‘spectral weaig| L g ;’ ~ ]
4. Mott-transition N

- >, a 1afticm ¥
nodel Hamiitonians Magnetism .o

phonons oo X
Hubbard model be

o‘% self-energy \ OLD_A
Hubbard-U_g>
o ZBCs &¢
3“;, g

©
MgB2
onte caglo.\d . downfolding

KCuF3

: L\ )
frustration '\é ¢, 0 %,

» 3
% . ® %,
I * CPT @&\ %\

(y .

dynamical maan-ﬁeld‘boo spin models Y
*(, Fermi surface

(/)

photoemission

S
)

Emergent Phenomena in Correlated Matter
Eva Pavarini, Erik Koch, and Ulrich Schollwock (Eds.)

o Ma
German Research School J J U L I C H
for Simulation Sciences

FORSCHUNGSZENTRUM



Schriften des Forschungszentrums Jilich
Reihe Modeling and Simulation Band / Volume 3




Forschungszentrum Julich GmbH German Research School for
Institute for Advanced Simulation Simulation Sciences GmbH

Lecture Notes of the Autumn School
Correlated Electrons 2013

Eva Pavarini, Erik Koch, and Ulrich Schollwdck (Eds.)

Emergent Phenomena in Correlated Matter

Autumn School organized by

the Forschungszentrum Julich
and the German Research School
for Simulation Sciences

at Forschungszentrum Julich
23 - 27 September 2013

Schriften des Forschungszentrums Jilich
Reihe Modeling and Simulation Band / Volume 3

ISSN 2192-8525 ISBN 978-3-89336-884-6



Bibliographic information published by the Deutsche Nationalbibliothek.
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the
Internet at http://dnb.d-nb.de.

Publisher: Forschungszentrum Jilich GmbH
Institute for Advanced Simulation

Cover Design: Grafische Medien, Forschungszentrum Jilich GmbH
Printer: Druckerei Schloemer, Diiren

Copyright: Forschungszentrum Jilich 2013

Distributor: Forschungszentrum Jilich

Zentralbibliothek, Verlag

D-52425 Jilich

Phone +49 (0)2461 61-5368 - Fax +49 (0)2461 61-6103
e-mail: zb-publikation@fz-juelich.de

Internet: http://www.fz-juelich.de

Schriften des Forschungszentrums Jilich
Reihe Modeling and Simulation  Band / Volume 3

ISSN 2192-8525
ISBN 978-3-89336-884-6

The complete volume ist freely available on the Internet on the Jilicher Open Access Server (JUWEL) at
http:/ /www.fz-juelich.de /zb/juwel

Neither this book nor any part of it may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, microfilming, and recording, or by any
information storage and retrieval system, without permission in writing from the publisher.



Contents
Preface
Introduction

1. Density Functional Theory for Emergents
Robert O. Jones

2. Many-Electron States
Erik Koch

3. Magnetism: Models and Mechanisms
Eva Pavarini

4. The Variational Cluster Approximation
Robert Eder

5. Magnetism: From Stoner to Hubbard
Alexander I. Lichtenstein

6. Monte Carlo Methods with Applications to Spin Systems
Werner Krauth

7. Monte Carlo Simulations of Quantum Spin Models
Stefan Wessel

8. Quantum Theory of Molecular Magnetism
Jiirgen Schnack

9. Recent Advances in Experimental Research on High-Temperature Superconductivity
Bernhard Keimer

10. Strongly Correlated Superconductivity
André-Marie S. Tremblay

11. Superconductivity: 2D Physics, Unknown Mechanisms, Current Puzzles
Warren E. Pickett

12. Density Functional Perturbation Theory and Electron Phonon Coupling
Rolf Heid

13. Eliashberg Theory
Giovanni A.C. Ummarino

14. Path Integral Methods for Continuum Quantum Systems
David M. Ceperley

15. Auxiliary-Field Quantum Monte Carlo for Correlated Electron Systems
Shiwei Zhang

16. DMRG: Ground States, Time Evolution, and Spectral Functions
Ulrich Schollwick

17. Entanglement and Tensor Network States
Jens Eisert

Index






Preface

Emergent phenomena are the hallmark of many-body systems, and yet to unravel their na-
ture remains one of the central challenges in condensed-matter physics. In order to advance
our understanding it is crucial to learn from the different manifestations of emergence as well
as from the interplay of different emergent phases, such as magnetism and superconductivity.
For addressing such problems, it is necessary to master a broad spectrum of techniques from
traditionally separate branches of research, ranging from ab-initio approaches based on density-
functional theory to advanced many-body methods, electron-lattice coupling and dynamics. In
these lecture notes we analyze emergence in some of its major manifestations in the solid-state
and compare methodologies used to address specific aspects. The aim of the school is to in-
troduce advanced graduate students and up to the essence of emergence and to the modern
approaches for modeling emergent properties of correlated matter.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation and the German Research School for Simulation Sciences at the Forschungszentrum
Jiilich provided the funding and were vital for the organization of the school and the production
of this book. The Institute for Complex Adaptive Matter (ICAM) offered travel support for
international speakers and participants.

The nature of a school makes it desirable to have the lecture-notes available already during
the lectures. In this way the participants get the chance to work through the lectures thoroughly
while they are given. We are therefore extremely grateful to the lecturers that, despite a tight
schedule, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We thank Mrs. H. Lexis of the Forschungszentrum Jiilich Verlag as well as Mr. D. Laufen-
berg and Mrs. C. Reisen of the Graphische Betriebe for providing their expert support in pro-
ducing the present volume on a tight schedule. We heartily thank our students and postdocs
that helped in proofreading the manuscripts, often on quite short notice: Michael Baumgirtel,
Khaldoon Ghanem, Evgeny Gorelov, Esmaeel Sarvestani, Amin Kiani Sheikhabadi, Joaquin
Miranda, German Ulm, Guoren Zhang, and in particular Hunter Sims.

Finally, our special thanks go to Dipl.-Ing. R. Hélzle for his invaluable advice on the in-
numerable questions concerning the organization of such an endeavour and to Mrs. L. Snyders
and Mrs. E. George for expertly handling all practical issues.

Eva Pavarini, Erik Koch, and Ulrich Schollwock

July 2013
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1.2 Eva Pavarini and Erik Koch

1 Emergent phenomena

The concept of emergence arose in arguments about the biological basis of consciousness that
were sparked by Darwin’s theory of evolution. It was formalized by the philosopher George
Henry Lewes in his 1875 Problems of Life and Mind [1]. But John Stuart Mill, around whom
a successful school of British Emergentism developed, had already noted in his 1843 System of
Logic [2]

All organized bodies are composed of parts, similar to those composing inorganic
nature, and which have even themselves existed in an inorganic state; but the phe-
nomena of life, which result from the juxtaposition of those parts in a certain man-
ner, bear no analogy to any of the effects which would be produced by the action of
the component substances considered as mere physical agents. To whatever degree
we might imagine our knowledge of the properties of the several ingredients of a
living body to be extended and perfected, it is certain that no mere summing up of
the separate actions of those elements will ever amount to the action of the living
body itself.

While it was hotly debated whether the constitutive principles of biology are reducible to those
of physics and chemistry, the importance of emergence in physics was recognized only much
later. From the inception of their science, physicists have been fascinated most with finding the
ultimate laws of the universe. There is no doubt that our present understanding of the world
owes a lot to this reductionist approach. That one and the same force, gravitation, explains
how an apple falls and how the planets move around the sun is an astonishing discovery. Other
ideas such as the existence of atoms, a finite number of particles from which all normal matter
is made, revolutionized our worldview. The understanding of the differences between atoms,
which led to the periodic table, opened the path to quantum mechanics and gave chemistry a
microscopic basis. At the same time, the landscape grew more complex. It became clear that
atoms are not at all the fundamental particles, but that they are composed of yet more elementary
particles, electrons, neutrons, and protons. It was understood that a new force holds the nuclei
together, which was later still understood to be the consequence of a more fundamental force,
the strong force, between more elementary particles, the quarks. The stellar successes of the
reductionist approach led a large part of the scientific community to think that the new grand
challenge was to find the theory of everything, in which the ultimate elementary particles are
identified and where all known forces are unified. From this point of view, everything will
ultimately be explained in the same framework. Among the many successes of this approach,
the most striking and perhaps least celebrated revelation is, however, that every fundamental
theory hides a more fundamental one and that the target seems to elude us, today’s elementary
particles and fundamental forces becoming tomorrow’s bound states and effective interactions.
So the question is whether an ultimate fundamental theory of everything would solve all prob-
lems. A glimpse into the history of condensed-matter physics hints at the answer: not really. At
the theory layer of chemistry and solid-state phenomena, the fundamental particles and interac-
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tions have actually been known since the first quarter of the 20th century. Most of solid-state
physics and chemistry can indeed be described by the Schrodinger equation

)
ihs: |0) = H|) (1)

where the Hamiltonian for a set of atomic nuclei {«} with atomic numbers {Z,} and masses
{M,} and their accompanying electrons {7} is given, in atomic units, by

1
H:—§;V?—Z—V2 Z| _Ry Zm—n Z\R R

As Laughlin and Pines pointed out [3], here we have the theory of (almost) everything (ToaE).

o \

Why then are we still working on condensed-matter physics? The history of 20th century
condensed-matter physics is full of experimental discoveries showing genuinely novel behav-
iors that were not only unanticipated by theory, but took decades to fully clarify, even though,
in principle, the equations, the ToaE, were well known. Examples are magnetism, supercon-
ductivity, the Kondo effect, or the quantum-Hall effect in its integer and fractional forms. Some
of the mysteries discovered in the last century are still not or not fully clarified, such as high-
temperature superconductivity and heavy-fermion behavior; new ones will certainly come to
light in the years to come. The difficulties are not merely technical or computational, but fun-
damental. As P.W. Anderson pointed out in the now very famous article More is Different [4],
when many particles interact, even if we know the type of interaction, and even if the interac-
tion is as simple as a two-body term, totally surprising results can emerge: gold is made of gold
atoms; but a single atom of gold is neither a metal nor does it appear in a golden color. Like-
wise, an Fe atom is not ferromagnetic, nor does a Pb atom superconduct at low temperatures.
Perhaps it is easier to grasp the concept of emergence by going back to its origin. As Anderson
writes [5]

The idea of emergence began in biology, where it was realized that the course of
evolution is one long story of novel properties emerging out of the synergy of large
collections of simpler systems: cells from biomolecules, organisms from cells, soci-
eties from organisms. But that emergence could occur in physics was a novel idea.
Perhaps not totally novel: I heard the great evolutionist Ernst Mayr claiming that
30 or 40 years ago, when he described emergence to Niels Bohr, Bohr said; “but
we have that in physics as well! — physics is all emergent”, but at the time, as usual,

only Bohr knew what he meant.

Thus the challenge in condensed-matter physics is to understand the behavior of complex sys-
tems, starting from the apparently simple underlying theory, the Schrodinger equation. This
is what Anderson defines the Complex Way, in contrast to the Glamor Way travelled by high-
energy physics in the search of the ultimate theory. Complexity is tamed by universality: it is
rather the consequence of many-body correlations — one particle influenced by all the others —
than of the specific type of interaction. New complex entities can then form under well defined
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conditions, such as high pressure, low temperature, or in the presence of magnetic fields, of-
ten in radically different systems. These entities are stable in a certain regime, in which they
represent the fundamental “particles” — but actually are effective- or quasi-particles. They feel
effective interactions among themselves, yielding on a higher level yet other states of matter.
Can we predict such states without experimental facts, just from the equations? As Anderson
writes [5]

The structure of Nature is so completely hierarchical, built up from emergence upon
emergence, that the very concepts and categories on which the next stage can take

place are themselves arbitrary.

Remarkably, modern molecular biology has made enormous progress by identifying genes as
fundamental entities. Still, the evolutionary biologist Ernst Mayr rejects the reductionist ap-
proach that evolutionary pressure acts on single genes, arguing that it instead acts on organ-
isms, that genes influence each other, and that accounting for this influence is essential. Even if
we take genes as the fundamental entities, their definition might appear to the outsider as airy
as that of quasiparticles in physics or what we before called complex entities. It is clear that,
whatever they are, they are composite rather than fundamental objects; but it is also clear that
they are a better starting point than their more fundamental components. It would, e.g., not be
of much help for molecular biology to start from the Schrédinger equation. Returning to the
layer of electrons and nuclei, the message is that at a given energy scale new intermediate lay-
ers can form at which novel emergent behavior occurs. But, when dealing with systems made
of N ~ 10% particles, to predict novel emergent behavior is hardly possible. Again, quoting
Anderson [5]

How can you predict the result when you can’t predict what you will be measuring?

The classical path to discoveries of new states of matter is, with few precious exceptions, led by
experiment. It is the recognition of a paradox, an experimental result apparently contradicting
our well established theories, which leads to the identification of new phenomena; Nature has to
provide us some strong hint. And it is hardly the ab-initio path, from the ToaE to the real world,
that leads us to understanding the physics of the new phenomenon. It is rather the identification
of mechanisms, which often is based on simple models, apparently wild ideas, and a good
measure of approximation.

It is natural to ask ourselves how emergent phenomena arise. The formation of layers of physical
theory is best understood in terms of the idea of renormalization. The exact solution of the
Schrodinger equation involves phenomena at many energy scales. However, at low energy —
meaning the energy window on which we are focusing — high-energy states play a small role.
They can only be reached via virtual excitations, which have a time-scale proportional to i/ AFE,
where AF is the excitation energy. Thus it is not necessary to account for them in full detail.
It is more meaningful to downfold them and work in the subspace in which only low-energy
states and, if sizable, the low-energy effects of these virtual excitations are taken into account.
Between different branches of physics, this separation is quite clear-cut: in condensed-matter
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physics, we do not need quarks to describe atoms, not even neutrons and protons. Instead
we can simply talk about their bound states, the nuclei as immutable objects. In these cases,
the high-energy states are so far away that the only effect of the downfolding is the emergent
object, e.g., the atomic nucleus. For intermediate energy scales the scenario can become much
more complicated; the effect of the downfolding is to generate effective Hamiltonians, the new
effective theory in that energy window. The effective Hamiltonian is typically made of the
original Hamiltonian, however restricted to the low-energy Hilbert space and with renormalized
parameters, plus new interactions; in the smaller Hilbert space some degrees of freedom are
frozen, and the effective Hamiltonian typically can be rewritten in term of new entities, stable in
that subspace; examples are quasiparticles, Cooper pairs, or local spins. The major difficulty in
condensed-matter is that there is always a chance of crossing the boundaries between effective
theories, e.g., in a phase transition to a new state of matter. Still it is possible to identify
truly emergent regimes from their robustness or universality. Often the cooperative behavior
of a many-particle system is surprisingly independent of the details of their realization — their
substrate. The Kondo effect, for example, was initially found in diluted magnetic alloys and
ascribed to the antiferromagnetic exchange interaction of the localized impurity-spins with the
spin-density of the conduction electrons at the impurity site. But is has been realized in a
number of systems in which there are no local magnetic moments, such as in quantum dots or
in carbon nanotubes. Recently it has even been shown to be intimately related to the metal-
insulator transition of the Mott type, a connection that is at the core of the dynamical mean-field
theory approach (DMFT) [6,7]. Another striking example is conventional superconductivity,
explained via the BCS theory. First observed in simple metals at very low temperatures, the
same kind of phenomena has been found in liquid *He, which becomes superfluid below a
certain critical temperature and even in systems as exotic as neutron stars [8]. Returning to less
massive systems, the mechanism of the metal-insulator transition in transition-metal oxides is
typically described via the Hubbard model, which in recent years has also been employed to
model the behavior of very different systems: ultra-cold atoms in optical lattices.

But how do we go from the Schrédinger equation to emergent properties? It is certainly tempt-
ing to start from the exact many-body wave function, as we know a straightforward prescription
for calculating observables from it. But for what system should we calculate that exact wave
function? We are certainly not interested in the properties of just one particular sample with
its unique arrangement of atoms. What we are interested in are the properties of a material,
i.e., a class of samples that can be reproducibly manufactured. Any single one of these sam-
ples will be quite different from the others in terms of its microscopic details. So, even if we
could calculate them, the exact ground state wave functions for two such samples would, for all
practical purposes, be orthogonal. Chipping off an atom from a bulk of gold does not change
its characteristics. Thus, we are not really interested in the exact solution for some particular
situation, but in general properties. Emergent properties abstract from the idiosyncrasies of a
particular realization. A typical idealization is the thermodynamic limit, where we assume that
the number of particles N — oo, even though any real sample can only be made of a finite
number of atoms. This lets us exploit the advantages of the continuum over discrete sets. Only
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in the thermodynamic limit can we define a phase transition where every actual sample shows a
mere crossover. Only in an infinite system can we speak of a continuum of excited states where
for every actual sample there is only a finite number of excitations with a distribution that de-
pends critically on its size. Another important idealization is the perfect-crystal approximation,
in which we assume that defects are of minor importance for the physical properties of inter-
est and where, in particular, we abstract from surface effects by introducing periodic boundary
conditions. It is of course crucial to keep in mind that these idealizations only make sense for
properties that can be transfered from the idealization to the real materials. Experimentally we
can, for all practical purposes, distinguish metals and insulator and observe phase transitions in
crystals. Thus the thermodynamic limit is a good starting point. Conversely, trying to describe
a bulk system with a finite number of atoms, we eventually get lost in irrelevant details. The
importance of getting rid of irrelevant details has been succinctly expressed by Lipkin [9]

On the other hand, the exact solution of a many-body problem is really irrelevant
since it includes a large mass of information about the system which although mea-
surable in principle is never measured in practice. In this respect, the quantum-
mechanical many-body problem resembles the corresponding problem in classical
statistical mechanics. Although it is possible in principle to solve Newton’s equa-
tions of motion and obtain the classical trajectories of all the particles in the system
for all times, only a small part of this information is relevant to anything that is
measurable in practice. Classical statistical mechanics uses a statistical descrip-
tion in which measurable macroscopic quantities such as temperature, pressure and
entropy play an important role. An incomplete description of the system is consid-
ered to be sufficient if these measurable quantities and their behavior are described
correctly.

Thus, approximate methods that grasp the essential details are bound to be more successful than
exact methods — if available [10] — since they shield us from all the irrelevant information. So
it is not the “Great Solid State Physics Dream Machine” [5] that we should be after, or in the
words of Wigner and Seitz [11]

If one had a great calculating machine, one might apply it to the problem of solving
the Schrodinger equation for each metal and obtain thereby the interesting physical
quantities, such as the cohesive energy, the lattice constant, and similar parame-
ters. It is not clear, however, that a great deal would be gained by this. Presumably
the results would agree with the experimentally determined quantities and nothing
vastly new would be learned from the calculation. It would be preferable instead
to have a vivid picture of the behavior of the wave functions, a simple description
of the essence of the factors which determine cohesion and an understanding of the
origins of variation in properties [. .. ].

Lipkin concludes that it is actually misleading to think that our job is to find approximations to
the exact solution of the Schrodinger equation [9]

In fact, many treatments of the quantum-mechanical many-body problem give the
misleading impression that they are indeed methods for obtaining approximations
to the exact solution of the Schrodinger equation.
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A better approach is to develop approximate schemes for calculating, for idealized systems,
reduced quantities that do not provide complete information of the system but still allow us to
calculate experimentally accessible quantities, such as Green functions or response functions.
This route is successfully taken by density-functional theory (DFT) [12], which uses the many-
body electron density as a variable, or by the dynamical mean-field theory, which is based
instead on Green functions. The great success of DFT is that, via the Kohn-Sham equation,
the problem of finding the electron density of the original many-electron system is reduced to
that of calculating it for an auxiliary one-electron problem, whose Hamiltonian has to be de-
termined self-consistently. The electrons in the auxiliary problem feel a one-electron potential
whose strength and shape is determined not only by the nuclei which define the lattice but also
by all the other electrons — which is why self-consistency is needed. Of course, even though
DFT is in principle an exact ground-state theory, we know only approximate forms of the DFT
potential, such as the local-density approximation (LDA) and its extension. Nevertheless, if the
approximate form is good enough, we can perform ab-initio calculations, i.e., calculate many
properties of a system specified only by the atomic positions and the type of atoms. In an emer-
gent world, it would, however, be very surprising if the LDA always worked. The reason is a
fundamental one. If objects qualitatively different from the quasi-electrons, on which the LDA
is built, can form, this approach is bound to fail even qualitatively. This is what happens in
strongly correlated materials. Remarkably, however, the LDA is so successful that DFT can be
considered the standard model of solid state physics that is used to understand and even predict
the properties of whole classes of materials. Strongly correlated systems are not only charac-
terized by the fact that the LDA fails to describe them. More importantly, their properties are
very sensitive to small changes in external fields or doping, and hence they are characterized by
surprisingly large effects, such as colossal magneto-resistance, high-temperature superconduc-
tivity, and the like. This suggests that a variety of different layers can easily form in which new
fundamental entities exist and interact. Hence, for strongly correlated systemes, it is particularly
unlikely that a single approximation can be sufficient for explaining all phenomena.

One exemplary failure of the LDA is the Mott metal-insulator transition. Within the LDA,
metals have partially filled bands while insulators are characterized by a band gap. The latter
can also arise because of long-range magnetic order. The same concept of metal and insulator
remains in place if we use approaches in which many-body effects are taken into account on a
static mean-field level such as the Hartree-Fock (HF) method. Thus the existence of materials
with partially filled bands that are paramagnetic insulators is a paradox in the context of LDA
or HF. It can, however, be understood using a simple model, the Hubbard model

H=—tY > cle, +U> ngny. 2)

o (i)

In this model, the metal-insulator transition at half-filling is a consequence of a large ¢ /U ratio,
1.e., an on-site Coulomb repulsion which is large with respect to the band-width, determined
by the hopping ¢. Although the mechanism behind the paramagnetic insulating phase had been
proposed about 60 years ago by Nevil Mott, it is only recently, through the dynamical mean-
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field theory [6, 7], that we can indeed describe that physics quantitatively. DMFT yields an
approximate solution of the Hubbard model in which spatial correlations are neglected and only
dynamical effects are taken into account. The DMFT solution of the Hubbard model shows
that with increasing ¢/U the quasiparticle masses increase and eventually diverge; the Mott
transition is associated with the corresponding divergence of the real part of the self energy.

