the (n + m)th (current) population, we initi-
ate a determinant 〈ψT | and act on it with the corresponding propagators, but taken in reverse
order. The m successive propagators are constructed from the items stored between steps m
and m + l, with exp(−∆τĤ1/2) inserted where necessary. The resulting determinants 〈φ̄(m)

l |
are combined with its parent from iteration n to compute 〈O〉BP, in a way similar to the mixed
estimator. The weights are given correctly by w(n+m)

l , due to importance sampling [30]. The
weight works similarly to that in forward walking in DMC. However, the trial wave function
can be propagated backwards in AFQMC to obtain a population sampling the bra, from which
the entire single-particle Green’s function can be computed with Eq. (15). Thus AFQMC can
compute both diagonal and off-diagonal observables.

3.4 The phaseless formalism for complex auxiliary-fields

When the many-body Hamiltonian leads to a decomposition with λ > 0 in Eq. (20), the resulting
HS transformation will have complex auxiliary-fields. This is the case for the electron-electron
repulsion. (We will sometimes refer loosely to having complex auxiliary-fields. It should be
understood that this means that the propagator resulting from the two-body Hamiltonian is
complex. Incidentally, it is always possible to have real auxiliary-fields, for example by making
a negative shift to the positive potential, but that simply leads to many fluctuating fields to
recover a constant background, and a much more severe sign problem [15,41].) In this situation
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a phase problem arises, as illustrated in Fig. 3. We next describe the formalism to deal with the
problem.
With a continuous auxiliary-field, the importance sampling in step 1 in Sec. 3.3 is achieved with
a force bias [15, 30]. To sketch a derivation we write the two-body propagator as∫

e−x
2/2 ex·v̂ dx , (40)

where v̂ is a vector denoting the collection of one-body operators labeled by γ in Eq. (20), and
the constant

√
−∆τλγ , which is complex if λγ is positive from in Eq. (21), has been absorbed

into the definition of v̂. We introduce a shift in the integral in Eq. (40), which leads to an
alternative propagator ∫

e−x
2/2 ex·x̄−x̄

2/2 e(x−x̄)·v̂ dx . (41)

The new propagator is exact for any choice of the shift x̄, which can be complex in general.
In free projection, application of the propagator in Eq. (41) to a Slater determinant |φ〉 would
be similar to that discussed in the previous section. We would sample x from the Gaussian,
propagate |φ〉 to a new |φ′(x)〉 by

|φ′(x)〉 = e(x−x̄)·v̂|φ〉, (42)

and include the extra exponential with x̄ in the weight of the walker.
In the iterative projection, the ground-state wave function that emerges after the equilibration
phase can be written in the following form

|Ψ0〉 =

∫
f(φ)|φ〉dφ , (43)

where we assume a criterion has been chosen and is followed consistently to separate the deter-
minant |φ〉 from its coefficient (e.g., orthonormalization). Because of the over-completeness of
the basis space, the function f(φ) may be different in different steps of the iteration, but in each
step it is uniquely determined. In free projection the function f(φ) is represented by the weights
of the MC samples, and the MC representation of the ground-state wave function is given by
Eq. (35). Omitting the explicit walker index, we have

|Ψ0〉 =
∑
φ

wφ|φ〉, (44)

where the sum runs over all walkers and wφ is the weight of walker |φ〉. In general, the weight
wφ can be complex (as can the orbitals), which is of course the cause for the phase problem.
Using the idea of importance sampling, we further modify the propagator in Eq. (41)∫

〈ΨT |φ′(x)〉 e−x2/2 exx̄−x̄
2/2 e(x−x̄)·v̂ 1

〈ΨT |φ〉
dx , (45)

where, as before, the trial wave function |ΨT 〉 represents the best guess to |Ψ0〉 and is the one
used in the mixed estimate for observables. The new propagator means that the walker weights
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now represent, instead of f(φ) in Eq. (43), a modified function f(φ)〈ΨT |φ〉. In contrast with
Eq. (44), the MC representation of the ground-state wave function with importance sampling is
now given by Eq. (38)

|Ψ0〉 =
∑
φ

wφ
|φ〉
〈ΨT |φ〉

, (46)

where any overall phase of the walker is removed.
We now consider the ratio 〈ΨT |φ′(x)〉/〈ΨT |φ〉 in Eq. (45). Defining

v̄ ≡ −〈ΨT |v̂|φ〉
〈ΨT |φ〉

∼ O(
√
∆τ) (47)

and

v2 ≡ 〈ΨT |v̂
2|φ〉

〈ΨT |φ〉
∼ O(∆τ), (48)

we can evaluate the ratio by expanding the propagator [48] in Eq. (42) to O(τ). The overall
weight factor in Eq. (45) can now be written in the form of an exponential [15, 30]

〈ΨT |φ′(x)〉
〈ΨT |φ〉

ex·x̄−x̄
2/2 .

= exp[−(x− x̄) · v̄+
1

2
(x− x̄)2v2− 1

2
(x− x̄)2v̄2 +x · x̄− x̄2/2]. (49)

The optimal choice of the shift x̄, which minimizes the fluctuation of Eq. (49) with respect to x,
is therefore x̄ = v̄. With this choice, the weight factor in Eq. (49) is exp[x2v2/2+(1−x2)v̄2/2],
which can be further reduced to exp(v2/2) if we set x2 → 1. Setting x2 to its average value
(with respect to the Gaussian PDF) is justified if v̄ and v2 remain approximately constant within
one imaginary-time step, which holds in the limit ∆τ → 0. (An exception to this is when
the walker |φ〉 is in the vicinity — say, within a few time steps — of “the origin” as defined
by 〈ΨT |φ〉 = 0. We discuss this special case, together with the characteristics of the origin
and its effect on the method below.) The modified propagator in Eq. (45) can then be written
approximately as ∫

e−x
2/2 e(x−v̄)·v̂ ev

2/2 dx . (50)

We have only included the Ĥ2 terms in the discussion from Eq. (40) up to now. Re-introducing
Ĥ1 into the propagator, we obtain the complete propagator for the Hamiltonian∫

e−x
2/2 exp

[
−∆τĤ1

2

]
exp[(x− v̄) · v̂] exp

[
−∆τĤ1

2

]
exp[−∆τEL(φ)] dx , (51)

where the term EL has a similar form to the so-called local energy in real-space DMC

EL(φ) ≡ 〈ΨT |Ĥ|φ〉
〈ΨT |φ〉

. (52)

Projection with Eq. (51) will in principle lead to the ground-state wave function in the form of
Eq. (38). The weight of the walker is determined by EL, which is independent of any phase
factor of the determinant.
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Fig. 3: Schematic illustration of the phase problem and constraints to control it. The left panel
shows, as a function of projection time β ≡ n∆τ , trajectories of 5 walkers characterized by
the real (Re) and imaginary (Im) parts of their overlap with the ground-state wave function.
The right panel shows the walker distribution integrated over imaginary time, i.e., the differ-
ent frames in the left panel stacked together along β. The phase problem occurs because the
initial phase “coherence” of the random walkers rapidly deteriorates with β, as they become
uniformly distributed in the Re-Im-plane. The idea of the phase constraint [15] is to apply a
gauge transformation such that confining the random walk in the single magenta plane (left) is
a good approximation.

In the limit of an exact |ΨT 〉, EL is a real constant, and the weight of each walker remains real.
The mixed estimate for the energy from Eq. (7) is phaseless

Ec
0 =

∑
φwφEL(φ)∑

φwφ
. (53)

With a general |ΨT 〉 which is not exact, a natural approximation is to replace EL in Eq. (51) by
its real part, ReEL. The same replacement is then necessary in Eq. (53).
With these replacements we arrive at a phaseless formalism for the random walks. We can
summarize each step in this formalism as follows. For each random walker |φ〉,

(a) sample x and propagate the walker to |φ′〉

|φ〉 → |φ′〉 = exp

[
−∆τĤ1

2

]
exp

[
(x− v̄) · v̂] exp[−∆τĤ1

2

]
|φ〉, (54)

(b) update the weight of the walker

wφ → wφ′ = wφ exp
[
−∆τ · Re

(
EL(φ′) + EL(φ)

)
/2
]
. (55)

Walkers so generated represent the ground-state wave function with importance sampling, in the
sense of Eq. (38). We have also tested a slightly different formalism based on Eq. (45), which
we shall refer to as the hybrid formalism [15, 30]. The same choice for x̄ is used: x̄ = v̄. The
walker is propagated in the same way as in (a) above, with the shifted or force-biased propagator
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in Eq. (51). In (b), however, we explicitly calculate the weight factor on the left-hand side of
Eq. (49) instead of using the local energy:

(b′) update the weight of the walker

wφ → wφ′ =

∣∣∣∣∣〈ΨT |φ′〉〈ΨT |φ〉
ex·x̄−x̄

2/2

∣∣∣∣∣ (56)

Conceptually the hybrid form is the same as that of the full local energy. However, it is in
principle correct for any choice of x̄, while in the local-energy form only x̄ = v̄ is correct. If
calculating EL is computationally costly (for example a brute-force calculation of Ĥ2 in a gen-
eral representation in Eq. (2) costs O(N4)), the hybrid form can be a more efficient alternative.
The Trotter errors for finite ∆τ can be different in the two approaches [22].
This formalism is all that is needed to handle the sign problem in the case of a real v̂. For any
v̂ the shift x̄ diverges as a walker approaches the origin in the complex plane shown in the right
panel of Fig. 3, i.e., as 〈ΨT |φ′〉 → 0. The effect of the divergence is to move the walker away
from the origin. With a real v̂, ∆θ = 0 and the random walkers move only on the real axis. If
they are initialized to have positive overlaps with |ΨT 〉, x̄ will ensure that the overlaps remain
positive throughout the random walk. Thus in this case our formalism above reduces to CPMC.
For a general case with a complex v̂, however, the phaseless formalism alone is not sufficient
to remove the phase problem. To illustrate the nature of the problem we consider the phase of
〈ΨT |φ′(x− x̄)〉/〈ΨT |φ〉, which we shall denote by ∆θ and which is in general non-zero: ∆θ ∼
O(−x Im(x̄)). This means that the walkers will undergo a random walk in the complex plane
defined by 〈ΨT |φ′〉. At large β, they will therefore populate the complex plane symmetrically,
independent of their initial positions. This is illustrated in the right panel of Fig. 3, which shows
〈ΨT |φ〉 for three-dimensional jellium with two electrons at rs = 10 for a total projection time of
β = 250. The distribution of the walkers is seen to be symmetric about the phase angle, and any
signal that the walkers all real initially started with 〈ΨT |φ(0)〉 = 1) is lost in the statistical noise.
In other words, for a complex v̂, the random walk is “rotationally invariant” in the complex
plane, and the divergence of x̄ is not enough to prevent the build-up of a finite density at the
origin. Near the origin the local energy EL diverges, which causes diverging fluctuations in
the weights of walkers. To address this we make an additional approximation. We project
the random walk to “one-dimension” and multiply the weight of each walker in each step by
cos(∆θ)

wφ′ = wφ′ max{0, cos(∆θ)} , (57)

in addition to step (b) [or (b′)] above. For this to be a good approximation, it is important that
the importance sampling transformation has been done to eliminate the leading order in the
overall phase of |φ〉 in the propagator in Eq. (49).
Several alternative schemes have been tested [15, 31, 49] in place of the Eq. (57). One that
seemed to work just as well was to project with the factor exp{−[Im(x̄)]2/2}, which is the
same as cos(∆θ) in the limit of small values of ∆θ. Another was to impose Re〈ΨT |φ′〉 > 0,
which gave similar results, but with somewhat larger variance.
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Fig. 4: Calculated binding energies [16, 27, 49, 50] of molecules compared with experimental
values. The discrepancy between theory and experiment is plotted. The AFQMC is fed a trial
wave function to start, which is taken directly from DFT [with either LDA or the generalized-
gradient approximation (GGA) functionals] or HF. The corresponding DFT or HF results are
also shown. As can be readily observed, the AFQMC results are in excellent agreement with
experiment and significantly improve upon the values from DFT and HF.

4 Illustrative results

The AFQMC method, including the CPMC for real auxiliary-fields and the phaseless formalism
for complex fields, has been applied to lattice models, to solids (using plane-wave basis and
pseudo potentials), to molecular systems (using Gaussian basis sets), and to down-folded model
Hamiltonians of real materials (using DFT orbitals as basis sets). It has also been applied in
nuclear physics to treat shell models and in neutron matter calculations. Here we briefly mention
a few examples from correlated-electron systems to provide an idea of what can already be done
and the many opportunities for improvements and for breakthroughs.
Accuracy, or predictive power, is a key requirement of a successful paradigm for strongly cor-
related systems. The formulation of AFQMC with Gaussian basis sets and quantum chemistry
applications have been crucial in establishing the method as a general approach that can now
be applied to correlated materials, since direct comparisons can be made with high-level quan-
tum chemistry results. Benchmark calculations to date have included close to 100 systems,
from simple molecules [21,49] and solids [22,51,52] to transition metal systems [53] to energy
storage problems [32].
Figure 4 illustrates the results on molecules using both planewave plus pseudopotentials and
Gaussian basis sets. In these calculations we have operated largely in an automated mode,
inputting only the DFT or HF solutions. The method demonstrated excellent accuracy, being
consistently able to correct errors in the mean-field trial wave function. In molecules, the ac-
curacy of the phaseless AFQMC is found to be comparable to CCSD(T), the gold standard in
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Fig. 5: Accurate calculation [58] of excited states. The seemingly simple C2 molecule is a
significant challenge to many-body methods [59,60]. Potential energy curves calculated by our
QMC method (symbols with error bars) are shown for the three lowest lying singlet states in C2,
compared with exact results [59] (solid lines) in a small basis set. RCCSD(T), the preeminent
many-body quantum chemistry method, does not work well (shown in orange lines).

chemistry [54, 55], near equilibrium geometry.
Bond stretching in molecules and solids mimics increased levels of multi-reference characters
and particle correlation. With single Slater determinants from unrestricted HF as trial wave
function, the AFQMC method generally gives better overall accuracy and a more uniform be-
havior than CCSD(T) in mapping the potential-energy curve [56–58], as can be seen for the
example of the C2 ground state in Fig. 5.
The AFQMC method can be used to study excited states. Prevention of collapse into the ground
state and control of the fermion sign/phase problem are accomplished by the constraint using an
excited state trial wave function [58]. An additional orthogonalization constraint is formulated
to use virtual orbitals in solids for band structure calculations [52]. Using the C2 molecule as
a test case, we calculated the potential energy curves of the ground and two low-lying singlet
excited states in Fig. 5. The trial wave function was obtained by truncating complete active
space wave functions, with no further optimization. The phaseless AFQMC results using a
small basis set were in good agreement with exact calculations, while those using large basis
sets were in excellent agreement with experimental spectroscopic constants [58]. Applications
in solids have included the calculation of the fundamental band gap in wurtzite ZnO [52].
Figure 6 illustrates an application to determine [23, 46] magnetic correlations and collective
modes in the ground state of the two-dimensional repulsive Hubbard model. Using CPMC and
simulating large rectangular supercells (over 1000 lattice sites), we studied the magnetic and
charge properties as a function of density. At intermediate interaction strengths, an incommen-
surate spin density wave (SDW) state is seen, with antiferromagnetic order and essentially ho-
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Fig. 6: Spin-density wave (SDW) states with long wavelength modulation in the 2-D Hubbard
model [23]. The left panel is a 3-D plot of the spin-spin correlation function in the ground
state of 8× 32 lattice with 240 electrons (n = 0.9375) and U/t = 4. Anti-ferromagnetic order
can be seen from the diagonal “lines.” Phase shifts occur at the nodal lines, across which there
is a mismatch of the diagonal lines. The right panel examines the doping dependence. The
staggered spin-spin correlation function is plotted at three different densities. Calculations are
done using a free-electron trial wave function. The long wavelength modulation and nodal lines
(two colors crossing) are clear. As doping is increased, the wavelength of the modulating wave
decreases, as does the amplitude of the SDW.

mogeneous charge correlations. The wavelength of the collective mode decreases with doping
(1 − (M↑ + M↓)/N ), as does its magnitude. The SDW order vanishes beyond a critical dop-
ing. As the interaction is increased, the holes go from a wavelike (delocalized) to a particlelike
(localized) state, and charge ordering develops which eventually evolves into stripe states [61].
This work [23] advanced our understanding of the magnetic properties and provided predictions
for optical lattice experiments.

5 Concluding remarks

We have discussed ground-state auxiliary-field-based methods for correlated-electron systems.
A formalism has been outlined that allows for a systematic understanding of the origin of the
sign/phase problem, and a platform on which to build methods whose computational cost scales
with system size at a low power, and whose accuracy reaches or surpasses the best general
many-body approaches. The AFQMC methods can be used to study both model systems and
realistic Hamiltonians. Applications have included atoms, molecules, solids, and correlated-
electron models, recently including down-folded Hamiltonians.
The original form of the AFQMC method allows essentially exact calculations of ground-state
and finite-temperature equilibrium properties of interacting many-fermion systems. Their ef-
fectiveness, however, was severely limited by the sign problem, which prevents calculations at
large system sizes or low temperatures. Often in the study of correlated models in condensed
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matter or cold atoms in optical lattices, the comment “But there is a sign problem” is made
to imply ”So QMC calculations cannot be used here.” It is hoped that the methods we have
discussed will change this paradigm. Calculations indeed can be done in systems where a sign
problem is present, and often accurate results are within reach by these calculations.
As a QMC method, this framework automatically accounts for particle permutations and allows
easy computations of both diagonal and off-diagonal expectations, as well as imaginary-time
correlations. It has much versatility as a general method, offering, for example, the possibility to
treat heavier elements and spin-orbit coupling, and the potential to embed the AFQMC naturally
and seamlessly in a calculation at the mean-field level. While much work is needed to study
various forms of HS transformations and trial functions |ψT 〉, and to understand the subtleties
of the method and the constraints because of the non-orthogonal and over-complete nature of
the Slater determinant space involved, we expect the method and the concept brought forth here
to see many applications, and to significantly enhance the applicability of quantum simulations
in interacting fermion systems. There are many opportunities both for further development and
improvement of this framework, and for applications in a variety of problems.
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Appendices

A A few basics of Monte Carlo techniques

We list a few key elements from standard Monte Carlo (MC) techniques which are important to
our discussions on QMC. For an introduction on MC methods, see, e.g., Ref. [42].
MC methods are often used to compute many-dimensional integrals of the form

G =

∫
Ω0
f(x)g(x)dx∫
Ω0
f(x)dx

, (58)

where x is a vector in a many-dimensional space and Ω0 is a domain in this space. We will
assume that f(x) ≥ 0 on Ω0 and that it is normalizable, i.e., the denominator is finite. A
familiar example of the integral in Eq. (58) comes from classical statistical physics, where f(x)

is the Boltzmann distribution.
To compute G by MC, we sample x from a probability density function (PDF) proportional to
f(x): f̄(x) ≡ f(x)/

∫
Ω0
f(x)dx. This means to generate a sequence {x1,x2, · · · ,xi, · · · } so

that the probability that any xi is in the sub-domain (x,x + dx) is

Prob{xi ∈ (x,x + dx)} = f̄(x)dx . (59)

There are different techniques to sample a many-dimensional function f(x). The most general
and perhaps most commonly used technique to sample f(x), i.e., the PDF f̄(x), is the Metropo-
lis algorithm, which creates a Markov-chain random walk [42] in x-space whose equilibrium
distribution is the desired function. We will also use a branching random walk, in which case
there can be a weight wi associated with each sampled xi. (In Metropolis, wi = 1.) The MC
samples provide a formal representation of f

f(x) ∝
∑
i

wiδ(x− xi) . (60)

GivenM independent samples from f(x), the integral in Eq. (58) is estimated by

GM =
M∑
i=1

wig(xi)/
M∑
i=1

wi (61)

The error in the estimate decays algebraically with the number of samples: |GM−G| ∝ 1/
√
M.

Using the results above, we can compute

G′ =

∫
Ω0
f(x)g(x)h(x)dx∫
Ω0
f(x)h(x)dx

, (62)

if the function h(x) is such that both the numerator and denominator exist. Formally

G′M =

∑M
i=1 wig(xi)h(xi)∑M

i=1 wih(xi)
, (63)
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although, as we will see, difficulties arise when h(x) can change sign and is rapidly oscillating.
Integral equations are another main area of applications of MC methods. For example [42], the
integral equation

Ψ ′(x) =

∫
Ω0

K(x,y) w(y) Ψ(y)dy, (64)

can be viewed in terms of a random walk if it has the following properties: Ψ(y) and Ψ ′(x)

can be viewed as PDF’s (in the sense of f in Eq. (58)), w(y) ≥ 0, and K(x,y) is a PDF for x
conditional on y. Then, given an ensemble {yi} sampling Ψ(y), the following two steps will
allow us to generate an ensemble that samples Ψ ′(x). First an absorption/branching process is
applied to each yi according to w(yi). For example, we can make int(w(yi) + ξ) copies of yi,
where ξ is a uniform random number on (0, 1). Second we randomly walk each new yj to an
xj by sampling the PDF K(xj,yj). The resulting {xj} are MC samples of Ψ ′(x). An example
of this is the one-dimensional integral equation

Ψ(x) =

∫ ∞
−∞

1√
π
e−(x−y)2

√
2e−y

2/2 Ψ(y)dy, (65)

which has a solution Ψ(x) = e−x
2/2. The random walks, starting from an arbitrary distribution,

will iteratively converge to a distribution sampling Ψ(x).
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1 DMRG: A young adult

On November 9, 1992, Physical Review Letters published a paper entitled “Density Matrix
Formulation for Quantum Renormalization Groups” by Steven R. White [1]. After introducing
a new algorithm for calculating the low-lying states and their observables of one-dimensional
lattice models, the paper presented impressively precise results for both the spin-1

2
and spin-1

Heisenberg antiferromagnet. It concludes: “This new formulation appears extremely powerful
and versatile, and we believe it will become the leading numerical method for 1D systems;
and eventually will become useful for higher dimensions as well.” I must admit that I am very
surprised that these very confident sentences made it past the referees; but this was just as
well: the successes of the density matrix renormalization group (DMRG) within the last two
decades have, if anything, far exceeded the hopes Steve White might have harboured for his
new algorithm at that time.