It is remarkable that a model as simple as the Hubbard model, bare of all the complications or
details of the real material, can be of any relevance for systems as different as NiO, LaTiOs
and KCuF;. LDA-based studies on weakly correlated materials suggest that this cannot pos-
sibly be the case. When the LDA works, we typically need the full details of the electronic
structure to explain the structure of the Fermi surfaces, the lattice, or the chemical bond. In
fact, model Hamiltonians might grasp the substance of a phenomenon, such as the nature of the
Mott transition, but they are not sufficient to account for the varieties of its manifestations, and
eventually will fail in explaining new paradoxes that are found when this variety is explored.
The Mott mechanism can explain the existence of Mott insulators, but it does not tell us why
SrVOs; is metallic while the very similar YTiO3 and LaTiOgs, are insulators, or why the gap is
much larger in YTiOs than in LaTiOg, although they have a similar LDA band width. Even if
we know that Mott physics is the right starting point, we have to augment the simple Hubbard
model to describe reality. But how? If we could solve it, the original Hamiltonian contains all
details, but, as we have discussed, they are too many, and thus they tell us nothing. The crucial
point is to disentangle the important features from all the irrelevant details. This is the true chal-
lenge in condensed-matter physics. In the case of SrVOs, YTiO3 and LaTiOs, it turns out that
structural distortions and a tiny crystal field splitting of ¢, levels play the crucial role [13]. Not
surprisingly, there is no systematic way of determining which details do matter for explaining a
certain behavior in a given system. This process relies on our intuition about the mechanisms,
and it brings the work of a physicist rather close to that of an artist, requiring proper taste and
judgement. The good news is that for Mott-like system the DMFT method turns out to be a very
flexible approach. It has been combined with DFT in the LDA+DMFT approach [14], whose
steady development in the last ten years allows us to solve more and more realistic Hubbard-like
models and thus to test ideas and approximation in a realistic context. And it is not difficult to
imagine that in the next 20 years LDA+DMFT codes will probably become as flexible and ver-
satile as modern DFT codes. We have to keep in mind that, although this constitutes impressive
progress, as in the case of the LDA, it is very unlikely that a single approximation will solve all
the paradoxes. New ones will certainly be found, and will require us to extend the theory, to
think differently, to go away from the well known path, to look for new mechanisms. The end
of physics is unlikely to come any time soon.

2 Paradigmatic cases

At the focus of this year’s school are two paradigmatic examples of emergent phenomena,
antiferromagnetism and electron-phonon driven superconductivity. We briefly reconstruct the
main steps that led to the unraveling of their mystery and discuss their emergent aspects.
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2.1 Antiferromagnetism

At the beginning of the 20th century, magnetism was the subject of intense debate. The theoret-
ical scenario was dominated by the ingenious concept of Weiss’ molecular field theory of fer-
romagnetism [15]. Of course magnetic moments in matter could only be understood quantum
mechanically and it was Heisenberg, who proposed that the ferromagnetic coupling between
magnetic moments is due to the Coulomb exchange between electrons [16]. The latter yields an
interaction of the form

Ia
H:§;Si-5i/, 3)

with I" < 0. Néel [17] extended Weiss’ theory to the case of a site-dependent molecular field
and found the antiferromagnetic state as the mean-field solution of the /” > 0 Heisenberg model
below a critical temperature, 7. Antiferromagnetism is one of the precious exceptions to the
rule that condensed-matter physics is essentially led by experiment: The experimental proof of
the existence of antiferromagnetism came only much later, in 1951, when Shull and Smart mea-
sured via elastic neutron scattering sharp new Bragg peaks below a critical temperature in the
transition-metal oxide MnO [18]. Even in the case in which they are actually predicted, how-
ever, emergent phenomena are rarely as simple as in the original theoretical proposal. The para-
dox at the time was that the exact solution of the antiferromagnetic one-dimensional Heisenberg
chain, obtained by Bethe, yields a ground state with total-spin zero, a condition not satisfied by
the Néel antiferromagnetic state. Later on, this paradox was solved by the observation of An-
derson that, in a perfect antiferromagnet, quantum fluctuations would restore the symmetry, but
in a real system weak perturbations, defects, or an external magnetic field can suppress them;
these quantum fluctuations however imply the existence of cooperative excitations, spin waves.
This is a consequence of the Goldstone theorem, which states that soft bosonic excitations have
to be present whenever a continuous symmetry is broken. Antiferromagnetism turns out to
be, indeed, a representative example of a so-called broken symmetry state, a state in which the
electrons choose not to have the same symmetry of the Hamiltonian that govern their behavior,
in this specific case the continuous spin-rotation symmetry of the Heisenberg model Eq. (3).
Remarkably, some of the ideas developed in the context of broken symmetry, such as Gold-
stone bosons, were taken over by high-energy physics [5], and have driven the search for the
Higgs boson [19]. It is worth pointing out another emergent aspect associated with the Heisen-
berg model that brings us back to the basics of quantum mechanics. Where do the local spins
S, come from? There are apparently no such local spins in the orginal Schrédinger Hamilto-
nian, the ToaE of solid-state physics. The existence of local spins becomes immediately clear,
however, if we consider an idealized atom described by the Hamiltonian

H = U?”LTTQ.
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This Hamiltonian has four eigenstates, which can be labeled as | N, S, S.), where N is the total
number of electrons and S, the z component of the total spin,

0,0,0) 0)
|17%7 > = C¥|0>
1,5, 4) c/|0)

)

2,0,0) = clcflo

These states result from the electron-electron interaction and the Pauli principle. In this simple
example the energy of the atomic states depends only on the total number of electrons; thus we
label it with E(N), with E(0) = 0, E(1) = 0, and E(2) = U. If the atom is full or empty, its
total spin is zero; if instead the idealized atom is occupied by one electron, it behaves as a local
S = 1/2. Let us consider now a half-filled system described by the one-band Hubbard model,
Eq. (2), in which a set of idealized atoms of the type just discussed form a lattice. In this model
the electrons can, in principle, hop from site to site, gaining kinetic energy o< —t; each hopping
process will, however, cost the Coulomb energy

EQ2)+ E(0)—2E(1)=U.

If the ratio between kinetic energy gain and Coulomb energy loss, o« ¢/U, is small enough
double-occupations are unlikely and each site is filled on average with ~ 1 electron. Then spins
remain stable in the crystal, and the overall effect of the virtual excitationsto N = 0 and N = 2
states is an effective exchange interaction between the spins. We can calculate the effective
exchange coupling by downfolding the N = 0 and N = 2 high-energy states; if we follow this
procedure [20] we find an effective antiferromagnetic Heisenberg interaction with

U

This is an example of the kinetic exchange mechanism. It plays an important role in the physics
of transition-metal oxides. We are now in the position to discuss emergence at work. The first
lesson is that spins are by themselves emergent objects. They are the result of the interplay of the
Pauli principle and Coulomb repulsion. Furthermore, within the kinetic exchange mechanism,
they interact because of virtual excitations to high-energy states, in this case those with N = 2
and N = 0. Then, below a certain temperature 7y, because of the interactions between these
emergent entities, a new cooperative emergent state, the antiferromagnetic Néel state, arises; an
example of emergence built on emergence. Finally, spins only “live” on certain energy scales.
At energy scales comparable with ¢ /U excitations to empty and doubly occupied states (charge
fluctuations) become likely and it is no longer possible to describe the system by a simple
Heisenberg model; this happens, for example, when we want to study the Hubbard bands in
photoemission spectra. Thus, increasing the energy or the temperature we cross the boundary
to a different layer and change the effective theory. In the higher layer of theory the spins are the
fundamental particles and the Heisenberg model becomes an effective theory of everything. In
the lower layer we have to account for the charge degrees of freedom, and the effective theory
of everything is the Hubbard model.
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2.2 Superconductivity

The discovery of metals with infinite conductivity [21] by Kamerlingh Onnes in 1911 came as a
genuine surprise. It took almost 60 years to find an explanation, years in which brilliant minds
tried hard to solve the riddle and yet failed. This failure by itself is a strong indication that
superconductivity is an emergent phenomenon. Many experimental facts were added along the
way; we just mention two of the most significant. The first was the Meissner effect in 1933 [22],
the spontaneous expulsion of a magnetic field, somewhat similar to perfect diamagnetism. The
most crucial observation was perhaps the discovery of the isotope effect in 1950 [23]. From
the theory side, the decisive development was the concept of electron pairs as developed by
Leon Cooper in late 1956 [24]. Cooper realized that, in the presence of an arbitrarily weak
electron-electron attraction, —V/, two electrons with energy just above the Fermi surface of a
metal will form a bound-state that could destabilize the Fermi surface itself. Cooper’s pair
creation operator is defined as

T ToT
bep = Z)‘kckic—m'
k

Since a Cooper pair is, to first approximation, a boson, Cooper pairs can in principle all occupy
the same state, as it happens in Bose-Einstein condensation. Based on these ideas, Bardeen,
Cooper and Schrieffer elaborated the theory of superconductivity. They identified the super-
conducting state as a coherent state, the eigenstate of Cooper’s pair annihilation operator bcp.
In Fock space such state can be easily written in product form

T
Whos) = ¢"10) = [T (14 Anclyelay ) 10),
k

where |0) is the electron vacuum. The microscopic mechanism that leads to the pairing in
conventional superconductors is the electron-phonon coupling; for electrons right above the
Fermi surface the resulting electron-electron coupling is attractive. The BCS Hamiltonian has
then the form
Hpcs = Z ExNko + Z kak/cLTcT_mck/icfk/T :
ko %

where ¢, is the dispersion of the electrons, and Vj, ./ the electron-electron interaction. In the
simplest version of the BCS theory one can assume that the coupling V5 is isotropic. Thus we
can make the following approximation

—V for |5k|,|€k’|<5D

Vie o ~ )
0 otherwise

where €p defines the small energy window in which the potential is attractive. The supercon-
ducting gap A(T) is then given by the solution of the BCS gap equation; at 7' = 0

A(0) = 2epe/Peer)V (4)
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where p, (¢r) is the density of states per spin at the Fermi level, and p4(ep) = p;(¢r). There is
a universal relation between the gap and the critical temperature,

2A(0)

c

~ 3.528.

In superconductivity the continuous symmetry that is broken is the gauge symmetry related
to the conservation of charge; in the broken symmetry state the phase of the wavefunction is
the new physical parameter. The Cooper pairs are emergent objects, which interact to form a
macroscopic condensate: the superconducting state.

Nowadays, we call superconductors that can be explained within the BCS theory and its sim-
ple extensions conventional superconductors. This does, however, not mean that they do not
hold surprises. The discovery of MgBs in 2001 [25], with a 7. as high as 40 K, was totally
unanticipated, in particular in such a comparatively simple binary compound. It immediately
sparked an intense search for similar conventional materials with perhaps even higher 7. Re-
markably, MgB; is not an exotic material; at the time of the discovery it was available to many
laboratories. In principle we did, once more, have the theory — we could have predicted it. But
again, nobody thought in advance that MgB, could be such a remarkable system. And even if
we had used our theoretical tools, would we have predicted that MgB, is a high-7}. conventional
superconductor? Probably not: it turns out that MgB, is less simple then one might think. To
understand it we have to account for multiple bands and gap anisotropies, typically neglected in
the standard version of the theory of conventional superconductors. Thus this is a case in which
details that are usually negligible play an essential role.

Another, totally different surprise had arrived earlier, in 1986, with the discovery of supercon-
ductivity with 7, = 40 K in La;CuO,. The finding was so unexpected that the title of the
paper [26] that won Bednorz and Miiller a Nobel prize conveys the author’s doubts: Possi-
ble high T, superconductivity in the Ba-La-Cu-O system. In a relatively short time, an entire
family of CuOs-layered superconducting materials was identified, the high-temperature super-
conducting cuprates (HTSCs). Within the HTCS family, the maximum value of 7. rose rapidly
to ~ 130 K. It quickly became clear that these new materials differ substantially from conven-
tional superconductors and the mechanism for high-temperature superconductivity remains a
puzzle. There is no doubt, however, that the pairing has d-wave symmetry. More recently, in
2006, superconductivity was discovered in LaOFeP [27], and many other iron-based supercon-
ductors were quickly identified. Once more, a different class of superconductors, iron pnictides,
had been experimentally found, and new puzzles have to be solved; within iron pnictides a 7,
as high as 57 K has been reached.

The lesson that emerges is that a superconducting state can manifest itself in very different
systems, ranging from superfluid *He, to MgB,, high-temperature superconducting cuprates,
and neutron stars. While the phenomenon itself is in all cases similar, its microscopic origin,
i.e., the lower layer of the theory, varies strongly from case to case. The challenge is to identify
in each case the proper connection between these layers of theory.
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3 Overview of the school

This year’s school aims to give a broad introduction to the physics of emergent phenomena in
condensed matter and to the modern approaches to dealing with them. We focus primarily on
the two paradigmatic manifestations of emergence that we have just discussed, magnetism and
superconductivity. In order to understand these phenomena, we start with the fundamentals. The
lecture of Bob Jones discusses density-functional theory from a historical perspective, stressing
the aspects relevant to the study of emergence. The lecture of Erik Koch extends the scope to
many-electron states, from introducing the formalism of second quantization to discussing the
Mott- and BCS-states. The fundamental aspects of magnetism and exchange phenomena in a
model context are presented in the lecture of Eva Pavarini. Robert Eder then introduces the vari-
ational cluster approximation to the spectral properties of the Hubbard model, the drosophila of
strong correlation physics, using a self-energy functional.

Reflecting our focus on magnetism, a group of lectures is dedicated to magnetism in real mate-
rials and to numerical methods to solve complex spin models. The lecture of Sasha Lichtenstein
retraces the path from Stoner to Hubbard models of magnetism, emphasizing modern DMFT-
based approaches to understanding real materials. Treating extended magnetic systems requires
highly efficient methods for successful finite-size extrapolations. Werner Krauth introduces the
Monte Carlo approach and discusses methods for determining and reducing correlation times.
The lecture of Stefan Wessel shows how to use Monte Carlo techniques for simulating quantum
spin models. Turning to finite systems, Jiirgen Schnack illustrates the state-of-the-art in describ-
ing and designing molecular magnets, intriguing systems that could become crucial building
blocks for future quantum computers.

A school on emergent phenomena in condensed matter systems would not be complete without
the view from experiment. Bridging magnetism and superconductivity, Bernhard Keimer took
the challenging task to cover recent advances and open problems in our understanding of the
high-temperature superconducting cuprates, with a special focus on the role of spin fluctuations.
The next group of lectures is dedicated to the various aspects of conventional and unconven-
tional superconductivity, the second focus of our school. The lecture of André-Marie Tremblay
illustrates theoretical progress on the theory of strongly correlated superconductivity. Warren
Pickett then explains the challenges in designing real superconducting materials, highlighting
some of the puzzles they pose or have posed. Two lectures are dedicated to the theory of conven-
tional superconductors. Rolf Heid discusses the mechanism of conventional superconductivity
and shows how to calculate the electron-phonon coupling ab initio using density functional per-
turbation theory. These results are the input to Eliashberg theory, which is introduced in the
lecture of Giovanni Ummarino. The case of superfluidity is discussed in the lecture of David
Ceperley, introducing the path-integral picture of degenerate quantum systems.

The final group of lectures focuses on wave function based methods. Shiwei Zhang shows us
how to study models and real materials using the auxiliary-field quantum Monte Carlo approach.
Ulrich Schollwéck gives an introduction to the density-matrix renormalization group approach,
while Jens Eisert explains how to analyze ground states using concepts of quantum information.
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1 Introduction

The “reductionist” view of science implies focus on simpler and simpler causes and finally on
the ultimate constituents of matter. This belief—that our understanding of Nature will follow if
we solve this “fundamental” problem—has a vigorous opponent in Philip Anderson, who has
emphasized the “emergent” view over many years [1,2]:

“What really is the problem is called ‘broken symmetry’: the underlying laws have a cer-
tain symmetry and simplicity that is not manifest in the consequences of these laws. To
put it crudely, a simple atom of gold cannot be shiny and yellow and conduct electricity:
Metallicity is a property with meaning only for a macroscopic sample. ...”

Qualitatively different phenomena can occur as the level of complexity increases, and this
school is devoted to understanding some of them, particularly new features that arise in “strongly
correlated” systems.

A practical definition of “strongly correlated” systems covers those that are not described well
by density functional (DF) theory. Many seminars and publications on “strongly correlated”
mention at the outset the widespread use of density functional (DF) theory in materials science
and chemistry and the physical insight that often results. The second sentence, however, often
lists the systems where DF results are disastrous (an insulator is found to conduct, almost any-
thing to do with rare earth elements, ...), emphasizing the importance of describing strongly
correlated materials correctly.! DF theory is nevertheless an essential part of this workshop.
The approach is used widely in materials science and chemistry and provides useful results
for many systems for which the exact wave function cannot be computed. We should have a
feel for the areas where physical insight can be obtained and why approximations used in DF
calculations can give sensible answers far from their regions of obvious validity.

The origins of DF theory go back to the early years of quantum mechanics in the late 1920’s.
Thomas [4] and Fermi [5] recognized the electron density as a basic variable, and Dirac [6]
showed already in 1930 that the state of an atom can be determined completely by its density;
it is not necessary to specify the wave function. We follow here the history of density-related
methods to the single-particle equations of Kohn and Sham in 1965 and beyond. In its modern
form, the DF formalism shows that ground state properties of a system of electrons in an external
field can be determined from a knowledge of the density distribution n(r) alone. Much of the
work in materials science and chemistry focuses on a property for which DF calculations are
particularly valuable: the total energy E of a system of electrons in the presence of ions located
at [?;, which determines structural and cohesive properties.

Accurate calculations of the entire energy surface £'( R;) are possible only for systems with very
few atoms, and this function generally has vast numbers of maxima and minima at unknown
locations. The lowest energy, however, corresponds to the ground state structure, and paths

! An example can be found in the Preface of the 2012 Autumn School [3]: “Density functional theory (DFT) is
considered the Standard Model of solid state physics. The state-of-the-art approximations to DFT, the local-density
approximation (LDA) or its simple extensions, fail, however, even qualitatively, for strongly correlated systems.”
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between minima are essential to our studies of chemical reactions, including their activation
energies. When I read the autobiography of Francis Crick [7], I was taken by his observation

“If you want to study function, study structure.”

This may be self-evident to molecular biologists, but it is also true in many other areas. The
DF approach allows us to calculate F(Ry), and hence the structure and many related proper-
ties, without using experimental input. If you are more interested in “real materials” than in
mathematical models, this is a crucial advantage for strongly correlated materials as well.

Olle Gunnarsson and I reviewed the density functional formalism, its history, and its prospects
in 1989 [8], and I reread the original literature some years ago. My changed perspective is
reflected here, where I trace DF history from the late 1920’s to the present day.

2 The density as basic variable

The recent books by Gino Segre [9] and Graham Farmelo [10] give fascinating accounts of the
development of quantum mechanics in the years following 1926. Methods for finding approx-
imate solutions of the Schrodinger equations followed soon after the equations were published
and have had a profound effect on chemistry and condensed matter physics ever since.

The “Hartree approximation” to the many-electron wave function is a product of single-particle
functions [11],

W(rl,rg,...) :@Dl(rl) ....... ’QZ)N(I‘N) (1)

where each v;(r;) satisfies a one-electron Schrodinger equation with a potential term arising
from the average field of the other electrons. Hartree [11] introduced the idea of a “self-
consistent field”, with specific reference to the core and valence electrons, but his papers do
not mention the approximation (1). Slater [12] and Fock [13] recognized immediately that the
product wave function (1) in conjunction with the variational principle led to a generalization
of the method that would apply to systems more complex than atoms. They showed that replac-
ing (1) by a determinant of such functions [12, 13] led to equations that were not much more
complicated than those of Hartree, while satisfying the Pauli exclusion principle. These deter-
minantal functions, which had been used in discussions of atoms [14] and ferromagnetism [15],
are known today as “Slater determinants”, and the resulting “Hartree-Fock equations” have
formed the basis of most discussions of atomic and molecular structure since.

In 1929 Dirac wrote [16]:

“The general theory of quantum mechanics is now almost complete, ... The underlying
physical laws necessary for the mathematical theory of a large part of physics and the whole
of chemistry are thus completely known, and the difficulty is only that the exact application
of these laws leads to equations much too complicated to be soluble. It therefore becomes
desirable that approximate practical methods of applying quantum mechanics should be de-
veloped, which can lead to an explanation of the main features of complex atomic systems

without too much computation.”
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I cannot think of a better short description of density functional theory than an “approximate
practical method of applying quantum mechanics” to explain complex systems.

Dirac [16] also sought to improve the model of Thomas [4] and Fermi [5] for calculating atomic
properties based purely on the electron density n(r). In the first “density functional theory”,
Thomas and Fermi assumed that the electrons form a homogeneous electron gas satisfying
Fermi statistics and the kinetic energy has a simple dependence on the density n(r). The TF

equations are:

5

2Cyn(r)3 +e2/dr’ n(r)

v — |

+ Vext(r) + A =0, 2)

w

where Cj, = 3h2(37r2)§ /(10m), Ve is the external potential, and ) is the Lagrange multiplier
related to the constraint of constant particle number. Dirac noted the necessity of incorporating
“exchange” phenomena, as in the Hartree-Fock approach [16], and he included these effects in
the “Thomas atom” [6] by means of the potential

yDirac — _ (%) (372n(r)) " . 3)
This term was derived for a homogeneous gas of density n and should be valid for weak spatial
variations of n(r).> The modified TF equation is often referred to as the “Thomas-Fermi-Dirac”
equation.

The Thomas-Fermi method and its extensions give rough descriptions of the charge density and
the electrostatic potential of atoms, and its mathematical properties have attracted considerable
attention [17, 18]. However, it has severe deficiencies. The charge density is infinite at the
nucleus and decays as ¢, not exponentially, far from it. Teller [19] and others also showed
that TF theory does not bind atoms to form molecules or solids, which rules out its use in
chemistry or materials science. There is also no shell structure in the TF atom, so that the
periodic variation of many properties with changing atomic number Z cannot be reproduced,
nor can ferromagnetism [8]. Moreover, atoms shrink with increasing Z (as Z -1/ 3) [20].

One point made by Dirac [6], however, has been emphasized by many advocates of the DF
method over the years, even if we were unaware of his words of over 80 years ago:

“ Each three-dimensional wave function will give rise to a certain electric density. This
electric density is really a matrix, like all dynamical variables in the quantum theory. By
adding the electric densities from all the wave functions we can obtain the total electric
density for the atom. If we adopt the equations of the self-consistent field as amended for
exchange, then this total electric density (the matrix) has one important property, namely,
if the value of the total electric density at any time is given, then its value at any later time
is determined by the equations of motion. This means that the whole state of the atom is
completely determined by this electric density, it is not necessary to specify the individual
three-dimensional wave functions that make up the total electric density. Thus one can deal

with any number of electrons by working with just one matrix density function.”

The exchange energy in a homogeneous electron gas had been derived by Bloch [15] in 1929
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In n{r)

Fig. 1: Logarithm of spherical average of density in ground state of C atom as a function of the
distance from the nucleus (atomic units) [8].

The italics are in the original. The derivation is based on the “self-consistent field” or Hartree-
Fock approximation, but the observation that the density follows the equations of motion is
much in the spirit of Ehrenfest’s theorem [21], which has wider validity. Ehrenfest had proved
in 1927 what I have seen referred to as the “time-dependent Hellmann-Feynman theorem”,
namely that the acceleration of a quantum wave packet that does not spread satisfied Newton’s
equations of motion.