As all youths do, DMRG underwent puberty, developing a completely new personality: around
2004, when it was 12 years old, the (much older) realization [2,3] that DMRG is closely linked
to a special quantum state class, so-called matrix product states (MPS), suddenly spawned a
number of algorithmic extensions, which drastically enhanced the reach of DMRG (to name
but the first few: [4–10]). These algorithmic extensions could all be expressed in both DMRG
and MPS language, so many practitioners at first preferred to stay with the old way of speaking.
However, at least in my view it is now abundantly clear that formulating DMRG in the language
of MPS is notationally much cleaner and conceptually much more adequate, so I will present
the entire lecture in this way. The price to pay is to get used to a notation which will definitely
be unfamiliar to a physicist with standard training, as opposed to the DMRG language. But it
is worth the effort! For those readers who develop a deeper interest, an overview of DMRG
in the old language, with some focus on fields of application, is given by [11], whereas a very
technical, but hopefully thorough introduction into the structure and manipulation of MPS can
be found in [12]. A more conceptual orientation which presents the story as seen by quantum
information theory is found in [13].

2 Matrix product states

Let us consider a quantum system that lives on L lattice sites with d local states {σi} on each
site i ∈ {1, 2, . . . , L}. A good example to think of would be interacting spins-1

2
where the local

states are | ↑ 〉, | ↓ 〉 and d = 2. The lattice may at this point be of arbitrary dimension, we just
have to give an ordering to the site labels. In view of what is to come, one may of course think
of a one-dimensional chain with sites 1 through L.

Pure states are then defined on the Ld-dimensional Hilbert space

H = ⊗Li=1Hi Hi = {|1i〉, . . . , |di〉} (1)
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and the most general state reads

|ψ〉 =
∑

σ1,...,σL

cσ1...σL|σ1 . . . σL〉. (2)

In the following, we will often abbreviate as {σ} = σ1 . . . σL. The usual problem of numerical
simulations is that the number of state coefficients c{σ} grows exponentially with system size
L. A standard first approximation in order to reduce the exponential number of coefficients, the
so-called mean-field approximation, consists in factorizing the state coefficients as

cσ1...σL = cσ1 · cσ2 · . . . · cσL . (3)

Instead of dL coefficients, we now have dL coefficients (in the special case that we can as-
sume translational invariance of the state, the number reduces even more drastically to d). The
motivation of this ansatz dates back to the molecular field theory of Weiss (1907), where the
orientation of small elementary magnets (spin was not known at that time) is calculated by
assuming they are exposed to an external magnetic field and an additional effective magnetic
field, which self-consistently models the interaction with all other elementary magnets. Suc-
cessful as mean-field theories have been over the decades (the BCS theory of superconductivity
(1957), for example, is structurally a mean-field theory of Cooper pairs), they do not capture
the essential feature of quantum physics: entanglement.
What makes quantum mechanics fundamentally different from classical physics is the different
nature of the states: whereas they are points in phase space in classical physics, they are rays in
Hilbert space in quantum mechanics; moreover, the Hilbert space of a many-particle system is
given by the tensor product of the single-particle Hilbert spaces. To consider the most simple
example, take 2 spins-1

2
. Then Hi = {| ↑i 〉, | ↓i 〉} and H = H1 ⊗ H2. The combination of

the superposition principle (implied by states living in Hilbert space) and the tensor product
structure means that the most general state is

|ψ〉 = c↑↑|↑↑ 〉+ c↑↓|↑↓ 〉+ c↓↑|↓↑ 〉+ c↓↓|↓↓ 〉, (4)

subject merely to the normalization condition. It is now very easy to show that not every state
of this form factorizes, i.e. c↑↓ = c↑c↓ and so forth; to see this, just consider the singlet state

|ψ〉 = 1√
2
|↑↓ 〉 − 1√

2
|↓↑ 〉. (5)

States that factorize are called product states, whereas all others are called entangled states.
The importance of entangled states is of course given by the fact that they carry non-local
information and superclassical correlations, both of which are essential to quantum physics
[14–16]. How can we generalize the product state by Eq. (3) to describe (at least certain)
entangled states, while remaining numerically convenient? As general states are sums over
products of local states, we are led to think about matrices replacing the scalars of Eq. (3);
we are then looking at the sum of product states; they can be entangled. So the most simple
generalization would be

cσ1 · cσ2 · . . . · cσL →Mσ1 ·Mσ2 · . . . ·MσL , (6)
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where all Mσi are (2 × 2)-matrices, except on sites 1 and L, where they must be (1 × 2) and
(2×1) row and column vectors respectively, such that the matrix product yields a scalar. In fact,
the famous Affleck-Kennedy-Lieb-Tasaki (AKLT) model has a ground state that can be cast in
exactly this form and contains a wealth of non-trivial physics [17,18]. In fact, this simple ansatz
can also be used as a variational ansatz for the ground state of entire classes of Hamiltonians
giving quite deep insights into their physics; see, for example, [19–21]. Of course, (2 × 2)-
matrices are only of limited descriptive power given the wealth of quantum states.
We therefore consider the following generalization, which is a generic matrix product state:

|ψ〉 =
∑

σ1,...,σL

Mσ1Mσ2 . . .MσL|σ1σ2 . . . σL〉, (7)

where at each site we introduce d matrices Mσi , which therefore depend on the local state |σi〉.
The dimensions of the matrices are (1×D1), (D1×D2), . . . , (DL−2×DL−1), (DL−1×1), with
equal row and column indices of matrices associated to neighboring sites such that the matrix
product can be carried out, with the very first and last dimension 1, to yield a scalar.
A given state |ψ〉 does not have a unique decomposition into matrices Mσi: to see this consider
an arbitrary, but invertible matrix X of dimension (Di × Di). Then the matrix product state
does not change under the insertion of XX−1 = 1 between matrices Mσi and Mσi+1 , which
implies a gauge transformation

Mσi →MσiX Mσi+1 → X−1Mσi+1 . (8)

Later on, we will exploit this gauge degree of freedom to bring MPS into a particularly efficient
form for practical use.
Why is this state class so interesting? There are, in my view, five reasons for this.

1. Any quantum state can be represented as an MPS, although the representation may be
numerically inefficient. Nevertheless, it is therefore a mathematical structure of general
interest.

2. There is a hierarchy of MPS in the sense that states with low entanglement can be repre-
sented more efficiently (using smaller matrices) than highly entangled states. So-called
area laws reveal that these low-entanglement states are particularly important for low-
temperature quantum physics. This makes MPS useful in practice. For the link between
MPS and the entanglement of quantum states, I refer to the lecture of Jens Eisert.

3. They emerge naturally in the context of renormalization group schemes, connecting the
DMRG framework to more conventional RG schemes.

4. They can be manipulated easily and efficiently: this concerns the application of opera-
tors ranging from local creation or annihilation operators through Hamiltonians to time
evolution operators, the evaluation of overlaps and expectation values.

5. They can be searched efficiently: which state, given Ĥ , has the lowest energy among a
given class of MPS? This is the nucleus of a variational method (none other but DMRG).
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To prove the first statement, we need either of two matrix decompositions from linear algebra,
the QR or the singular value decomposition (SVD); for an excellent first introduction into these
techniques of numerical linear algebra, I recommend [22]. In this presentation, I will use the
SVD because it will cover all numerical needs we are going to have; however, in numerical
practice, the QR factorisation is much faster and should be used whenever possible instead of
the SVD (I will indicate these occasions). For an arbitrary (m × n)-matrix A, we have, with
k = min(m,n), the following decomposition

A = USV †, (9)

where the matrices have the following special properties:

• U is (m×k)-dimensional and consists of orthonormal columns, i.e., U †U = I; if m = k,
then UU † = I too, and U is unitary.

• S is (k×k)-dimensional and diagonal. The entries on the diagonal are called the singular
values si and are real and non-negative, si ≥ 0. The number r ≤ k of strictly positive
singular values is equal to the rank of A. All texts and computer codes assume that
singular values are sorted in descending order, s1 ≥ s2 ≥ s2 ≥ . . ..

• V † is (k × n)-dimensional and consists of orthonormal rows, i.e., V †V = I; if k = n,
then V V † = I too, and V is unitary.

“Old-fashioned” DMRG makes heavy use of the eigenvalue decomposition (EVD) AU = UΛ

for quadratic (and hermitean) A, with Λ a diagonal matrix with real (but not necessarily non-
negative) eigenvalues λi on the diagonal and U a unitary matrix whose column vectors |ui〉
can be taken to be an orthonormal basis. Here, incidentally, I have introduced a very useful
notation in linear algebra, namely that matrices are also read as sets of column vectors, U =

[|u1〉|u2〉 . . .], or of row vectors (which is used less frequently). SVD and EVD are however
closely connected: if A = USV †, then

A†A = V SU †USV † = V S2V † ⇒ (A†A)V = V S2 (10)

and similarly
AA† = USV †V SU † = US2U † ⇒ (AA†)U = US2. (11)

Comparing to the EVD, this means that the singular values squared are the eigenvalues of both
A†A and AA†, and the respective eigenvectors are the columns of U and V respectively. This
allows to translate between SVD based procedures in MPS-based algorithms and EVD based
procedures in classic DMRG.
Before concluding this tiny excursion into the truly rich properties of the SVD, let me mention
that it is also behind a very important decomposition of quantum states, the so-called Schmidt
decomposition. Its key importance is that it allows for a direct readout of the entanglement
properties of a state: consider a bipartition of the “universe” AB (in our case: the L sites) into
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1

{|j〉B}{|i〉A}

L!+1!

Fig. 1: Bipartitioning a quantum system in blocks A and B with block-local orthonormal bases.

subsystems A and B (in our case e.g. sites 1 through ` and ` + 1 through L); see Fig. 1. Then
the most general pure quantum state |ψ〉 reads

|ψ〉 =
dimHA∑
i=1

dimHB∑
j=1

ψij |i〉A |j〉B, (12)

where the {|i〉A} and {|j〉B} form orthonormal bases of subsystems A and B respectively; in
practice, these bases will usually be product bases resulting from local orthonormal bases like
{|σ1 . . . σ`〉}. Interpreting the ψij as the entries of a rectangular matrix Ψ , an SVD of Ψ gives
Ψ = USV † and we can rewrite our state in the Schmidt decomposed form

|ψ〉 =
r∑

α=1

sα |α〉A|α〉B (13)

with sα the (rank) r non-vanishing singular values of Ψ and

|α〉A =

dimHA∑
i=1

Uiα |i〉A |α〉B =

dimHB∑
j=1

V ∗jα |j〉B (14)

It is crucial to note that, due to the properties of U and V , the {|α〉A} and {|α〉B} form or-
thonormal sets respectively, because a pitfall of the MPS world is that one encounters state
decompositions that look like Eq. (13), but where orthonormality does not hold; hence they are
not Schmidt decompositions. The physics of the subsystems A and B is encoded by the reduced
density operators

ρ̂A = trB|ψ〉〈ψ| =
r∑

α=1

s2α |α〉A A〈α| ρ̂B = trA|ψ〉〈ψ| =
r∑

α=1

s2α |α〉B B〈α| (15)

which the Schmidt decomposition allows to be read off in eigenrepresentation. This allows
interesting observations like the identity of the non-vanishing eigenvalues of the reduced density
operators on A and B, even if A and B are very different: the difference only shows up in the
eigenvectors. This, by the way, is a neat illustration of the SVD/EVD link.
If we quantify entanglement by the von Neumann entropy of entanglement, then the entangle-
ment between subsystems A and B given a quantum state |ψ〉 is obtained by the (conventional)
von Neumann entropy of either of the subsystems A or B:

SA|B(|ψ〉) = −trAρ̂A ln ρ̂A = −trBρ̂B ln ρ̂B = −
r∑

α=1

s2a ln s
2
a . (16)
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We can use this formula and work out the entanglement of the two states already encountered,
the general product state and the singlet state of two spins.
In the case of the product state, we consider some bipartitioning into sites 1 through ` (subsys-
tem A) and `+ 1 through L (subsystem B). We can then write

|ψ〉 = |α〉A|α〉B with |α〉A,B =
∑
{σA,B}

cσA,B |σA,B〉, (17)

where σA ≡ σ1, . . . , σ` and similarly σB. The state is right away in a Schmidt representation,
and the eigenvalue spectrum of the reduced density operators is (1, 0, 0, . . .); inserting this in
the von Neumann entropy formula and using 0 ln 0 = limε→0+ ε ln ε = 0, we find that this
state is unentangled. As the product state is an MPS with matrix dimensions 1, we can state
that an MPS is unentangled if and only if it can be represented exactly by an MPS with matrix
dimensions 1. (I should add “for a given basis”, because entanglement has the unnerving and
deeply unphysical property that it is not invariant under global basis transformations: for a
simple example, consider the triplet states at Sz = ±1 which are product states, but which can
be rotated by a global basis transformation into the Sz = 0 triplet state which is entangled.) The
take-home message for us is that, as already mentioned, D = 1 MPS are classical (in the sense
of unentangled) states and that life gets quantum mechanical (interesting) only from D = 2

onwards.
In the case of the singlet state, the reduced density operator obtained by a partial trace is already
in diagonal form, ρ̂A = ρ̂B = diag(1

2
, 1
2
). Entanglement then is given by −2 · 1

2
ln 1

2
= ln 2. (In

statistical physics texts the base of the logarithm is e; in quantum information texts the base of
the logarithm is 2 as befits the world of qubits, such that entanglement here would be exactly
1.) The interest of this result is that, using Lagrangian multipliers, one can easily show that this
is the maximum entanglement any two-spin state could have and that it is achieved if and only
if the reduced density operators are maximally mixed, i.e., all eigenvalues are identical. This
makes sense as entanglement is a measure of the amount of non-local information in a quantum
system: a maximally mixed reduced density operator implies that the amount of local informa-
tion is minimal. We can generalize the result to a reduced density operator of dimension D: the
maximally mixed density operator then has eigenvalues D−1, and the maximal entanglement is
given by −D ·D−1 lnD−1 = lnD.
After this lengthy detour, I am now going to demonstrate that every state can in principle be
represented as an MPS. This is done by successively peeling off site after site (say, starting
with 1, but the reverse procedure is also possible). Consider cσ1σ2...σL , the coefficients of the
dL-dimensional state vector and reshape them into a (d × dL−1)-dimensional matrix, which is
then SV decomposed:

cσ1σ2...σL → Ψσ1,σ2...σL =
∑
a1

Uσ1,a1Sa1,a1V
†
a1,σ2...σL

. (18)

The matrix U is now sliced into d row vectors Aσ1 , which we interpret as (1 × d) matrices (d
being the maximum rank possible):

Uσ1,a1 → {Aσ1} with Aσ11,a1 = Uσ1,a1 . (19)
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a1

σ1

aL-1

σL

aℓ-1 aℓ

σℓ

σℓ

aℓ-1 aℓ

Fig. 2: Building blocks of an MPS: matrices for first and last sites, as well as bulk sites. Physical
indices point vertically, matrix indices horizontally. Complex-conjugation mirrors matrices
along the horizontal axis.

σ1 σL

Fig. 3: Graphical representation of an MPS: all connected lines between building blocks are
contracted over.

If we lump together ca1σ2σ3...σL = Sa1,a1V
†
a1,σ2...σL

, we have as a first step

cσ1σ2...σL =
∑
a1

Aσ11,a1c
a1σ2σ3...σL . (20)

In a second step (and all others will be the same), we will again use a sequence of reshaping
and a SVD,

ca1σ2σ3...σL → Ψa1σ2,σ3...σL =
∑
a2

Ua1σ2,a2Sa2,a2V
†
a2,σ3...σL

. (21)

U is now sliced “horizontally” into d matrices Aσ2 of dimension (d× d2), where

Aσ2a1,a2 = Ua1σ2,a2 , (22)

and if S and V are again lumped together to form a new ca2σ3σ4...σL , the state coefficients read
after the second step

cσ1σ2...σL =
∑
a1,a2

Aσ11,a1A
σ2
a1,a2

ca2σ3σ3...σL . (23)

It is easy to see that upon continuation the coefficients can be represented as a product of matri-
ces as in the definition of an MPS. After half the chain, matrix dimensions which first grow as
(1 × d), (d × d2), and so on, will shrink again because in SVD min(m,n) sets the dimension.
The largest matrix dimension is dL/2 (L assumed even), hence again exponential in L and it
seems nothing has been gained: we still need to approximate, i.e. replace matrices by smaller
ones (say, of some maximum dimension D ∼ 1000) while minimizing the loss of accuracy.
As should be obvious by now, the manipulation of MPS is extremely index-heavy. Fortunately,
there is by now a generally accepted graphical representation of MPS (Fig. 2) and their build-
ing blocks (up to one degree of freedom, which is nothing compared to the confusing notational
wealth surrounding Green’s functions or the sign conventions in general relativity). Each matrix
is drawn as a dot with two horizontal and one vertical line sticking out; the two horizontal lines
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1 !-1 ! 1 !

|a!-1〉A |a!〉A|σ!〉

Fig. 4: Block growth of classic DMRG.

σ1

a!-1

σ1

a!

σ!

Fig. 5: Block growth of classic DMRG represented in the MPS framework.

correspond to the row and column indices and the vertical line to the physical index labeling the
matrix. The degree of freedom is whether the vertical line points up or down. I let it point up.
If the index only takes the value 1, hence is a dummy index, the corresponding line is dropped
(this concerns first and last sites). If one wants to represent the complex-conjugated (not ad-
joint!) matrix Mσ∗, an object we will need for the bra 〈ψ|, the direction of the vertical line
is inverted, pointing down in my convention. For building an entire state or other more com-
plicated structures, there is a single rule: all connected lines are contracted, i.e., the connected
objects are multiplied and the joint index is summed over; for two matrices this is obviously a
matrix multiplication. A generic MPS as in Eq. (7) would then look like a comb (Fig. 3).
Some readers of these notes may be familiar with DMRG in the original notation of White, using
blocks (of sites) and sites. Let me put this notation into a more general context, that of a generic
1D renormalization scheme: consider a semi-infinite lattice of sites with d local degrees of
freedom. If we group the first ` sites into a block, a state on the block has d` coefficients, which
is exponentially large. If we decide that we build such blocks iteratively, starting from a “block”
containing just one site and adding site after site (Fig. 4), then we have to devise a decimation
scheme of discarding basis states to avoid the exponential growth d → d2 → d3 → . . . and to
keep the number of states manageable. If we decide to keepD states for a block description and
assume that we have a basis {|a`−1〉} for the block of length ` − 1 and add site ` (local states
{|σ`〉}), then the D states building the (incomplete!) basis of the block of length ` will read

|a`〉 =
∑
a`−1,σ`

〈a`−1, σ`|a`〉|a`−1〉|σ`〉 ≡
∑
a`−1,σ`

Mσ`
a`−1,a`

|a`−1〉|σ`〉, (24)

where we have reorganized the expansion coefficients into d matrices M labelled by the local
state; the entries are given by Mσ`

a`−1,a`
= 〈a`−1, σ`|a`〉 and connect states on the smaller block

and the larger block. The matrix entries therefore encode the decimation scheme, which can
now be represented as in Fig. 5. The reorganization of the coefficients is of interest because we
can iterate the scheme such that

|a`〉 =
∑

σ1,...,σ`

(Mσ1Mσ2 . . .Mσ`)1,a`|σ1σ2 . . . σ`〉. (25)
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aℓ

a´ℓ

=

aℓ

a´ℓ

=

Fig. 6: Graphical representation of left and right normalization conditions (left and right part
of the figure). The single lines represent identities.

The sums over the matrix row and column indices was simply absorbed into a compact matrix
multiplication notation, and structurally the basis states look like MPS. As we have specified
no decimation procedure, we can draw several conclusions: (i) DMRG is a method that grows
blocks using decimation yields states in the MPS format (with subtle modifications that can
be ignored here); (ii) any RG scheme in 1D that can be characterized by an iterative growth
and decimation scheme yields states in the MPS format; this holds in particular for Wilson’s
Numerical Renormalization Group (NRG) [23,24] which is the method of choice for the famous
Kondo problem. In fact, as a historical remark, the failure of Wilson’s NRG for general strongly
correlated problems in 1D was what motivated White’s work in 1992; the underlying MPS
structure finally allowed to understand the connection between NRG and DMRG [25].
I already mentioned in the beginning that there is a gauge degree of freedom in MPS. Both in
the general decomposition and in the block growth procedure we have unwittingly chosen a
gauge which will turn out to be extremely useful in practice. In the block growth procedure
both {|a`−1〉} and {|a`〉} form orthonormal sets, respectively. Therefore

δa′`,a` = 〈a′`|a`〉 =
∑

a′`−1σ
′
`a`−1σ`

M
σ′`∗
a′`−1,a

′
`
Mσ`

a`−1,a
′
`
〈a′`−1σ′`|a`−1σ`〉

=
∑
a`−1σ`

Mσ`∗
a`−1,a

′
`
Mσ`

a`−1,a
′
`
=
∑
σ`

(Mσ`†Mσ`)a′`,a`

or
I =

∑
σ`

Mσ`†Mσ` ≡
∑
σ`

Aσ`†Aσ` . (26)

Matrices that obey this relationship are called left-normalized and will be denominated by A;
exactly the same property follows from the general state decomposition from the column or-
thonormality U †U = I . If one builds blocks from the right, adding sites at the left end, or if one
carries out an SVD on a general state starting from the right, i.e. at site L, one obtains similarly
right-normalized matrices B with

I =
∑
σ`

Bσ`Bσ`†. (27)

I will refer to MPS that consist entirely of A-matrices as left-canonical, MPS that consist en-
tirely ofB-matrices I will call right-canonical. A third class, which is the most important one in
numerical practice, is called mixed-canonical and has structure AAAAAMBBBBBBBBB,
with one matrix without special normalization property sandwiched in between. We will discuss
further below how to convert between all three representations. Graphically, the normalization
conditions are represented as in Fig. 6.
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3 Matrix product operators

Given that quantum mechanics works by applying operators (unitary operators for time evolu-
tion, projection operators in measurements, ...) to states, it is quite surprising that the systematic
representation of operators in a generalization of the MPS scheme did not really start until quite
recently (see e.g. [26]). The most general operator on our L sites reads

Ô =
∑
{σ}

∑
{σ′}

cσ1...σL,σ
′
1...σ

′
L|σ1 . . . σL〉〈σ′1 . . . σ′L|, (28)

where the primed variables label the ingoing state the operator acts on and the unprimed vari-
ables the outgoing state. If we reshuffle the indices to group states on the same site, we have

cσ1...σL,σ
′
1...σ

′
L → cσ1σ

′
1σ2σ

′
2...σLσ

′
L (29)

and a “mean-field approximation” to the operator would read

cσ1σ
′
1σ2σ

′
2...σLσ

′
L → cσ1σ

′
1 · cσ2σ′2 · . . . · cσLσ′L . (30)

While there is no physical reason why this should be in any ways a good approximation, in fact
this is an exact representation of many operators: consider the operator Ŝzi acting on a spin on
site i. As this operator is in fact defined only onHi, a pedantic notation would be

Ŝzi → Î1 ⊗ Î2 ⊗ . . .⊗ Ŝzi ⊗ . . .⊗ ÎL (31)

and the coefficients would read

cσ1σ
′
1σ2σ

′
2...σLσ

′
L = δσ1,σ′1 · δσ2,σ′2 · . . . · (Ŝ

z)σi,σ′i · . . . · δσL,σ′L . (32)

So, if we introduce matrix product operators (MPO) as a straightforward generalization of the
MPS notation as

Ô =
∑
{σ}

∑
{σ′}

Mσ1σ′1Mσ2σ′2 . . .MσLσ
′
L|σ1 . . . σL〉〈σ′1 . . . σ′L| (33)

with the usual rules for the matrix dimensions, the above operator would be encoded simply
by scalar (i.e., D = 1) matrices, and this would also hold for operators as used for n-point
correlators such as Ŝ+

i Ŝ
−
j . Any more complicated operator can also be turned into an MPO:

reconsider the construction of an MPS for an arbitrary state, and group indices (σ1σ′1)(σ2σ
′
2) . . ..

Of course, the question arises whether this neat result will generalize in the sense that more
complicated operators like a Hamiltonian Ĥ still find an exact representation with small D. As
opposed to MPS of interest which will usually involve an approximation, we will find this to be
true for many Hamiltonians of interest.
What happens if we apply an MPO Ô to an MPS |ψ〉? Assuming that the MPS is formed by
matrices Mσi and the MPO by matrices Nσiσ

′
i it is a simple calculation to show that the new

state Ô|ψ〉 is again an MPS, with matrices M̃σi that have entries

M̃σi
(ab),(a′b′) =

∑
σ′i

N
σiσ
′
i

aa′ M
σ′i
bb′ . (34)
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σℓ

σ´ℓ

σ1 σL

σ´1 σ´L

Fig. 7: Graphical representation of an MPO: the vertical lines sticking out to the bottom repre-
sent ingoing physical states, the lines sticking out to the top outgoing physical states.

σ1 σL

σ1 σL

Fig. 8: Graphical representation of the application of an MPO to an MPS: all connected lines
between building blocks are contracted over. A new MPS results, with matrix dimensions being
the product of the original matrix dimensions.

Numerically, this operation can be implemented very efficiently; the important observation is
that the dimensions of the new matrices are given by the product of the old matrix dimensions.
This is potentially disastrous, as at least MPS dimensions can become very large for some
desired quality of approximation. But as most Hamiltonians in MPO form have dimensions less
than 10, the new MPS may still be barely manageable; nevertheless this observation indicates
that we need a compression procedure such that an MPS with undesirably large (unmanageable)
matrix dimensions can be approximated optimally by an MPS with smaller matrix dimensions
at some loss of accuracy.

Graphically, an MPO (Fig. 7) is represented in analogy to an MPS, with two vertical legs stick-
ing out, corresponding to the “ingoing” (line pointing down) and “outgoing” state (line pointing
up). The MPO times MPS gives MPS rule finds a simple graphical representation as in Fig. 8.
Lines sticking out in the same direction can be unified into a single one, with the rule that the
dimension of the unified line is the product of the original dimensions.
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4 Normalization and compression

As we have seen, the dimensions of MPS will usually grow as we proceed with calculations,
making them potentially useless if we do not counter this growth. How can we compress an
MPS with minimal loss of information? Let us assume (don’t worry that the assumption looks
a bit artificial) that we have a quantum state in the following MPS representation,

|ψ〉 =
∑
{σ}

Aσ1Aσ2 . . . Aσ`Mσ`+1Bσ`+2 . . . BσL|σ1 . . . σL〉 (35)

and the row and column dimensions of Mσ`+1 (and the adjacent column dimension of Aσ` and
row dimension of Bσ`+2) are too big and we want to reduce them with minimum of loss of
accuracy in the state description. To achieve this, we stack the d matrices Mσ`+1 columnwise
into a single matrix, i.e.

Ma`,σ`+1a`+1
=Mσ`+1

a`,a`+1
(36)

and carry out an SVD on the new matrix as M = USV †. If we absorb U it into Aσ` ← Aσ`U ,
this retains the left-normalization due to U †U = I and corresponds to a basis transformation of
the (reduced) orthonormal block basis for block A formed from sites 1 through `,

|a`〉A :=
∑

σ1,...,σ`

(Aσ1 . . . Aσ`)1,a`|σ1 . . . σ`〉. (37)

Similarly, we have a new orthonormal block basis on the block formed by sites `+1 through L
by slicing as

Bσ`+1
a`,a`+1

= V †a`,σ`+1a`+1
, (38)

where Bσ`+1 are right-normalized and

|a`〉B :=
∑

σ`+1,...,σL

(Bσ`+1 . . . BσL)a`,1|σ`+1 . . . σL〉 (39)

form an orthonormal set. Identifying sa` = Sa`,a` , we therefore have a Schmidt decomposition
of |ψ〉 as

|ψ〉 =
∑
a`

sa` |a`〉A|a`〉B. (40)

Hence (and this is why the mixed-canonical representation is so important, ensuring orthonor-
mal bases on A and B) a mixed-state representation can be turned into a Schmidt decomposition
and vice versa. The Schmidt decomposition, on the other hand, allows to read off the correct
compression strategy: the s2a corresponding to the statistical weights in the reduced density op-
erators, the optimal truncation is given by retaining those pairs of Schmidt states that have the
maximum Schmidt coefficients. If we can afford matrix dimensions D, and assume ordering
by descending singular values, we simply cut down the column dimension of Aσ` to D and
similarly the row dimension of Bσ`+1 , and both dimensions of S.
The problem with this procedure is that it only works at the seam between the left-normalized
and right-normalized parts of the state, but in general we have to truncate everywhere. Our
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prodecure immediately indicates how to remedy this: if (after truncation) we multiply S to the
left, Mσ` ← Aσ`S, the matrices on site ` will lose their normalization property and the state
will have the form

|ψ〉 =
∑
{σ}

Aσ1Aσ2 . . . Aσ`−1Mσ`Bσ`+1 . . . BσL|σ1 . . . σL〉. (41)

Compared to our initial state, the seam between left- and right-normalized states has shifted by
one to the left, and we can continue our truncation procedure now one site to the left. This, of
course, would also have been the case if we had not truncated at all.

This allows us to define two strategies: in order to bring any MPS into form AAAA . . . or
BBBB . . ., we start either from site 1 (for A) or site L (for B) and work our way through the
chain by a sequence of SVDs without truncations (in such a case, faster QR decompositions do
as well). In the previous paragraphs, we have just seen how a step to the left generates a B.
The fact that we had A-matrices to the left there only mattered for the truncation. Bringing any
MPS into left-canonical or right-canonical form I refer to as normalization (indeed, as one can
see easily, in the very last step of the procedure, a scalar survives, which is nothing but the norm
of the state, so one can use it as a “conventional” normalization procedure 〈ψ|ψ〉 !

= 1 as well).
Partially right-normalizing a left-normalized MPS generates a mixed-normalized MPS.

As a second strategy for compressing an MPS to some acceptable matrix dimension, we take
a state that is e.g. in form AAAAA . . . (which can be achieved by the first strategy) and move
through all mixed-canonical representations from the right, truncating along the way. Here, the
QR factorization, which does not give access to the singular values, is not useful.

At this point it is now easy to see for which types of states MPS can yield good approximations:
the quality of truncations depends on how quickly the singular values sa of the Schmidt de-
compositions (or the statistical weights of the reduced density operators) decay with a: if they
decay rapidly, the truncated statistical weight is negligible, and in practice truncated weigths for
ground states are often of the order 10−10 or even less if we keep matrix dimensions D ∼ 1000.
Usually, we do not know the spectrum of the reduced density operators; as entanglement is de-
rived from this spectrum, it contains similar (but much less) information: a state with a rapidly
decaying spectrum has lower entanglement than a state with slowly decaying spectrum. Hence,
the feasability of the representation of a state by an MPS rests on its entanglement properties,
MPS being a low-entanglement representation. For more details I refer to Jens Eisert’s lecture
in this volume.

Looking more closely, one realizes that this compression scheme cannot be absolutely optimal:
while it is optimal at each step, the compression at some site depends on the outcome of earlier
compressions on other sites, but not on the compression that will happen later. Hence there is
an informational asymmetry, which usually is not so important because the amount of compres-
sion at each site is small, as just mentioned. In cases where this is a problem, there exists an
alternative variational technique which is strictly optimal, see [12].
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5 Time-evolution: tDMRG, TEBD, tMPS

Traditionally, the exposition of DMRG starts with explaining the ground state algorithm, DMRG
proper, which for a given Hamiltonian Ĥ looks for its ground state within, as it turns out, the
space of MPS. This reflects the historical course of events: time-dependent DMRG [4–6, 8]
(with the variants of TEBD and tMPS, but this is all very much the same) was invented 12 years
after ground state DMRG. We will reverse this sequence, as time-dependent DMRG is much
easier to explain and also implement and can be used, albeit in a quite inefficient way, to find
the ground state of a given Hamiltonian.

We restrict our attention to time-independent Hamiltonians Ĥ; this captures a large number of
the problems encountered in practice. As all more important time-evolution schemes currently
in use consider small (“infinitesimal”) time steps, time-dependent Hamiltonians can be modeled
by a sequence of Hamiltonians that change after each small time step.

Assume we have an initial state |ψ(0)〉 in MPS form; such a state can be constructed by hand
(in simple cases like a Néel state, which is just a D = 1 MPS) or is obtained by some other
MPS calculation, e.g. as the ground state of some (other) Hamiltonian (otherwise there would
be no non-trivial dynamics) – this is the typical setup in ultra cold atom experiments where non-
equilibrium dynamics is generated by Hamiltonian quenches, i.e. abrupt changes in Hamiltonian
parameters. In the case of coherent evolution, the state at time t is given by

|ψ(t)〉 = e−iĤt|ψ(0)〉. (42)

If we manage to give e−iĤt an MPO representation, the problem would be solved within the
MPS framework, as applying an MPO to an MPS yields a new MPS. There are several issues
with this idea: (i) no one knows how to do this exactly in an efficient form on a classical
computer, let alone a piece of paper; (ii) usually we are interested in the entire evolution, i.e. the
state for an entire sequence of times; (iii) if the dimension of the resulting MPO is too large, the
resulting MPS will not be numerically manageable. While problems (i) and (ii) can be resolved
at some cost in accuracy, we will see (iii) to be a fundamental issue.

One approach, that is also historically the first, is to Trotterize time evolution. This is a well-
known analytical scheme first used in quantum field theory, and then first applied in numerical
physics by Suzuki [27] to quantum Monte Carlo schemes. Assume we want to calculate |ψ(t)〉
for times in [0, T ]. We split interval length T into N →∞ time steps τ → 0 with Nτ = T . In
numerical practice, τ will of course be solidly finite, e.g. τ = 0.01 when a typical time scale
of the problem is 1. Let us also assume that our Hamiltonian consists only of at most nearest-
neighbor terms, like Si ·Si+1 in the Heisenberg model or the hopping term

∑
σ(ĉ
†
iσ ĉi+1σ +h.c.)

in the Hubbard model. Then we can split the Hamiltonian in nearest-neighbour terms, Ĥ =∑L−1
i=1 ĥi, where in the case of the Heisenberg model ĥi = Si · Si+1. On-site terms like the

Hubbard interaction are “distributed” across the two ĥ that share a site and counted only half,
e.g. Un̂i↑n̂i↓ enters as (U/2)n̂i↑n̂i↓ in both ĥi−1 and ĥi. Watch out for first and last sites!
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Then we can rewrite the evolution operator as

e−iĤT =
N∏
i=1

e−iĤτ =
N∏
k=1

e−i
∑L−1

i=1 ĥiτ !
=

N∏
k=1

L−1∏
i=1

e−iĥiτ . (43)

Not only do we now have access to all times τ, 2τ, . . ., we now also only have to calculate
the (infinitesimal) time-evolution on two sites, e−iĥiτ . This is a (d2 × d2) matrix obtained by
diagonalizing the (d2 × d2) matrix representation Hi of ĥi and exponentiating it,

HiU = UΛ ⇒ Hi = UΛU † ⇒ e−iHiτ = Ue−iΛτU † = U ·diag(e−iλ1τ , e−iλ2τ , . . .)·U †, (44)

which is easily implemented using standard diagonalization and matrix multiplication routines.
So the fundamental building block can be calculated, but there is a catch, indicated by the
exclamation mark on the last identity in (43). This factorization does not work, due to Glauber’s
formula,

eÂ+B̂ = eÂeB̂e
1
2
[Â,B̂], (45)

which only holds under some restrictions on Â and B̂ (there may be further terms), but the
decisive point is that if two operators do not commute, the exponential of their sum will not
factorize in general. As our operators Â and B̂ scale as τ , however, in our case the commutator
will scale with τ 2. Hence, in the limit τ → 0, factorization becomes exact; for finite τ , the
error will scale as τ 2 and can therefore be excellently extrapolated to the exact τ → 0 limit.
This decomposition of the evolution operator is called the first-order Trotter decomposition,
because after N = T/τ time steps, the accumulated error will be of order τ . Higher-order
decompositions are available (fourth-order decompositions being the most popular, with an
error of order τ 4; for details, I refer to the literature), but for our purpose of explaining the
method first-order serves perfectly well.
As bond evolution operators commute if they do not share a site, it is customary to split the
Hamiltonians into odd and even bonds as

Ĥ = Ĥodd + Ĥeven; Ĥodd =
∑
i

ĥ2i−1, Ĥeven =
∑
i

ĥ2i (46)

and arrange time evolution as

e−iĤT = e−iĤevenτe−iĤoddτ ; e−iĤevenτ =
∏
i

e−iĥ2iτ , e−iĤoddτ =
∏
i

e−iĥ2i−1τ . (47)

Assuming we know the two-site time-evolution MPOs, we can represent the Trotter-decomposed
MPO for the global time evolution as in Fig. 9.
The two-site time-evolution MPO can easily be derived by our SVD decomposition procedure
developed for MPS. It is easy to calculate Uσ1σ2,σ′1σ

′
2 = 〈σ1σ2|e−iĥ1τ |σ′1σ′2〉. Then we proceed

by reshuffling of indices and SVD as

Uσ1σ2,σ′1σ
′
2 = Uσ1σ′1,σ2σ

′
2

SV D
=
∑
b

Wσ1σ′1,b
Sb,bWb,σ2σ′2

=
∑
b

M
σ1σ′1
1,b M

σ2σ′2
b,1
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Fig. 9: MPO representation of the Trotterized time-evolution operator e−iĤT ; every second line
corresponds to an odd-bond or even-bond infinitesimal time-evolution; at the bottom, there is
the state that is evolved in time contracted into the MPO.

which is just an MPO where I have absorbed two factors of
√
Sb,b into the left and right matrices.

As the original matrix is of dimension (d2 × d2), the MPO dimension is DW = d2; more
precisely, the matrices for odd bond evolutions have dimensions (1× d2), (d2× 1), (1× d2), . . .
and vice versa for even bonds. After one Trotter step, MPS matrix dimensions will therefore
have grown everywhere by a factor d2. This means that after each time step, we will have to
compress the MPS, and the time evolution algorithm takes a very simple form:

1. Apply infinitesimal Trotter time step in MPO form to MPS to obtain |ψ(t)〉 → |ψ(t+ τ)〉

2. Compress |ψ(t+ τ)〉

3. Continue with the next time step

In principle, it looks as if this procedure could be continued forever. The Trotter decomposition
error, which is O(τ 2) per time step will accumulate as t/τO(τ 2), hence grow linearly in time. It
can be made arbitrarily small by sending τ →∞ or, more efficiently, using higher-order Trotter
decompositions where the error will scale as O(τ 3) or even O(τ 5) in the most frequently used
approaches. The problem rests in the compression; compression as such is not a problem if we
can describe the state |ψ(t+τ)〉with the same accuracy as |ψ(t)〉 by an MPS of given dimension
D. This is however not the case: building on the Lieb-Robinson theorem [28], it has been
observed that entanglement in a time-evolving quantum state will grow up to linearly in time,
S(t) ≤ S(0) + νt, with some constant ν, and that this linear bound is met in “global quenches”
where the non-equilibrium is generated by a sudden change of the Hamiltonian operator. As
we have seen, a reduced density operator of dimension D (hence an MPS of dimension D) can
encode at most entanglement S = lnD; hence we have to increase matrix sizes in the MPS at
worst exponentially as time evolves to maintain the same accuracy. Time-dependent simulations
therefore hit an exponential wall after some time. No one has found a solution for that problem
yet. While observing thermalization is therefore excluded, in many situations of interest, ν
is small enough that we can see the physics of interest; as a few examples, consider spin-
charge separation [29], the propagation of bosonic correlations in ultracold atom gases [30], the
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relaxation of a density wave in strongly interacting ultracold atoms [31,32], but there are many
more.
Let me conclude this section by briefly discussing the calculation of ground states using imag-
inary time evolution. Quite generally, starting from a random state |ψ〉 =

∑
n cn|n〉, with

eigenstates Ĥ|n〉 = En|n〉, E0 ≤ E1 ≤ E2 ≤ . . .,

lim
β→∞

e−βĤ |ψ〉 = lim
β→∞

∑
n

e−βEncn|n〉 = lim
β→∞

e−βE0(c0|0〉+
∑
n>0

e−β(En−E0)cn|n〉

= lim
β→∞

e−βE0c0|0〉,

where for simplicity I have also assumed that the ground state is non-degenerate. We see that if
the random starting state has some overlap with the ground state, this contribution will survive
longest in the β →∞ limit. Of course, except for the unlikely case that E0 = 0, this surviving
contribution will either diverge or decay exponentially. But as we have to truncate after each
infinitesimal (imaginary) time step anyways, we can use this occasion to normalize the state at
every step, yielding the ground state |0〉 in the large-β limit.
Numerically, imaginary time evolution is more benign than real time evolution, as any errors
made numerically are exponentially suppressed by further applications of e−τĤ , whereas it is a
hallmark of a unitary (real time) evolution that errors are with us to stay and will only be com-
pounded with further errors. However, the procedure is slow compared to a direct variational
ground state search in MPS space, which is classic DMRG, and will be discussed below.

6 Overlaps and expectation values

Calculating time-evolving states as such is of course of little interest; in the end, we want to
calculate how much a state is changing from the original state (i.e. the overlap 〈ψ(t)|ψ(0)〉) or,
even more frequently, how some observable evolves in time, e.g. 〈Szi (t)〉 = 〈ψ(t)|Ŝzi |ψ(t)〉.
Let us first focus on the overlap, because the latter calculation will be a simple generalization.
Mathematically, representing |ψ〉 by matrices M and |φ〉 by matrices M̃ , we have

〈φ|ψ〉 =
∑
{σ}

∑
{σ′}

〈{σ′}|M̃σ′1∗ . . . M̃σ′L∗Mσ1 . . .MσL|{σ}〉 =
∑
{σ}

M̃σ1∗ . . . M̃σL∗Mσ1 . . .MσL .