The central role played by the density means that we must understand its nature in real systems.
Figure 1 shows that the spherically averaged density in the ground state of the carbon atom falls
monotonically from the nucleus and does not show the radial oscillations that occur if we plot
r?n(r). The charge density in small molecules is also relatively featureless, with maxima at the
nuclei, saddle points along the bonds, and a generally monotonic decay from both. The electron
density in molecules and solids also shows relatively small departures from the overlapped den-
sities of the constituent atoms. Energy differences, including binding, ionization, and cohesive
energies, are the focus of much DF work and result from subtle changes in relatively featureless
density distributions. It really is amazing that this suffices to determine ground state properties.

3 An “approximate practical method”

The basis of a quantum theory of atoms, molecules, and solids was in place at the beginning
of the 1930’s. Linear combinations of atomic orbitals formed molecular orbitals, from which
determinantal functions could be constructed, and linear combinations of determinants (“‘con-
figuration interaction”) would provide approximations to the complete wave function. Dirac
had noted already, however, that this procedure could not be implemented in practice, so that
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Fig. 2: Probability that electrons in Na metal with parallel spins are r/d’ apart (d"> = V,/(372),
Vb is the atomic volume). After Wigner and Seitz [22].

approximations are essential. Furthermore, numerical techniques for solving the Schrodinger
equation in extended systems needed to be developed.

Wigner and Seitz [22] developed a method for treating the self-consistent problems in crystals,
and the “Wigner-Seitz cell” is known to all condensed matter physicists. The first application to
metallic sodium used a pseudopotential for the Na ion, and calculations of the lattice constant,
cohesive energy, and compressibility gave satisfactory results. Of particular interest for our
purposes, however, is the calculation of the probability of finding electrons with parallel spins
a distance 7 apart (Fig. 2). This function obtains its half-value for » = 1.79d’ or 0.460 d for a
body-centred cubic lattice with cube edge d, which is close to the radius of the “Wigner-Seitz
sphere” (%)% d = 0.492 d. The exclusion principle means then that two electrons with parallel
pins will very rarely be at the same ion. This argument does not depend significantly on the
potential and should apply to a Fermi gas subject to periodic boundary conditions [22]. The
corresponding curves for spin up and spin down electrons, as well as for both spins combined,
were discussed in the 1934 review article of Slater [23].

The picture that results is simple and appealing: the exclusion principle means that an elec-
tron with a given spin produces a surrounding region where there is a deficiency of charge
of the same spin. This region contains unit charge and is referred to as the “Fermi” [22] or
“exchange” hole [24]. In the Hartree-Fock scheme, the exchange hole is different for each elec-
tronic function, but Slater [24] developed a simplified “exchange potential” that depended only
on the density:

ySlater — (%) (37r2n(r))% . “4)

The Slater approximation (4) was proposed at the time that electronic computers were becoming
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available for electronic structure calculations and proved to be very useful in practice. Meth-
ods for solving the Schrédinger equation had been developed around this time, including the
augmented plane wave (APW) [25] and Korringa-Kohn-Rostoker approaches [26,27].

The exchange potential of Slater (4) is 3/2 times that derived by Dirac and Bloch (3) for a
homogeneous electron gas, but Slater [28] pointed out that an effective potential proportional
to the cube root of the density could be obtained by arguments based on the exchange hole
that do not depend on the free electron gas arguments used in the original derivation [24]. The
exchange hole discussed above for a spin up electron contains a single electron. If we assume
that it can be approximated by a sphere of radius 24, then

AN B
(Bt n-(52)

where n4 is the density of spin up electrons. Since the electrostatic potential at the centre of
such a spherical charge is proportional to 1/R;, the exchange potential will be proportional to

n% . This argument was used by Slater to counter a (still widespread) misconception that local
density approximations are only appropriate if the electron density is nearly homogeneous.

In 1954, Gaspar [29] questioned the prefactor of the effective exchange potential (Eq. 4). If
one varies the spin orbitals to minimize the total energy in the Thomas-Fermi-Dirac form, one
obtains a coefficient just % as large. Géspéar applied this approximation to the Cu™ ion and
found good agreement with Hartree-Fock eigenfunctions and eigenvalues. Slater noted that
Gaspar’s method was “more reasonable than mine” [30], but the larger value was used in most
calculations in the following years.

4 Density functional formalism

The variational principle on the energy was the basis of the formulation of the density functional
formalism given by Hohenberg and Kohn [31]. The ground state (GS) properties of a system
of electrons in an external field can be expressed as functionals of the GS electron density, i.e.
they are determined by a knowledge of the density alone. The total energy £ can be expressed
in terms of such a functional, and F[n] satisfies a variational principle. These theorems were
proved by Hohenberg and Kohn [31] for densities that can be derived from the ground state of
some external potential V.g (“V-representable”). A simpler and more general proof for (“/V-
representable”) densities that can be derived from some antisymmetric wave function was given
by Levy [32,33]. Of course, these proofs do not provide practical prescriptions for writing the
functional relationship between energy £ and density n.

4.1 Single-particle description of a many-electron system.

The task of finding good approximations to the energy functional E'(n) is simplified greatly if
we use the decomposition introduced by Kohn and Sham [34],

Eln] = Toln] + / dr n(r) (%Xt(r) v %@(r)) + En] . 6)
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T} is the kinetic energy that a system with density n would have if there were no electron-
electron interactions, @ is the classical Coulomb potential for electrons, and E,. defines the
exchange-correlation energy. 7 is not the true kinetic energy 7', but it is of comparable mag-
nitude and is treated here without approximation. This removes many of the deficiencies of the
Thomas-Fermi approach, such as the lack of a shell structure of atoms or the absence of chem-
ical bonding in molecules and solids. In the expression (6) all terms other than the exchange-
correlation energy I, can be evaluated exactly, so that approximations for this term are crucial
in density functional applications.

The variational principle applied to (6) yields

on(r)  on(r)

dEyc[n] _
on(r) ’

+ Ve (r) + (1) + 7

where 1 is the Lagrange multiplier associated with the requirement of constant particle number.
If we compare this with the corresponding equation for a system with an effective potential
V (r) but without electron-electron interactions,

on(r)  on(r)

we see that the mathematical problems are identical, provided that

+V(r)=p, ®)

o Exc [n]

= Vex <

V) = Vealr) + 2(1) + 5 ©
The solution of (Eq. 8) can be found by solving the Schrodinger equation for non-interacting
particles,

1

( - §V2 + V(I')) Yi(r) = ei(r) , (10)

yielding
N

n(r) = Z Wi (x)|? (11)

The condition (9) can be satisfied in a self-consistent procedure.

The solution of this system of equations leads to the energy and density of the lowest state, and
all quantities derivable from them. The formalism can be generalized to the lowest state with
a given symmetry [35]. Instead of seeking these quantities by determining the wave function
of the system of interacting electrons, the DF method reduces the problem to the solution of a
single-particle equation of Hartree form. In contrast to the Hartree-Fock potential,

Vir ¢(r) = /dr’ Ve (r, t)y (') (12)

the effective potential, V'(r) is local.

The numerical advantages of solving the Kohn-Sham equations [34] are obvious. Efficient
methods exist for solving single-particle Schrodinger-like equations with a local effective po-
tential, and there is no restriction to small systems. With a local approximation to Ey., the
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equations can be solved as readily as the Hartree equations. Unlike the Thomas-Fermi method,
where the large kinetic energy term is approximated, the valence kinetic energy and the core-
valence and valence-valence electrostatic interactions are treated exactly. However, F,. is the
difference between the exact energy and terms we can evaluate exactly, and approximations are
unavoidable.

4.2 Exchange-correlation energy FE,. and the xc-hole

Kohn and Sham [34] proposed using the “local density (LD) approximation”

EMD = /dr n(r) exe[n(r)], (13)

where ,.[n] is the exchange and correlation energy per particle of a homogeneous electron gas
with density n. This approximation is exact in the limits of slowly varying densities and very
high densities. The authors noted that this approximation “has no validity” at the “surface” of
atoms and in the overlap regions of molecules and concluded [34]:

“We do not expect an accurate description of chemical bonding.”

The generalization to spin-polarized systems is

ELSP — / dr 1(r) exe[nn(r), n,(r)] (14)

where ey.[n4, ny] is the exchange and correlation energy per particle of a homogeneous, spin-
polarized electron gas with spin-up and spin-down densities ny and n, respectively.’ The “Xa”
approximation

EXe = —gaC’/dr ((nT(r))4/3 + (ni(r))4/3> , (15)

where C' = 3(3/4m)"/* was used in numerous calculations in the late 1960’s and 1970’s. The
a-dependence of energy differences for a given atom or molecule is weak for values near 2/3,
the value of Dirac [6], Bloch [15], Gaspar [29] and Kohn and Sham [34]. We have noted
that the electron density in molecules and solids is generally far from that of a homogeneous
electron gas, and the validity of calculations based on properties of a gas of constant density has
often been questioned. We now discuss some general properties of F,. using arguments closely
related to the “exchange hole” picture of Wigner and Seitz [22] and Slater [24, 28].

The crucial simplification in the density functional scheme is the relationship between the inter-
acting system, whose energy and density we seek, and the fictitious, non-interacting system for

which we solve (Eq. 10, 11). This can be studied by considering the interaction \/|r — r/| and

’
varying A from O (non-interacting system) to 1 (physical system). This is done in the presence
of an external potential V), [36] such that the ground state of the Hamiltonian

1
Hy = _Evz + Vet (r) + Vi + AVee (16)

3The calculation by Bloch [15] in 1929 of ferromagnetism in a free-electron model of a metal was the first

where the exchange energy was expressed as the sum of terms proportional to n}l/ % and nj/ 8,
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has density n(r) for all A. The exchange-correlation energy of the interacting system can then
be expressed as an integral over the coupling constant A [35]:

1 1
Eyo = é/dr n(r) /dr/ |I' _ I',| nxc(rar/ - I') ) (17)

with )

Nye(r, ¥’ — 1) = n(r’)/ d\ <g(r,r'7 A) — 1) : (18)

0

The function g(r,r’, \) is the pair correlation function of the system with density n(r) and
Coulomb interaction A\V,.. The exchange-correlation hole, n,., describes the fact that an elec-
tron at point r reduces the probability of finding one at r’, and F,. is simply the energy resulting
from the interaction between an electron and its exchange-correlation hole. This is a straight-
forward generalization of the work of Wigner and Seitz [22] and Slater [24] discussed above.
Second, the isotropic nature of the Coulomb interaction V,, has important consequences. A
variable substitution R = r’ — r in (17) yields

E. = 1/dr n(r)/ dR R? i/d() Nye(r, R) . (19)
2 0 R

Equation (19) shows that the xc-energy depends only on the spherical average of n,.(r, R), so
that approximations for F,. can give an exact value, even if the description of the non-spherical
parts of n,. is arbitrarily inaccurate. Thirdly, the definition of the pair-correlation function leads
to a sum-rule requiring that the xc-hole contains one electron, i.e. for all r,

/dr’ Ne(r, ¥’ —1) = —1. (20)

This means that we can consider —n,.(r,r’ — r) as a normalized weight factor, and define
locally the radius of the xc-hole,

L\ Ny (r, R)
(e

E. = —%/dr n(r) <%{ >r ) (22)

Provided Equation (20) is satisfied, F. is determined by the first moment of a function whose

This leads to

second moment we know exactly and depends only weakly on the details of ny. [35]. Ap-
proximations to I, can then lead to good total energies (and structures), even if the details of
the exchange-correlation hole are described very poorly. This is shown in Figure 3, where the
exchange hole in a nitrogen atom is shown for a representative value of r for both the local
density and exact (Hartree-Fock) cases. The holes are qualitatively different: The LD hole is
spherically symmetric and centred on the electron, while the exact hole has a large weight at
the nucleus and is very asymmetric. Nevertheless, the spherical averages are very similar, and
the exchange energies differ by only a few percent.
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Fig. 3: Exact (solid) and LSD (dashed) exchange holes ny.(r,r’ — r) for spin up electron in N
atom for r = 0.13 a.u. Upper: hole along line through nucleus (arrow) and electron (r — v’ =
0). Lower: spherical averages of holes, and (1/R) (21) [8].

5 DF theory to 1990

5.1 Condensed matter

Condensed matter physicists were generally pleased to have justification for the “local density”
calculations they had been performing for years, and numerous electronic structure theorists
moved seamlessly from performing “Xa” or “Hartree-Fock-Slater” calculations into the den-
sity functional world. However, Fig. 4 shows that there was remarkably little impact of DF
calculations prior to 1990. Volker Heine, a prominent condensed matter theorist, looked back
on the 1960’s in this way [37]:

“ Of course at the beginning of the 1960s the big event was the Kohn Hohenberg Sham
reformulation of quantum mechanics in terms of density functional theory (DFT). Well, we
recognize it now as a big event, but it did not seem so at the time. That was the second
big mistake of my life, not to see its importance, but then neither did the authors judging
from the talks they gave, nor anyone else. Did you ever wonder why they never did any

calculations with it?”
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There were also prominent critics of density functional and related computational techniques,
and one of the best known solid state theoreticians, Philip Anderson, made devastating com-
ments in 1980 [38]:

“ There is a school which essentially accepts the idea that nothing further is to be learned
in terms of genuine fundamentals and all that is left for us to do is calculate. ... One is left,
in order to explain any phenomenon occurring in ordinary matter, only with the problem of
doing sufficiently accurate calculations. This is then the idea that I call “The Great Solid
State Physics Dream Machine” ... This attitude is closely associated with work in a second

field called quantum chemistry.”

Anderson associated the “Dream Machine” with the name of John Slater and described the DF
method as a “simplified rather mechanical kind of apparatus” that “shows disturbing signs of
become a victim of the “Dream Machine” syndrome” [38]. While noting that DF calculations
can be particularly valuable in some contexts, he continued:

“...a great deal of the physics is concealed inside the machinery of the technique, and that
very often once one has the answers that these techniques provide, one is not exactly clear
what the source of these answers is. In other words the better the machinery, the more likely
it is to conceal the workings of nature, in the sense that it simply gives you the experimental

answer without telling you why the experimental answer is true.”

While some may find these words a little harsh, his comments did apply to some electronic
structure calculations at the time. They may indeed have had prophetic character, as I discuss in
Sec. 7. The increasing availability of computing resources made possible calculations that had
previously been inaccessible, and not all users of the method were critical of the approximations
involved.

5.2 Chemistry

It took many years for DF calculations to be taken seriously by most chemists, and the reasons
were often convincing: (1) Unlike the TF theory, the Kohn-Sham expression for the energy is
not really a “functional” of the density, since the kinetic energy term is treated exactly and is de-
fined by an effective potential that leads to the density, (2) the original functional of Hohenberg
and Kohn is not even defined for all n, because not all densities can be derived from the ground
state of some single-particle potential [33], (3) approximations to the exchange-correlation en-
ergy are unavoidable, and their usefulness can be assessed only by trying them out, and (4) there
1S no systematic way to approach the exact solution of the Schrodinger equation and, of course,
the exact energy.

This last point was emphasized by many. In principle, the Hartree-Fock method could be ex-
tended to multiple determinants (“‘configuration interaction”) and, coupled with a large basis set,
lead to the exact wave function and all properties obtainable from it. This is a very attractive
proposition, and the dramatic improvements in computing power (three orders of magnitude per
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Fig. 4: Number of publications per year (1975-2012) on topics “density functional” or “DFT”,
according to Web of Knowledge (May 2013). Inset shows data near 1990 on an expanded
scale [39].

decade) might make the reservations of Dirac [16] less formidable. It was often emphasized that
solutions of the Schrodinger equation led to the “right answer for the right reason.” Neverthe-
less, obtaining numerically exact total energies from calculations of the wave function remains
a major challenge to this day, and it is not surprising that several groups looked at alternatives.

Hartree-Fock-Slater calculations on small molecules were carried out in the early 1970’s, par-
ticularly by Evert Jan Baerends and collaborators in Amsterdam, and some of the first DF cal-
culations on small molecules were performed by Olle Gunnarsson [35]. John Harris and I had
not expected that the local density approximations would give reasonable results for molecules,
and we (with Olle) developed a full-potential LMTO code for small molecules and clusters [40].
These calculations led to good geometries and reasonable binding energies in most cases. In
spite of the shortcomings of the local density description of F., it was now possible to perform
calculations without adjustable parameters on families of molecules and small clusters that had
previously been inaccessible. I was almost unprepared for so many really exciting results, my
own examples including the trends in the binding energies of group 2 dimers [41,42] and the
structures of small phosphorus clusters [43]. Most condensed matter physicists were either
not surprised or not interested, but theoretical chemists remained sceptical or critical, and this
situation continued throughout the 1980’s and into the 1990’s.

The Seventh International Congress of Quantum Chemistry, held in Menton, France, from 2-
5 July 1991, marks for me a major turning point in the fortunes of DF methods in chemistry.
Density-related methods were discussed in detail, and communication between their proponents
and the sceptics improved. Becke described his development of a non-local exchange functional
that promised improvements over local approximations [44], and this approximation was tested
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for the atomization energies of small molecules immediately after the meeting. Many will have
been surprised by the results [45]:

“ In summary, these initial results indicate that DFT is a promising means of obtaining
quantum mechanical atomization energies; here, the DFT methods B-VWN and B-LYP

outperformed correlated ab initio methods, which are computationally more expensive.”
and [46]

“ The density functional vibration frequencies compare favorably with the ab initio results,
while for atomization energies two of the DFT methods give excellent agreement with

experiment and are clearly superior to all other methods considered.”

The ab initio methods mentioned were Hartree-Fock, second order Mgller-Plesset (MP2), and
quadratic configuration interaction with single and double substitutions (QCISD). In addition to
the growing body of results on molecules and clusters that were beyond the scope of calculations
of correlated wave functions, this change in attitude by one of the most prominent theoretical
chemists led to a dramatically new attitude towards the DF method in chemistry.

5.3 Progress to 1990

The number of citations to density functional theory and related topics was very small prior to
1990 and exploded thereafter (see Figure 4). However, work was already in place by 1990 that
has proved to be crucial to the ultimate acceptance of the method, and I now outline some of it.
More details can be found elsewhere [8,47].

The generalizations to finite temperatures and to spin systems were carried out soon after the
original work of Hohenberg and Kohn [31]. The former was provided by Mermin [48], who
showed that, in a grand canonical ensemble at given temperature 7' and chemical potential
4, the equilibrium density is determined by the external potential V., and the equilibrium
density minimizes the grand potential. Single-particle equations can be derived for a fictitious
system with kinetic energy 7j and entropy Sy, with E\. replaced by the exchange-correlation
contribution to the free energy.

The extension to spin systems [49] or an external magnetic field requires the introduction of the
spin indices o of the one-electron operators ¢, (r) and replacing Vi by V.27 (r), and the charge
density n(r) by the density matrix pos(r) = (¥|)5 (r)3o(r)|¥). All ground state properties are
functionals of p,s, and E is stationary with respect to variations in p,3. The expression for the
energy F,. is analogous to Equations (17,18). A current- and spin density functional theory of
electronic systems in strong magnetic fields was formulated by Vignale and Rasolt [50]. Time-
dependent density functional theory, which has proved to be valuable in discussing excited
states, was described by Runge and Gross [51].

Most of the early DF calculations on small clusters and molecules used the LD and/or LSD
approximations. Although the results were generally encouraging, it was soon clear that local
density calculations can lead to unacceptable errors. Examples were the exchange energy differ-
ence between states with different nodal structures [52], including the s-p promotion energies
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in first-row atoms, particularly O and F. Dispersion forces — the weak, non-local interactions
between closed shells systems — are a particular problem for such approximations. The long-
range interaction between separated atoms or molecules is absent, and yet the LD approximation
overestimates the binding energy in many such systems, e.g. He, [41]. It is not surprising that
new approximations were developed, and corrections involving density gradients were soon
available for the correlation [53,54] and exchange energies [44]. The semi-empirical exchange
energy approximation of Becke [44] had the correct asymptotic behaviour for atoms.

The combination of DF calculations with molecular dynamics (Car-Parrinello method) [55]
made simulations of bulk systems at elevated temperatures possible, and simulated annealing
techniques could be used to study the energy surfaces of molecules and clusters. My 1991
article [56] showed that unexpected structures could result. An essential part of DF work prior
to 1990 was, of course, the gradual generation of a data base of results for molecules and
clusters.

6 After the breakthrough

There have been over 134,000 publications on the topics “density functional” and “DFT” be-
tween 1990 and May 2013 (Figure 4), and I leave detailed surveys of this vast literature to
others. I mention here some aspects that should be of general interest and give an example of
the possibilities provided by the combination of DF calculations with molecular dynamics.

6.1 Progress and problems

One of the first signs of growing acceptance of DF methods in chemistry was the incorporation
of such calculations into popular ab initio program packages, with Gaussian leading the way. It
seems that Michael Frisch, first author of that package, was a willing convert. At the end of a
talk at the ACS National Meeting in San Francisco (13 April 1997) on “Ab initio calculations
of vibrational circular dichroism and infrared spectra using SCF, MP2, and density functional
theories for a series of molecules,” an unknown (to me) member of the audience asked:

“ What about Hartree-Fock?”
I wrote his answer down without delay:

“It does not matter what you want to calculate, and it does not matter what functional you

use; density functional results are always better than Hartree-Fock.”

The availability of such codes and the possibility of comparing the results of different types of
calculation were important to establishing the credentials of DF calculations in chemistry.

There has been progress in all the above areas. Time-dependent DF theory has become a stan-
dard way to calculate excited states and is an option in most DF program packages. The num-
ber of publications in a year that use the Car-Parrinello method has grown nearly linearly from
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almost zero in 1990 to 1400 in 2012 [39]. The combination of DF calculations for a chem-
ically active region with classical molecular dynamics for the surrounds (the “QM/MM ap-
proach”) [57] has found applications in many systems in biology, as well as organic and solid
state chemistry [58]. Classical force fields that lead to simulations with near-DF accuracy can
be developed by a neural network representation of the results of (many) DF calculations on
small systems [59]. There are lengthy reviews of orbital-dependent (and other) density func-
tionals [60] and constrained density functional theory [61]. The random phase approximation
(RPA) is being tested in various contexts [62, 63].

These and other developments are very welcome, but they do not hide the fact that the most
contentious issue has been the development of approximations to the exchange-correlation en-
ergy that overcome the weaknesses of the local density approximations. The LD (Eq. (13)) and
LSD (Eq. (14)) approximations lead to overbinding of many molecules, poor exchange energy
differences if the nodal structures of the orbitals change, and the Kohn-Sham eigenvalues often
underestimate measured optical band gaps. Nevertheless, calculations that used them provided
insight into many physical problems, and the reasons for the errors (and ways to assess their
magnitude) became clear. However, if insight is not enough and reliable numbers are needed,
improved approximations are necessary.