(48)
Graphically, this can be represented as in Fig. 10. In which order are we to carry out the contrac-
tions? At first sight, this may seem a detail, but it is not: imagine we contract all the horizontal
lines first. Each contraction is a matrix-matrix multiplication that costs O(D3) assuming matrix
sizeD. Hence there areO(2LD3) operations ( we ignore edge effects and other details) for each
of the dL product basis configurations, and the overall operation count is O(2LD3dL) which is
exponentially large in system size even if we truncate MPS matrices. This would conclude the
story, but there is an exponential speedup: contractions are carried out moving through the net-
work from the left to the right, adding one matrix after another into the contracted part. The
operational count is now O((2L− 1)D3d), which is linear in L and only weakly polynomial in
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|ψ〉

〈φ|

Fig. 10: Contraction scheme for the overlap of two MPS. All arrows point to contraction points.

OO

|ψ〉

〈ψ|

E

Fig. 11: Contraction scheme for a two-point correlator, indicating the transfer operator E.

D. This can best be seen by rearranging the overlap equation as

〈φ|ψ〉 =
∑
{σ}

M̃σ1∗ . . . M̃σL∗Mσ1 . . .MσL

=
∑
{σ}

M̃σL† . . . M̃σ1†Mσ1 . . .MσL

=
∑
σL

M̃σL†

(
. . .

(∑
σ2

M̃σ2†

(∑
σ1

M̃σ1†Mσ1

)
Mσ2

)
. . .

)
MσL .

If one works out the contractions from inside out, the first bracket costs O(dD3), ignoring that
the first and last matrices are in reality vectors. The result is again a matrix, so the next bracket
is essentially a product of three matrices (carried out as two matrix-matrix multiplications) and
the cost is O(2dD3). Overall, we obtain the contraction count announced. This is the optimal
scheme, and the contraction is exact; I am mentioning this because in the higher-dimensional
generalizations of MPS contractions are not exact unless exponential complexity is accepted
(which is of course impossible) and finding the optimal contraction scheme is NP hard (i.e.
impossible to determine in practice).
Evaluating expectation values of operators is now very easy: assume we want to evaluate the
expectation value of Ô acting on site i, we just have to replace

∑
σi

by
∑

σi,σ′i
Oσi,σ′i

, a double

sum over the matrix elements of Ô in the local basis, information which is trivially available. So
the computational cost is hardly growing at all, and graphically, one would replace the vertical
line at site i by the operator. If we consider the object

E(a`−1a
′
`−1),(a`,a

′
`) :=

∑
σ`

Aσ`∗a`−1,a`
Aσ`a′`−1,a

′
`
, (49)

which is shown in Fig. 11, one can work out analytically or see graphically that it acts as a
transfer matrix in the calculation of correlators, determining the decay of correlators by its
eigenvalues. As is typical for transfer matrix calculations, all correlators are either long-ranged
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Fig. 12: Comparison between tDMRG simulations (lines) and experiment (points). In both
cases, the starting wave function is a density wave in an optical lattice with one boson on
even and no bosons on odd sites, that evolves according to a Bose-Hubbard-Hamiltonian with
hopping amplitude J and on-site repulsion U . The upper panel shows how the density relaxes
from 0 to 0.5 for various interaction strengths. For U/J = 9.9 one-dimensionality is partially
lost, leading to disagreement. The lower panel shows 4Re〈b†ibi+1〉 as a function of time: nearest-
neighbour quantum correlations are built up over time by the relaxation of the density wave.
Taken from [32].

or decay as a superposition of exponentials. Critical power-law decays are not possible for
MPS. Therefore, for a quantum state that has critical correlations, the MPS will approximate
the power law decay by a superposition of exponentials, but eventually switch to an exponential
decay on very long length scales, when only the slowest exponential decay in the superposition
survives. Increasing D, the MPS will model the critical decay on increasing length scales.

As an example of the accuracy achieved nowadays both by experiment and theory for non-trivial
strongly interacting systems, using time-dependent DMRG, consider the comparisons shown in
Fig. 12 between tDMRG and a state-of-the-art quantum simulator using ultracold atoms in an
optical lattice [32].
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7 Finite-temperature simulations

So far, we have been considering pure-state calculations only; quantum mechanics generally
deals with mixed states that are represented by (reduced) density operators ρ̂, which are Her-
mitean, non-negative, and normalized (trace 1). In the early days of MPS-formulations of
DMRG, it seemed advantageous to find a MPS-type state representation of ρ̂ in order to “re-
cycle” existing methods. This is indeed possible, using the concept of purification, first used
in this context by [8], which is the Schmidt decomposition read backwards: given a density
operator living on physical space P expressed in eigen-representation

ρ̂P =
∑
n

ρn|n〉P P 〈n|, (50)

we can interpret it as the reduced density operator on P for a state |ψ〉PQ living on a larger space
PQ, where Q must be at least as large as P (in practice, simply a copy of P : instead of a spin
chain, we simulate a spin ladder, etc.), and where the Schmidt decomposed form of |ψ〉PQ is

|ψ〉PQ =
∑
n

√
ρn|n〉P |n〉Q . (51)

The choice of the |n〉Q living on the auxiliary space Q is free as long as they form an orthonor-
mal set; this gives a gauge degree of freedom to |ψ〉PQ, the purification of ρ̂P

ρ̂P = trQ|ψ〉PQ PQ〈ψ| . (52)

Provided we know the purification, all further calculations can be done in a pure state framework
on PQ. Expectation values are (normalization of ρ̂ and |ψ〉 imply each other)

〈ÔP 〉ρ̂P = trP ÔP ρ̂P = trP ÔP trQ|ψ〉PQPQ〈ψ| = trPQÔP |ψ〉PQPQ〈ψ| = PQ〈ψ|ÔP |ψ〉PQ,
(53)

where we have used the cyclicity of the trace. Time evolution becomes

ρ̂P (t) = e−iĤt ρ̂P e+iĤt = e−iĤt trQ|ψ〉PQPQ〈ψ|e+iĤt = trQ|ψ(t)〉PQPQ〈ψ(t)| (54)

with |ψ(t)〉PQ = e−iĤt|ψ〉PQ. Hence we simply have to carry out a standard time-evolution of
a pure state. The problem is, of course, that usually we do not know the eigenrepresentation
of ρ̂P . But for the most important application, the thermal state e−βĤ , it can be calculated
easily: e−βĤ = e−βĤ/2 · ÎP · e−βĤ/2 = trQe

−βĤ/2|ρ0〉PQPQ〈ρ0|e−βĤ/2, where |ρ0〉PQ is the
purification of ρ̂P (β = 0) = ÎP (up to an irrelevant normalization). The infinite temperature
(β = 0) reduced density operator factorizes between individual sites, and so does the purified
state between pairs of sites in P and Q associated with each other. But the purification of the
totally mixed state ρ̂P (β = 0) on a site is nothing but a maximally entangled state between a site
in P and the corresponding site in Q, for example the singlet state if the physical site contains
a spin-1

2
. Now this state can be encoded easily as an MPS on one pair of sites, and as the MPS

factorizes between pairs of sites, the matrices have dimension 1 and can be written down by
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Fig. 13: Reachable times for the isotropic Heisenberg model with B̂† = Â = Ŝ± at the chain
center: Schemes A, B are the conventional scheme [8] and the improved scheme [34] compared
to the new scheme of [36]. The left panels show computational cost (proportional to the sum
of the third power of the matrix dimensions), the right panels the maximal matrix dimension.
Similar greyscales correspond to similar usage of resources. Adapted from [36].

hand. |ρβ〉PQ, a purification of ρ̂P (β), is then obtained by an imaginary time evolution up to
β/2. For time-dependent results obtained in this way and enhanced by a prediction technique,
consider [33]. However, it was observed that times reached are relatively short.
Let us consider this in more detail. If we subject a thermal state to a real-time evolution using
the same Hamiltonian, it remains unchanged as [ρ̂P (β), Ĥ] = 0. In the purification approach,
however, resource usage grows, because we are time-evolving the purified state which is not an
eigenstate of Ĥ , and the above reasoning for entanglement growth applies. We are therefore
moving through increasing costly purifications of the same density operator. As there is a
gauge freedom in the auxiliary state space, it might be possible to counteract this resource
growth by a suitable transformation of auxiliary states. Indeed, it was found that evolving the
auxiliary system backward in time, using e+iĤt, resources will not grow [34], and this increase
in efficiency also pays off for time-evolutions once a local operator has been applied. Substantial
further improvement [35, 36] (and a better understanding of the procedure of [34]) is possible
by exploiting the isomorphism between local bounded operators B̂ : H 7→ H and states |ψ〉 on
H⊗H. Our purified (MPS) state therefore has an (MPO) operator interpretation onH, and we
can discard the notion of purification entirely. In fact, in my view, this is the formulation to use
in the future, the old purification approach having its usefulness because it allows recycling of
tDMRG, whereas in the new approach, MPO manipulation routines are needed. The currently
best approach found there is given as

〈B̂(2t)Â〉β = Z(β)−1tr
(
[eiĤte−βĤ/2B̂e−iĤt][e−iĤtÂe−βĤ/2eiĤt]

)
, (55)

where the objects in [, ] are treated as MPOs that are constructed by Trotterization and compres-
sion just as in normal time-evolution. An auxiliary space Q is not needed at all.
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8 Ground states with MPS: DMRG

We have already seen that an imaginary time evolution is capable of yielding a ground state.
The classic technique, which is more efficient, is by a variational minimisation within MPS
space, and is what is traditionally referred to as DMRG, which is a variational minimisation
technique in MPS space and hence sometimes, but rarely, also referred to as VMPS. For a given
allowed maximum MPS matrix dimension D, the best MPS approximation to the ground state
energy (and the ground state) is given by

min
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

⇔ min
(
〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉

)
, (56)

where we have introduced a Lagrangian multiplier λ to enforce normalization 〈ψ|ψ〉 = 1 that
will give the variational approximation to the ground state energy E0 from above (because we
are in a restricted search space). If we increase D, search space is enlarged (as it contains all
MPS of smaller dimension), and the approximate energy will decrease monotonically, allowing
for an extrapolation in D →∞, which is the exact limit.
Assuming we know the MPO representation of Ĥ , which I postpone for a moment, we have to
minimise the network represented in Fig. 14. This is a multilinear problem, as states |ψ〉 are
products of the unknown Mσ, for which no immediately efficient strategy is known. A time-
proven approach to the problem is the alternating least square (ALS) method, which runs as
follows:

1. Start with a guess for the MPS extremizing energy, {Mσi}.

2. Pick a site i, 1 ≤ i ≤ L, and consider all matrices Mσj , j 6= i, fixed and retain only
Mσi as variables. Eq. (56) is then quadratic in Mσi , and minimization becomes a linear
problem, leading to new Mσi minimizing energy within the “framework” provided by the
other matrices.

3. Now pick another site as i, repeating step 2, until all sites have been visited often enough
that λ does not decrease anymore. The resulting MPS is the variationally best approxi-
mation to the ground state, as is λ to the ground state energy.

Let us elaborate on these steps, because an efficient implementation strongly rests on details
here. The starting guess can be random or be constructed by an iterative growth of a chain
of length 2 → 4 → . . . → L, where at each step the chain is grown by inserting 2 sites at

- λ ×

Fig. 14: Network to be contracted to extremize 〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉.
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= 0- λ ×

Fig. 15: Network to be contracted to extremize 〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉. The unknown (variable)
matrix Mσi is shown in black.

- λ = 0

Fig. 16: Eigenvalue problem to be solved for extremizing 〈ψ|Ĥ|ψ〉− λ〈ψ|ψ〉 provided the state
|ψ〉 is in adequate mixed canonical form. Again, the unknown (variable) matrix Mσi is shown
in black.

the center, and determining the two sets of Mσ for these 2 sites such that energy is minimized
while keeping all previously found matrices fixed. This relates to the block plus site growth
strategy exposed earlier, and is what traditionally is referred to as “infinite system DMRG”.
Historically, this was even considered the core of the method, whereas it is rather the warm-up
to the “real” algorithm! This statement has to be qualified to the extent that for translationally
invariant systems the “warm-up” can be turned into a ground state search algorithm in its own
right under the name of iDMRG [12, 37].
For carrying out the minimization step, we take the derivative

∂

∂Mσi∗

(
〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉

)
!
= 0. (57)

Graphically, this corresponds to Fig. 15, where the matrix with respect to which we take the
derivative is simply removed, because it contributed linearly to the original network. If we now
contract the two remaining networks, we have three free legs each and three legs connecting to
the unknown Mσi . We can rewrite this as∑

σ′ia
′
i−1a

′
i

Hσiai−1ai,σ′ia
′
i−1a

′
i
Mσ′ia

′
i−1a

′
i

=
∑

σ′ia
′
i−1a

′
i

Nai−1ai,a′i−1a
′
i
δσi,σ′iMσ′ia

′
i−1a

′
i

(58)

≡
∑

σ′ia
′
i−1a

′
i

Nσiai−1ai,σ′ia
′
i−1a

′
i
Mσ′ia

′
i−1a

′
i
, (59)

where the primed variables run over the legs connecting to Mσi and the unprimed variables run
over the free legs. H and N are the contracted networks, and for convenience I have brought all
indices down. The resulting equation has the form of a generalized eigenvalue problem,

Hm = λNm, (60)
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where the matrices are (dD2×dD2) dimensional and the vector m (from the reshaped matrices
Mσi) is dD2-dimensional. As we are looking for the ground state, we have to find the lowest
eigenvalue λ. With D ∼ 1000 in practice, this cannot be found by full diagonalization tech-
niques, but we can use large sparse eigensolvers such as provided by the Lanczos method (for
a first introduction, see [22]).

Generalized eigenvalue problems can be potentially dangerous, if the condition number of ma-
trix N becomes large. But if we assume that all matrices in |ψ〉 to the left of Mσi are left-
normalized, AAAA . . ., and all matrices to the right of it are right-normalized, . . . BBBB, the
normalization conditions imply that the entire network on the right collapses and only Mσi re-
mains. Then N = I , and a simple eigenvalue problem Hm = λm remains. In order to achieve
this convenient situation, we simply take our starting state, bring it by (partial) normalization
into form AAAAAAMBBBBB (wherever we want to start) and replace random choices of
locations i by systematic “sweeping” through the chain from right to left to right to left and so
on (or inversely), carrying out one suitable normalization step at each iteration moving left or
right to keep the seam between the left- and right-normalized matrices moving along with i.
This sweeping procedure is exactly the finite-system DMRG invented by White in 1992 and the
concurrent normalization procedure is nothing but White’s prediction algorithm [38].

A few more remarks are in order (for details, see [12]): contracting the left network (building
H) might in principle be very costly, but in practice one keeps three separate parts, namely
the part of H to the left of Mσi , the one on top (the part of the MPO), and the part of H to
the right of Mσi . If we sweep left and right, these parts can be recycled or updated iteratively
from previous steps, drastically reducing the numerical cost. At the same time, original DMRG
considered two sites for optimization at once, i.e. pairs MσiMσi+1 . Looking more closely at
how this is done, one realizes that this slightly breaks the variational nature of the method and
is a bit more costly numerically (by a factor of d); on the other hand, it is less plagued by the
problem of our “single-site” method that it may sometimes get stuck in a non-global minimum
(being non-variational can take you out of such dead ends). But this issue can be resolved
elegantly by adding suitable “noise” to the procedure [12, 39].

How can we control accuracy? Extrapolating in D →∞ is fine in principle (energies go down
monotonically, due to the variational nature of the procedure, other operators also converge
monotonically as a rule of thumb), but if MPS make sense it is because the Schmidt coefficients
decay rapidly, usually exponentially fast. But then we expect some kind of exponential con-
vergence in D which however is not so clean as to allow an easy extrapolation. It is easier to
monitor, as a function of D, the variation of the energy,

〈ψ|Ĥ2|ψ〉 − (〈ψ|Ĥ|ψ〉)2, (61)

which can be evaluated without further approximation as the Hamiltonian MPO is exact, and to
extrapolate quantities in the variation, which is 0 for D →∞ (|ψ〉 will be an exact eigenstate).
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9 Constructing the MPO representation of a Hamiltonian

So far we have dodged the issue of constructing the MPO corresponding to a Hamiltonian. In
fact, for short-ranged Hamiltonians this is quite easy, and as the construction is best understood
by looking at an example, I will consider the Heisenberg model

Ĥ = J

L−1∑
i=1

(
1

2
(Ŝ+

i Ŝ
−
i+1 + Ŝ−i Ŝ

+
i+1) + Ŝzi Ŝ

z
i+1

)
+ h

L∑
i=1

Ŝzi . (62)

This consists of operator strings of the type Î ⊗ Î ⊗ Ŝ+ ⊗ Ŝ− ⊗ Î ⊗ Î . . .. To simplify the
notation, I will introduce operator valued matrices in MPOs, namely

M̂ [i] =
∑
σi,σ′i

Mσi,σ
′
i|σi〉〈σ′i|. (63)

Then the Hamiltonian will take the form Ĥ = M̂ [1]M̂ [2] . . . M̂ [L]. Let us imagine the con-
struction of the Hamiltonian as the action of an automaton which has internal states (not to be
confused with quantum states of our system). It starts from the right end of the chain in some
internal state and moves through it to the left end. The action of the automaton is shown in
Fig. 17. The automaton starts in internal state 1, acts, and once it has passed site 1, it should be
in some final internal state and have produced exactly all terms that contribute to the Hamilto-
nian. This can be achieved as follows: we associate internal state 1 with “no non-trivial operator
to the right”. Being in state 1, the automaton has five options at a site: adding another Î to the
operator string (staying in 1), adding a Ŝ+ term (moving to state 2), a Ŝz term (moving to state
3), or a Ŝ− term (moving to state 4). In any of those cases, the automaton now must add the
term that completes the interaction at the next site, this is a (J/2)Ŝ− term, a JŜz term, or a
(J/2)Ŝ+ term. In any case, it moves into state 5, which corresponds to “completed interaction
to the right”. At the same time, it can also move directly from state 1 to 5 by introducing a hŜz

field term.

The action of the automaton can now be represented in matrix form where the row and column
indices correspond to the outgoing and ingoing internal state of the automaton at each step.
Taking into account that at site 1 the automaton must end in state 5 and that at site L it must
start in state 1, the matrices read

M̂ [i] =


Î 0 0 0 0

Ŝ+ 0 0 0 0

Ŝz 0 0 0 0

Ŝ− 0 0 0 0

hŜz (J/2)Ŝ− JzŜz (J/2)Ŝ+ Î

 (64)
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start
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hSz

Fig. 17: States of the automaton constructing the Hamiltonian MPO for the Heisenberg model.

and on the first and last sites

M̂ [1] =
[
hŜz (J/2)Ŝ− JzŜz (J/2)Ŝ+ Î

]
M̂ [L] =


Î

Ŝ+

Ŝz

Ŝ−

hŜz

 . (65)

We can identify D̃ = 5 as the dimension of the Hamilton MPO which is given by the above
matrices. Similarly, other Hamiltonians can be constructed; for longer-ranged interactions, we
have to introduce further internal states such that the automaton can keep track of when to
complete an interaction. For a more elaborate discussion, see [12] and references therein.

10 Dynamical DMRG

Dynamical DMRG is the denomination for methods for the calculation of frequency-dependent
Green’s functions and spectral functions, hence the name which is not to be confused with
time-dependent DMRG for the calculation of out-of-equilibrium dynamics.
The fundamental object under study are objects such as

Sη(ω) :=

〈
0

∣∣∣∣Ô† 1

E0 + ω + iη − Ĥ
Ô

∣∣∣∣ 0〉 , (66)

where η = 0+ (numerically, it will be a small, but finite positive number) and |0〉 is the ground
state of Ĥ . This is nothing but the Fourier transform (with a numerical convergence factor e−ηt)
of the T = 0 Green’s function

GO(t) = 〈0|Ô†(t)Ô(0)|0〉 (t > 0) (67)
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but the Chebyshev results are obtained orders of magnitude faster. From [45].

where the Heisenberg picture is assumed. For available |0〉, various techniques have been pro-
posed which are not restricted to MPS, but can be efficiently implemented there.
The fastest (but often least precise) technique is the continuous fraction or Lanczos approach.
This approach was pioneered in [40], first used in the classic DMRG context by [41], but
can be made much more precise if expressed in MPS language [42]. Starting from |q1〉 =

Ô|0〉/‖Ô|0〉‖, it generates a sequence of orthonormal Krylov vectors (also known as Lanczos
vectors) |qm〉 as

βm|qm+1〉 = Ĥ|qm〉 − αm|qm〉 − βm−1|qm−1〉 , (68)

where the αm and βm (calculated by normalizing |qm+1〉) are the diagonal and off-diagonal el-
ements of a tridiagonal matrix representation of Ĥ: αm = 〈qm|Ĥ|qm〉 and βm = 〈qm+1|Ĥ|qm〉.
Then it can be shown by matrix inversion that

Sη(ω) =
〈0|Ô†Ô|0〉

E + iη − α1 −
β2
1

E + iη − α2 −
β2
2

E + iη − α3 − . . .