The first generalized gradient approximations [44, 53, 54] did lead to better results, and hybrid
functionals including exact exchange were introduced by Becke in 1993 [64]. This form of F
has three parameters, and its combination with £, of Lee, Yang, and Parr [54] (B3LYP) is still
the most common approximation used in chemical applications [65]. Many other empirical and
hybrid functionals have been developed since, with parameters usually fit to thermochemical
data for particular groups of molecules. The use of experimental data for fitting functional
forms is understandable [66]. The additional parameters led to improvement over the LD and
LSD results, and the use of “training sets” of atomic and molecular systems to optimize the
parameters improved the calculated results for particular sets of molecules [67].

An alternative path has been followed by others, particular Perdew and collaborators, who de-
veloped a sequence (“Jacob’s ladder”) of approximations without experimental input, where
each “rung” built on the experience of lower level and satisfies particular physical constraints.
The gradient corrected form of Perdew, Burke, and Ernzerhof [68] (PBE) incorporates the LSD
form below it, and the “meta-GGA” form of Tao, Perdew, Staroverov, and Scuseria (TPSS) [69],
where ny and n; are joined by their gradients and the kinetic energy density of the occupied
Kohn-Sham orbitals, built on both. The agreement with experiment improves (and the com-
plexity of the calculations increases) as one climbs the “ladder” [70].

Two areas have remained particular challenges for DF calculations. The first are the weak
dispersion or van der Waals forces mentioned above, where there has been substantial progress
during recent years. The development of a functional that changes seamlessly on going from
weakly interacting units to a combined system has been a goal of many, and one successful
project has been that of Langreth and coworkers [71]. Their functional incorporates results
for electron gas slabs and the electron gas itself, is free of experimental input, and has been
implemented in several program packages. An empirical correction to DF results has been
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Fig. 5: Crystallization in GST alloy at 600 K. (a) Amorphous structure after 215 ps, (b) crys-
talline structure after 1045 ps. Green: Ge, purple: Sb, Orange: Te.

made by Grimme [72], and an alternative has been suggested by Tkatchenko and Scheffler [73].

“Strongly correlated” systems are those where the interaction energy dominates over the kinetic
energy and often involve transition element or rare earth atoms. Local density approximations
can give qualitatively incorrect descriptions of these materials, and the use of model Hamilto-
nians has been a popular way to avoid them. A common approach has been to add an on-site
Coulomb repulsion (“Hubbard U”) in the “LSD+U” scheme [74,75]. The parameter U can be
estimated within a DF framework [75,76] or fit to experiment.

There are developments in the quantum Monte Carlo (QMC) studies of interacting electron
systems that could be relevant for future DF work. The full configuration interaction (FCI)
implementation of QMC has been applied recently to the homogeneous electron gas [77] and to
simple solids [78]. Condensed matter scientists have much experience with periodic boundary
conditions and plane wave orbital expansions, and this should aid the implementation of the
method in extended systems. Another example is the reformulation of the constrained search
approach in DF theory [32,33] in terms of the density and the (N — 1)-conditional probability
density, which can be treated by ground state path integral QMC [79]. It remains to be seen
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whether the computational demands usually associated with QMC can be reduced.

The terms “ab initio” and “first principles” are used differently in the “chemical” and “materi-
als” worlds. For most chemists, the expressions means solutions of the Schrédinger equation
for the system of interacting electrons (e.g. by QMC), for materials scientists it can be a DF
calculation without (or even with) adjustable parameters. I carry out “density functional” cal-
culations and describe them as such, and I am happy to use the term “ab initio” for solutions of
the Schrédinger equation, as done by chemists.

6.2 An application

The results of one DF simulation in materials science using the PBE functional [68] show the
scale of DF simulations that are possible today. Phase change (PC) materials are alloys of
chalcogens (group 16 elements) that are ubiquitous in the world of rewritable optical storage
media, examples being the digital versatile disk (DVD-RW) and Blu-ray Disc. Nanosized bits
in a thin polycrystalline layer are switched reversibly and extremely rapidly between amor-
phous and crystalline states, and the state can be identified by changes in resistivity or optical
properties. Crystallization of the amorphous bit is the rate-limiting step in the write/erase cy-
cle, and much attention has been focused on this process. Alloys of Ge, Sb, and Te are often
used in PC materials, and 460-atom simulations have been carried out at 600 K on amorphous
Ge,SbyTes [80] (Fig. 5). Crystallization takes place in just over 1 ns, and it is possible to mon-
itor changes in the distribution of the cavities, the diffusion of atoms of the different elements,
and percolation of crystalline units in the sample. These calculations involve over 400,000 (!)
self-consistent DF calculations of structure, energies, and forces for a 460-atom sample. The
steady (and essential) improvement in numerical algorithms has played an important role, but
such calculations also require computers of the highest performance class.

7 Summary and outlook

The astonishing growth of density functional calculations since 1990 resulted in the award of the
1998 Nobel Prize for Chemistry to Walter Kohn. Although he noted that “very deep problems”
remain, Philip Anderson felt that this award may indicate that [81]

“the labours and controversies . ..in understanding the chemical binding in materials had

finally come to a resolution in favour of ‘LDA’ and the modern computer”,

The LD and LSD approximations have well documented drawbacks, and the resulting numbers
(binding energies, band gaps, . ..) should be treated with caution. However, the approximations
satisfy important physical criteria, such as the sum rule on the exchange-correlation hole, and
our long experience with them helps us to judge when the results may be wrong and by how
much. The bonding patterns are correct in most cases, which is no doubt one reason why LD
approximations and their modifications are still in widespread use. They make possible the si-
multaneous study of numerous related systems, such as families of molecules or materials, with
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the computational resources needed to determine the wave function of a single much smaller
system.

This pragmatic approach seems to be giving way to the search for schemes that produce better
numbers automatically, preferably without having to worry about the nature of the system or
the bonding mechanism involved. The long and growing list of approximate functionals and
countless publications comparing their predictions with each other and with experiment have
led to a chaotic situation. A newcomer to the field must despair of understanding why one
approximation should be favoured over another or the real physical reasons behind a particular
result. Are DF calculations in chemistry now following the “Dream Machine” scenario foreseen
for the solid state world by Anderson in 1980? [38]. Furthermore, a comparison of the band
gaps in LiH and four alkali halides, four oxides, and solid Ne and Ar (gaps between 0.2 and 20
eV) with the predictions of many popular functionals [82] showed that the identification of the
“best” functional depends on the choice of statistical measure (mean error, mean absolute error,
variance,...)!

Density functional theory deserves better than to be a background justification for empirical
curve fitting, which clearly implies a lack of confidence in the theory, or the development of a
never ending chain of approximations seeking the “right” numbers, with less concern for their
physical origin. It is a wonderful development with a long and fascinating history involving
some of the best known names in physics. It may not provide precise answers to some ques-
tions using simple descriptions of the exchange-correlation energy, but its ability to outperform
methods that seek exact solutions of the Schrodinger equation is not threatened. We shall con-
tinue to obtain insight into all sorts of problems that we cannot imagine today.

I end with a note of caution for the “strongly correlated” community. Few theoretical chemists
thought that DF calculations were relevant to understanding the electronic structure of molecules,
but local density approximations (and their modifications) have given far better results than any-
one expected. It was shown afterwards (see, for example, Sec. 4.2) why approximations to Ey.
could give good results for density distributions far from those where they are obviously valid.
Perhaps DF theory has some real surprises in store for the “strongly correlated” world.
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1 Indistinguishable particles

Everyday experience tells us that no two objects are the same. We can always find some prop-
erties in which they differ. We can even tell identical twins apart, if only we know them well
enough: their characteristic traits give them individuality. It has therefore been argued that ob-
jects that cannot be distinguished must be identical, as Leibnitz did with his Principle of the
Identity of Indiscernibles [1]. We might, however, imagine a replicator that could produce a
perfect clone that is identical to the original in every respect. Still, being material objects, orig-
inal and clone cannot be at the same place at the same time. So even then we could tell original
and clone apart by closely following their trajectory in space. This is, of course, only possible
in a classical setting. Quantum mechanically, our knowledge of the actual position is limited by
the uncertainty principle.

While the idea of identical clones sounds like science fiction, it is standard fare in modern
physics: with the discovery of the periodic table it was realized that all materials are built from
a small set of different types of atoms, the elementary particles of chemistry. The notion of
elementary particle seems, however, to depend on the energy range of interest. While from a
chemist’s point of view all atoms of a given element are identical, probing the atom at higher
energies, we can actually find an internal structure, allowing us to distinguish atoms of the same
type but in different excited states [2]. Probing at even higher energies, it turns out that atoms are
built of more elementary particles: electrons and the nuclei. These are the elementary particles
of condensed-matter physics and quantum chemistry. At still higher energies the nuclei turn out
to be built of protons and neutrons, which at even higher energies appear to be built of up and
down quarks.

The elementary particle we will mainly be concerned with here is the electron. For a system of
two electrons we can write the wave function as ¥ (z, x2), where x; are the degrees of freedom,
e.g., position and spin, of the first electron, and x5 those of the second. As indistinguishable
particles, the labeling as first and second electron is of course arbitrary, and we can ask how
the wave function changes when we exchange the labels, putting the first electron at x5 and the
second at ;. Such a reordering is performed by the permutation operator F:

PLT/(a:l,a:Q) = W(.%Q,.%’l) .

Indistinguishability implies that the observables do not change under a relabeling of the parti-
2

cles. This is true, in particular, for the probability density: |¥(x1, z2)|? = |¥ (22, 21)[% 1.,

PU(x1,25) = €W (21, 25) (1)

with some phase ¢. When permuting twice gives the identity, P? = 1, then ¢?** = 1, i.e., ¢
can only take two different values: ¢ = 27, meaning that the wave function does not change
(symmetric), or ¢ = 7, which means that it changes sign (antisymmetric) under the permutation
P. These are the irreducible representations of the permutation group. A particular consequence
of antisymmetry is that for ¥ (x1, 2o — x1) = 0, i.e., the two particles can never be found at the
same place. This is the Pauli principle.
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Fig. 1: Permutation of particles: In 3-dimensional space the permutation is independent of
the path along which the particles are exchanged. In 2-dimensional space it matters how the
exchange paths wind around each other, giving rise to the braid group and fractional statistics.
In 1-dimension, particles have to pass through each other in order to exchange their positions.

The definition of indistinguishability is that no experiment can distinguish one particle from the
other. Consequently, observables involving indistinguishable particles must remain unchanged
when the particles are relabeled, or, more technically, they must commute with all possible
permutations of the particles. This applies, in particular, to the Hamiltonian: [P, H] = 0. This
implies that the symmetric and antisymmetric components of the many-body wave function are
not mixed by the Hamiltonian: if the initial wave function is symmetric/antisymmetric, this
does not change under time evolution.

There is an intriguing connection between the spin of the indistinguishable particles and the
symmetry of their many-body wave function: for particles with integer spin (bosons) the wave
function is symmetric under particle permutations, for fermions (half-integer spin) the wave
function is antisymmetric. In non-relativistic quantum mechanics this spin-statistics connec-
tion 1s incorporated ad hoc via the initial conditions. In relativistic field-theory the connection
between spin and statistics can be derived under fairly general assumptions on the axioms of
the theory [3,4]. For popular accounts, see [5, 6]. More recently there have been efforts to
establish the spin-statistics connection in non-relativistic quantum mechanics. The basic idea
of the approach is to perform the permutation of particles along a smooth path, where the spin
picks up a geometric phase ¢ [7].

The concept of permuting particles by moving them along paths is also vital for understanding
the statistics in lower-dimensional systems. Let us permute two particles by moving particle
one along path v, (t) from 7,(0) = z; to 71(1) = x5 and the other particle along - (¢) from
xo to xq. If we call this operation P,, then Pf is given by moving particle one first along 7, ()
from x; to x5 and then along 7 (t) from x5 back to x; and likewise for the other particle. In
three and higher dimensions these combined paths can be continuously deformed into the paths
t1(t) = z1 and 12(t) = x4, which correspond to not moving the particles at all, i.e., the identity.
Since the paths are homotopic, Pf = 1, as assumed above. In two dimensions this is not the
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case. Let us assume the two paths 7 (¢) and 2 (¢) that exchange the particles wind around each
other in clockwise direction as shown in Fig. 1. Applying this operation a second time, we
obtain paths winding around each other twice to restore the original order of particles. These
are however not homotopic to the paths corresponding to the identity 1, as deforming ~;(¢)
and ~,(t) into ¢; and t5 would involve passing the curves through one another. Thus in two
dimensions sz need not be the identity and thus there is no restriction on the phase ¢ in (1).
Since any phase is allowed, particles with such statistics are called anyons [8]. They appear,
e.g., as quasiparticles in the fractional quantum Hall effect.

In one dimension two particles would have to pass through each other to exchange their posi-
tions. Therefore particles that cannot be at the same position, as is true for fermions, cannot
exchange their positions. Then configuration space splits into equivalent parts, each with a spe-
cific ordering of the particles, separated from each other by nodes in the wave function where
the coordinates of at least two particles agree. In each of these nodal pockets the ground state
wave function is non-vanishing [9]. This is what makes many one-dimensional systems solv-
able [10].

1.1 Symmetric and antisymmetric wave functions

The (anti)symmetry of a many-body wave function has profound effects on the physical prop-
erties of the system. This can already be seen for a simple system of two particles, with one
particle in a state ¢, (z) and the other in state o, (z). When the particles are distinguishable the
many-body wave function could be

Uio(x1, 2) = @a(z1)pp(z2) o War(x1,22) = @p(T1)pala) - 2

For indistinguishable particles the wave functions is (anti)symmetric
1

Wy (21, 20) = ﬁ(%z(ﬂhwz) + Woy (21, 22)) - 3)
We can then calculate the expectation value of the squared distance
((z1 — 22)?) = (a7) + (23) — 2(m12y) . 4
For wave function V5, assuming that the single-electron states are normalized, we obtain
(@), = [Jdmailpa(z)|* [dzy fon(2)]? = (@), 1
(@) = [dor fea(@)l® [dmaadlop(s)]” = 1 (),
(125)1, = [driai|pa(z)? [dramfep(z2)]® = (2),- (2),
Giving the expectation value in terms of single-electron expectation values
<(‘T1 - $2)2>12 = <£B2>a + <$2>b -2 <$>a <x>b : (5)

Due to the symmetry (z; —13)? = (22 —x1)* we obtain the same expectation value for ;. For
indistinguishable particles additional cross terms appear in the expectation value of an operator

M
(M), = %((Mm + (Vra| M W) + (Po1 | M [Wh2) + <M>21) - ©)
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Fig. 2: Probability distribution |W(x1,x5)|? for two identical particles in a one-dimensional
infinite potential well with one particle in the ground and the other in the first excited state.
For the symmetric wave function, shown on the left, the probability of finding the electrons is
largest on the line x1 = w9, for the antisymmetric wave function, shown in the centre, the prob-
ability vanishes there. For comparison, the right-most plot shows the probability distribution
for independent particles.

For observables involving only one coordinate like M = 2%, and similarly for 3, these terms
are of the form

(Vg |03 | War) = /dxl 23 pa(z1)p(21) /d:c2 ©p(2)@a(2) (7)

which vanishes if the two states ¢, and ¢, are orthogonal. For operators like M = xz;z9
involving both coordinates they do not vanish, even for orthogonal states

(Vo |z129| Wo1) = /dxl 1 Pa(T1)Ps(71) /dxz Ty 0y (12)pa(12) = <$>ab ) <x>ab' ®)

These non-vanishing cross terms are called exchange terms. They make expectation values for
symmetric and antisymmetric wave functions different. In the present case

(@1 —22)?), = (a%), + (2%), = 2( (@), {a), = |(a)u|? ) ©)

we see that the exchange terms decrease (increase) the expectation value of the squared distance
by 2| (), |* for symmetric (antisymmetric) wave functions compared to the result for distin-
guishable particles. I.e., indistinguishable fermions tend to avoid each other while bosons tend
to move closer together. For two identical particles in a one-dimensional box this tendency is
readily apparent from the probability density |7 (zy, x5)|* shown in Fig. 2.

The effect of (anti)symmetry thus has to do with the overlap of the of the single-particle states
that are involved. When this overlap vanishes for some reason, the symmetry of the wave
function makes no difference. An extreme example is two electrons that are strictly localized
in non-overlapping regions in space. In this case all integrals of the type (8) vanish, and there
is no observable to distinguish an (anti)symmetric from a non-symmetrized state. This makes
sense, since their localization in different regions of space makes them actually distinguishable.
Such a situation is, of course, never perfectly realized. And in principle we would have to
antisymmetrize the states of all electrons in the universe. Except for the rare case that we have
sent an electron of an entangled pair to our far-away friend Bob, it is, however, safe to assume
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that the electrons on the moon have negligible overlap with those in our (terrestrial) laboratory.
We can then consider them distinguishable from those in our experiment, so that we need only
antisymmetrize the wave function with respect to the electrons in our apparatus.

Often we have a similar situation where we can use the spin to tell electrons apart: When the
Hamiltonian of our system does not affect the spin [5 , H] = 0, and we are only interested in
observables that commute with the spin, we can distinguish two types of electrons by their spin
direction S,. In that case we need not antisymmetrize all electrons, but only the spin-up and
the spin-down electrons separately. This is a typical example of how quantum numbers that are
conserved in the processes we are interested in make can elementary particles distinguishable.
This is how the concept of elementary particle becomes dependent on what energy scale we are
interested in.

2 Reduced density matrices

By definition, observables on an N-particle Hilbert space that do not distinguish between the
particles must be symmetric under particle permutations. For example, a single-particle opera-
tor M (x) takes the form Zf\il M (x;) in the N-particle Hilbert space. We can write a general
operator as a sum of n-particle operators

1 1
M(X) = MO + Z Ml(ZEZ) + 5 Z MQ(I’Z',.Z‘]') + 5 Z Mg(l’i, Ij,[L’k) —+ - (10)

i#j " itjk
= Mo+ Y Mi(x:)+ Y Mp(wia;)+ Y Ms(w,zj,ap) +---, (11)
i i<j i<j<k

where the summations can be restricted since the operators must be symmetric in their argu-
ments, e.g. My(z;, x;) = Ms(x;,z;), while for two or more identical coordinates the operator
is really one of lower order, e.g. Ms(x;,x;) only acts on a single coordinate and should be
included in M.

To evaluate expectation values it is useful to introduce density matrices [11]

F(p)(arll,...,x;;xl,...,xp) =
N
(p)/d:r;pH~--d:UNW(:U’l,...,x;,po,...,:CN)LP(xl,...,xp,po,...,:z;N), (12)

where we integrate over all except p coordinates of the normalized N-particle wave function V.
When x = (r, o) denotes the coordinate and the spin of the particle, the integral over  means
integration over space and summation over spin. The density matrices are obviously related by

_p+1

F(P)([L‘/h...,J};;xl,...,l’p) = N——p

/dxp+1f(p+1)(x’1, Ty T 15 T, T, Tpp1) (13)

They are Hermitean, e.g. I'®) (2 2b: 21, 29) = I'®(z1, z9; 2%, 2} ), and (anti)symmetric in each
set of their arguments, e.g. I'® (2, x5; 21, 25) = —I'® (2}, 2); x1,25). The p-body density
matrix contains all the information needed for evaluating expectation values of operators up to
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order p. The expectation value of a single-electron operator, e.g., the expectation value of the
kinetic energy 7' = —1/2 > . A,, is obtained from the one-body density matrix as

<mﬂm_—%/MAJ@@mg

; (14)
x'=x
where we first keep 2’ # = to make sure that the derivative only operates on the second argu-
ment, © = (r,0), but after that set z’ = x so both arguments are summed over. For a local
operator like the Coulomb potential we can directly work with the diagonal elements of the
density matrix. For the interaction of the electrons with a nucleus of charge Z at R this gives

I (z;z)
VYy=—-7 [ de ———=. 15
)=~z [ar S (15)
Similarly, the Coulomb repulsion between the electrons is given by

Iz, o'z, 2"

=7

(16)

<w:/mw

We see that for calculating the eigenenergies of a many-body Hamiltonian describing a system
of N electrons moving around nuclei of charge Z,, at position R,

1 Za 1
H:_igAi_iZa—!n—Ra\+;j—!n—7‘j! (17)

we do not need the full eigenfunction but only the corresponding one-body density matrix and
the diagonal elements of the two-body density matrix. It is then tempting to try to calculate
the ground state energy of an /V-electron system by finding the two-electron density matrix that
leads to the lowest energy expectation value. This is known as Coulson’s Challenge [12]. The
approach is, however, not practical since we know no criterion that would tell us what function
of four arguments is actually a fermionic density matrix, i.e., one that can be obtained via (12)
from an antisymmetric N-electron wave function. For the single-electron density matrix there
is such a criterion: for any I"(2’; x) with eigenvalues v; € [0, 1] and trace Tr I'(2’; z) = N there
exists a normalized N-electron wave function with single-electron density matrix I"'(z'; x).
Since we made sure that the N-electron wave function is normalized, the diagonal elements of
the density matrices have straightforward physical interpretations. From the definition (12) we
see that the single-electron density matrix gives the electron density I'™") (x; z) = n(x), while
the two-electron density matrix 21" (z, 2; 2,2') = n(x,2') gives the conditional electron
density, i.e., the electron density at 2/, given that one electron is at x. They are normalized
accordingly

N(N —1)

5 (18)

/dx I'Y(z;2) =N and /dx de' 'z, 2’ z,2') =

The way the two-electron density differs from the simple product of the one-electron densities
describes the correlation of the electrons

n(z,z") = n(z)n(z") g(z,2"). (19)



2.8 Erik Koch

The factor g(x, 2’) is called the pair-correlation function. Since by the Pauli principle no two
electrons can occupy the same state, it vanishes for x = /. From (13) we find

n(@) (N —1) = / da’ n(z, o) = n(x) / iz’ n(a) g(z, o)

which gives the sum rule
/dm’n(m’) (g(z,2") —=1) = -1, (20)

which implies that the integrand vanishes for |r — 7’| — co. In practice n(z’) (g(x,z") — 1) is,
as a function of 2/, quite localized around z. It is called the exchange-correlation hole. With
this we can write the Coulomb repulsion energy between the electrons as

)=y [araw "D 1 g g M) D e e

2 | — | 2 |r — |

where the first term is the long ranged Coulomb interaction between the uncorrelated charge
densities (Hartree energy), while the second term is the interaction of the charge density with
its rather localized exchange-correlation hole.

3 Slater determinants

When dealing with indistinguishable particles, we need only consider many-body wave func-
tions that are (anti)symmetric under particle permuations. This can be ensured by explicitly
(anti)symmetrizing an arbitrary wave function

S ¥(xy,...,oN) = \/_ Z (£1) PLU mp( )y - xp(N)) ; (22)

where (4:1)7 is the parity of the permutation P that maps n — p(n). Since there are N! different
permutations, this can easily become an extremely expensive operation. Since (anti)symme-
trization only involves a relabeling of coordinates, in integrals, i.e., matrix elements, we can
save some work by observing that in matrix elements only one of the wave functions needs to
be properly (anti)symmetrized [11]

/ ix (S0, () M(x) (S10(x)) = VN / ix U, (x) M(x) (Sa(x)) . (23)

where x = x4, ...,z and the observable M commutes with particle permutations.