. (69)

The attractive feature of this procedure is that the generation of Krylov vectors is usually avail-
able for free as the necessary algorithm already is part of the Lanczos large sparse matrix diag-
onalization routine needed in the ground state search.
The current gold standard, but also slowest, approach is the correction vector approach [43,44].
One introduces the so-called correction vector

|c〉 = 1

E0 + ω + iη − Ĥ
Ô |0〉, (70)
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such that the Green’s function reads Gη(ω) = 〈0|Ô†|c〉. |c〉 is determined by solving the large
sparse equation system

(E0 + ω + iη − Ĥ)|c〉 = Ô|0〉, (71)

for which reliable, but quite costly techniques such as GMRES are available [22]. Note that it
is not a good idea to “square” the system as originally proposed in order to make it hermitian,
because the new condition number is now the square of the old one, drastically slowing down
convergence. Taking the limit η → 0 also implies strongly increasingD of the correction vector
MPS to maintain the desired accuracy, for reasons not fully understood at the moment.
More recently, a new technique was proposed which expands the Green’s function in terms
of Chebyshev polynomials [45]; I refer to the literature as it is not yet a widely used standard
method; but from Fig. 18 it should be clear that it is a serious contender for the correction vector
method, because it achieves similar accuracy orders of magnitude faster. – It remains, however,
to be seen whether this advantageous scenario continues to hold for more complex systems.
Concluding this section, let me mention that both at T = 0 and T > 0 (where the techniques just
discussed do not apply) frequency-dependent can be successfully obtained by a combination
of time-dependent DMRG for the calculation of two-time correlators and subsequent Fourier
transformation (for T = 0, see [6], for T > 0 see [33]). Frequency resolution is limited by the
finite range in time of tDMRG which necessitates some exponential damping of the real-time
data.

11 Outlook: DMRG in two dimensions

MPS and DMRG are obviously best suited to the study of one-dimensional quantum sys-
tems. However, there has been enormous interest in the notoriously elusive physics of two-
dimensional quantum systems for decades, ranging from frustrated magnets to high-Tc super-
conductors, with a recent surge of interest in the physics of topological quantum spin liquids.
Therefore it is not surprising that there have been numerous attempts to apply DMRG (MPS) to

Fig. 19: Two-dimensional DMRG setup: The 2D lattice is explored by a one-dimensional snake,
for which one formulates an MPS. Horizontal interactions become long-ranged, but the real
problem is that encoding the entanglement of vertically separated bipartitions of the system
becomes exponentially expensive.
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Fig. 20: The kagome lattice, whose name derives from the structure of Japanese bamboo bas-
kets, but can be found in natural magnetic substances.

two-dimensional quantum systems, seriously starting with [38] and mainly focusing on Heisen-
berg and t-J-models in two dimensions.
The fundamental idea is to map (see Fig. 19) the two-dimensional lattice to a one-dimensional
snake winding through the system, for which an MPS can be formulated. Technically, the price
to pay is that short-ranged interactions perpendicular to the snake direction can become long-
ranged (consider horizontal interactions in Fig. 19). In the beginning, this was considered to be
the main reason for the comparatively disappointing results obtained (the reasoning need not
concern us here). But in reality, the reason is given by the fact that entanglement for ground
states of short-ranged Hamiltonians scales linearly with system size (area law [46]), i.e. S ∝ L.
As we have seen, a reduced density operator of dimension D can at most encode entanglement
S = lnD. Now the reduced density operators generated by an MPS of dimension D have at
most dimension D themselves; hence we need MPS of (at least, because the distribution of
the weights enters also) dimension 2D to encode entanglement S. If we consider the vertical
cut through the system, it is crossed by the snake only once, and the matrices therefore have
to be exponentially large in the vertical size of the lattice, which strongly limits achievable
system sizes. On the upside, horizontal cuts are crossed by the snake L times, and we have
DL coefficients if we think about the bottom and top parts of the system being represented by
single matrices, and we can encode entanglement S = L lnD, matching the area law. The size
restriction therefore only applies in one spatial direction, such that simulations have focused on
long stripe systems Lx � Ly.
As tensorial generalizations of MPS such as PEPS [9], MERA [47] or iPEPS [48] do not suffer
from exponential growth of resources in two dimensions, they were at first considered vastly
superior to the essentially unsuitable DMRG approach in two dimensions. However, it was
realized that they suffer not only from scaling polynomially much worse in tensor dimension (up
toD16 as opposed toD3 for MPS operations), which would always be preferrable to exponential
growth in resources for sufficiently large system sizes, but also from quite severe issues with
normalizability and the conditioning of the arising linear algebra problems as well as further
approximations involved in the contractions. Therefore, progress in that direction has not been
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quite as spectacular as originally hoped for, which has left at least for now quite a bit of space
for brute-force, but numerically well controlled DMRG applications, which have progressed
both due to more powerful computers and progress in highly efficient implementations of the
algorithm.
To illustrate the state of the art, let me mention the recent large-scale numerical studies of the
isotropic Heisenberg antiferromagnet on the kagome lattice illustrated in Fig. 20, which have
stirred up a lot of interest [49, 50]. The nature of the ground state has been discussed since the
late eighties, without any conclusive answer, but numerous competing proposals so far. The
most likely candidate for the ground state (in the view of many, the definite solution) could
be identified recently as a quantum spin liquid by [49], more precisely, using D ∼ 17000 and
exploiting non-Abelian symmetries of the Hamiltonian in the largest DMRG study done so far,
as a Z2 topological quantum spin liquid [50]; lattices studied were on cylinders of a width of
up to 18 lattice spacings and a length of up to 70 lattice spacings. For an example, consider
Fig. 21, where the first reliable extrapolation of the (triplet) gap of the model is shown.
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J. Stat. Mech.: Theor. Exp. P04005 (2004)

[6] S.R. White and A.E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004)

[7] F. Verstraete, D. Porras and J.I. Cirac, Phys. Rev. Lett. 93, 227205 (2004)

[8] F. Verstraete, J.J. Garcia-Ripoll and J.I. Cirac, Phys. Rev. Lett. 93, 207204 (2004)

[9] F. Verstraete and J.I. Cirac, cond-mat/0407066 (2004)

[10] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205 (2004)
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Phys. Rev. B 83, 195115 (2011)



16.34 Ulrich Schollwöck
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1 Correlations and entanglement in
quantum many-body systems

1.1 Quantum many-body systems

In this chapter we will consider quantum lattice systems as they are ubiquitous in the condensed
matter context or in situations that mimic condensed matter systems, as provided, say, by sys-
tems of cold atoms in optical lattices. What we mean by a quantum lattice system is that we
think that we have an underlying lattice structure given: some lattice that can be captured by
a graph. The vertices of this graph are associated with a quantum degree of freedom each, re-
ferred to as constituents, while edges correspond to neighbourhood relations. Interactions in the
physical system are usually local, which means that all constituents only directly interact with
finitely many neighbours on the lattice. Particularly important is the situation when all interac-
tions except from direct nearest neighbour interactions can be safely neglected. Quantum lattice
models of this type capture strongly correlated materials often exhibiting interesting electronic
and magnetic properties. They serve as theoretical laboratories allowing to study features of
topological order and non-conventional phase transitions. Quantum systems well modelled by
lattice models in this sense also show a wealth of phenomenology in out-of-equilibrium situa-
tions, to mention only a few reasons why this kind of physical system is interesting.

In this chapter, we will provide a brief introduction into tensor network approaches to the study
of quantum lattice models. The position taken may be slightly unusual in the sense that a
rather strong emphasis is put onto methods and ideas of description, and not so much on the
phenomenology itself (which can then be derived from such a description, needless to say).
Given that it is the very development of the toolbox of tensor network methods itself that is being
reviewed here, one that has led to many recent new insights, this seems a healthy standpoint.

But there is yet another shift of emphasis that may be somewhat unexpected: namely that rather
quantum states and not so much Hamiltonians are in the focus of attention. Here it is mostly the
very nature of ground and thermal states themselves that is being considered and studied, while
Hamiltonians primarily reenter via the concept of a parent Hamiltonian. The main message of
this book chapter can be summarised in a single paragraph:
Many natural quantum lattice models have ground states that are little, in fact very little, entan-
gled in a precise sense. This shows that ‘nature is lurking in some some small corner of Hilbert
space’, one that can be essentially efficiently parametrized. This basic yet fundamental insight
allows for a plethora of new methods for the numerical simulation of quantum lattice models
using tensor network states, as well as a novel toolbox to analytically study such systems.1

1In this book chapter, we will discuss the elements of this framework, while at the same time we cannot provide
a comprehensive review. This chapter will still contain slightly more material than what is covered in the course.
For recent reviews covering related topics, see Refs. [1–5].
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1.1.1 Quantum lattice models

We start by discussing the concept of a quantum lattice model. The underlying graph G =

(V,E) capturing the lattice may, in principle, be any graph, where V is the vertex and E the
edge set. dist(., .) is then the graph-theoretical distance, so the minimum number of steps one
has to walk on the graph in order to get from one vertex to another. Particularly important
are, however, regular graphs, and even more so particularly common regular graphs. In fact,
most of the time we will be concerned with simple cubic lattices V = LD in dimension D, and
specifically one-dimensional lines for which D = 1. But also other lattices such as triangular
lattices or Kagome lattices often emerge naturally. n = |V | is referred to as the system size.
The quantum degree of freedom at each vertex can be a spin system of dimension d – which
will be the situation in the focus of attention in this chapter – or a bosonic or a fermionic
degree of freedom (which we touch upon). The entire Hilbert space of the system is hence
given by H = (Cd)⊗n in case of spin models. For bosons and fermions we consider the Fock
space. Say, if K is the Hilbert space associated with a single fermion, then we make use of
the Fock space F = ∧∗(K). Clearly, the dimension of the Hilbert space grows exponentially
with the system size, specifically dim(H) = Ω(dn) for a spin model, which means that a
numerical exact diagonalisation of the underlying Hamiltonian is doomed to failure for already
moderately large system sizes n. In fact, a naive diagonalisation of the Hamiltonian without
exploiting any additional structure would require O(d3n) operations, clearly infeasible for large
quantum systems.

1.1.2 Local Hamiltonians

All Hamiltonians considered here will feature finite-ranged interactions, which means that they
can be written in the form

H =
∑
j∈V

hj, (1)

where each hj is non-trivially supported only on finitely many sites in V (but not necessarily
on site j only). It is called k-local if each hj is supported on at most k sites, and geometrically
k-local if each hj is supported on a Vj with maxa,b∈Vj dist(a, b) = k − 1. This is a most
natural situation: Each constituent interacts then merely with its immediate neighbours in the
lattice. We will restrict attention to such geometrically k-local Hamiltonians, in fact with few
exceptions to nearest-neighbour models. One also often writes 〈j, k〉 for neighbours, so for sites
j, k ∈ V such that dist(j, k) = 1. Similarly, one also calls any observable that is non-trivially
supported only on neighbouring sites a local observable.
There are a number of famous examples of such local Hamiltonians. A Hamiltonian that has
specifically been studied countlessly many times – for good reasons – is the XY-model Hamil-
tonian on a one-dimensional line with n sites [6], where V = {1, . . . , n} andH = (C2)⊗n,

H = −1

2

∑
〈j,k〉

(
1 + γ

4
X(j)X(k) +

1− γ
4

Y (j)Y (k)

)
− λ

2

∑
j∈V

Z(j), (2)



17.4 Jens Eisert

where γ ∈ R is called the anisotropy parameter and λ ∈ R is the magnetic field. The matrices

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
(3)

are the familiar Pauli matrices, the index referring to the site they are supported on. It should
be clear that this Hamiltonian is a local Hamiltonian of the above form. Simple as this model
is, it can be easily analytically solved by considering it as a problem of free fermions. It already
features notions of criticality, and is indeed often studied as a paradigmatic lattice model –
not the least because everything imaginable can be said about it. The situation of γ = 0 is
particularly important; then the model is also called isotropic XY model or XX model.

1.1.3 Boundary conditions

Depending on whether one identifies for the one-dimensional line V = {1, . . . , n} the site n+1

with the site 1 or not, one says that says that one has open or periodic boundary conditions.
We will also consider open and periodic boundary conditions for other cubic lattices, where
V ∈ LD. For periodic boundary conditions, one encounters then the topology of a torus in D
dimensions.

1.1.4 Ground states, thermal states, and spectral gaps

The lowest energy eigenvectors of the Hamiltonian, so the normalized state vectors that min-
imise 〈ψ|H|ψ〉, form a Hilbert space G, the ground space; one also often refers to the ground
state manifold. If the ground space is one-dimensional, the ground state is unique, otherwise it
is called degenerate. Ground states often capture the low temperature physics and their study
is ubiquitous in theoretical physics. The energy associated with the ground space is the ground
state energy, usually denoted as E0. Ground state expectation values will be denoted as 〈O〉,
O ∈ B(H) being some observable. Particularly important are local observables OA which are
supported on finitely many sites A ⊂ V only (actually most prominently on just a single site).
The Hamiltonian gap is the energy gap from the ground space to the first excited state, so

∆E = inf
|ψ〉∈H\G

〈ψ|H|ψ〉 − E0. (4)

If ∆E = 0 for a family of Hamiltonians in the thermodynamic limit of n → ∞, then one
says that the system is gapless or critical. Such critical models can be beautifully captured in
the framework of conformal field theory which is outside the scope of this book chapter. If a
positive gap exists in the thermodynamic limit, it is gapped.

1.2 Clustering of correlations

Since direct interactions are local and constituents directly see their immediate neighbours only,
one should expect that correlation functions between different constituents somehow decay with
the distance in the lattice. The correlation functions hence should be expected to inherit the
locality of interactions. It turns out that this is indeed the case.
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1.2.1 Clustering of correlations in gapped models and correlation length

Specifically, for gapped models, correlation functions always decay exponentially with the dis-
tance. This effect is also called clustering of correlations. Nearby lattice sites will still be
correlated to some extent, but these correlations become negligible for large distances. So if for
a family of models ∆E > 0 (and under very mild conditions on the lattice G which are always
satisfied for natural finite-dimensional lattices), then [8]

|〈OAOB〉 − 〈OA〉〈OB〉| ≤ Ce−dist(A,B)∆E/(2v)‖OA‖ ‖OB‖, (5)

for some suitable constant C > 0. The length scale

ξ :=
2v

∆E
> 0 (6)

emerging here is the correlation length: it is the characteristic length scale on which correlations
disappear. The feature of clustering of correlations has long been suspected to be generically
valid in gapped models and has been ‘known’ for a long time. A rigorous proof of this can
be obtained in a quite beautiful way using Lieb-Robinson bounds [7], which are bounds to the
speed of information propagation in time in quantum lattice models with local Hamiltonians,
in terms of the Lieb-Robinson velocity v > 0. By using a clever representation in the complex
plane, one can relate this statement – which as such relates to dynamical features – to ground
state properties [8]. ‖.‖ in the above expression is the operator norm, so the largest singular
value: It grasps the ‘strength’ of the observable. Again, if A and B are far away in gapped
models, in that dist(A,B) are much larger than the correlation length, then the correlation
function will essentially disappear.

1.2.2 Algebraic decay in gapless models

For gapless models the above is no longer true. Generically, correlation functions of gapless
models decay algebraically with the distance in the lattice. Then there is no longer a length
scale associated with the decay of correlation functions. Conformal field theory provides a
framework of systems exhibiting a conformal symmetry, which can be applied to the study of
critical quantum lattice systems.

1.3 Entanglement in ground states and area laws

Yet, there is a stronger form of locality inherited by the locality of interactions than merely
the decay of two-point correlation functions between any two sites. These stronger forms of
locality are captured using concepts of entanglement in quantum many-body systems. Indeed,
the insight that concepts and methods of entanglement theory – as they originally emerged in
quantum information theory – can be applied to the study of quantum many-body systems trig-
gered an explosion of interest in the community. The significance of this for grasping quantum
many-body systems in condensed-matter physics with tensor networks will become clear in a
minute.
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1.3.1 Entanglement entropies

Let us imagine we have a gapped lattice model prepared in the ground state, based on some
lattice G = (V,E). We now single out a certain subset A ⊂ V of sites, some region, and
consider its complement B := V \A. This subset will be associated with a reduced state ρA =

trB(ρ). The reduced state alone will allow to compute every expectation value of observables
supported on A; it is obtained by fixing an orthonormal basis in B and taking the partial trace.
Now, what will the von-Neumann entropy

S(ρA) = −tr(ρA log2 ρA) (7)

of the state ρA be? Of course, the entropy of the entire ground state ρ will vanish, so S(ρ) = 0,
it being a pure state, but this is not true for the entropy of reduced states. If the ground state is
unique, so if it is a pure state, which we are assuming here, this entropy reflects the degree of
entanglement [9] of the system A with respect to its complement. If A and B are in a product
state and no entanglement is present, then S(ρA) = 0. Otherwise, the entropy will be larger
the more entangled the sub-systems are, being bounded from above by the maximum value
S(ρA) ≤ |A| log2(d).
Quantum correlations make the entropy of reduced states become non-vanishing. In fact, ac-
cording to a meaningful axiomatic quantification of asymptotic entanglement manipulation, the
von-Neumann entropy uniquely quantifies the entanglement content [10] in a sense. This entan-
glement measure is called entropy of entanglement or entanglement entropy. Note that this is
only a meaningful measure of entanglement, an entanglement monotone, as one says, for pure
states; so in our context, if the ground state is non-degenerate. For mixed states, one can still
compute the entropy of the reduced state, but this would no longer amount to an entanglement
monotone (and this quantity then no longer captures the entanglement in the ground state, but
has to be replaced by other measures that we will discuss below).

1.3.2 Area laws for the entanglement entropy

So how does S(ρA) scale with the size of the |A| of the region A? Detailed knowledge about
the entropy will here be less important than the general scaling behavior in the asymptotic limit
of large regions. Questions of a similar type have a long tradition and were first asked in the
context of the scaling of black hole entropies [11]. Naively, but at the same time naturally,
one might expect this quantity to scale extensively with the size |A|: This would mean that
S(ρA) = O(|A|). After all, entropies of Gibbs states in statistical mechanics are known to
scale extensively, so one might think that the same intuition may be applied here. And indeed,
for ‘generic states’, so for random states, this is true with overwhelming probability. One can
rigorously define random states using the Haar measure of the unitaries acting on H, and finds
that the expected entanglement entropy indeed takes the maximum value |A| log2(d), up to a
correction that is exponentially small in the size of B.
This intuition, however, is not correct. Instead, one finds that the entropy scales as the boundary
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area of A, so

S(ρA) = O(|∂A|). (8)

One then also says that the entanglement entropy satisfies an area law for the entanglement
entropy. This boundary ∂A of the region A is defined as

∂A := {j ∈ A : ∃k ∈ B with dist(j, k) = 1} , (9)

For a one-dimensional system, this boundary consists of two sites only, in a cubic lattice of
dimension D > 1 it contains O(LD−1) many sites. That is, ground states of gapped models are
less entangled than they actually cood be, in fact much less entangled. This will be key to the
understanding for what follows. For a comprehensive review on area laws, see Ref. [2].

1.3.3 Proven instances of area laws

Such an area law has been proven to be valid for a number of cases:

• For any gapped one-dimensional system with a unique ground state [12]. The proof
again relies on Lieb-Robinson bounds mentioned before, albeit used in a much more
sophisticated way than in order to show the clustering of correlations. This proof has in
the meantime been significantly tightened using ideas of the detectability lemma [13].

• For gapped free bosonic and fermionic models, so for models where the Hamiltonian can
be written as a quadratic polynomial of bosonic or fermionic annihilation and creation
operators, the area law is known in fact for arbitrary lattices in any dimension [14, 15].

• For free bosonic models, the area law is even known to hold for critical, gapless models
for cubic lattices of dimension D > 1 [16].

• For some classes of states such as instances of so-called graph states [17] the area law
holds by construction.

• Most importantly for the purposes of these lecture notes, matrix product states in one-
dimensional systems and projected entangled pair states for higher-dimensional systems
also satisfy an area law [18]. As we will see in a minute, this insight is not a detail at all:
It is at the very heart of the insight why gapped quantum many-body systems can actually
be numerically simulated using tensor network states.
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• Once one has identified a system that satisfies an area law in higher-dimensions, one still
obtains an area law for local Hamiltonians that are in the same quantum phase. This has
been shown by making use of ideas of quasi-adiabatic evolution, Lieb-Robinson bounds
and bounds to the generation of entanglement via local dynamics [19, 20].

Having said that, it should be clear that these findings can be seen as a large body of evidence
that gapped many-body systems generically have the property that the ground state satisfies an
area law.

1.3.4 Violation of area laws

For critical (gapless) one-dimensional models, the situation is quite distinctly different: The
correlations decay too slowly in order to arrive at such a scaling of the entanglement entropy
and the area law is violated. Still, the corrections to an area law are small. Conformal field
theory suggests that [21, 22] S(ρA) = (c/3) log(l/a) + C where c is the conformal charge, a
the lattice spacing, and C > 0 a non-universal constant, so in fact

S(ρA) = O(log(|A|)). (10)

(again in Landau’s asymptotic notation): It is logarithmically divergent in the size of the subsys-
tem. For free fermionic models in 1D, and also for the XX model [23,24] and the non-isotropic
instance, the XY model [25], the precise scaling of the entanglement entropy has been rig-
orously proven using the Fisher-Hartwig machinery to compute Toeplitz determinants, again
finding a logarithmic divergence, confirming a scaling that has been numerically determined
in Ref. [26]. For a review, again see Ref. [14]; for an excellent non-technical introduction
specifically in entanglement entropies in quantum field theories, see Ref. [27].
How do entanglement area laws in higher-dimensional critical models scale? This question is
still largely open. It is known that critical free-fermionic systems violate an area law: For a
cubic lattice in D dimensions, one has

S(ρA) = O(LD−1 logL), (11)

which is (slightly) more than an area law would suggest [16,28,29]. Critical bosons, in contrast,
can well satisfy an area law, even if critical [16].

1.3.5 Other concepts quantifying entanglement and correlations

The entanglement entropy is a unique measure of entanglement for pure states according to
some axiomatic characterisation, but this does not mean that there are not a number of other
qualifiers that meaningfully capture the entanglement content. Importantly in the context dis-
cussed here, one may replace the von Neumann entropy S(ρA) by other Renyi-entropies

Sα(ρA) =
1

1− α
log2(tr(ρ

α
A)), (12)
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for α ≥ 0. For α ↘ 1, this quantity reduces to the von-Neumann entropy of ρA. One also has
S∞(ρA) = − log2 ‖ρA‖, where ‖ρA‖ is the operator norm of ρA and S0(ρA) = log2 rank(ρA).
These slightly more general entanglement entropies will become important for our understand-
ing of grasping ground states of one-dimensional models in terms of entanglement entropies.
Again, for any of the above proven instances, it is also true that a more general Renyi-entropic
area laws holds true as well.

For mixed states, such as for degenerate ground states or thermal states, the entropy of en-
tanglement is no longer physically meaningful to quantify the degree of entanglement. There
are essentially two strategies one can still pursue: On the one hand, one can look at measures
capturing all correlations, not only quantum correlations or entanglement. The most accepted
measure quantifying correlations is the quantum mutual information, defined as

I(A,B) := S(ρA) + S(ρB)− S(ρ). (13)

For every Gibbs state e−βH/tr(e−βH) of a local Hamiltonian for some inverse temperature β >
0 of a local HamiltonianH , this quantity is known to again satisfy an area law [30], albeit with a
prefactor that grows linearly in the inverse temperature. These bounds can also be exponentially
tightened for specific models such as the XX model [31]. On the other hand, mixed state
entanglement measures can be employed that still capture genuinely quantum correlations even
in mixed-state situations when quantum and classical correlations are intertwined. One of the
most prominent such entanglement measure is the so-called negativity [32–34], defined as

E(ρ) = ‖ρTA‖1 − 1, (14)

where ‖.‖1 is the trace norm (‖O‖1 = tr(|O|) for an operatorO) and ρTA is the partial transpose
of ρ, so the operator that is obtained by taking a partial transpose with respect to the tensor factor
belonging to subsystem A. Entanglement negativities have been studied in several contexts
[35–37]. Since the logarithmic version, called logarithmic negativity log2 ‖ρTA‖1 is an upper
bound to the entanglement entropy, such quantities have also extensively been used in the past
to derive area laws for entanglement entropies, even for non-degenerate ground states.

1.3.6 Entanglement spectra

The entropy of entanglement is just a single number, but it should be rather obvious that more
detailed information is revealed when the entire spectrum of ρA is considered. In fact, the
collection of all Renyi entropies of ρA gives precisely the same information as the spectrum of
ρA itself. Given a state ρA, it is meaningful to consider the entanglement Hamiltonian HA for
which ρA = e−HA . In fact, the full entanglement spectrum (so the spectrum of ρA) reveals a lot
of important information about the quantum many-body system and is receiving a significant
attention in the context of topological systems and boundary theories [38–41].
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1.4 The notion of the ‘physical corner of Hilbert space’

1.4.1 The exponentially large Hilbert space

We have seen that ground states of gapped quantum many-body models exhibit little entangle-
ment, in fact much less than they could feature. Interactions are short ranged, which not only
means that correlations decay strongly, but also that there is very little entanglement present in
the above sense. This is a basic, but at the same time very important, observation: It appears
in this light that natural ground states (and Gibbs states) seem to explore only a very tiny frac-
tion of Hilbert respectively state space that would in principle be available. Let us not forget
that Hilbert space is exceedingly big: For a spin system of size n and local dimension d, the
dimension scales as

dim(H) = O(dn). (15)

It should be clear that already for moderately sized systems, state vectors can no longer be
stored on a computer in order to numerically solve the system in exact diagonalisations (naively
requiringO(d3n) operations). Surely, one can and must heavily exploit symmetries and sparsity
patterns in the Hamiltonian to reduce the effective subspace that has to be considered, and then
for moderately sized systems, exact diagonalisations can provide impressive results [42]. In any
case, needless to say, one will encounter a scaling of the dimension of the relevant subspace that
is exponential in the system size.

1.4.2 Small subset occupied by natural states of quantum many-body models

The key insight here is that that the pure state exhibiting low entanglement in the sense of
satisfying an area law constitute a very small subset of all pure states. What is more, this subset
can be well approximated by tensor network states. In the end, the reason for tensor network
methods to provide such powerful tools is rooted in the fact that natural ground states satisfy area
laws (or show small violations thereof). In this sense, one might well say that the exponentially
large Hilbert space ‘is a fiction’, and the ‘natural corner of Hilbert space’ constitutes only an
exceedingly small fraction thereof. This somewhat wordy notion will be made more precise in
a minute. One should not forget, after all, that not only ground states occupy a tiny fraction of
Hilbert space, but the same holds true for all efficiently preparable quantum states: Not even a
quantum computer could efficiently prepare all states [43], in fact a far cry from that:
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2 Matrix product states

We now turn to exploiting this insight when grasping quantum many-body states in terms of
tensor network states. We start by introducing a commonly used and quite illustrative graphical
notation. We will then discuss in great detail the concept of a matrix product state which features
in the highly successful density-matrix renormalisation group (DMRG) algorithm [1,44–47]. It
is worth noting that the history of this concept is actually quite remarkable. It did appear several
times independently in the literature: Finitely correlated states as formulated in an algebraic
picture in the language of mathematical physics [48] can be viewed as translationally invariant
infinite matrix product states. In the same year as finitely correlated states were proposed, they
independently emerged implicitly in the seminal work on DMRG by Steve White [44] in the
context of condensed-matter physics – even if it took until much later until the close connection
was spotted [46, 49]. In the meantime, the DMRG method is routinely explained in terms of
matrix product states [1], a mindset that we will also follow. Yet independently, the concept of a
tensor train decomposition [50] emerged in the mathematics literature, which was again found
to be essentially equivalent to the concept of a matrix product state.

2.1 Preliminaries

2.1.1 Graphical tensor notation

A tensor can be represented as a multi-dimensional array of complex numbers. The dimension-
ality of the array required to represent it is called the order of the tensor. A scalar can be viewed
as a tensor or order 0, a vector is seen as a tensor of order 1, a matrix would be tensor of order
2, and so on. We will make extensive use of the graphical notation that goes back to Penrose
to represent tensors: We will graphically represent tensors as boxes, having a number of edges
defined by the order of the tensor. This is then how a scalar looks like,

these are vectors and dual vectors,

and this

corresponds to a matrix. A contraction of an index amounts to summing over all possible val-
ues an index takes corresponding to a shared edge. For example, a matrix product A = BC of
matrices A,B,C ∈ CN×N amounts to

Cα,β =
N∑
γ=1

Aα,γBγ,β, (16)

so here the common index γ is being contracted. Again, we can graphically represent this as
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The trace is a contraction of two indices of the same tensor, graphically

and a partial trace is

A scalar product looks like this:

The beauty and ease of this picture should be rather obvious.2 An index that is not contracted is
naturally called an open index. A contraction of a tensor network, like this one

amounts to contracting all indices that are not open. Where would one best start with such a
contraction? Indeed, the order very much matters as far as the complexity of the problem is
concerned. The scaling of the effort of contraction in the dimension of the involved tensors is
highly dependent on the contraction order, and to find the optimal order of pairwise contractions
is a computationally hard problem in its own right. In practice, one often finds good contraction
orders by inspection, however.

We now turn to the graphical representation of what we are mainly interested in, namely state
vectors of quantum many-body spin-systems with n degrees of freedom. An arbitrary state
vector |ψ〉 ∈ (Cd)⊗n

|ψ〉 =
d∑

j1,...,jn=1

cj1,...,jn|j1, . . . , jn〉 =
d∑

j1,...,jn=1

cj1,...,jn|j1〉 ⊗ · · · ⊗ |jn〉 (17)

with coefficients cj1,...,jn ∈ C for all indices can be represented by

so by a box with n edges (sometimes also called ‘physical edges’ for obvious reasons).

2We will take a pragmatic viewpoint here and will swipe some mathematical fine print concerning such graph-
ical tensor network representations of tensors over complex vector spaces under the rug which we should not too
much worry about, however.
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2.2 Definitions and preparations of matrix product states

2.2.1 Definition for periodic boundary conditions

The definition of matrix product states takes the above tensor and ‘breaks it down’ to smaller
components that are being contracted. A matrix product state [48, 51] of ‘bond dimension’ D
(with periodic boundary conditions) is a pure state with a state vector of the form

cj1,...,jn =
D∑

α,β,...,ω=1

A
(1)
α,β;j1

A
(2)
β,γ;i2

. . . A
(n)
ω,α;jn

= tr(A
(1)
j1
A

(2)
j2
. . . A

(n)
jn

), (18)

where the trace and the matrix product are taken over the contracted indices, leaving the physi-
cal indices j1, . . . , jn open. For a fixed collection of physical indices, the coefficients are hence
obtained by considering matrix products of matrices, hence ‘matrix product state’. In a graphi-
cal notation, this can be represented as

That is to say, each individual tensor is represented as

and via contraction one arrives at the above expression. The line connecting the end tensors
reflects the trace in the above expression. This graphical notation will remain very handy in
what follows.
So what is D, the bond dimension? As such, it does not have a direct physical correspondence;
this parameter can be viewed as a ‘refinement parameter’. It will also soon become clear why
it is called a bond dimension and we will turn to its significance in a minute. Matrix product
states constitute the, in many ways, most important instance of a tensor network state. They are
of key importance both in analytical approaches as well as in numerical ones, most prominently
in the density-matrix renormalisation group approach. Since we will frequently refer to such
states, we will from now on commonly abbreviate them as MPS.

2.2.2 Variational parameters of a matrix product state

We note a first important property of a matrix product state: It is described by very few numbers.
While a general state vector of a system composed of n spin-d systems is defined byO(dn) real
parameters, an MPS of bond dimension D can be represented by O(ndD2) real parameters.
For constant D, this is linear in n, as opposed to exponential in n: so this ansatz gives rise
to a drastic reduction of the number of variational parameters, to say the least. At the same
time it is true that D can be taken large enough that every state vector of a finite system can be
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represented as an MPS, if one allows D to grow exponentially in n as well. Yet, this is actually
not the main point of the definition of a matrix product state.
The key insight – one that should become increasingly clear – is that already for small bond
dimension D, an MPS is an extraordinarily good approximation of natural states emerging in
physical systems. The larger the bond dimension, so the ‘refinement parameter’ D, the larger is
the set of states that can be represented, and hence usually the quality of the approximation of
natural states. If one takes D = 1, then the above matrices merely become complex numbers
and one obtains a product state, in a variational set that is sometimes referred to as a Gutzwiller
variational state, a variant of a mean-field approach.

2.2.3 Matrix product states with open boundary conditions

The above expression corresponds to matrix product states for periodic boundary conditions.
For open boundary conditions, the matrix A(1) is taken to be no longer a matrix from CD×D,
but A(1) ∈ C1×D so as a row vector. Similarly A(n) ∈ CD×1 so it is a column vector. Then the
expression becomes

cj1,...,jn =
D∑

α,...,ω=1

A
(1)
α;j1

A
(2)
β,γ;i2

. . . A
(n)
ω;jn

= A
(1)
j1
A

(2)
j2
. . . A

(n)
jn
, (19)

and the graphical expression

2.2.4 Area laws and approximation with matrix product states

What is the significance of area laws in the context of matrix product states? It is easy to
see that for any subset A of consecutive sites of the lattice S(ρA) = O(log(D)) for a matrix
product state, so the entanglement entropy is bounded from above by a constant in n. That is to
say, MPS satisfy an area law. The behaviour of the entanglement scaling is therefore the same
for matrix product states as for ground states of gapped models. But indeed, an even stronger
converse statement is true: Every state that satisfies an area law can be efficiently approximated
by a matrix product state.
There is a bit of fine-print associated with this statement: On the one hand, the precise wording
of this statement makes use of Renyi entropic entanglement entropies as discussed above, and
not the more standard entanglement entropies based on the von-Neumann entropy. (Yet, for
all situations where a detailed understanding has been reached, this does not make a difference
anyway, so we can be rather relaxed about it.) On the other hand, any such statement is surely
one about a family of states of lattice systems of increasing system size, rather than for a single
state. So precisely, if for a family of state vectors |ψn〉 there exist constants c, C > 0 such
that for all 0 < α < 1 the Renyi entropies of the reduced state of any subsystem A of the
one-dimensional system satisfy

Sα(ρA) ≤ c log(n) + C, (20)
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then it can be efficiently approximated by an MPS (so the bond dimension will have to grow
polynomially with n, the system size, and 1/ε, where ε > 0 is the approximation error).

2.2.5 Preparation from maximally entangled pairs

There are two alternative convenient descriptions of MPS. The first one originates from a hy-
pothetical preparation from maximally entangled states. This prescription explains why MPS
can also be captured as ‘projected entangled pair states’ for one-dimensional spin chains. Let
us assume, for that purpose, that each site of a one-dimensional spin chain is not composed of
a single d-dimensional system, but in fact of two ‘virtual systems’ of dimension D. Each one
of the pair of virtual systems is maximally entangled with the respective neighbouring system,
which means that the state of this pair is described by the state vector

|ω〉 =
d∑
j=1

|j, j〉. (21)

Such a pure state is indeed ‘maximally entangled’ in that the entanglement entropy of each
subsystem takes the maximum value log2(D). These entangled states are referred to as ‘bonds’,
further motivating the above term of a ‘bond dimension’. On this system, we apply linear maps
P (j) : CD⊗CD → Cd for each of the sites j = 1, . . . , n, projecting twoD-dimensional systems
to a single system of the physical dimension d. We can hence capture the state vector as

|ψ〉 = (P (1) ⊗ · · · ⊗ P (n))|ω〉⊗(n−1). (22)

This prescription, even though it may look somewhat baroque at this point, surely defines a
valid state vector in (Cd)⊗n. The claim now is that this is an alternative description of a matrix
product state. How can that be? Let us write each of the the linear maps as

P (j) =
d∑

k=1

D∑
α,β=1

A
(j)
α,β;k|k〉〈α, β| (23)

for j = 1, . . . , n, for periodic boundary conditions, graphically

Then a moments thought reveals that we again end up in a state vector with coefficients precisely
of the form of Eq. (18). So the matrices that define the linear projection reappear in a different
role in the definition of the matrix product state. An interesting side remark is that in this picture
it is also particularly clear that MPS satisfy area laws, with log2(D) being the maximum value
the entanglement entropy can take. This picture will be particularly intuitive when generalising
the idea of MPS to higher dimensional physical systems.



17.16 Jens Eisert

2.2.6 Sequential preparation picture

The second alternative convenient description of MPS relates to a sequential preparation of
quantum states, an idea that was implicitly already present in Ref. [48]. Here, one starts off
in a spin chain of local dimension d prepared in |0〉⊗n and lets a quantum system of dimen-
sion D sequentially interact with each of the n constituents. At the end, one makes sure
that the system is disentangled. It turns out that the state vectors generated in this way are
exactly the MPS with open boundary conditions (see, e.g., Ref. [51]). More specifically, let∑d

j=1

∑D
α,β=1A

(k)
α,β;j|α, j〉〈β, 0| be an operation on CD ⊗ Cd with

d∑
j=1

(A(k))†jA
(k)
j = I (24)

(we will see below that this can always be chosen to be true) for each k, then one obtains an MPS
with open boundary conditions of the form as in Eq. (19). This construction is interesting in
many ways: To start with, this procedure gives rise to an efficient preparation of MPS, and there
are several physical systems where one can readily think of systems sequentially interacting
in this way (for example for atoms passing through cavities). In fact, in a slightly different
language, MPS are discussed in the context of quantum memory channels, where the memory
is encoded in the D-dimensional system passed from one site to the other. The second insight is
that this sequential interaction picture plausibly motivates the exponential decay of correlation
functions that we will learn about soon: All quantum correlations have to be mediated to the
D-dimensional ‘ancilla’ system that is sequentially interacting.

2.2.7 Translationally invariant matrix product states

In the above definition, we have taken all matrices to be different. Of course, we can also in a
translationally invariant ansatz choose them to be all the same, so take for periodic boundary
conditions

A
(j)
α,β;k = Aα,β;k (25)

for all α, β = 1, . . . , D, all k = 1, . . . , d and all sites j = 1, . . . , n. Such translationally invariant
MPS make a lot of sense in analytical considerations, and obviously capture translationally
invariant models well. They are specifically important when considering the thermodynamic
limit n→∞. In numerical considerations, it is often advisable to break the symmetry and use
different matrices per site even if the Hamiltonian as such is translationally invariant.

2.2.8 Successive Schmidt decompositions

The canonical form of an MPS can also be reached by making use of a successive Schmidt
decomposition. This was first highlighted in Ref. [52]. We will be brief here, but explain the
basic idea: Generally, a Schmidt decomposition of a state vector |ψ〉 ∈ CdA ⊗ CdB of a system
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consisting of two parts A and B can be written as

|ψ〉 =

min(dA,dB)∑
j=1

λj|ψ(A)
j 〉 ⊗ |ψ

(B)
j 〉, (26)

with suitable orthonormal bases {|ψ(A)
j 〉} and {|ψ(B)

j 〉} of the respective Hilbert spaces, called
left and right Schmidt vectors and λj ≥ 0 for all j. Why is this remarkable? Because there
is only a single sum, not a double sum. One can indeed now arrive at the canonical form in a
one-dimensional MPS by starting from the left side and performing the Schmidt decomposition
between site {1} and the complement {2, . . . , n} in V . Then one can expand the left Schmidt
vectors in the original basis and continue by performing a Schmidt decomposition of the right
Schmidt vectors between {2} and {3, . . . , n} and so on, to arrive at the normal form.

2.3 Computation of expectation values and numerical techniques

2.3.1 Computation of expectation values

How can we compute expectation values of MPS? Of course, the entire idea of a tensor network
state only makes sense if we have a handle on meaningfully (at least approximately) computing
expectation values 〈ψ|O|ψ〉 of local observables O. At this point, we have good reasons to
hesitate, however, and to become a bit worried. The fact that we can describe an MPS by a few
parameters alone does not necessarily imply that we can also efficiently compute the expectation
value. For example, there are operations known, such as the permanent of a matrix, that cannot
be computed in time polynomial in the dimension of the matrix (permanent is in the complexity
class #P ).
But let us see how far we get: Let us assume that O is a local term that is supported on neigh-
bouring sites l, l + 1 only, so

O =
d∑

jl,jl+1=1

d∑
kl,kl+1=1

Ojl,jl+1;kl,kl+1
|jl, jl+1〉〈kl, kl+1|. (27)

We suppress an index specifying the support. It should be clear that the same strategy can be
applied to local terms with larger locality regions, so let us stick to nearest neighbour interaction
terms for simplicity of notation. We pick open boundary conditions (but not necessarily a
translationally invariant ansatz) to render the discussion more transparent. We now start from

〈ψ|O|ψ〉 =
d∑

j1,...,jn=1

d∑
k1,...,kn=1

c̄k1,...,kncj1,...,jnδj1,k1 . . . δjl−1,kl−1
Ojl,jl+1,kl,kl+1

δjl+2,kl+2
. . . δjn,kn .

(28)
This expression looks quite messy. Resorting the the graphical notation, it can be more trans-
parently be represented as
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Naively formulated, we would clearly encounter 2n independent sums. In the light of this
observation, one would hence be tempted to think that an effort exponential in n is needed to
compute expectation values. Needless to say that much of the advantage of a tensor network
state would disappear.
It is one of the key insights that expectation values of local observables can nevertheless be
efficiently computed – one only needs to contract the tensor network in a smart order. Let us
remind ourselves that the contraction effort is not independent on the actual order by which the
contraction is performed. We start by investigating the left hand side of the tensor network: We
can contract one index and write for the left boundary condition

Lα,β :=
d∑
j=1

A
(1)
α;jĀ

(1)
β;j, (29)

graphically represented as

Now this again gives rise to a vector from C1×D2: We have ‘doubled’ the indices and hence
encounter an edge associated with dimension D2 instead of D. We can now proceed as before,
again contracting physical indices. In this way, we arrive at the transfer operator E(k)

I . This
operator has components

(E
(k)
I )α,β;γ,δ :=

d∑
j=1

A
(k)
α,β;jĀ

(k)
γ,δ;j. (30)

At this point, the graphical notation seems straightforward

We can progress until we come to the sites on which the local observable O is supported. But
of course, we can still contract all physical indices and treat it as one new tensor, to get EO
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Finally, the right boundary condition can be captured as

Rα,β :=
∑
j=1d

A
(n)
α;jĀ

(n)
β;j , (31)

graphically

So the above graphical representation can also be sequentially read as a representation of the
expression

〈ψ|O|ψ〉 = LE
(2)
I E

(3)
I . . . E(l−1)EOE

(l+2)
I . . . E

(n−1)
I R. (32)

Of course, not only all these operators can be efficiently computed, but also the product be
performed with the same effort as it is needed to multiply a vector from CD2 with matrices from
CD2×D2 , namelyO(dD4). Since there are n sites, the total effort to compute a single expectation
value can be bounded byO(ndD4). For a local Hamiltonian withO(n) termsH this amounts to
an effortO(n2D4) to compute 〈ψ|H|ψ〉. That is to say, one can efficiently compute expectation
values of local Hamiltonians. It is easy to see that this can be further improved to O(nD3), by
using an appropriate gauge, to be specified below, and altering the contraction order still.