It is remarkable that for products of single-electron states antisymmetrization can be performed
very efficiently: it is simply the prescription for calculating a determinant, which can be calcu-
lated with O(N?3) operations. Interestingly, the corresponding operation for bosons, the sym-
metrized of a product of single-electron states, called the permanent, cannot be performed effi-
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ciently. Given a set of spin-orbitals ¢, (z) we write the Slater determinant

wal(wl) 90012('171) SOOéN(‘Tl)
B (X) = S o (1) P () = \/% 90a1:(:172) Pay (962) SOaN:(HTQ)
P ('TN) Paz (xN> o Pay ('TN)

(24)
Obviously, replacing the orbitals by linear combinations @, (x) = Z%:l Un.m Pay, () among
themselves produces the same Slater determinant, merely changing the normalization by det(A),
which is non-zero as long as A is invertible.
For N = 1 a Slater determinant is simply the one-electron orbital o, (x); for N = 2 it has the
familiar form (g (2)ps(2") — @s(2)pal(a’))/ V2.
Slater determinants are popular electronic wave functions because operations can be calculated
efficiently, even for large numbers /N of electrons, using standard methods of linear algebra.
As an example, using (23), we see that the overlap of two Slater determinants is simply the
determinant of the overlap matrix of their single electron orbitals:

/dml oo dry Poyoay (1, -, TN) Py (21, ..., xn) = det (((pan|g05m>> . (25)

It follows that Slater determinants constructed from a set of orthonormal spin-orbitals ¢,,(z)

are normalized — except when they contain an orbital more than once, in which case the deter-
minant, obeying the Pauli principle, vanishes. Likewise, it follows that two Slater determinants
Do, .ay (21, .., xn) and g, .., (21, ..., 2y) are orthogonal except when they are built from
the same set of orbitals, i.e., {a1,...,an} = {f1,...,O~x}. Thus, if we fix some ordering of
the orbitals, e.g., a; < ag < - -+ < ay, the determinants formed from all possible choices of N
spin-orbitals from the set of K orthonormal single-electron functions ¢,,(z) forms an orthonor-
mal set in the N-electron Hilbert space. There are K - (K — 1) - (K —2)--- (K — (N — 1))
ways of picking /N indices out of K. Since we only use one specific ordering of these indices,
we still have to divide by N'! to obtain the number of such determinants:

K! K
NI(K —N)I — (N) ' (26)

They span the antisymmetrized N-particle Hilbert space. Thus, the choice of an orthonormal
set of single-electron functions {y,(x)| x = 1... K} induces an orthonormal basis

{@al.._aN(xl,...,a:N) ( G <y < <ay e {1,...,[(}} 27)

in the corresponding N-electron space. Given a set of one-electron functions, we can thus, by
the variational principle, approach the exact solution of the many-body problem in the corre-
sponding N-electron Hilbert space by including more and more of these determinants. This
is called the configuration interaction (CI) method. It becomes exact on this space when we
include all (][\([) basis determinants (exact diagonalization or full CI). Even though these calcu-
lation very quickly involve unimaginable numbers of determinants — for NV = 25 electrons in
K = 100 orbitals the number of basis functions already exceeds 10%* — the result is still not
exact, as the single electron basis is not complete. This is illustrated in Fig. 3.
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Fig. 3: Left: Convergence of a calculation for an N-electron system with K basis functions.
The dimension of the Hilbert space for configuration interaction is dim = (ﬁ) The plot on the
right shows the log,, of this as a function of the number of electrons N and orbitals K.

3.1 Hartree-Fock

To calculate expectation values for Slater determinants we take again the route via the reduced
density matrices described in Sec. 2. To calculate the one-body density matrix, we expand the
Slater determinant along its first row

N
1 n

¢a1~-aN (xh s ,JIN) - \/_N ;(—1)1+ Lay, (1’1) @a#n (ZEQ, Ce ,JIN) s (28)

where @, (22, ...,7y) is the determinant with the first row and the n-th column removed,

which can be written as N—1-electron Slater determinants with orbital c,, removed. The integral
for obtaining the one-body density matrix is then just of the type (25), so that

det ((Payun [Parpm))
det( <<paj |()001k>)

1 -
PO@he) = 5 3 ()" ga, (@) o () (29)

where we have introduced the normalization factor of the Slater determinant. For orthonormal
orbitals this simplifies to the familiar expressions

rO@sz) =3 o, (@) pa,(z) and  nx) = |oul@). (30)

For higher-order density matrices, we could expand the N — 1 Slater determinants further. A
simpler way to generalize (28) is, however, to realize that we can write the permutations of a
set of IV objects by considering all possible partitions of this set into two sets and taking all
permutations among the elements of these sets. This lets us write a Slater determinant as the
sum over products of two smaller Slater determinants:

1

¢O41"‘0¢N (X) = Z (_1)14_21 ni@O"nl“'anp ($17 ce 7'7;17)@047;&{711

N
P np<ng<--<np

np}<l'p+1, e ,JZN)

,,,,,

€1y
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For p = 2 we get the general form of the two-body density matrix for a Slater determinant
det ( <90aj7én’,m’ |90ak'72n,m > )
det({¢a; [ Pay))

(32)
Since the summation indices are ordered, for orthogonal orbitals only the terms with (n', m’) =

IO(h, sy, w0)=Y (—1)" D, (2], 1) Bay 0, (21, 22)

n/<m/
nm

(n,m) remain, giving the generalization of (30) to p = 2

F(2) (xllxé7 Il, x2> - Z@an7am (ZU,17 le) @an,am ('rl? Iz) (33)
n<m
and
(1, 22) = Y |Pay (@1, 22)[° (34)

where the factor of 2 is included by summing over all combinations (7, m), not only the ordered
ones, and m = n can be included, since in that case the determinant vanishes. In terms of the
orbitals this becomes

(w1, x2) = Y (\%n(ﬁﬁ1)\2|%m (22)]* = an (21)Pap (1) Pay, (22)¢a, (»’172)> : (35)

n,m

from which it is easy to find the pair correlation function

Zn,m Pan (T1) o (T1) Vo (T2)Pa, (T2) .

n(zy) n(wa)

g(z1,22) =1 - (36)
Given the explicit form of the two-body density matrix (32), we can meet Coulson’s challenge
for the Hamiltonian (17), albeit restricted to density matrices that arise from Slater determinants.
This procedure is equivalent to the Hartree-Fock method, which gives the Slater determinant for
which the total energy is stationary.

For a homogeneous electron gas, i.e., the Hamiltonian (17) without ionic potentials (except for
a homogeneous neutralizing background), one such stationary point is, by symmetry, the Slater
determinant of plane waves of wave vectors k with |k| < kp. For this simple case we can
calculate the pair correlation function (36) explicitly

. 2
sin(kpr) — kpr cos(kpr
g(T17017r2702) —1=-9 ( ( - ) (l{?FI;>6 ( d )) 501,02 (37)

with r = r9 — r1. This shows how electrons of the same spin avoid getting close to each

other because of the antisymmetry requirement (exchange hole), while for a Slater determinant
electrons of opposite spin are uncorrelated.

The exchange hole decays rapidly with distance and becomes more localized with increasing
density, approaching a delta function in the limit krz — oo. As shown in Fig. 4, the exchange
hole is essentially contained in a sphere of the Wigner-Seitz radius r, = 213y ie., the ra-
dius of a sphere containing one electron of a given spin. Since this condition is somewhat
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Fig. 4: Exchange hole for a paramagnetic homogeneous electron gas in units of the spin Wigner-
Seitz radius kpr, = (97/2)'/3. In addition, the dotted line shows the contribution of the
exchange hole to the Coulomb repulsion energy of Eq. (21).

similar to the sum rule (20) for the pair-correlation function, this is not entirely unexpected. In-
cluding correlation effects, which are missing in Hartree-Fock, could increase the range of the
exchange-correlation hole, while, missing exchange effects, the correlation hole for electrons of
different spin should be more localized. This is in fact what is found in quantum Monte Carlo
calculations, see, e.g., Fig. 1 of Ref. [13].

We note in passing that the homogeneous electron gas is not necessarily the Hartree-Fock
ground state. Allowing the Slater determinant to break the symmetry of the Hamiltonian, we
might obtain a lower energy solution [14]. Enforcing the symmetry of the Slater determinant
is called restricted Hartree-Fock, allowing it to have a lower symmetry is unrestricted Hartree-
Fock. See, e.g., Ref. [15] for a simple example.

To go beyond Hartree-Fock we could now derive the matrix elements of n-particle operators
between different Slater determinants, so that we could represent the operators, e.g., in the
orthonormal basis (27). For this we could introduce generalized density matrices with two
different many-body wave functions [11]. A much more transparent approach is, however,
provided by the formalism of second quantization. It addresses the main inconvenience when
working with Slater determinants: keeping track of the sign for sub-determinants. In second
quantization these signs are simply stored in the relative positions of certain operators. For this
to work, these operators have to change sign when exchanging the order of two of them — they
have to anti-commute.

4 Second quantization

The first object to be successfully quantized was the electron. It was no longer described as
a classical point-particle but by a quantum mechanical Schrodingier field. Later, for studying
the interaction of radiation with matter, also the electromagnetic field had to be quantized,
giving rise to quantum particles — photons. This process, pioneered by Dirac [16], was called
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the second quantization. Shortly after, Jordan, Klein, and Wigner used a similar approach to
quantize the Schrodingier field and found that it could be used to write antisymmetric states in
a very convenient way using particle-type operators [17, 18].

When working with Slater determinants of the form (24) we are working in a real-space basis.
Like in fundamental quantum mechanics, it is, however, often useful to abstract from a specific
basis and work with abstract states: Instead of a wave function ¢, (x), we write a Dirac state
|ar). Second quantization allows us to do the same for Slater determinants.

Let us consider a Slater determinant for two electrons, one in state ¢, (), the other in state
@s(z). It is simply the antisymmetrized product of the two states

Pop(T1,72) = ;;5 (¢a(T1)ps(T2) — wa(T1)PalT2)) - (38)

We could do the same for Dirac states, defining a two-particle Dirac state

1
a,fB) = —=(lo — a)) .
|, B) \@OH@ 16)|a))
The idea of second quantization is then to specify the states using operators

chel]0) = |av, B) . (39)

When these operators change sign when they are reordered, antisymmetry of the wave function
will be automatically ensured

o, B) = clich0) = —clcf]0) = —[8, ). (40)

Naturally, this also implies the Pauli principle for the special case 5 = a..

4.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use operators with these properties to
represent Slater determinants. We start by motivating the properties of the new operators.

To be able to construct many-electron states, we start from the simplest such state: |0) the state
with no electron, i.e., the vacuum state, which we assume to be normalized (0|0) = 1. Next
we introduce for each single-electron state |«v) (corresponding to an orbital ¢, (x)) an operator
cl. We call it a creation operator, since we ask that applying c!, to an N-electron state adds an
electron in state |«) to that state, making it an NV + 1 electron state. In effect, the operator should
be constructed such as to mimic the effect of adding an extra column ¢, and an extra row
to the Slater determinant (24). Since the order in which we add rows/columns matters for the
sign of the Slater determinant, we postulate that the operators change sign when exchanged:
c:flc}; = —cEcL. This is more conveniently written as {c], c}j} = 0 by introducing the anti-
commutator

{A,BY:=AB+BA. (41)
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The simplest state we can produce with these operators is the single-electron state |a) = ¢/, |0).
When we want to calculate its norm, we have to consider the adjoint of ¢/, |0), formally obtaining
(a]a) = (0|c,cl |0), or, more generally, (a|3) = <0|cac}5|0>. This must mean that c,,, the adjoint
of a creation operator, must remove an electron from the state, otherwise the overlap of c,, c};|0)
with the vacuum state (0] would vanish. We therefore call the adjoint of the creation operator
an annihilation operator. We certainly cannot take an electron out of the vacuum state, so
¢o|0) = 0. Moreover, by taking the adjoint or the anti-commutator of the creation operators,
we see that also the annihilation operators anti-commute: {c,,cz} = 0. Moreover, to obtain
the proper normalization of the single-electron states, we postulate the commutation relation
{car b} = {alB).

Thus, we have defined the vacuum state |0) and the set of operators ¢, related to single-electron
states |«) with the properties

al0) =0 {eyeqt =0={ch.ck}

00y =1 {c,.ch} =(alB)

(42)

We note that the creators and annihilators are not ordinary operators in a Hilbert space, but
transfer states from an /N-electron to a N 4 1-electron Hilbert space, i.e., they are operators
defined on the Fock space. 1t is also remarkable that the mixed anti-commutator is the only
place where the orbitals that distinguish different operators enter.

One type of operators is particularly useful for making contact with the real-space picture: The
operators @T(a:), with © = (r,0), that create an electron of spin o at position r, i.e., in state
|z) = |r, o). Because of their importance they get a special name, field operators, and a special
symbol @T(x) instead of c[, but really they are just ordinary creation operators for the states
corresponding to a delta function at r and a spin o. The anti-commutator for the field-operators
obviously follow from (42)

{Lﬁ(w),@(az’)} =0= {@T(x),fr(x')} and {@(x),@T(x')} =0(zx—2"). (43)
Given the single-electron wave functions in real space ¢, (z), we can express any creation
operator in terms of the field operators

CL = /dx gpa(x)@T(x) . (44)

Using (43), it is easy to see that these operator indeed fulfill all properties (42) required of the
creation operators.

Conversely, if we have a complete set of single electron states {¢,,, (z) }, we can expand the field
operators in terms of the corresponding creators and annihilators. Given the overlap matrix
S = ({a|aum)) we can use the Cholesky factorization S~' = 77T to orthonormalize the
orbitals @, () = Y Th.m Pan, (). The completeness relation is then

Z Pa, (T) (S_l)n,m Pa,, (7)) = Z Pay; (z) Pay; (2') = d(x —2'). (45)
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Using this together with the commutation relations (42) we see that the operators
= Z @an (w) Can Y (46)

fulfill the commutation relations (43) of the field operators.

4.2 Representation of Slater determinants

We now show that we can write a Slater determinant in terms of the algebra (42) we have
just defined. For this we consider an N-electron state [] ¢/, |0) and prove that its real-space
representation, obtained via the field operators is just the corresponding Slater determinant

0> 47)

A

V()W (2s) ... W(n) el ...ch el

g o

1
¢a1a2,,,aN($171'27 cee 7$N) e~ <0

Not surprisingly, the proof is by induction. As a warm-up we consider the case of a single-
electron wave function (N = 1). Using the special case of an anti-commutation relation

{(x), cl} = / 0’ (2! { (), 1 (1)} = gulx) (48)

we see that

(0| (@) el |0) = (0] s 1) = el #(@1) [ 0) = 00 (@) 49)

For the two-electron state N = 2, we anticommute Q?(:cg) in two steps to the right
<0 U (21)¥ () azcll O> = <0 U (21) (gpa2 (z9) — ¢!, @(xg)) cT >
= <0 ‘ @(ml)ch 0> Pan (T2) — <0 ‘ @ (21)ct L_U(xg) >

= Pay (1"1)900(2(‘%2) — Pas (xl)(pal ('TQ) : (50)

We see how anti-commutating automatically produces appropriate sign for the antisymmetric
wave function. Dividing by V/2, we obtain the desired two-electron Slater determinant.
The general case of an /N-electron state works just the same. Anti-commuting Llc/(x ~) all the

>:

way to the right produces N — 1 terms with alternating sign

A

(0 \ G(2) .. F(en ) (en) el el

aN aN—1 "

+ <O F(2y).. ¥(xy_ 1) Chy - > Can (
= (0| #@) . an ) Tapw-1¢h, |0) P (o)
(—i)N <o‘¢(x1)...¢(xN_1)cgN d, > oy (zN)

Using (47) for the N — 1-electron states, this is nothing but the Laplace expansion of

Par (T1)  Pas(T1) -+ Pay(T1)
Par (T2)  Pay(T2)  Pay(T2)

o (23) Genltn) - paylen)
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along the N'th row. Dividing by v/N! we see that we have shown (47) for N-electron states.
Thus we see that instead of working with the Slater determinant @y, a, oy (T1, 22, ..., TN) We
can work with the corresponding N-electron product state [] ¢! |0). In particular, instead of
working with the basis of Slater determinants (27) induced by an orthonormal set of single-
electron states {¢,,, (z)}, we can work with the corresponding basis of product states

{ 11 cLN--~cgl\o>}. (51)

a1 <---<an

4.3 Representation of n-body operators

Having established the relation between product states and Slater determiants, it is straightfor-
ward to express the matrix elements of a general n-body operator (11)

M(X) :MO+ZM1(:E@)+ ZMQ(ZEi,l'j)+ Z M3(C(]Z‘,[Ej,$k)+"' (52)

1<j 1<j<k

with N-electron Slater determinants:

/d$1 codey Ppy gy (1, o) M (21, 2N ) Payay (1,0, TN)

= (0] e+ e5 Ml ool | 0) (53)
with the representation of the n-body operator in terms of field operators
N 1 o o A o
M = N /dxl oy Ul ay) W (@) M (2, an) W) - Wlay) (54)

Note that this form of the operator is only valid when applied to N-electron states. But from
here on, we can work entirely in terms of our algebra (42).

To see what (54) means we look at its parts (52). As usual, we start with the simplest case,
the zero-body operator, which, up to trivial prefactor, is My(x1,- -+ ,xy) = 1. Operating on an
N-electron wave function, it gives

~ 1 ~ ~ ~ ~ A
MO = m /dzldl'g TN LPT(J,’N) s WT(JZQ)WT(lL'l) !p(l'l)W(ZEg) s W(mN)

:%/ dx2~--xN¢T(xN)---¥7T($2) N j(@)@(x]v)

:%/ dx2"'xN@T<xN)"‘¢T<I2) 1 WA(IZ)@(@\O

1
=5l2 o N=1 (55)

where we have used that

~ A

/ de Ul ()0 (z) = N (56)
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is the number operator and that applying n annihilation operators Lf/(:cj) to an N-electron state
gives a state with N — n electrons. We note that we obtain a form of My = 1 that apparently
does not depend on the number of electrons in the wave function that it is applied to. This was
not the case for the original expression (54).

Next we consider one-body operators M (21, ..., 2n) = >, Mi(z;)

M, = % /d:vl ceday Wi(ay) - (an) ) Mi(ay) o) - O law)

J

_ % Z/dxj () My () (N = 1) ()
— % Z/dxj W () My () @ (x;)

= /dx @T(x) M, (x) 11/}@)

Here we have first anticommuted ¥'(z;) all the way to the left and ¥(z;) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. The operation
leaves the integrals over the variables except x;, a zero-body operator for N — 1 electron states,
operating on ¥z )| N-electron state).

Expanding the field-operators in a complete orthonormal set ¥ () = 3 @, () ¢a, gives

M, = Z/dm Pan (1) M(2) @a,, (T) ¢, = Z(an|M1]am> e, . (57)
Also here we find a form for M that is apparently independent of the number of electrons N
and can be evaluated directly in the basis states (51).
For the two-body operators M (z1,...,xn) = > _;_; Ma(x;, x;) we proceed in the familiar way,
anti-commuting first the operators with the coordinates involved in M, all the way to the left
and right. This time we are left with a zero-body operator for N — 2 electrons:

~ 1 A A ~ ~
Mg = ﬁ /dl‘l . 'dﬁN LDT(ZL'N) . 'LDT(ZL‘l) ZMQ(I’Z‘,I‘]') W(I‘l) .. W(:L‘N)

- m Z/dxidxj w(%’)@(%) M2($i,$j)¢($i)¢(xj)

_ % / du dz' U1 () 01 (2) My(z, ') ¥(z) ¥ (')

Expanding in an orthonormal basis, we get

~

1
M=y 3 [ ded G, @) Mali0) o (060, ()l

n,n’ ,m,m’

> (Ot | Moy |ty ) c b oo, (58)
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where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index for
the second, while taking the adjoint of the operators changes their order. Obviously, from the
symmetry Ms(x, z') = My(2', x) follows {cv, i | Ma |t anm) = (| Ma |t ai).

The procedure generalizes to operators acting on more than two electrons in the natural way.
We note that, while we started from a form of the operators (52) that was explicitly formulated
in an N-electron Hilbert space, the results (55), (57), and (58) are of the same form no matter
what value /V takes. Thus these operators are valid not just on some /N-electron Hilbert space,
but on the entire Fock space. This is a particular strength of the second quantized formulation.

4.4 Vacuum state and electron-hole transformation

We have introduced the state |0) as the state with no electrons, N = 0. The whole formalism
of second quantization requires, however, only (42), i.e., that |0) is normalized and annihilated
by the annihilation operators. We can exploit this to obtain more convenient descriptions of
many-electron systems. As a first example, see [19] for the physics background, let us consider
the d-states of an atom. Denoting the operator for putting an electron of spin ¢ in the d-orbital
with directional quantum number m by d! _, we can describe a d"¥ configuration, i.e., a state

mo?

with N d-electrons as a linear combination of product states [[_, dl, ,|0). Here |0) is the
state without electrons. This is the description we have used so far. It specifies the states the
electrons are in. For an almost full shell it might, however, be more convenient to specify the

state in terms of the non-occupied states. We can do this by introducing a new “vacuum’ state

—2
[full shell) = d', " - dbyd,.dl - dif0) = T[] dh.10) (59)

o m=2

corresponding to a filled d-shell. [full shell) certainly does not fulfill the requirements for a
vacuum state, since d,;,,|full shell) # 0. Thanks to the Pauli principle it is, however, annihilated
by any electron creation operator st in the space of d-orbitals. Thus, when we relabel these
electron creation operators as hole annihilation operators, h; = c}, then |full shell) behaves as
a vacuum state for these newly labeled operators hs. We pick the relation between the hole
state § and the corresponding electron states ¢ such that form of the anti-commutation relations
remain unchanged: {h,, h;} = {cl, gt = (Bla) = {a|B). Having established an isomorphism
between the algebra of electron operators and that of the corresponding hole operators, we can
relate electron expectation values to those of hole-states, e.g., <0|cacTﬁ|O) = <full|h@h%|full).

A common choice is to take the complex conjugate state p;(z) = @s(x).

We can now ask what kind of particles the operators hf; create. This is most easily done in the
basis d!_ of spherical harmonics; the general h; follow then by expanding them in the df . A
full d-shell has total orbital momentum L = 0 and total spin S = (0. Removing an electron
in state |mo) thus changes L, from 0 to —m and S, from 0 to —o. The corresponding creator
therefore creates a hole with directional quantum number —m and spin —o. We express this by
writing the electron-hole transformation as hf = d_,, _,. We can make a similar argument
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for a completely filled band
[full band) = [ T[] L.10) . (60)
o k

with hole operators h,Tw =b .
We can then relate the matrix elements for N-electron states of type |e) = [] ¢/, |0) and the
related N-hole states |h) = []hL |full), where |full) = [ st ¢l |0) is assumed to be nor-

malized, as is required of a vacuum state. Working with orthonormal operators, we find that
the matrix elements for a one-body operator (57) change sign and have a constant shift on the

diagonal
(W'|My|h) = Z<an|M1|am> (M|, cq, ) (61)
= Z<an\M1|am> (W |h, bl 1) (62)
= > (an|Milaw) [ (@nlam) (W|h) — (W|BE hg, ) (63)
’ <full|ancam |full) :(e/|chcan le)
= (full| M, |full) 6, — (€'|M;]e) . (64)

In going to the second line, we converted from writing the matrix element in electron operators
to the formulation in hole operators. The identity of the matrix elements for the N-hole and
N-electron states in the third line follows from the fact that the operators c; and h,, form, with
their respective vacua, the same algebra. For two-body operators (58) we use

hohghthl = Wik hshy — (@l7) haht + (]) hghl = (B7) iy + (B10) Bk, . (63)

Collecting contributions of the direct two-body terms to (h/|M,|h) we get

1 / 1 /
5 S (Bl ) (105 sl 5, 1) = 5 S (Bl MalB2) Gun =3 Berbyn) (1|
afyé af apy

and similarly for minus the exchange terms

5 S (BaIMIN ) (6 hghl—ssh |y =5 S50l MoJ0B) G =3 (Bl (1L gl

apyd apf afy
The first terms only contribute to diagonal matrix elements and give the expectation value of
the full shell (full|MZ,|full). The one-body terms also contribute only to the diagonal when the
full shell is symmetric (atomic shell: radial symmetry, filled band: k£ = 0) and M, conserves
the corresponding quantum numbers (atomic shell: m; +mo = mg3+my, filled band: k + ko =
ks + ky): fixing, e.g., o = y then also fixes 5 = 0. Moreover, all terms ) _(Sa|M;|fa) or
the corresponding exchange term are independent of |3) for orbitals of the same symmetry (just
rotate the basis to the desired |(’)) so that, again, there is just a constant shift of the diagonal
elements

(W |My|h) = ((fu111M2|fu11> + N ((BalMsy|Ba) — <5a|M2|a5>)) Oor o+ (€| Mye) . (66)
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An interesting new situation arises when we consider product states that are not closed shells.
A popular example is the Fermi sea for a homogeneous electron gas

[Fermi sea) = [ ] cl.10)- (67)

o |kl<kp

We can now introduce new annihilation operators as

i ., forlk| <kp 68)
7 e, forlk| > ke

They are of hole-type for states occupied in |[Fermi sea), while for empty states they are of elec-
tron type. This mixing of character has an interesting consequence: electron creation operators
in a basis other than that used for defining the new vacuum are transformed to operators with
mixed creator/annihilator contributions. As an example, the field operator

WAU(T) _ /dl{? eikr Cp = /k<k dk eik'r hT—k7—o’ _'_/ dk eik‘T hk,a (69)
<kp

|k|>kr

is no longer a pure annihilation operator in the hole picture. I.e., we no longer get the full
algebra (42) but are restricted to operators defined in the basis that was used to generate the new
vacuum.

5 Many-body states

We now consider small model Hamiltonians to illustrate the techniques introduced so far. This
will also allow us to discuss characteristic many-body states without too much complication.

5.1 Hubbard model

As the first example we study the Hubbard model with two sites, i = 1, 2, between which the
electrons can hop with matrix element —¢ and with an on-site Coulomb repulsion U

H=—-1 Z (c;,ch, + CL%;) +U Z N1 - (70)

ie{1,2}

The number of electrons N and S, are conserved, so the Fock space Hamiltonian is block-
diagonal in the Hilbert spaces with fixed number of up- and down-spin electrons N; and N|
with dimensions

N o] 1 2 3 |4
N jol1 02 1 0[2 1]2
N, |00 1 201 22
dim|1]2 21 4 1|2 2|1]16
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The Hamiltonian for N = N; = 1 is easily constructed. By introducing the basis states CHO)
and c;T|O>, we obtain the Hamiltonian matrix

cit Py _ 0 —t{0lcy, CITC% C£¢|O> _ 0 —t
0 H (¢ ey ) |0 .
C21 —t(0]cy, chclT C§T|0> 0 Y

This is easily diagonalized giving the familiar bonding and antibonding solution

1
)= (CIT + c;T) 0) = ¢l.,]0). 71)

For N; = 1 = N, we obtain a non-trivial interacting system

C11C2 0 0 —t —t
CatCay ORI B TT)‘>_ 0 0 -t —
0) H (c cl. cyeh el e 0)= . (72
< circry 20611 €116 €€ G Cop t —t U 0 (72)
CorCa —t —t 0 U

To diagonalize the matrix, we transform the basis into linear combinations of covalent and ionic

states
Lo(vb Lt
covy) = E ( 5, C1p CuCzT) 10) (73)
) 1
liony) = E ( LCIT + céw%) 0) (74)
It is then easy to verify that [cov_) is an eigenstate with eigenvalue .., = 0 and that |ion_)

has eigenenergy ¢, = U. The remaining two states mix

(covy| _ 1 U 4
<<ion+|) H (|cov+> |1on+>> =3 {U— <4t _U>} . (75)

Rewriting the matrix

U 4t cos © sin ©
= vVU? + 16¢2 76
<4t —U) * (sin@ —cos@) ' (76)

we find the ground state of the half-filled two-site Hubbard model

lgs) = cosO/2|covy) +sin©/2 |iony ) (77)

1 . .
= E (cos % c&c% + cos % CLCJ;T + sin % CLCJ{T + sin % cgicgﬁ |0> (78)
with an energy of e, = (U — v/ U? 4 16t2) /2. Without correlations (U = 0 ~ © = 7/2), all
basis states have the same prefactor, so we can factorize the ground state, writing it as a product
ci icJﬂrT|O) of the operators defined in (71). For finite U this is no longer possible. In the strongly
correlated limit U >> ¢ (© Y\ 0) the ground state becomes the maximally entangled state |cov )
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e/t

U/t

Fig. 5: Spectrum of the two-site Hubbard model as a function of U /t.

and can not even approximately be expressed as a two-electron Slater determinant. See [15] for
a more detailed discussion, but beware that there the basis was chosen slightly differently to
make the symmetry of the singlet/triplet state apparent.

We can, however, construct a product state, exploiting the freedom we gained by introducing
second quantization: the product wave function in Fock space

VB) = (1+eyely) (1+elyely) [0) (79)
= |0) + (cgiciT + CLC;T> 0) + cachchCHO} (80)
— ~ . —
N=0 Ny=1=N, N=4

has a component in the two-electron Hilbert space that is just the covalent state |cov_ ). It would
be very desirable to generalize this approach to a half-filled state without double occupancies,
i.e., a Mott state and to models with more than two sites. We might try an ansatz

VB?) = [T (1+ el + el ) o) (81)
(ig)

that has the advantage of not producing doubly occupied sites. The product is over pairs of
sites, 1.e., bonds, where each site only occurs in one such bond (if a site 7 participated in two
bonds (ij) and (ik), there would be terms with doubly occupied site i, e.g., c| ¢ch CLCLT). There
are, however, many ways we could partition the lattice sites into bonds, and to maintain the
symmetry of the lattice we would have to sum over them. Alternatively, we could take products
of all bond states and use a Gutzwiller projection to eliminate the doubly occupied sites. This
is the idea of the resonating valence bond (RVB) state [20]. Unfortunately, neither approach to
the Mott state is easy to handle.
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In the negative-U Hubbard model we do not have such problems. For U < t the ground state
is a linear combination of doubly occupied sites |ion ), which can be obtained from

1
[pair) = 3 (1 v ¢c;T) (1 +e ¢c{T) 10). (82)

As each pair of creation operators in the product involves only a single site, this ansatz readily
generalizes to larger lattices

pair) = [ % (1 + CLCIO 10) . (83)

The idea of such grand-canonical product states in Fock space are central for understanding the
superconducting state.

5.2 BCS state

‘We now turn from the Hubbard model to the BCS Hamiltonian

HBCS = Z Ek Czackza + Z Vk,k’ CT—k:’icch’TckTC—k\L (84)
ko kK’

in which the interaction term scatters Cooper pairs of electrons (k 1, —k ) with different
values of k. We start again by looking at a two-site model. With periodic boundary conditions,
the bonding and antibonding states (71) become states with & = 0 and & = m, respectively.
Note that for both values (£ = 7 being at the boundary of the Brillouin zone) we have £ = —k.

Setting Vj, » = —1, we obtain the two-site Hamiltonian
H = Z €k Nie — 1 (cjwcjﬁcmc(u +c$¢chCﬂcw> ) (85)
ke{0,7},0

For Ny = 1 = N, the Hamiltonian matrix is

CotCry €otéxn 0 0 0
CrtCoy (PRI N S N R R _ 0 g+e0 0
O‘ H <c Con €y Cl.oclicnn e ) ’O> = 86
< CorCoy AU L 0 0 2 1| @
CrtCr 0 0 —I 2e,

To find the ground state, we need only consider the subspace of the Cooper pairs

|pair;,) = CT—MCLT’(» : 87)

Writing € = (g9 + &,)/2and A = ¢, — &

2eg —1 _ A 1 _ [ cos® sin ©
( —I 2, > © ( I —A > : + ( sin® —cos®@ ) (88)
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we diagonalize, just as we did in the case of the Hubbard model, to find the ground state of the
half-filled two-site BCS-model for / > 0

lgs) = cos @ /2 |pairy) + sin ©/2 |pair, ) = (cos % c(Tuch + sin % CLCLO ‘O> (89)

It is similar in form to the ground state (82) of the negative-U two-site Hubbard model, except
that the two pairs can have different amplitudes, as the pair with lower band energy ¢y, is pre-
ferred. Introducing @y = @ and ©, = ™ — © we can recover this state (for any / > 0, not
just in the limit of large interaction as for the negative-U Hubbard model) from the Fock-space
product-state

1
BCS) = [ ———=(1+cos%clycy)0). (90)
kefo,r} 4/ 1 + cos? %

This readily generalizes to larger numbers of k-points, where it becomes the BCS wave function.

6 Conclusions

We have studied the consequences of one of the most bizarre features of quantum mechan-
ics, the existence of indistinguishable particles. To treat such particles, we have to introduce
artificial labels but must make sure that no observable depends on them. The invariance un-
der permutations of these labels implies that many-particle wave functions must be properly
(anti)symmetrized. The type of symmetry is given by the spin-statistics connection. Unfortu-
nately, imposing the correct (anti)symmetry on a generic /N-particle wave function is a compu-
tationally hard problem as there are N! permutations. One way to get around this problem is
to integrate-out all degrees of freedom that are not explicitly considered. This gives rise to the
reduced density matrices. Another is to exploit the fact that products of single-particle wave
functions can be efficiently anti-symmetrized by forming the Slater determinant. Working with
Slater determinants is made more convenient by introducing operators that are designed to en-
code the Fermi sign in their position. This technique of second quantization has two important
benefits: we are no longer restricted to calculating with Slater determinants in configuration-
space representation but can work with abstract Dirac states instead. Even more importantly,
creation and annihilation operators are defined in Fock space. They enable us to write observ-
ables in a unified way on Fock space. Moreover, they allow us to also write wave functions in
Fock space. Using this additional degree of freedom, it is possible to write non-Fermi-liquid
states as generalized Slater determinants (product states), the most famous being the BCS state.
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3.2 Eva Pavarini

1 Magnetism in strongly-correlated systems

Long-range magnetic order is a manifestation of emergence, the hallmark of strong electron-
electron correlations. It arises from the same interactions that lead to the metal-insulator tran-
sition and orbital-ordering or that give rise to the Kondo effect. And yet, magnetic order phe-
nomena can, to a large extent, be explained by solving spin models and forgetting about the
microscopic mechanisms which justify them. To understand models and mechanisms we have,
however, to take a step back into the complex world of strong correlations [1-7].

Magnetism ultimately arises from the intrinsic magnetic moment of electrons, 4 = —gugs,
where 5 1s the Bohr magneton and g ~ 2.0023 is the electronic g-factor. It is however an
inherently quantum mechanical effect, the consequence of the interplay between Pauli exclusion
principle, Coulomb electron-electron interaction, and hopping of electrons. To understand this
let us consider the simplest possible system, an isolated atom or ion. In the non-relativistic limit
electrons in a single ion are typically described by the Hamiltonian

1 Z 1
HER:—§;V?—;E+;W’

where Z is the atomic number and {r;} are the coordinates of the electrons with respect to the
ionic nucleus. Here, as in the rest of this lecture, we use atomic units. If we consider only the
external atomic shell with quantum numbers nl, for example the 3d shell of transition-metal
ions, we can rewrite this Hamiltonian as follows

NR 2 : } : 2 : T
H = &nl CrmoCmo +3 mm/mim/’ cmacm’o’cm’o’cma (1)

oo’ mmm’m’/
Here ¢, is the energy of the electrons in the n/ atomic shell and m the degenerate one-electron
states in that shell. For a hydrogen-like atom

1 z?
Enl = —= —>-
: 2 n?
The couplings U!, - ., are the four-index Coulomb integrals. In a basis of atomic functions

the bare Coulomb integrals are

Uzj'L j’ /d’l"l/d’f'g imo ’rl)qvb]m oxd (7’2)#)] 'm’o’! (7’2)#11 ma(rl)

mm/mm’ \"‘1 _r2|

Y

and

Ul ey = UM m,m’,m,m’ € nl shell.

The eigenstates of Hamiltonian (1) for fixed number of electrons, NV, are the multiplets [8, 9].
Since in HY® the Coulomb repulsion and the central potential are the only interactions, the
multiplets can be labeled with S and L, the quantum numbers of the electronic total spin and
total orbital angular momentum operators, S = Zz s;,and L = ZZ l;. Closed-shell ions have
S = L = 0 in their ground state. Ions with a partially-filled shell are called magnetic ions; the
value of S and L for their ground state can be obtained via two rules due to Friedrich Hund.
They say that the lowest-energy multiplet is the one with
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o the largest value of .S

o the largest value of L compatible with the previous rule

The main relativistic effect is the spin-orbit interaction, which has the form A, ESO = ZZ Ai lies;.
For not too heavy atoms it is a weak perturbation. Then, for electrons in a given shell, we can
use the first and second Hund’s rule to rewrite H5° in a simpler form

1
H° ~ )\L-S:§/\(J2—SQ—L2), (2)

1 1d
A~ 20(1—20) — 1] guég<;wR<r>>,

where n is the filling and © the step function; vg(r) is the effective potential, which includes,
e.g., the Hartree electron-electron term [10]. For a hydrogen-like atom, vg(r) = —Z/r.
Because of the LS coupling (2) the eigenstates have quantum numbers L, S and J, where
J = S + L is the total angular momentum. The value of J in the ground-state multiplet is
given by the third Hund’s rule

|L — S| forfillingn < 1/2
e total angular momentum J = S forfilling n = 1/2
L+ S forfillingn > 1/2

In the presence of spin-orbit interaction a given multiplet is then labeled by 2*'L;, and its
states can be indicated as |J.J,LS). If we consider, e.g., the case of the ion Cu?t, characterized
by the [Ar] 3d° electronic configuration, Hund’s rules tell us that the 3d ground-state multiplet
has quantum numbers S = 1/2, L = 2 and J = 5/2. A Mn>" ion, which is in the [Ar] 3d*
electronic configuration, has instead a ground-state multiplet with quantum numbers S = 2,
L =2 and J = 0. The order of the Hund’s rules reflects the hierarchy of the interactions. The
strongest interactions are the potential vg(7), which determines ¢,,;, and the average Coulomb
interaction, the strength of which is measured by the average direct Coulomb integral,

1
Uweg = Ul .
g (2l + 1)2 Z/ mm’mm

For a N-electron state the energy associated with these two interactions is £(N) = ¢, N +
UavgN(N — 1)/2, the same for all multiplets of a given shell. The first Hund’s rule is instead
due to the average exchange Coulomb integral, J,.,, defined as

1
Uav_t]a\/:— Ul ’ /_Ul Fory! 5
g g 2l<2l+1) T%n:,( mm’'mm mmmm)
which is the second largest Coulomb term; for transition-metal ions J,,, ~ 1 eV. Smaller
Coulomb integrals determine the orbital anisotropy of the Coulomb matrix and the second
Hund’s rule.! The third Hund’s rule comes, as we have seen, from the spin-orbit interaction
which, for not too heavy atoms, is significantly weaker than all the rest.

"For more details on Coulomb integrals and their averages see Ref. [10].
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The role of Coulomb electron-electron interaction in determining S and L can be understood
through the simple example of a C atom, electronic configuration [He] 252 2p®. We consider
only the p shell, filled by two electrons. The Coulomb exchange integrals have the form

Tt = 3)

m,m’ mmmm

/d”'l/d T Yimo (1) Vi (72) Yime (72) i (T1)

|y — 72
¢zmma r )¢zmm a(r ) 1 47
- /drl/dr2 |'r11— 7| "= v 2 k2 [Gmma(R)I
k

and they are therefore positive. They generate the Coulomb-interaction term

__Z Z Jﬁ@m CmoCmoCm/oCmic = T4 Z 2‘]7[7)1,771/ {SQ”S?/ + %nmn;n] .

o m#m’ m;ém

This interaction yields an energy gain if the two electrons occupy two different p orbitals with
parallel spins, hence favors the state with the largest spin (first Hund’s rule). It turns out that for
the p? configuration there is only one possible multiplet with S = 1, and such a state has L = 1.
There are instead two excited S = 0 multiplets, one with L = 0 and the other with L = 2; the
latter is the one with the lowest energy (second Hund’s rule).
To understand the magnetic properties of an isolated ion we have to analyze how its levels are
modified by an external magnetic field h. The effect of a magnetic field is described by
2

Y = (9S4 L) bt ' S0 (2 4+ ?) = HZ 4+ HE @
The linear term is the Zeeman Hamiltonian. If the ground-state multiplet is characterized by
J # 0 the Zeeman interaction splits its 2./ + 1 degenerate levels. The second order term yields
Larmor diamagnetism, which is usually only important if the ground-state multiplet has J = 0,
as it happens for ions with closed external shells. The energy pph is typically very small (for
a field as large as 100 T it is as small as 6 meV); it can however be comparable with or larger
than the spin-orbit interaction if the latter is tiny (very light atoms). Taking all interactions into
account, the total Hamiltonian is

H,~ HY® 4 {50 1 gt

In a crystal the electronic Hamiltonian is complicated by the interaction with other nuclei and
their electrons. The non-relativistic part of the Hamiltonian takes then the form

1 VA,
HNR — __ V2 «a
- T Y e
where Z,, is the atomic number of the nucleus located at position R,,. In a basis of localized
Wannier functions [10] this Hamiltonian can be written as

HER = Zztmm CimaCitm'o

it'oc mm/

+35 Z Z Z Z U:wgin]mm Cimo ;[m U/Cj/m 16/ Citimes (5)

u]j oo’ mm/ mm/
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where
Y - 1
bt = —/d’r Yimeo (T) [—§V2 + UR(T)l Yirmo(T)-

il
m,m

The terms €,y = —tf;f}m, yield the crystal-field matrix and ¢ , with ¢ # ¢’ the hopping
integrals. The label m indicates here the orbital quantum number of the Wannier function.
In general the Hamiltonian (5) will include states stemming from more than a single atomic
shell. For example, in the case of strongly-correlated transition-metal oxides, the set {im} in-
cludes transition-metal 3d and oxygen 2p states. The exact solution of the many-body problem
described by (5) is an impossible challenge. The reason is that the properties of a many-body
system are inherently emergent and hence hard to predict ab-initio in the lack of any understand-
ing of the mechanism behind them. In this lecture, however, we want to focus on magnetism.
Since the nature of cooperative magnetic phenomena in crystals is nowadays to a large extent
understood, we can find realistic approximations to (5) and even map it onto simpler models
which still retain the essential ingredients to explain long-range magnetic order.

Let us identify the parameters of the electronic Hamiltonian important for magnetism. The first
is the crystal-field matrix ¢, ,,v. The crystal field at a given site 7 is a non-spherical potential due
to the joint effect of the electric field generated by the surrounding ions and of covalent-bond
formation [9]. The crystal field might split the levels within a given shell and has therefore a
strong impact on magnetic properties. We can identify three ideal regimes. In the strong crystal
field limit the crystal field splitting is so large that it is comparable with the average Coulomb
exchange responsible for the first Hund’s rule. This can happen in 4d or 5d transition-metal
oxides. A consequence of an intermediate crystal field (weaker than the average Coulomb
exchange but larger than Coulomb anisotropy and spin-orbit interaction) is the quenching of the
angular momentum, (L) = 0. In this limit the second and third Hund’s rule are not respected.
This typically happens in 3d transition-metal oxides. In 4 f systems the crystal-field splitting
is usually much weaker than the spin-orbit coupling (weak crystal field limit) and mainly splits
states within a given multiplet, leaving a reduced magnetic moment. In all three cases, because
of the crystal field, a magnetic ion in a crystal might lose, totally or partially, its spin, angular
or total moment. Or, sometimes, it is the other way around. This happens for Mn3" ions, which
should have a J = 0 ground state according to the third Hund’s rule. However in perovskites
such as LaMnOjs they behave as S’ = 2 ions because of the quenching of the angular momentum.
Even if the crystal field does not suppress the magnetic moment of the ion, the electrons might
delocalize to form broad bands completely losing their original atomic character. This happens,
e.g., if the hopping integrals ti’f:m, are much larger than the average on-site Coulomb interaction
Ulve. Surprisingly, magnetic instabilities arise even in the absence of localized moments. This
itinerant magnetism is mostly due to band effects, i.e., it is associated with a large one-electron
linear static response-function, xo(q; 0). In this limit correlation effects are typically weak. To
study them we can exploit the power of the standard model of solid-state physics, the density-
functional theory (DFT), taking into account Coulomb interaction effects beyond the local-
density approximation (LDA) at the perturbative level, e.g., in the random-phase approximation
(RPA). With this approach we can understand and describe Stoner instabilities.
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In the opposite limit, the local moments regime, the hopping integrals are small with respect
t0 Uayvg. This is the regime of strong electron-electron correlations, where complex many-body
effects, e.g., those leading to the Mott metal-insulator transition, play an important role. At
low enough energy, however, only spin excitations matter. Ultimately, at integer filling we can
integrate out (downfold) charge fluctuations and describe the system via effective spin Hamilto-
nians. The latter typically take the form

1 ii!
Hy = §Z,F Si-Sy+---=H{+.... 6)

(22

The term HZ! given explicitly in (6) is the Heisenberg Hamiltonian, and I” i is the Heisenberg
exchange coupling, which can be antiferromangetic (I > 0) or ferromagnetic (I"* < 0).
The Hamiltonian (6) can, for a specific system, be quite complicated, and might include long-
range exchange interactions or anisotropic terms. Nevertheless, it represents a huge simplifica-
tion compared to the unsolvable many-body problem described by (5), since, at least within very
good approximated schemes, it can be solved. Spin Hamiltonians of type (6) are the minimal
models which still provide a realistic picture of long-range magnetic order in strongly-correlated
insulators. There are various sources of exchange couplings. Electron-electron repulsion itself
yields via Coulomb exchange a ferromagnetic Heisenberg interaction, the Coulomb exchange
interaction. The origin of such interaction can be understood via a simple model with a single
orbital, m. The inter-site Coulomb exchange coupling has then the form

9

Jz',i’ _ Uz'i’i’z’ _ /d'f’l/d'f‘g wima<r1)¢i’ma(TQ)wima(r2)wi’ma(rl)

and it is therefore positive, as one can show by following the same steps that we used in Eq. (3)
for Jﬁhm,. Hence, the corresponding Coulomb interaction yields a ferromagnetic Heisenberg-
like Hamiltonian with 1" = —2J%" < (. A different source of magnetic interactions are the
kinetic exchange mechanisms (direct exchange, super-exchange, double exchange, Rudermann-
Kittel-Kasuya-Yosida interaction ...), which are mediated by the hopping integrals. Kinetic
exchange couplings are typically (with few well understood exceptions) antiferromagnetic [11].
A representative example of kinetic exchange will be discussed in the next section.