2.3.2 Decay of correlations in infinite matrix product states

We have seen above that MPS capture ground states of local one-dimensional gapped models
well. As such, one should expect that also common features of such models are appropriately
reflected. In particular, one should expect correlation functions to decay exponentially with the
distance in the lattice. In fact, the object we need in order to see this is the transfer operator
encountered earlier. We stick to the situation of a infinite translationally invariant MPS, so the
transfer operator

EI =
d∑
j=1

(Aj ⊗ Āj), (33)

graphically

will not carry a site index. We will consider correlation functions between two sites that we
label A and B as above. The observables supported on A and B are again OA and OB. In line
with the above definitions, we set

EOA
=

d∑
j,k=1

〈k|OA|j〉(Aj ⊗ Āk), (34)
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graphically

and similarly for OB. Then the correlation function is obtained as

〈OAOB〉 =
tr(EOA

E
dist(A,B)−1
I EOB

E
n−dist(A,B)−1
I )

tr(En
I )

. (35)

We are now specifically interested in the limit n→∞ in infinite translationally invariant MPS.
We have that

Ek
I = |r1〉〈l1|+

D2∑
j=2

λkj |rj〉〈lj|, (36)

where λ1 = 1, λ2, . . . , λD2 are the eigenvalues of EI in non-increasing order and |rj〉 and 〈lj|
the respective right and left eigenvectors. To assume that the largest eigenvalue λ1 = ‖EI‖ = 1

does not restrict generality – this merely amounts to a rescaling. We also assume that this is the
unique eigenvalue that takes the value 1. Then, in the limit n→∞,

〈OAOB〉 = 〈l1|EOA
E

dist(A,B)−1
I EOB

|r1〉. (37)

This is nothing but

〈OAOB〉 = 〈l1|EOA
|r1〉〈l1|EOB

|l1〉+
D2∑
j=2

λ
dist(A,B)−1
j 〈l1|EOA

|rj〉〈lj|EOB
|l1〉, (38)

where the first term can be identified as 〈OA〉〈OB〉. This means that |〈OAOB〉 − 〈OA〉〈OB〉|
decays exponentially in the distance dist(A,B), and the correlation length ξ > 0 is given by
the ratio of the second largest λ2 to the largest λ1 (here taken to be unity) eigenvalue of EI, so

ξ−1 = − log |λ2|. (39)

This is a very interesting observation: The decay of correlations is merely governed by the
spectral gap between the two largest eigenvalues of the transfer operator. All other details of the
transfer operator do not matter asymptotically as far as the decay of correlations is concerned.
This also means that whenever this gap is not vanishing, correlation functions always decay
exponentially. Positively put, this may be taken as yet another indication that MPS represent
ground states of gapped models well (for which correlation functions are similarly decaying).
Higher order correlation functions of the form 〈OAOBOC〉 and so on can also be efficiently
computed from the MPS representation in the same way. There is an interesting structural
insight related to this: In order to fully specify an MPS of any bond dimension, generically, the
collection of all correlation functions of order up to merely three need to be specified [53], and
not of all orders, as one would naturally expect.
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In fact, MPS cannot represent algebraically decaying correlation functions, even though one
should not forget that for sufficiently large bond dimension, MPS can well approximate states
with algebraically decaying correlation functions well. One might be tempted to think that
this is different whenever the gap is vanishing, meaning that whenever λ2 = 1 and λ1 = 1

are degenerate. This is not so, however. Then one rather encounters constant contributions to
correlation functions (we will learn about an example of this form in form of the GHZ state
below).

2.3.3 Computation of scalar products between matrix product states

It is an interesting exercise to verify that the scalar product of two different (non-translationally
invariant, open boundary condition) MPS of bond dimension D can be computed with an effort
O(ndD3). This fact can be quite helpful in practical computations.

2.3.4 Density-matrix renormalisation method in several invocations

The workhorse of the numerical study of strongly correlated one-dimensional systems is the
DMRG method, introduced in the seminal Ref. [44]. Albeit this was not the way this method
has originally been formulated, it has become clear [46,49] that it can be viewed as a variational
method over MPS: In one way or the other, one varies over MPS state vectors |ψ〉 of a given
bond dimension until for a given local Hamiltonian H =

∑
j∈V hj a good approximation of

min
〈ψ|H|ψ〉
〈ψ|ψ〉

(40)

is reached. We can describe the MPS by polynomially many (in fact in n linearly many) pa-
rameters that can be stored in a computer, and we can efficiently compute expectation values.
Since the optimisation over all parameters at once amounts to a non-convex global optimisa-
tion problem (and is hence infeasible), this task is broken down to a sequential updating of the
matrices {A(k)

jk
} of the MPS. For example, starting from randomly picked matrices in the MPS,

if one holds all matrices except those {A(j)
1 , . . . , A

(j)
d } of a site j fixed, then one can write the

optimisation problem of Eq. (40) as a minimisation over

E :=
〈ψ|H|ψ〉
〈ψ|ψ〉

=
〈A(j)|K1|A(j)〉
〈A(j)|K2|A(j)〉

(41)

with |A(j)〉 denoting the vectorized forms of the matrices and K1 and K2 being the kernels of
the respective quadratic forms. This is not only a convex quadratic optimisation problem, but
in fact an eigenvalue problem K1|A(j)〉 = EK2|A(j)〉. In this way, by ‘sweeping through the
lattice’, going from one site to the next and coming back, until convergence is reached, one can
find ground state properties essentially up to machine precision. In practice, often surprisingly
few sweeps are needed to reach a stable minimum, even if one starts off with random MPS. See
Refs. [1, 3, 45] for reviews.3

3As a side remark, strictly speaking, it is not guaranteed by this procedure that one really obtains the global
minimum when performing local variations. In fact, practically one may get stuck, and it can be beneficial to insert
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Having said that, there are, needless to say, many different methods of how to proceed and
many different ways in which one can improve this basic method. To start with, a clever use of
the gauge (as we will discuss later) is crucial to arrive at a practical implementation avoiding
ill-conditioned matrices along the way. Then, one does not have to vary over one set of matrices
per step, but can vary over pairs of matrices, in a double variational site, leading in particular
to a faster convergence and a better error control. One can employ instances of time-evolving
block decimation (TEBD) [57–59] in imaginary-time evolution (see the next subsection), or
the time-dependent variational principle [60] avoiding Trotter errors. Some variants of DMRG
avoid errors from finite-size scaling by directly referring to infinite MPS (possibly with a broken
symmetry with a finite period), such as the iDMRG method [61, 62] or iTEBD [63].

2.3.5 Matrix-product operators and mixed states

Tensor network states can not only represent pure states, but mixed quantum states as well. A
matrix product operator O ∈ B((Cd)⊗n) relates to a tensor network

O =
d∑

j1,...,jn=1

d∑
k1,...,kn=1

tr(A
(1)
j1,k1

. . . A
(n)
jn,kn

)|j1, . . . , jn〉〈k1, . . . , kn|, (42)

These operators contain mixed quantum states (and also other operators which are not positive
in the sense that eigenvalues can be negative; in fact, checking positivity of such an matrix
product operator is not straightforward). Graphically they can be represented as

One can now devise algorithms that represent mixed states such as Gibbs states e−βH/tr(e−βH)

in variants of the DMRG algorithm [64–66]. There is a second picture capturing mixed states,
which are obtained from MPS with a special structure by taking a partial trace over the purifying
degrees of freedom, here depicted in the form of an isomorphism between purified MPS and
positive instances of MPO [67]

2.3.6 Time evolution

Time evolution algorithms provide numerical computations of expectation values

〈OA〉(t) := 〈eitHOAe
−itH〉 (43)

manually artificial fluctuations [44]. In practice, this is usually not much of a problem, however. The computational
complexity of actually finding the optimal MPS, given a fixed family of Hamiltonians and a given bond dimension,
has been addressed in Refs. [54–56].
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for a local HamiltonianH and a local observableOA supported on several sites. Basically, there
are two major strategies known to proceed here, as far as MPS simulations are concerned:

• On the one hand, one can decompose the HamiltonianH = H1+H2 into a sum of an even
and an odd part, such that both Hamiltonians contain non-overlapping Hamiltonian terms
only. One can then approximate e−itH by (eitH1/keitH2/k)m for a suitable large m ∈ N,
with good control of errors. The time-evolving block decimation (TEBD) [57–59] and
variants thereof make use of that idea.

• On the other hand, one can make use of the time-dependent variational principle [60],
which relies on the variational manifold of uniform MPS mentioned above and which
avoids Trotter errors altogether.

Such methods have provided significant new insights into non-equilibrium dynamics of strongly
correlated quantum systems and have given new impetus to the study old questions of equili-
bration or thermalisation. Specifically, quenched quantum lattice models have been extensively
studied, resulting in much progress on questions of far-from-equilibrium dynamics (see, e.g.,
Refs. [68–71]).
For short times, starting from clustering initial conditions, these methods again provide very
reliable information about the evolution of the strongly correlated many-body systems. The
reason is again rooted in the above mentioned Lieb-Robinson bounds: One can show that under
local Hamiltonian dynamics, for any fixed time, an area law for Renyi entanglement entropies
holds true [72]. Hence, an efficient approximation of the true time evolved states with an MPS
is possible. The prefactor in the area law grows with time, however, leading to the situation
that the entanglement effectively increases linearly in time in worst case [73]. That is, for long
times, one cannot capture time evolution of quantum many-body systems with MPS: One hits
the ‘barrier of entanglement growth’. So-called folding methods that contract the emerging
tensors in a different way soften this problem to some extent [74]. Still, to grasp long time
dynamics is infeasible, and it is one of the interesting open problems to see to what extent this
challenge can be overcome.

2.4 Parent Hamiltonians, gauge freedom, geometry, and symmetries

At this point, it should have become clear that MPS are primarily meant to approximate natural
states, specifically ground states of gapped one-dimensional local Hamiltonian models. Yet, a
natural question that arises at this point is whether there are meaningful Hamiltonians that have
an MPS as their exact ground state. We will now take a look at this question. Starting from this
observation, we will hint at the insight that indeed, MPS (and more generally tensor network
states) are by no means only powerful tools in numerical simulations, but also give rise to a
very versatile tool in analytical considerations. Since so many questions can be fully analyti-
cally assessed (in contrast to many actual Hamiltonian problems), an entire research field has
emerged of ‘studying condensed matter physics in the MPS world’. For example, complete clas-
sifications of quantum phases have been given [75–77], new instances of Lieb-Schultz-Mattis
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theorems proven [78], fractional magnetisation considered [79] phase transitions of arbitrary
order identified [80], or a ‘Wick’s theorem’ for MPS be formulated [53]. It will be beyond the
scope of this book chapter to give a comprehensive overview of this development.

2.4.1 The AKLT and the Majumdar Gosh models

Surely, any product state is an MPS with bond dimension D = 1, so every state that has a
product state as an exact ground state will provide an example of that sort. This is not very
exciting yet, however. The most famous model that has an MPS ground state with a bond
dimension different from D = 1 is the AKLT model, named after Affleck, Kennedy, Lieb, and
Tasaki [81]. Here, the bond dimension is D = 2 while the local physical dimension is d = 3: It
is a spin-1 chain. There are many ways to progress to see that this model indeed has an MPS as
its ground state. One particularly transparent way makes use of the above projected entangled
pair picture – historically, this is actually where this construction originates from. The linear
projections are all the same for all sites and taken to be

P = ΠS=1(I⊗ iY ) (44)

where ΠS=1 is the projection onto the spin-1 subspace of two sites, and Y is the Pauli matrix.
This might look a bit awkward at first, but it is a sanity check that it takes a state defined on two
spin-1/2 systems (with Hilbert space C2 ⊗ C2) to one spin-1 state (defined on C3). The Pauli
matrix is just added here for the convention that we always start in the maximally entangled
state as defined in Eq. (21). So what this linear map essentially does is that it takes bonds
prepared in singlets and projects them into the S = 1 subspace. This surely gives rise to a valid
MPS with state vector |ψ〉 .
Why does this help to construct a Hamiltonian that has this MPS as the ground state? We can
simply take as the local Hamiltonian term hj = ΠS=2, so that surely hj|ψ〉 = 0 for all j. That is
to say, the Hamiltonian terms are the projections onto the S = 2 subspace. For the same reason,

H|ψ〉 =
∑
j

hj|ψ〉 = 0 (45)

(mildly disregarding some fine-print on the boundary conditions). But we have that hj ≥ 0,
so that each term has non-negative eigenvalues, which means that |ψ〉 must be a ground state
vector. There is some fine print involved here, as strictly speaking, we have only seen that
it constitutes a valid ground state vector, not really whether it is a unique one. This can be
shown to be true, however, by identifying the Hamiltonian in Eq. (45) as the so-called parent
Hamiltonian of the given MPS, a concept we will turn to later.
How does the resulting Hamiltonian then look like? A moment of thought reveals that it can be
written as

hj =
1

2
S(j) · S(j+1) +

1

6
(S(j) · S(j+1))2 +

1

3
, (46)

The matrices of the MPS are found to be A1 = X , A2 = (X + iY )/
√

2, A3 = −(X − iY )/
√

2.
In fact, one of the motivations to study the AKLT model is also the close resemblance to the
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spin-1 Heisenberg model the Hamiltonian of which has local terms

hj = JS(j) · S(j+1) (47)

for some J ∈ R. This model is important for numerous reasons. It is also connected to the fa-
mous Haldane conjecture, which states that integer-spin anti-ferromagnetic Heisenberg chains
are gapped [82].
Another important local Hamiltonian that has an exact MPS ground state is the one of the
Majumdar-Gosh model [83], a nearest-neighbour spin-1/2 chain of local dimension d = 2 with
Hamiltonian

H =
∑
j

(
2σ(j) · σ(j+1) + σ(j) · σ(j+2)

)
, (48)

where σ is the vector of Pauli matrices. It turns out that its ground state can be represented with
matrices of bond dimension D = 3.

2.4.2 Gauge freedom and canonical forms

An MPS is uniquely defined by the matrices defining it, but the converse is not true: There is
more than one set of matrices that give rise to the same pure state. Since

A
(k)
jk
A

(k+1)
jk+1

= A
(k)
jk
XX−1A

(k+1)
jk+1

(49)

for any X ∈ Gl(D,C), graphically represented as

one can introduce between any pair of MPS matrices an invertible matrix. Choosing a specific
X , or rather choosing such matrices for an entire MPS, amounts to choosing a so-called gauge.
This insight, basic as it is, is very helpful in many circumstances. Canonical forms, so special
forms of MPS that are particularly simple and which can be achieved by picking a suitable
gauge, are very useful in analytical considerations. They are also helpful in numerical methods:
For example, the above reduction of the effort when computing expectation values from the
naive O(n2D4) to O(nD3) is also partially due to picking the right gauge. For MPS with open
boundary conditions and bond dimension D, one can, for example, always pick a gauge in
which ∑

j

A
(k)
j (A

(k)
j )† = I, (50)∑

j

(A
(k)
j )†Λ(k−1)A

(k)
j = Λ(k), (51)

Λ(0) = Λ(n) = 1 (52)

and each Λ(k) ∈ CD×D for k = 1, . . . , n − 1 is diagonal, positive, has full rank and unit
trace. This can be shown by a successive singular value decomposition. For periodic boundary
conditions, finding appropriate normal forms is more involved, see Ref. [51].
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2.4.3 Injectivity and parent Hamiltonians

We have seen that the AKLT model has a unique MPS as its ground state, and so does the
Majumdar-Gosh model. Indeed, these are examples of a more general framework that goes
back to the seminal work of Ref. [48], where the question has been solved for infinite systems.
Here, we ask, for a finite MPS, when is it the unique ground state of a gapped local Hamiltonian?
The latter is usually called parent Hamiltonian of the MPS. Let us assume we have a MPS state
vector in the canonical form of Subsection 2.4.2

|ψ〉 =
d∑

j1,...,jn=1

A
(1)
j1
. . . A

(n)
jn
|j1, . . . , jn〉. (53)

We assume now that we can group the constituents such that the grouped MPS, now no longer
of n but of m new sites of larger local dimension, to get

|ψ〉 =
∑

j1,...,jm

B
(1)
j1
. . . B

(m)
jm
|j1, . . . , jm〉. (54)

We require that each sets of matrices {B(k)
jk
} has the property that it generates the respective

entire space of matrices.4 Then one can find local Hamiltonian terms {hj} each supported
on L + 1 sites of the original lattice such that |ψ〉 is the unique ground state vector of H =∑

j hj . This is in fact a generalisation of the above idea that we encountered in the AKLT
model (strictly speaking, there injectivity sets in at k = 2, so one would in principle arrive at
a 3-local Hamiltonian, but one can show that this Hamiltonian and the given nearest-neighbour
Hamiltonian of the AKLT model are in fact identical). The existence of a gap can for finite
systems be shown in essentially the same way as for infinite finitely correlated states [48]. The
idea that one can (under the above mild technical conditions) find a gapped local Hamiltonian
of which the MPS is the unique ground state is a very powerful one in analytical uses of MPS.

2.4.4 Group symmetries

Significant progress has been made in recent years in the study tensor networks – and specif-
ically MPS – under symmetry constraints. Here the emphasis is pushed from the study of
symmetries in Hamiltonians to those of states, but there is a close connection (making use of
the concept of a parent Hamiltonian of the previous subsection): If an MPS state is invariant
under a representation of a group, then one can choose its parent Hamiltonian to be invariant
under the same representation.
One of the key features of a translationally invariant state vector |ψ〉 on n sites is the symmetry
group G under which it is invariant: This is the group for which

u⊗ng |ψ〉 = eiφg |ψ〉, (55)

4Let {A(k)
jk
, . . . , A

(k+L−1)
jk+L−1

} correspond to the block called B(s) for some suitable s, then the above means

that the map ΓL : Gl(D,C) → (Cd)⊗L with ΓL : X 7→
∑d

jk,...,jk+L−1=1 tr(XAjk . . . Ajk+L−1
)|j1, . . . , jL〉 is

injective [51]. If for a state vector such an L can be found, then the state vector is called injective.



Entanglement and Tensor Network States 17.27

where g ∈ G and ug is a unitary representation on H. It turns out that for translationally
invariant MPS that fulfill the injectivity condition this symmetry is reflected also by a group
symmetry in the tensors that define the MPS: The action of the unitary ug on the physical index
corresponds to an action of a Vg on the virtual level. More specifically, ugP = P (Vg ⊗ V̄g)

for the linear operators P defining the MPS (P = P (j) for all j in a translationally invariant
ansatz). This picture has shed new light on the concept of string order [84]. It also plays an
important role in the classification of phases [75–77], when two gapped systems are defined to
be in the same phase if and only if they can be connected by a smooth path of gapped local
Hamiltonians.

2.4.5 Manifold of matrix product states

There is an interesting geometrical structure associated with (translationally invariant) MPS. We
have seen that there is a gauge freedom in MPS, leading to an over-parametrisation. Due to this
redundancy in parametrisation, MPS have the structure of a principal fiber bundle. The bundle
space corresponds to the entire parameter space, that is, the collection of all tensors associated
with the physical sites. The base manifold, in turn, is embedded in in the Hilbert space. This
geometrical structure is fleshed out in detail in Ref. [85].

2.5 Tools in quantum information theory and quantum state tomography
2.5.1 Matrix product states in metrology

Many multi-particle entangled states that are interesting in the context of quantum informa-
tion theory and metrology can also be represented as matrix product states. The well-known
Greenberger-Horne-Zeilinger (GHZ) state with state vector

|ψ〉 = (|0, . . . , 0〉+ |1, . . . , 1〉)/
√

2, (56)

for example, can be written as a MPS with bond dimension D = 2 and A1 = |0〉〈0| and
A2 = |1〉〈1|. For practical applications in metrology, GHZ states are too fragile with respect to
noise, and other states which can also be represented as MPS are more useful [86].

2.5.2 Matrix product states in measurement based quantum computing

Cluster states are also MPS: These states are an important class of states in quantum information
theory, most prominently featuring (in their two-dimensional instance) in ideas of measurement-
based quantum computing [87, 88]: This is the idea of performing quantum computing without
the need of actual unitary control over arbitrary pairs of constituents, but rather by sequentially
(and adaptively) measuring single sites. Since read-out has to be done anyway at some stage
even in the circuit model, this amounts to an appealing picture of quantum computing. All
the entanglement ‘consumed’ in the course of the computation is already present in the initial,
rather simple, resource state. Cluster states are an instance of the more general graph states
[17], which constitute a helpful theoretical ‘laboratory’: They can be viewed as prepared in the
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following way: One starts with preparing the vertices in a lattice V in |+〉 = (|0〉+ |1〉)/
√

2 and
applying controlled phase gates |j, k〉 7→ |j, k〉eiδj,1δk,1φ to neighbouring systems; in the original
definition, the phase φ = π is chosen.5 In one-dimension, a cluster state vector is (with obvious
adaptions at the boundaries) the unique eigenvector of a set of mutually commuting stabiliser
operators

K(j) = Z(j−1)X(j)Z(j+1) (57)

for j = 2, . . . , n − 1. It is left as an interesting and not very difficult exercise to the reader to
find out how this state vector can be represented as an MPS with local dimension d = 2 and
bond dimension D = 2.
In Ref. [88] new models for measurement-based computing have been proposed, taking the idea
seriously that the matrices used in the parametrization of an MPS can be directly understood as
quantum gates on a logical space. Indeed, this mindset gives rise to a wealth of novel models,
an idea that has turned out to be fruitful since then. For example, resource states can be found
exhibiting long-range correlations and variants of the ground state of the AKLT model can
be taken to be resource states [90, 91]. In Ref. [92] a complete classification of qubit wires
(spin systems allowing for a transport of quantum information) is given in an instance where a
physically well-motivated class of universal resources can be fully understood, using ideas of
classifications of quantum channels.