While itinerant and local moment regime are very interesting ideal limit cases, correlated ma-
terials elude rigid classifications. The same system can present features associated with both
regimes, although at different temperatures and/or energy scales. This happens in Kondo sys-
tems, heavy Fermions, metallic strongly-correlated materials, and doped Mott insulators.

In this lecture we will discuss in representative cases the itinerant and localized moment regime
and their crossover, as well as the most common mechanisms leading to magnetic cooperative
phenomena. Since our target is to understand strongly-correlated materials, we adopt the for-
malism typically used for these systems. A concise introduction to Matsubara Green functions,
correlation functions, susceptibilities and linear-response theory can be found in the Appendix.
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Fig. 1: The band structure of the one-band tight-binding model (hypercubic lattice). The
hopping integral is t = 0.4 eV. From left to right: one-, two-, and three-dimensional case. At
half-filling (n = 1) the Fermi level is at zero energy.

2 The Hubbard model

The simplest model that we can consider is the one-band Hubbard model

H=¢e4» Y ce,—t> Y e, +UY nyny = Hy+ Hr + Hy, (7)

iy o

where ¢, is the on-site energy, ¢ is the hopping integral between first nearest neighbors (7i') and
T

U the on-site Coulomb repulsion; c;, creates an electron in a Wannier state with spin o centered

at site i and n;, = c| ¢, . The Hubbard model is a simplified version of Hamiltonian (5) with

10 10 °

m=m'=m=m'=1and

_ iy
€d — _t171

— (i,4")
t — t1’1
Uu = U1111

In the U = 0 limit the Hubbard model describes a system of independent electrons. The
Hamiltonian is then diagonal in the Bloch basis

Hy+Hr =) ) [ea+ erlch, o (8)
k o

The energy dispersion ¢ depends on the geometry and dimensionality d of the lattice. For a
hypercubic lattice in d dimensions

d
e = —2t Z cos(k,, a),
v=1

where a is the lattice constant, and 7, = z,79 = y,r3 = 2. The energy ¢, does not depend on
the spin. In Fig. 1 we show ¢, in the one-, two- and three-dimensional case.
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In the opposite limit (f = 0) the Hubbard model describes a collection of isolated atoms. Each
atom has four electronic many-body states

IN, S, S.) N S E(N)

0,0,0) = 10) 0 0 0

1,51 = <o) 1 /2 e ©)
1,30 = <o) 1 1/2 £4

2,0,0) = chdjo) 2 0 2eq+U

where FE(N) is the total energy, IV the total number of electrons and S the total spin. We can
express the atomic Hamiltonian H; + Hy; in a form in which the dependence on N;, S;, and Si
is explicitly given

2

Hd+HU:adZni+UZ[—(Si)2+%], (10)

where S = (n;y — n;;)/2 is the z component of the spin operator and n; = »__n;, = Nj.
In the large ¢/U limit and at half-filling we can downfold charge fluctuations and map the
Hubbard model into an effective spin model of the form

1 1
(i)
The coupling " can be calculated by using second-order perturbation theory. For a state in

which two neighbors have opposite spins, | T,1) = cZTTclT, 110), we obtain the energy gain

2t

i 1) ~ -3

1

AEy ~ — Z@,i | Hr|1){1 ‘ E(2)+ E(0) — 2E(1)

I

Here |I) ranges over the excited states with one of the two neighboring sites doubly occupied
11,0) = cZTTcMO), or [0,1)) = C;-F/TCI/¢|0>; these states can be occupied
via virtual hopping processes. For a state in which two neighbors have parallel spins, | 1,71) =

and the other empty,

CITCZ,Tm}, no virtual hopping is possible because of the Pauli principle, and AE4 = 0. Thus

1 1 4¢2
—I'~ (AEw — AE4)) = ——. 12
51~ (A =57 (12)
The exchange coupling I" = 4t /U is positive, i.e., antiferromagnetic.
Canonical transformations [12] provide a scheme to derive systematically the effective spin

model at any perturbation order. Let us consider a unitary transformation of the Hamiltonian
, , 1
Hg =" He ™™ = H 4 [iS, H] + 3 [0S, [iS, H]| + .. ..

We search for a transformation operator which eliminates, at a given order, hopping integrals
between states with a different number of doubly occupied states. To do this first we split the
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Fig. 2: Left: The crystal structure of HgBa;CuO, showing the two-dimensional CuQOy layers.
Spheres represent atoms of Cu (blu), O (red), Ba (yellow), and Hg (grey). Right: A CuO- layer.
The first nearest-neighbors hopping integral between neighboring Cu sites, t, is roughly given

by ~ 4t2,/Agy, where tyq is the hopping between Cu d and O p states and Ay, = €4 — €, their
charge-transfer energy.

kinetic term H7 into a component, H, which does not change the number of doubly occupied
states and two terms which either increase it (H;") or decrease it (H7) by one

Hy = —tzzcw% HY + Hj + Hy

where

H% = —tZZnZ gcwcz oMl —
_tz Z 1 —Ni—o chz’(r (1 - ni’—a) y

+
HT - _t§ :E :n’t Ucw i'o n’i’—U)’

Hy = (Hf)".
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The term HY commutes with Hy;. The remaining two terms fulfill the commutation rules
[HZ, Hy) = FUHE.

The operator S can be expressed as a linear combination of powers of the three operators
HY H;, and Hy.. The actual combination which gives the effective spin model at a given
order can be found via a recursive procedure [12]. At half-filling and second order, however,
we can simply guess the form of S which leads to the Hamiltonian (11). By defining

S =~ (Hf - Hy)

we obtain
1
Hs = Hy+H)+ o L Hy | + [Hy, Hy | + [Hy Hy}+0(U™?).

If we restrict the Hilbert space of Hg to the subspace with one electron per site (half filling),
no hopping is possible without increasing the number of occupied states; hence, only the term
H7 Hj contributes. After some algebra, we obtain Hg = H) + O(U~2) with
2
Hé?) = %% 4 |:SZ : Si/ — inini/} .

The Hubbard model (7) is seldom realized in Nature in this form. To understand real materials
one typically has to take into account orbital degrees of freedom, long-range hopping inte-
grals and sometimes longer range Coulomb interactions or perhaps even more complex many-
body terms. Nevertheless, there are very interesting systems whose low-energy properties are,
in the first approximation, described by (7). These are strongly correlated organic crystals
(one-dimensional case) and high-temperature superconducting cuprates, in short HTSCs (two-
dimensional case). An example of HTSC is HgBa;CuQO,, whose structure is shown in Fig. 2.
It is made of CuO, planes well divided by BaO-Hg-BaO blocks. The z? — y?-like states stem-
ming from the CuO; planes can be described via a one-band Hubbard model. The presence of
a 22 — y?-like band at the Fermi level is a common feature of all HTSCs.

2.1 Itinerant magnetism

2.1.1 Pauli paramagnetism

Let us consider first the non-interacting limit of the Hubbard model, Hamiltonian (8). In the
presence of an external magnetic field h = h,Z the energy £ of a Bloch state is modified by
the Zeeman interaction (4) as follows

1
€k — Eko = Ek + §UgMtha

where we take the direction of the magnetic field as quantization axis and where on the right-
hand side o = 1 or —1 depending if the spin is parallel or antiparallel to k. Thus, at linear order
in the magnetic field, the 7" = 0 magnetization of the system is

1

1 1
M. = =5 (gns) 3~ Zk: [t — i) ~ 7 (9s)° p(er)hs,
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d=1 d=2 d=3

Y |
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energy (eV)

d=1 d=2 d=3
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Fig. 3: Top: Density of states (DOS) per spin, p(€)/2, for a hypercubic lattice in one, two,
and three dimension. The energy dispersion is calculated for t = 0.4 eV. The curves exhibit
different types of Van-Hove singularities. Bottom: Effects of p(c¢r) on the temperature depen-
dence of xrp = XF(T)/xF(0). Up to ~ 1000 K only the logarithmic Van-Hove singularity
(two-dimensional case) yields a sizable effect.

where ng, = c,Twc,w and N}, is the number of k points; p(c ) is the total density of states (DOS)
at the Fermi level, . The T = 0 susceptibility is then given by the Pauli formula

1

X" (0) = 7 (9u)° pler).

In linear-response theory (see Appendix) the magnetization induced along Z by an external
magnetic field /., (q; w)?Z oscillating with vector q is given by

M, (q;w) = Xa:(q; w)ha (g w).

The Pauli susceptibility x*'(0) is thus the static (w = 0) and uniform (g = 0) linear response
function to an external magnetic field. At finite temperature the Pauli susceptibility takes the
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form

) = 5 lon)® [ aepte) (-2,

where n(g) = 1/(1 + e="5) is the Fermi distribution function, 3 = 1/kgT and p the chem-
ical potential. x¥'(T) depends weakly on the temperature; its temperature dependence is more
pronounced, however, in the presence of van-Hove singularities close to the Fermi level (Fig. 3).
Although we have considered here the non-interacting limit of the Hubbard model, Pauli para-
magnetism is important even in the U # 0 case. This happens in the so-called Fermi-liquid
regime. When Landau Fermi-liquid theory holds there is a one-to-one correspondence between
the one-electron states and the excitations of the many-body system, the quasi particles. The
latter are characterized by heavy masses m*

*

m 1
=14 =-F >1, >0
m +31 1

and are more polarizable than electrons; correspondingly the system exhibits an enhanced Pauli
susceptibility

X 1

x 1+ F¢

> 1, Fy <0.

The coefficients F} and F{j are Landau parameters. Because of the finite lifetime of quasiparti-
cles and/or non Fermi-liquid phenomena of various nature, the temperature and energy regime
in which the Fermi-liquid behavior is observed can be very narrow. This happens, e.g., for
heavy Fermions or Kondo systems. We will discuss this in the last section.

2.1.2 Stoner instabilities

In the presence of the Coulomb interaction U # 0 finding the solution of the Hubbard model
requires many-body techniques. Nevertheless, in the small U limit, we can already learn a lot
about magnetism from Hartree-Fock (HF) static mean-field theory. In the simplest version of
the HF approximation we make the following substitution

Hy =U nangy = HEF = U [ (nig) + (nip)nag, — (nip) (ny)].

This approximation transforms the Coulomb two-particle interaction into an effective single-
particle interaction. Let us search for a ferromagnetic solution and set therefore

<ni0> =Ng = g + am,

where m = (ny —n})/2 and n = ns + ny. It is convenient to rewrite the mean-field Coulomb
energy as in (10), i.e., as a function of m, n and Si

TL2

1 (13)

HF = UZ [—QmSi +m? +
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Fig. 4: Band-structure trend in hole-doped cuprates and correlation with T, .., the maximum
value of the critical temperature for superconductivity. From Ref. [13].

The solution of the problem defined by the Hamiltonian Hy+ H{¥ amounts to the self-consistent
solution of a non-interacting electron system with Bloch energies

5%0:5k+n,aU:5k+gU—amU

In a magnetic field we additionally have to consider the Zeeman splitting. Thus

1
Eho = €0 + §g,u3hza.

In the small U limit and for 7" — 0 the magnetization M, = —gupm is then given by
2
M. ~ x"(0) {hz — —Um] = x"(0) [hs + 2(gup) *UM,]
giB
Solving for M, we find the Stoner expression
x"(0)
1= 2(gup)”" Ux"(0)

Thus with increasing U the g = O static susceptibility increases and at the critical value

x°(0;0) =

Ue=2/p(er)

it diverges, i.e., even an infinitesimal magnetic field can produce a finite magnetization. This
means that the ground state becomes unstable against ferromagnetic order.
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Fig. 5:  Top: Effect of r = t'/t on the band structure of the two-dimensional tight-binding
model. Black line: Fermi level at half filling. Bottom: corresponding density of states per spin.

Let us consider the case of the half-filled d-dimensional hypercubic lattice whose density of
states 1s shown in Fig. 3. In three dimensions the DOS is flat around the Fermi level, e.g.,
p(ep) ~ 2/W where W is the band width. For a flat DOS ferromagnetic instabilities are likely
only when U ~ W, a rather large value of U, which typically also brings in strong-correlation
effects not described by static mean-field theory. In two dimensions we have a rather different
situation because a logarithmic Van-Hove singularity is exactly at the Fermi level (Fig. 3); a
system with such a density of states is unstable toward ferromagnetism even for very small U.
In real materials distortions or long-range interactions typically push the Van-Hove singularities
away from the Fermi level. In HTSCs the electronic dispersion is modified as follows by the
hopping ' between second nearest neighbors

e, = —2t[cos(k,a) + cos(kya)] + 4t cos(kza) cos(kya).

As shown in Fig. 4, the parameter r ~ '/t ranges typically from ~ 0.15 to 0.4 [13]. Fig. 5
shows that with increasing r the Van-Hove singularity moves downwards in energy.

It is at this point natural to ask ourselves if ferromagnetism is the only possible instability. For
a given system, magnetic instabilities with ¢ # 0 might be energetically favorable with respect



Magnetism: Models and Mechanisms 3.15

(0.2) (a,a) Y=(0,m/a) M=(m/a,T/a)
Y
09 =00 X=(11/a,0)
A 4 =,
(a,0) M
X
Q2=(r,m)
W W W

Fig. 6: Doubling of the cell due to antiferromagnetic order and corresponding folding of the
Brillouin zone (BZ) for a two-dimensional hypercubic lattice. The antiferromagnetic Q, =
(m/a,m/a,0) vector is also shown.

to ferromagnetism; an example of a finite-q instability is antiferromagnetism (see Fig. 6).
To investigate finite-q instabilities we generalize the Stoner criterion. Let us consider a mag-
netic excitation characterized by the vector g commensurate with the reciprocal lattice. This
magnetic superstructure defines a new lattice; the associated supercell includes j = 1,..., N;
magnetically non-equivalent sites. We define therefore the quantities

Sl = Yoo,
J

(S7) = mcos(q- Ry),

where j runs over the magnetically non-equivalent sites { R;} and i over the supercells in the
lattice. In the presence of a magnetic field oscillating with vector g and pointing in the z
direction, h; = h. cos(q - R;)Z, the mean-field Coulomb and Zeeman terms can be written as

2

2 ‘ .
HIF 4 H, =Y {% <hz - %mU) Si() + Si(q)] +m? +

i

where m has to be determined self-consistently. This leads to the generalized Stoner formula

s 1 5 Xo(q;0)
:0) == , 14
XO(Q; 0) = ! Dktq — T

N o~ €kiq = Ek

The expression (14) is the same that we can find in the so-called random-phase approximation.
For g = 0 in the zero-temperature limit we recover the ferromagnetic RPA susceptibility with

1

x0(0;0) = 2 (gp15) " x"(0) ~ Spler).
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%0(d;0)

X X X

Fig. 7: The ratio x¢(q;0)/x0(0;0) in the xy plane for a hypercubic lattice (T ~ 230 K) at half
filling. From left to right: one, two and three dimensions.

Figure 7 shows the non-interacting susceptibility in the zy plane for our d-dimensional hy-

percubic lattice. The figure shows that, in the one-dimensional case, the susceptibility di-
verges at the antiferromagnetic vector Q; = (7/a,0,0); in two dimensions this happens at
Q- = (7/a,m/a,0); in three dimension at Q3 = (7/a, 7/a, 7/a), not shown in the figure. The
energy dispersion exhibits at these vectors the property of perfect nesting

€e+Q; = —Ek-

Remarkably, the 7" = 0 non-interacting susceptibility x((Q;;0) diverges logarithmically at the
nesting vector unless the density of states is zero at the Fermi level (¢ — 0)

er=0 1
Xo(Qi;0) 1 /_oo dsp(e)g — 00.
Under these conditions an arbitrary small U can cause a magnetic transition with magnetic
vector (Q;. In the two-dimensional case we have reached a similar conclusion for the 1" =
0 ferromagnetic (¢ = 0) instability. The finite-temperature x((q;0) susceptibility (Fig. 7)
shows that, however, the antiferromagnetic instability is the strongest. Perfect nesting at Q) is

suppressed by ¢’ #£ 0
EkrQ, = —ck + 8t cos(kya) cos(kya).

Figure 8 shows how the susceptibility is modified by ¢’ # 0 (half filling). The @ instability is
important even for ¢ ~ (0.4¢, but instabilities at incommensurate vectors around it are stronger.
As a last remark it is important to notice that the RPA expression (14) depends on the filling
only through the density of states, i.e., magnetic instabilities described by the Stoner formula
can exist at any filling. This is very different from the case of the local moment regime that we
will discuss starting from the next section.
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X X

Fig. 8: The ratio xo(q;0)/x0(0;0) in the xy plane for the two-dimensional hypercubic lattice
(230 K) at half filling. Left: t' = 0.2t. Right: t' = 0.4¢.

2.2 Isolated magnetic ions

2.2.1 Paramagnetism

As we have seen, the ground-state multiplet of free ions with partially occupied shells can be
determined via the Hund’s rules. In Tab. 1 and Tab. 2 we can find the values of the S, L, and
J quantum numbers for the ground-state multiplet of the most common transition-metal and
rare-earth ions. If £ = 0 and n = 1, the Hubbard model (7) describes precisely a collection of
idealized free ions with an incomplete shell. For such idealized ions the only possible multiplet
is the one with quantum numbers J = S = 1/2, L = 0. In the presence of a uniform external
magnetic field 4,2 we can then obtain the magnetization per atom as

Tr [e_gﬂthBSi S'L]

z

MZ - <M’Z> - _g'uB TI' [e_gﬂthﬁsé]

= gupS tanh (guph.pS),

and thus
OM, 5 1 9
= S)" —— |1 —tanh h.B8S)| .
o, = (91eS)" 1 [1— tanh® (gpuphs5)]
The static uniform susceptibility is then given by the A~ — 0 limit
1 Cl/2
22(0;0) = S — = —=, 15
X::(0:0) = (gupS)" 17 = = (15)

where C' 5 is the S = 1/2 Curie constant. If S = 1/2, the relation S* = S(S + 1)/3 holds.
Thus, for reasons that will become clear in short, the Curie constant is typically expressed as

1/2 S .
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Ion |n S L J L,
Vi Tt 3dY 112 2 372 %Dsp
\% 32 1 3 2 R
Cr¥t V2 343 312 3 32 ‘Fyp
Mn?t Cr’t |3d* 2 2 0 5D,
Fe¥™  Mn*" | 3d° 52 0 512 555,
Fe?™ | 3d4° 2 2 4 °D,
Co®™ | 3d" 3/2 3 972 'Fyp
Nit | 345 1 3 4 °F
Cu®™ | 3d® 1/2 2 512 2Dsp

Table 1: Quantum numbers of the ground-state multiplet for several transition-metal ions with
partially filled d shells. In transition-metal oxides the angular momentum is typically quenched
because of the crystal-field and therefore only the total spin matters.

If the ions have ground-state total angular momentum ./ we can calculate the susceptibility with
the same technique, provided that we replace g with the Landé factor g;

(JJ.LS|(gS + L) - J|JJ,LS)

97 (JT.LS|J - J|JJ.LS)
3, S(S+1)—L(L+1)
2 2J(J +1) ’
and calculate the thermal average of the magnetization, M = —g ;upJ, accounting for the

2J + 1 degeneracy of the multiplet. The result is

M, = (M) = g;upJ By (gsuph.pBJ)

where Bj(z) is the Brillouin function

2 1 2 1 1 1
By(z) = JZ}_ coth ( éj x) — — coth (—x) :

In the low-temperature (z — oo) limit B;(x) ~ 1, and thus the magnetization approaches its
saturation value in which all atoms are in the ground state

M, ~ gjupJ = M.

In the high-temperature (x — 0) limit

J+1 2J2+2J+1 ,
-
3J 30.J2 ’

By(z) ~x

and thus the susceptibility exhibits the Curie high-temperature behavior

¢ _

2z 07 — o7
x:+(0;0) T ~ 3kpT
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Ion | n S L J BT, gy
Ce®t Aft 12 3 52 Fyy o 6/7
Prit Af* 1 5 4 PHy 45
Nd*t | 4f% 32 6 92 ‘L, o 8/11
Pm*t | 4/ 2 6 4 Ol 3/5
Sm*t | 4f5 512 5 52 SHsp oo 277
Eu’* 4¢3 3 0 7K 0

Gd** | 4f7 72 0 72 8Syy 2

Tb*+ 48 3 3 6 TF 3/2
Dy** | 4f° 512 5 152 SHy5p 413
Ho** |47 2 6 8  °I 5/4
Er*t 41 312 6 1512 ‘Lisp  6/5
Tm**  [4f2 1 5 6  *Hg /6
YR | 4f 12 3 72 PRy 817

Table 2: Quantum numbers of the ground-state multiplet for rare-earth ions with partially filled
f shells and corresponding g; factor. In 4f materials the crystal field is typically small; thus
the ground-state multiplet is in first approximation close to that of the corresponding free ion.

where the generalized Curie constant is

o (9spB)*J(J +1)
J — )
3kp

and where ;1 = gyup+/J(J + 1) is the total magnetic moment. Correspondingly, the suscepti-
bility decreases as 1/7T with increasing 7" (Fig. 9). We have thus the three limit cases

CJ/T h, —0

Remarkably, the 7" — 0 and h, — 0 limit cannot be interchanged. If h. is finite the suscepti-
bility goes to zero in the 7" — 0 limit; instead, if we perform the h, — 0 limit first it diverges
with the Curie form 1/7". The point h, = 7" = 0 is a critical point in the phase space.

Let us return to the S = 1/2 case, i.e., the one relevant for the Hubbard model. It is interesting
to calculate the inter-site spin correlation function S, ;s

Siiw = ((8i = (Si)) - (S — (Si))) = (Si- Sir) — (Si) - (Sw) .