2.5.3 Localizable entanglement

The ideas of the previous subsection also relate to the concept of localizable entanglement [93]:
This is the characteristic length scale with which two sites A,B ∈ V can be entangled by mak-
ing local projective measurements on all other sites V \{A,B}. This length scale can be much
longer than the traditional correlation length as in Eq. (6). In fact, there are gapped quantum
Hamiltonians the unique ground state of which exhibits an infinite localisable entanglement, but
a finite correlation length.

2.5.4 Matrix product states in quantum state tomography

The same reason why MPS (and again more general tensor network states) are so powerful
in numerical approaches to problems in condensed matter physics render them also optimally
suited for another purpose: For quantum state (or process) tomography. This is the important
and natural task of estimating an unknown state (or process) from measurements. This is ob-
viously one of the key tasks that experimentalists routinely face when performing experiments
with precisely controlled quantum systems. It is beyond the scope of the present chapter to
give a comprehensive overview over this important field of research. Still, from the above it

5In fact, even states that can be prepared by applying arbitrary non-local phase gates associated to any interac-
tion graph applied to an arbitrary MPS can be efficiently contracted. This is possible by suitably defining transfer
operators that absorb the phases in such a way that the long-range entanglement is not an obstacle to an efficient
contraction. The schemes arising from this variational set of states are referred to as renormalisation schemes with
graph enhancement [89]. Such states are efficiently contractable states strongly violating an area law.
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should be clear where the insights developed here come in: In order to faithfully reconstruct
an unknown pure generic many-body state of local dimension d and n sites from expectation
values, one needs to know O(dn) different expectation values. In order to reconstruct an un-
known MPS, in sharp contrast, merely O(nD2d) expectation values are needed, an exponential
improvement. What is more, one can obtain the relevant information from learning suitable
reduced density operators alone [94]. Similar ideas can also applied to quantum fields and con-
tinuum systems, using the concept of continuous matrix product states that we will encounter
later [53]. Without such tools, it seems that the certification of quantum experiments can soon
no longer keep up with experimental progress with controlled quantum systems.

3 Higher-dimensional tensor network states

The idea of a tensor network is by no means confined to one-dimensional quantum systems. In
fact, one would usually rather refer to an actual ‘tensor network’ if the topology is not that of a
one-dimensional chain. We start with the higher-dimensional analogue of matrix product states
and then turn to other approaches such as multi-scale entanglement renormalisation.

3.1 Higher-dimensional projected entangled pair states

3.1.1 Definition of projected entangled pair states

A projected entangled pair state (PEPS) [95], closely related to the older concept of a tensor
network state [96–98], is the natural generalisation of an MPS to higher-dimensional systems.
For a cubic lattice V = LD for D = 2 and open boundary conditions, the tensor network can be
graphically represented as

with the natural analogue for periodic boundary conditions on the torus. Similarly as before,
each of the tensors – now five index tensors A(k)

α,β,γ,δ;j – can be chosen all different for all sites
k ∈ V , with α, β, γ, δ = 1, . . . , D and j = 1, . . . , d. But they can again also all be the same
(possibly with the exception of the tensors at the boundary) in a translationally invariant ansatz
class.

Again, one can formulate an actual projected entangled pair picture: Imagine again that each
pair of physical sites in V shares with each nearest neighbour a maximally entangled state, as
defined in Eq. (21), in the virtual degrees of freedom. To this state again a linear map P (j) is
applied for each site, now (with variations at the boundary for open boundary conditions) a map
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P (k) : (CD)⊗4 → Cd, defined as

P (k) =
D∑

α,β,γ,δ=1

d∑
j=1

A
(k)
α,β,γ,δ;j|j〉〈α, β, γ, δ|. (58)

Again, one ‘projects entangled pairs’,

3.1.2 Properties of projected entangled pair states

A number of natural properties emerge that render this class of variational states a natural one:

• PEPS satisfy area laws, and it takes a moment of thought to see that the entanglement
entropy of a subset A is bounded from above by O(L logD) for D = 2: one simply
needs to disentangle as many bonds as the boundary ∂A of A contains.

• Again, if the bond dimension D is large enough, then one can approximate (or for finite
systems explicitly write out) every state as a PEPS.

• One can also again have exponential clustering of correlations. Interestingly, here al-
ready a difference emerges to MPS in one dimension: One can construct PEPS that
have algebraically decaying correlations with dist(A,B) between two sites or regions
A,B ⊂ V [18].

Such a strong statement on how well general states can be approximated with PEPS as it is
available for MPS is lacking: One expects, however, that states satisfying area laws – so pre-
sumably ground states of gapped models – can be well approximated with PEPS with a small
bond dimension D. Also, the body of numerical evidence available shows that this class of
states indeed meaningfully describes strongly correlated quantum many-body systems.

3.1.3 Approximate contraction of projected entangled pair states

Again similarly to the situation before, one can define transfer operators EI, graphically repre-
sented as

and similarly EOA
in case of the presence of a local observable. In contrast to MPS, PEPS can-

not be efficiently contracted exactly, however. Strictly speaking, the contraction is contained in
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the complexity class #P , again giving rise to a computationally hard problem [99]. It is also in-
tuitive why naive exact contractions cannot work: No matter what contraction order one picks,
one will end up with an object having a number of edges that is linear in L. Therefore, computa-
tions such as the determination of expectation values of observablesOA are, differently from the
situation in MPS, strictly speaking inefficient. This is no reason for panic, however: There are
promising results on approximate contraction techniques that allow for a good practical descrip-
tion of gapped local two-dimensional Hamiltonians. For example, one can work oneself through
the scheme and contract each row with the subsequent one: Before progressing, however, one
approximates the bond dimensions of the new tensors by those the tensors had previously [95].
This is no longer exact, but feasible and efficient (the best known such scheme displays an effort
of O(D8) in the bond dimension). Another approximate way of contracting amounts to renor-
malising the cubic lattice to a new cubic lattice of smaller system size, and again approximates
the obtained tensors of higher bond dimension by the previous ones [100, 101]. There has also
been recent insight into why such approximation methods should be expected to provide good
service, using ideas of local topological order [102].

3.1.4 Infinite methods

Again, the basic ideas have been generalised to the situation of having an infinite system to
start with, to avoid the need for finite size scaling. A number of methods have been suggested,
among them boundary-MPS methods [103], corner transfer matrix methods [96], as well as
again tensor coarse-graining methods [100,101]. These methods provide competitive numerical
simulations of two-dimensional lattice models, for a review, see Ref. [104].6

3.1.5 Exact models

It goes without saying that again PEPS are not only a useful tool in numerical studies, but in
analytical ones as well. Cluster states in two dimensions [87] are instances of PEPS, and so
are a number of other classes of states important in quantum information theory. The models of
Refs. [88,90] for measurement-based quantum computing are also based on PEPS. The possibly
most important Hamiltonian with PEPS as ground states is the toric code Hamiltonian

H = −Ja
∑
s

As − Jb
∑
p

Bp (59)

defined on the edges of a two-dimensional cubic lattice, where {As} and {Bp} are star and
plaquette operators, respectively, defined as

As =
∏
j∈s

X(j), Bp =
∏
j∈p

Z(j), (60)

6To be fair, one should add that at present, one-dimensional approaches based on matrix product states are
still better developed than those based on higher-dimensional tensor networks. The ‘crime story’ of the precise
nature of ground state of the spin-1/2 Heisenberg anti-ferromagnet on the Kagome lattice with local Hamiltonian
terms as in Eq. (47) – it is a spin liquid ground state – has finally been resolved using DMRG and a ‘snake-like’
one-dimensional ordering of the tensors of the two-dimensional Kagome lattice, and not using an algorithm using
PEPS or multi-scale renormalisation [105, 106].
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so by the product of Pauli operators around a star or around a plaquette. On the one hand, this
model is interesting in that it can be viewed as a lattice instance of a Z2 lattice gauge theory. On
the other hand, it is the most prototypical quantum lattice model exhibiting topological order.
It may hence by no surprise that the literature on this model is very rich, to say the least.
There are also models considered in the literature that can not be exactly solved by means of
PEPS, but for which variational approaches of PEPS with few variational parameters already
give good energies and significant physical insight into the model at hand, so have a somewhat
analytical flavour. Such a mindset has been followed, e.g., in the study of resonating valence
bond wave-functions [107].

3.2 Multi-scale entanglement renormalization

So far, we have been discussing tensor networks that had the same topology as the underlying
physical lattice. Needless to say, there are good reasons to choose other topologies as well. A
guideline is served by the criteria that (i) the tensor network should be described by polynomi-
ally many parameters, (ii) it should be efficiently contractible, either exactly or approximately,
and (iii) the corresponding class of quantum states should be able to grasp the natural entangle-
ment or correlation structure.

3.2.1 Tree tensor networks

Specifically, for critical models, one would expect a scale invariant ansatz class to be reasonable,
one that reflects the scale invariant nature of the ground state. A first attempt in this direction
is to think of tree tensor networks [108, 109]. For example, one can think of a binary tree
tensor network: Here, one introduces a fictious time in a renormalisation scheme where in each
step, two sites are mapped into a single one by an isometry. At the top layer of this hierarchy,
one prepares two systems in some initial pure state. This scheme has several of the above
advantages: (i) It is described by polynomially many parameters, (ii) one can efficiently contract
the network, and (iii) the states generated inherit the scale invariance of the ansatz class. There
are also disadvantages: notably, there are sites in the physical lattice that are nearest neighbours;
yet, in the tensor network they are only connected via the top layer in the hierarchy. Tree tensor
networks with an entire symmetric subspace on the top layer and not only a single state naturally
emerge as exact ground states of frustration-free spin Hamiltonians [110].

3.2.2 Multi-scale entanglement renormalisation

A generalisation has been suggested in Ref. [111], referred to as multi-scale entanglement
renormalisation (MERA). The idea can be viewed as a refinement of the binary tree mentioned
above, to what is called a binary MERA. For clarity of notation, we consider one-dimensional
chains. Again, one thinks of a tensor network having different layers or temporal steps. Let
us imagine that n = 2T , meaning that we think of T temporal layers, labeled t = 1, . . . , T .
t = 1 corresponds to the physical layer, t = T to the top layer. However, a new ingredient is
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added. Each temporal step now consists of two elementary steps. One elementary step is again
a renormalisation step, invoked by an isometry I : Cdj⊗dj → Cdj+1 satisfying I†I = I (with
d1 = d) In addition, the elementary step of a layer of disentanglers is introduced, so unitaries
U ∈ U(d2j) that let respective pairs of nearest neighbours interact, again satisfying U †U = I,

The rationale behind this approach is that one first disentangles neighbours as much as possible
before they are renormalised separately. (i) Again, one has polynomially many degrees of free-
dom, if dmax = max{dj}, actuallyO(d2maxn log(n)) many real parameters. (ii) Then contraction
is still efficient. This might not be entirely obvious. The key insight is that when computing
expectation values 〈ψ|hj|ψ〉 for a Hamiltonian term hj , since all steps are either unitary or iso-
metric, one can remove all tensors outside the causal cone of the Hamiltonian term hj , and the
tensors within the causal cone can be sequentially contracted following the temporal order: It is
clear by construction that the causal cone will have a finite width

Therefore, the contraction is possible with polynomial effort in n and in dmax. This statement
remains true for dimensions D > 1: Hence, MERA constitute an efficiently contractible net-
work in fact in any dimension. It turns out that for D > 1 and cubic lattices, MERA can
always be mapped onto a PEPS of finite bond dimension, so the set of MERA states may be
viewed as a subset of PEPS [112]. However, MERA can always be exactly contracted effi-
ciently and they exhibit a very special and meaningful structure. (iii) Indeed, MERA can be put
into contact with critical systems and conformal field theories. In several ways, one can view
a MERA as a lattice instance of a conformal field theory, an insight that has been fleshed out
in quite some detail [113–115]. First numerical implementations of this idea of a MERA were
presented in Refs. [116, 117]; in the meantime, these approaches have also been generalised to
higher-dimensional systems [118–121].
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4 Fermionic and continuum models

4.1 Fermionic models
4.1.1 Fermionic tensor networks

Models that have fermionic degrees of freedom associated with the lattice sites can be mapped
onto spin models with C2 constituents by virtue of the Jordan Wigner transformation. How-
ever, only for one-dimensional models this approach is practical, as only then a local fermionic
model is mapped again onto a local spin model. For two-dimensional fermionic models on LD

with D = 2, say, in contrast, one encounters highly non-local terms that have a locality region
growing as Ω(L), no matter what specific ordering is chosen, rendering the methods discussed
here inappropriate (and the computation of expectation values inefficient). This seems unfortu-
nate, in particular since some of the challenging and at the same time most interesting models
such as the two-dimensional fermionic Hubbard model with Hamiltonian

H = −t
∑
〈j,k〉,σ

(f †j,σfj,σ + h.c.) + U
∑
j

f †j,↑fj,↑f
†
j,↓fj,↓ (61)

for t, U ∈ R are exactly of this kind.
There is a way to overcome this obstacle, however. The prejudice to be overcome is that one
should not fix a global order beforehand, but rather update the local order ‘on the fly’, in a
way such that all expectation values 〈OA〉 are correctly reproduced and give the same values as
if one had (inefficiently) mapped the system onto a non-local spin model. This idea has been
introduced in Refs. [120–123] and further applied in Refs. [124, 125]. One way of formulating
the problem is in terms of fermionic operator circuits, more general objects than standard tensor
networks that also specify information about the local order of edges, correctly accounting for
the signs encountered when swapping fermionic modes.

4.1.2 Tensor networks in quantum chemistry

An emergent field of research is the study of systems of quantum chemistry with tensor network
methods. These are again interacting fermionic models, but this time with a Hamiltonian that
is lacking an obvious structure of locality. In second quantisation, Hamiltonians in quantum
chemistry can be written as

H =
∑
i,j∈V

Ti,jf
†
i fj +

∑
i,j,k,l∈V

Vi,j,k,lf
†
i f
†
j fkfl (62)

where V and T are some tensors that do not necessarily reflect geometrically local interactions
of spinless fermionic modes. Yet, one can still order the orbitals suitably and consider this
now as a one-dimensional quantum system, albeit one with intricate interactions, and run a
DMRG algorithm [126, 127]. Also, one can employ tree-tensor network and complete graph
approaches [128]. It is an interesting emerging field to make use of tensor network ideas to
capture such models of quantum chemistry.
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4.2 Continuum models
4.2.1 Quantum fields

We finally very briefly sketch how tensor network methods can be applied to capture continuous
systems, as they arise in quantum field theory; obviously, we will not be able to be fair to
this subject, but rather provide a glimpse into it. The type of systems that can most naturally
be captured in the way described below is constituted by one-dimensional systems of bosons
or fermions on line segments of length L, associated with field operators Ψ(x) and Ψ †(x),
where [Ψ(x), Ψ †(y)] = δ(x − y) for bosons and {Ψ(x), Ψ †(y)} = δ(x − y) for fermions,
for x, y ∈ [0, L]. A common Hamiltonian in this context is the Lieb-Liniger model, a non-
relativistic model of a continuous bosonic system with a contact interaction, with Hamiltonian

H =

∫ L

0

dx

(
dΨ †(x)

dx

dΨ(x)

dx
+ cΨ †(x)Ψ †(x)Ψ(x)Ψ(x)

)
, (63)

for some c > 0. This model is Bethe-integrable and physically important – it models, for
example, the situation of interacting cold bosonic atoms on top of atom chips – so serves as a
meaningful benchmark.

4.2.2 Continuous matrix product states

Continuous matrix product states are variational states meaningfully describing such systems.
Their state vectors are defined as

|ψ〉 = tr2

(
P exp

(∫ L

0

dx(Q(x)⊗ I +R(x)⊗ Ψ †(x))

))
|∅〉. (64)

where |∅〉 denotes the vacuum, {R(x) ∈ CD×D : x ∈ [0, L]} and {Q(x) ∈ CD×D : x ∈ [0, L]}
are position-dependent matrices reflecting a bond dimension D [129–131], and P denotes path-
ordering. How can they be seen to reflect the meaningful continuum limit of MPS? In the
translationally invariant setting – giving for simplicity of notation rise to the situation that R
and Q are not position dependent – one can think for a given L > 0 of n = L/ε lattice sites
with infinite-dimensional local Hilbert spaces of bosonic modes, and consider the limit n→∞.
For a given bond dimension D and for R,Q ∈ CD×D one can take as the matrices of the family
of translationally invariant MPS

A1 = I + εQ, A2 =
√
εR, Ak =

√
ε
k
Rk/k! , (65)

for k ≥ 1, and identify Ψj = aj/
√
ε for j = 1, . . . , n, which indeed yields Eq. (64) in the

limit n → ∞. Again, in order to compute expectation values of polynomials of field opera-
tors, one does not have to perform computations in the physical Hilbert space, but merely in
the correlation space of the (continuous) MPS. Equilibrium properties of a one-dimensional
quantum field are found to relate to non-equilibrium properties of a zero-dimensional quantum
field [129–131].
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Matsubara Green function, 3.33
Matsubara sums, 3.34

mean-field approximation, 16.3
Mermin-Wagner-Hohenberg theorem, 10.6
metal-insulator transition, 4.21, 14.12
Metropolis algorithm, 6.2
Metropolis-Hastings algorithm, 6.4
MgB2, 11.9
Migdal’s theorem, 13.7
modified Gram-Schmidt, 15.11
molecular dynamics, 14.4
molecular magnetism, 8.2
momentum distribution, 14.7
Mott transition, 10.6

crossover, 10.6
Mott-Ioffe-Regel limit, 10.10
multi-scale entanglement renormalisa-

tion, 17.33
multiband superconductor, 12.20
multiplet theory, 4.26

N
Nambu formalism, 13.5
no sign problem half-filling repulsive Hub-

bard model, 15.13

O
observables, 8.18

heat capacity, 8.18
magnetization, 8.18
susceptibility, 8.18

odd-membered spin rings, 8.21
operator loops, 7.21
organic crystals, 11.23
oxide heterostructures, 9.14

P
Padé method, 13.13
pair-correlation function, 2.8
paramagnetism of isolated ions, 3.17
particle-hole symmetry, 4.22
partition function, 5.16, 8.18
path integral, 5.14, 14.3

fermion, 14.8
Pauli paramagnetism, 3.10
Pauli principle, 2.2
periodization, 10.18
permutation operator, 14.5
phase problem, 15.22
phase-change materials, 1.18
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phonon self-energy, 12.15
phonon-mediated pairing interaction, 12.18
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poor-man scaling, 3.29
Potthoff functional, 10.17
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projected entangled pair state (PEPS),
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pseudogap, 9.3, 9.13

Q
quantum critical point, 9.6, 9.7
quantum fields, 17.35
quantum lattice model, 17.3
quantum Monte Carlo methods, 1.17
quantum mutual information, 17.9
quantum state tomography, 17.29
quantum-to-classical mapping, 7.7
quasiparticle renormalization, 12.22
quenched dynamics, 17.23

R
random-phase approximation (RPA), 3.16,

10.8
rare-earth elements, 1.2
real materials, 1.3
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reorthogonalization, 15.16
resonant elastic x-ray scattering (REXS),
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9.3, 9.10, 9.12, 9.13
resonating valence bond (RVB), 2.22
restricted path integral identity, 14.8
rotational band, 8.23

S
screened interactions, 5.11
second quantization, 2.12
self-consistent renormalized theory (SCR),

10.8
shift operator, 8.9
sign problem, 5.14, 7.23, 14.8, 15.13
single-particle basis, 15.6
single-particle Green’s function, 15.7

singular value, 16.5
singular value decomposition (SVD), 16.5
skeleton diagrams, 4.10
Slater determinant, 1.3, 2.8, 15.6
Slater exchange potential, 1.6
slave particles, 10.14
spin fluctuations, 9.2, 9.8
spin models, 3.21
spin rings, 8.20
spin susceptibility, 3.41, 5.27
spin wave spectrum, 5.21
spin-fermion model, 9.11, 9.13
spin-statistics connection, 2.3
split operator approximation, 7.3
spontaneously broken symmetry, 4.25
stochastic series expansion, 7.10
Stoner instabilities, 3.12
Stoner interatomic exchange, 5.2
stripe order, 9.6, 9.14
strongly-correlated systems, 1.2, 1.17
sub-Kelvin cooling, 8.27
superconductivity, 10.9, 11.3, 12.18, 13.2

Eliashberg, 10.9
strongly correlated, 10.9
weakly correlated, 10.9

superfluid, 14.6, 14.13
fraction, 14.6

supersolid, 14.13
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Swendson-Wang algorithm, 7.17
symmetry, 8.7, 8.8, 8.11

cyclic groups, 8.9
translational symmetry, 8.9

symmetry factor of a diagram, 4.11

T
tensor network, 17.11
thermal de Broglie wavelength, 14.7
thermodynamic observables, 8.18
Thomas-Fermi theory, 1.2, 1.4
time-dependent variational principle, 17.23
time-evolving block decimation method,

17.23
toric code, 17.32
torque, 5.20
transfer operator, 17.18
transition metal
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dichalcogenides, 11.17
nitrochlorides, 11.13
pnictide halides, 11.15

Trotter
error, 7.8
time-step, 7.6

Trotter decomposition, 7.3, 14.3, 15.8,
16.16

tunneling frequency, 14.11
tunnelling inversion, 13.15
two-particle self-consistent theory (TPSC),

10.8

V
vacuum state, 2.13
variational cluster approximation (VCA),

4.2
virial estimator, 14.5

W
Wannier functions, 5.5
Wigner crystal, 14.12
winding number, 14.6, 14.13
Wolff algorithm, 6.6, 7.17
world lines, 7.6
worm algorithm, 7.21

X
Xα approximation, 1.9
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Zeeman interaction, 3.4, 8.6
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