We express (S; - S;) in the form [S(S+1) —5;(S; +1) — Sy (Si+1)]/2, where S; = Sy = 1/2
and S = S;+ S} is the total spin. Then, since in the absence of magnetic field (S;) = (Sy) = 0,

1/4 S=1

si,i,:[5(5+1)—3/2]/2:{ a4 S_o

The ideal paramagnetic state is however characterized by uncorrelated sites. Hence

(Si) - (Sir) ~0 i #7

(5;-8) =3/4 i=i " (16)

Sip = (Si- Sir) ~ {
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Fig. 9: Left: M,/My = B;(x) as a function of v = h,My/kgT. The different lines correspond
to J = 1/2 (blue), J = 1 (green) and J = 3/2 (red). Right: The ratio M,/Myh., for finite
magnetic field in the small x limit; the slope is (J + 1)/3J.

The (ideal) paramagnetic phase is thus quite different from a spatially disordered state, i.e., a
situation in which each ion has a spin oriented in a given direction but spin orientations are
randomly distributed. In the latter case, in general, (S - §”) # 0 for i’ # i, even if, e.g., the
sum of (S - S”) over all sites i’ with ¢/ # 4 is zero

> (5L-80)~0
i #i
The high-temperature static susceptibility can be obtained from the correlation function Eq. (16)

using the fluctuation-dissipation theorem and the Kramers-Kronig relations (see Appendix).
The result is

gﬂ 1, z 7 i
el 0) o B 3 sttt 1) =

M;  Cip
—. 17
k‘BT T an

This shows that x..(g; 0) is g-independent and coincides with the local susceptibility x*_(7T')

OM .
..(0;0) = 1i 2\ (T).
X=2(0;0) T = x.(T)

How can the spin susceptibility (17) be obtained directly from the atomic limit of the Hubbard
model, Eq. (10)? To calculate it we can use, e.g., the imaginary time and Matsubara frequencies
formalism (see Appendix). Alternatively at high temperatures we can obtain it from the corre-
lation function as we have just seen. The energy of the four atomic states are given by (9) and,
at half filling, the chemical potential is 1 = £4 + U /2. Therefore

XZZ(O; O) kpT Tr [ B(H;—pN; )] N Tr [e‘ﬁ(Hi—ﬂNi)}
01/2 ePU/?

T 1+ efU/%
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Thus the susceptibility depends on the energy scale
Z:]A - <ZE;(<Z\J% + ]V) + E (JPV% - ]_) - :2.127( ]\J% ).

If we perform the limit U — oo we effectively eliminate doubly occupied and empty states.
In this limit we recover the expression that we found for the spin S = 1/2 model, Eq. (17).
This is a trivial example of downfolding, in which the low-energy and high-energy sector are
decoupled from the start in the Hamiltonian. In the large U limit the high-energy states are
integrated out leaving the system in a magnetic S = 1/2 state.

2.2.2 Larmor diamagnetism and Van Vleck paramagnetism

For ions with J = 0 the ground-state multiplet, in short |0), is non-degenerate and the linear
correction to the ground-state total energy due to the Zeeman term is zero; remarkably, for open-
shell ions the magnetization remains nevertheless finite because of higher-order corrections. At
second order there are two contributions for the ground state. The first is the Van-Vleck term

0[(L. +gS)ID)?
2\41’\/\/ — 22}1 |
2MpB :EE:: IZZ[ _ IZR)

where E is the energy of the excited state |I) and Ej the energy of the ground-state multiplet.
The Van-Vleck term is weakly temperature-dependent and typically small. The second term is
the diamagnetic Larmor contribution

1
L __ 2 2
ME = —2ho(0] (@ + 4210,
The Larmor and Van-Vleck terms have opposite signs and typically compete with each other.

2.3 Interacting localized moments

2.3.1 Spin models

In the large U limit and at half filling we can map the Hubbard model into an effective Heisen-
berg model. In this section we solve the latter using static mean-field theory. In the mean-field
approximation we replace the Heisenberg Hamiltonian (11) with

1
HE;&F - —FZ [ +(8i) - S — (8i) - (Sir) — g
(')

In the presence of an external magnetic field A we add the Zeeman term and have in total
H = QMBZ - (h + h]") + const] ,

hzm = M) ( z">/g,uB:

where n;y is the number of first nearest neighbors and h;" is the molecular field at site .
We define the quantization axis z as the direction of the external magnetic field, h = h,z,
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and assume that 2 is also the direction of the molecular field, h” = Ah’Zz. Since I" > 0 and
hypercubic lattices are bipartite, the likely magnetic order is two-sublattice antiferromagnetism.
Thus we set M2 = —gup(S?), MP = —gup(S?),where A and B are the two sublattices, i € A
and i € B. In the absence of an external magnetic field, the total magnetization per formula
unit, M, = (MB+ M) /2, vanishes in the antiferromagnetic state. We define therefore as order
parameter o, = 2m = (M2 — M?*)/2M,, which is zero only above the critical temperature
for antiferromagnetic order. We then calculate the magnetization for each sublattice and find
the system of coupled equations

{ M2 /My = By [My(h. + AhZ)5] (18)
MZ/My = By [Mo(h, + ARP)B]
where
At = (M7 [Mo) S*I'niiry | Mo
ART = —(MZ/My) S*I'nyy /Mo
For h, = 0 the system (18) can be reduced to the single equation
Om — Bl/2 [0m52fn<”/>6] . (19)

This equation has always the trivial solution o, = 0. Figure 10 shows that, for small enough
temperatures it also has a non-trivial solution o,, # 0. The order parameter o,,, equals £1 at
zero temperature and its absolute value decreases with increasing temperature. It becomes zero
for T" > Tx with

S(S+1)

kTN = 3

If T' ~ T we can find the non-trivial solution by first rewriting (19) as

T;
Om — B1/2 |:—N0'm:| .

A (20)

The inverse of this equation yields 7'/T\ as a function of o,
T Om
T~ Bilow]
If T' ~ T the parameter o, is small. We then expand the right-hand side in powers of o,,

Om Om

~ ~1—02/34+....
Brs(om)  omton/3+. .. ml

This leads to the following expression

T\ /2
m — 3(1—— )
7 \/_< TN)
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Fig. 10: The self-consistent solution of Eq. (20) for o,, > 0. The blue line shows the right-
hand side of the equation, the Brillouin function By s(x), with x = 0,Tx/T. The red lines
show the left-hand side of the equation, 0,,(x) = ax, with « = T/Tx; the three different
curves correspond to representative T /Tx values.

which shows that the order parameter has a discontinuous temperature derivative at 7' = T\.

It is interesting to derive the expression of the static uniform susceptibility. For this we go back

to the system of equations (18) and calculate from it the total magnetization M ,. In the weak

magnetic field limit M* ~ —o,, My + X..(0;0)h. and MP ~ o,, My + x..(0;0)h.. Then, by

performing the first derivative of M, with respect to A, in the h, — 0 limit we obtain
Ci2(1—o2)

T+(1—02)IN

The uniform susceptibility vanishes at 7' = 0 and reaches the maximum at 7' = Ty, where it

Xzz(o; O) =

takes the value C /, /2T. In the high-temperature regime o, = 0 and

which is smaller than the susceptibility of free S = 1/2 magnetic ions.
The magnetic linear response is quite different if we apply an external field h; perpendicular
to the spins in the antiferromagnetic lattice. The associated perpendicular magnetization is

Om (g,uB hl)
V(gnshi)? + (40,2 (ksTn)?
and therefore the perpendicular susceptibility is temperature-independent for 7' < Ty

. dM,  Cyp
0;0) = lim —— = —/~.
XJ_( ’ ) hilril() th_ 2TN

Hence, for 7' < Ty the susceptibility is anisotropic, x..(0;0) = x;;(0;0) # x.(0;0); at the

absolute zero x(0;0) vanishes, but the response to h remains strong. For 7" > Ty the order

MJ_NMO

parameter is zero and the susceptibility isotropic, x|/(0;0) = x 1 (0;0).



3.24 Eva Pavarini

We have up to now considered antiferromagnetic order only. What about other magnetic in-
stabilities? Let us consider first ferromagnetic order. For a ferromagnetic spin arrangement by
repeating the calculation we find

01/2(]_ — 0'51)
T—(1-02)Tc

XZZ((]; O) =

where T = —S(S + 1)nyI"/3kp is, if the exchange coupling I is negative, the critical
temperature for ferromagnetic order. Then, differently than in the antiferromagnetic case, the
high-temperature uniform susceptibility is larger than that of free S = 1/2 magnetic ions.

For a generic magnetic structure characterized by a vector g and a supercell with j = 1,...  N;
magnetically non-equivalent sites we make the Ansatz

(M) = —o,Mycos(q- R;) = —gupm cos(q- R;) ,

where o, 1s again the order parameter. We consider a magnetic field rotating with the same q
vector. By using the static mean-field approach we then find

S(S+1)

kplq = 3 q

Fq - _ Z FOO,ijeiq-(Ti-FRj)’ (21)
ij7£0

where I'°%% is the exchange coupling between the spin at the origin and the spin at site 4;, and

{T;} are lattice vectors. In our example, Ty = T¢ and T,,, = Tx = —T¢. Thus we have

01/2(1 — O'zn)

T—(1-o02)T, (22)

which diverges at 7' = T;. The susceptibility x..(q; 0) reflects the spatial extension of correla-
tions, i.e., the correlation length, &; the divergence of the susceptibility at 7 is closely related
to the divergence of . To see this we calculate £ for a hypercubic three-dimensional lattice, as-
suming that the system has only one instability with vector ). First we expand Eq. (21) around
Q obtaining T, ~ Tg + a(qg — Q)? + ... and then we calculate x27%, the Fourier transform
of Eq. (22). We find that x%07* decays exponentially with r = |T; + R;|, i.e., X227 oc e7"/¢ /7.
The range of the correlations is ¢ o< [T /(T — Tg)]'/?, which becomes infinite at 7' = Ty,.

It is important to notice that in principle there can be instabilities at any q vector, i.e., ¢ does
not need to be commensurate with reciprocal lattice vectors. The value of g for which Tj is the
largest determines (within static mean-field theory) the type of magnetic order that is realized.
The antiferromagnetic structure in Fig. 6 corresponds to gar = Q2 = (7/a, 7/a, 0).

In real systems the spin S is typically replaced by an effective magnetic moment, jiog, and
therefore C' jo — Cot = 124 /3kp. It follows that pg is the value of the product 3k5T'x .. (g; 0)
in the high-temperature limit (here 7" > T,). The actual value of ;g depends, as we have
discussed in the introduction, on the Coulomb interaction, the spin-orbit coupling and the crystal
field. In addition, the effective moment can be screened by many-body effects, as it happens for
Kondo impurities; we will discuss the latter case in the last section.
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Fig. 11: Ferromagnetism in Hartree-Fock. The chemical potential is taken as the energy zero.

2.3.2 The Hartree-Fock approximation

We have seen that Hartree-Fock mean-field theory yields Stoner magnetic instabilities in the
weak coupling limit. Can it also describe magnetism in the local moment regime (t/U < 1)?
Let us focus on the half-filled two-dimensional Hubbard model for a square lattice, and let us
analyze two possible magnetically ordered states, the ferro- and the antiferro-magnetic state.

If we are only interested in the ferromagnetic or the paramagnetic solution, the Hartree-Fock
approximation of the Coulomb term in the Hubbard model, H;!¥, is given by Eq. (13); the HF
Hamiltonian is H = Hy + Hr + H{¥. For periodic systems it is convenient to write H in k
space. We then adopt as one-electron basis the Bloch states Wy,

Wko’ \/_ Z ik T lng

where ¥;,(r) is a Wannier function with spin o, T; a lattice vector and /N, the number of lattice
sites. The term H}™ depends on the spin operator S°, whose Fourier transform in k space is

sz(k:,k;'):NiZ ek T Zocw Cigr

7

The term H¥ has the same periodicity of the lattice and does not couple states with different
k vectors. Thus only S, (k, k) contributes, and the Hamiltonian can be written as

H = Zzgknkg‘i‘UZ[ 2m S, ( )+m2+nz2],

where m = (ny — ny)/2 and n = 1; for simplicity we set ¢, = 0. The HF correction splits the
bands with opposite spin, leading to new one-electron eigenvalues, e, = €, + %U —oUm; the
chemical potential is ¢ = U/2. The separation between e+ — p and egy — v is 2mU, as can
be seen in Fig. 11. The system remains metallic for U smaller than the bandwidth WW. In the
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Fig. 12: Antiferromagnetism in Hartree-Fock. The chemical potential is taken as the energy
zero. Blue: €. Red: €i1q, = —¢ck. The high-symmetry lines are those of the large BZ in Fig. 6.

large ¢/U limit and at half filling we can assume that the system is a ferromagnetic insulator
and m = 1/2. The total energy of the ground state is then

1
EF:m;[Sko——/L A Z{ak——U} —§U

Let us now describe the same periodic lattice via a supercell which allows for a two-sublattice
antiferromagnetic solution; this supercell is shown in Fig. 6. We rewrite the Bloch states of the
original lattice as

1 o
Uhe(r) = —= [V (r) + W5 (r)],  ¥(r Z Tk g, o (r)
V2

SQ 'La

Here A and B are the two sublattices with opposite spins and T* and T}? are their lattice vec-
tors; . = A, B. We take as one-electron basis the two Bloch functions ¥y, and ¥y q,,, Where
Q> = (7/a,m/a,0) is the vector associated with the antiferromagnetic instability and the cor-
responding folding of the Brillouin zone, also shown in Fig. 6. Then, in the HF approximation,
the Coulomb interaction is given by

2
HSF:Z{ 2mSt +m? + 4]+Z{+2m5’+m + 4}

€A 1€EB
This interaction couples Bloch states with k vectors made equivalent by the folding of the
Brillouin zone. Thus the HF Hamiltonian takes the form

H =3 S e + Y eusaesao + U [-om 5.0k @0 omt 27|

The sum over k is restricted to the Brillouin zone of the antiferromagnetic lattice. We find the
two-fold degenerate eigenvalues

1 1

5(Er+eriay) + 5\/ (6 — Ehrqy)? + A(mU)2. (23)

Ek+ — M =
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A gap opens where the bands ¢, and € ¢, cross, e.g., at the X point of the original Brillouin
zone (Fig. 12). At half filling and for mU = 0 the Fermi level crosses the bands at the X
point too; thus the system is insulator for any finite value of mU. In the small /U limit we can
assume that m = 1/2 and expand the eigenvalues in powers of ¢ /U. For the occupied states
we find

1 5?«: 1 U 4_t2 (5k: ) 2

The ground-state total energy for the antiferromagnetic supercell is then 2 Eap with

1 4% 1 £k 2 1 42
Fap = ——U — =~ (—) ~ U — =
AF 2 U Ny &= \2t 2 U

so that the energy difference per couple of spins between ferro- and antiferro-magnetic state is

2 142 1
ARHY — pHF _ pHE Ep — Eppl ~ =— ~ =T
7 1 N [ F AF] 2 U 97

(24)

which is similar to the result obtained from the Hubbard model in many-body second order
perturbation theory, Eq. (12). Despite of the similarity with the actual solution, one has to
remember that the spectrum of the Hartree-Fock Hamiltonian has very little to do with the
spectrum of the Heisenberg model, the model which describes the actual low-energy behavior
of the Hubbard Hamiltonian. If we restrict ourselves to the antiferromagnetic solution, the first
excited state is at an energy o U rather than o ['; thus we cannot use a single HF calculation
to understand the magnetic excitation spectrum of a given system. It is more meaningful to
use HF to compare the total energy of different states and determine in this way, within HF,
the ground state. Even in this case, however, one has to keep in mind that HF suffers of spin
contamination, i.e., singlet states and .S, = 0 triplet states mix [11]. The energy difference per
bond Eff — EI" in Eq. (24) only resembles the exact result, as one can grasp by comparing
it with the actual energy difference between triplet and singlet state in the two-site Heisenberg
model

AE = Eg_y — Eg—g =1,

a factor two larger. The actual ratio AE/AEMY might depend on the details of the HF band
structures. Thus, overall, Hartree-Fock is not the ideal approach to determine the onset of
magnetic phase transitions. Other shortcomings of the Hartree-Fock approximation are in the
description of the Mott metal-insulator transition. In Hartree-Fock the metal-insulator transition
is intimately related to long-range magnetic order (Slater transition), but in strongly-correlated
materials the metal-insulator transition can occur in the paramagnetic phase (Mott transition). It
is associated with a divergence of the self-energy at low frequencies rather than with the forma-
tion of superstructures. This physics, captured by many-body methods such as the dynamical
mean-field theory (DMFT) [6], is completely missed by the Hartree-Fock approximation.
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3 The Kondo model

The Kondo impurity is a representative case of a system which exhibits both local moment and
Pauli paramagnetic behavior, although in quite different temperature regimes [5]. The Kondo
effect was first observed in diluted metallic alloys, metallic systems in which isolated d or f
magnetic impurities are present, and it has been a riddle for decades. A Kondo impurity in a
metallic host can be described by the Anderson model

Hy = Z Zsknkg + ngnfo— +Unpng + Z Z [chLUCfU + h.c.|, (25)

o k o o k

where ¢ is the impurity level, occupied by ny ~ 1 electrons, ¢y, is the dispersion of the metallic
band and V}, the hybridization. If we assume that the system has particle-hole symmetry with
respect to the Fermi level, then ¢y = —U/2. The Kondo regime is characterized by the param-
eters values e < ep and €5 + U > ep, and by a weak hybridization, i.e., the hybridization
function A(e) = ﬂNik >k [Vel?d(ex—¢) is such that A(ep) < |ep—¢y|, |ep—e;—U|. Through
the Schrieffer-Wolff canonical transformation [12] one can map the Anderson model onto the
Kondo model?

HK:ZZSknkU+FSf'SC(O):Ho—i—Hp, (26)
o k
where
1 1
I~ =2V |? | — — >0
| kF| {gf €f+U}

is the antiferromagnetic coupling arising from the hybridization, S the spin of the impurity
(Sy = 1/2), and s.(0) is the spin-density of the conduction band at the impurity site. The
solution of the problem defined by (25) or (26) is not at all trivial and requires many-body
techniques such as the Wilson numerical renormalization group [14] or the Bethe Ansatz [15].
Here we only discuss some important exact results. First we define the impurity susceptibility,
x!.(T), as the total susceptibility minus the contribution of the metallic band in the absence
of the impurity [14—-16]. One can show that at high temperatures x/_(7T'), has the following
behavior

ng(T) ~ (gMB)2Sf(Sf + 1) {1 o 1n( 1 }

3kpT T/Tx)

This expression resembles the Curie susceptibility, apart from the In(7'/Tk) term. The scale Tk
is the Kondo temperature, which, in first approximation, is given by

kT ~ D€*2/p(€F)F’

2The Schrieffer-Wolf transformation yields additionally a potential scattering interaction, a pair tunneling cou-
pling and a shift of the energies ;. These interactions are however not important for the discussion in this section
and therefore we neglect them.
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where 2D = W is the band-width of the host conduction band. Because of the In (7"/T) term,
the susceptibility apparently diverges at 7' ~ Tk. In reality, however, around T there is a
crossover to a new regime. For T < Tk
Cipp
X2AT) ~ e {1 - Ny

where W is a (universal) Wilson number. Thus the low-temperature system has a Fermi-liquid
behavior with enhanced density of states, i.e., with heavy masses m*/m; furthermore x/_(0) =
Cl/2 /W1 is the Curie susceptibility (Eq. (15)) with the temperature frozen at T = WTk. At
T = 0 the impurity magnetic moment is screened by the conduction electrons, which form
a singlet state with the spin of the impurity. In other words, the effective magnetic moment
formed by the impurity magnetic moment and its screening cloud,

pea(T) = 3kpTx.(T) o (S18]) + (S!s2),

vanishes for 7" < Tk. The Kondo temperature is typically 10-30 K or even smaller, hence the
Fermi-liquid behavior is restricted to a very narrow energy and temperature region.

We can understand the existence of a Fermi-liquid regime by using a simple approach due to
Anderson, the so-called poor-man scaling [17], and an argument due to Nozieres. First we
divide the Hilbert space into a high- and a low-energy sector. We define as high-energy states
those with at least one electron or one hole at the top or bottom of the band; the corresponding
constraint for the high-energy electronic level ¢ is

D' <eg,< D
-D <eg,< =D,
where D' = D — §D. Next we introduce the operator Py, which projects onto the high-energy
states, and the operator P, = 1 — Py, which projects onto states with no electrons or holes in
the high-energy region. Then we downfold the high-energy sector of the Hilbert space. To do
this we rewrite the Kondo Hamiltonian as
H = P,HP,+6H; = H;+0Hy,
6H, = PLHPy(w— PyHPy) 'PyHPy.
Here H is the original Hamiltonian, however in the space in which the high-energy states
have been eliminated; the term 0Hy, is a correction due to the interaction between low and

(downfolded) high-energy states. Next we calculate § H;, using perturbation theory. The first
non-zero contribution is of second order in [’

§H? ~ P HpPy(w — PyHoPy) 'PyHrPy.

There are two types of processes which contribute at this order, an electron and a hole process,
depending if the downfolded states have (at least) one electron or one hole in the high-energy
region. Let us consider the electron process. We set

Py~ Y b [FSHFSley,, P~ Y ch |FSHFS|,,
o q o k
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where |ex| < D’ and |F'S) = [],, ck_|0) is the Fermi see, i.e., the many-body state correspond-
ing to the metallic conduction band. Thus

1 1
SHY = -1y S;-5,(0)+ ...

2 w—E€
P q

1 6D
~ Zp(ap)F2 st - 5.(0)+....

We find an analogous contribution from the hole process. The correction 5H£2) modifies the
parameter /' of the Kondo Hamiltonian as follows

I — I'=T+6T,

or 1 ,

The equation (27) has two fixed points, I' = 0 (weak coupling) and I — oo (strong coupling).
By solving the scaling equations we find

I = 4 .
1+ 1pep) M In 2

If I" is antiferromagnetic the renormalized coupling constant I diverges for D’ = De=2/Tr(er),
an energy proportional to the Kondo energy kzTk. This divergence (scaling to strong coupling)
indicates that at low energy the interaction between the spins dominates and therefore the sys-
tem forms a singlet in which the impurity magnetic moment is screened. The existence of this
strong coupling fixed point is confirmed by the numerical renormalization group of Wilson [14].
Nozieres [19] has used this conclusion to show that the low-temperature behavior of the sys-
tem must be of Fermi liquid type. His argument is the following. For infinite coupling I the
impurity traps a conduction electron to form a singlet state. For a finite but still very large I
any attempt of breaking the singlet will cost a very large energy. Virtual excitations (into the
nyg = 0 or ny = 2 states and finally the ny = 1 triplet state) are however possible and they
yield an effective indirect interaction between the remaining conduction electrons surround-
ing the impurity. This is similar to the phonon-mediated attractive interaction in metals. The
indirect electron-electron coupling is weak and can be calculated in perturbation theory (1/1°
expansion). Nozieres has shown that, in first approximation, the effective interaction is between
electrons of opposite spins lying next to the impurity, it is of order D*/I"® and repulsive; hence
it gives rise to a Fermi-liquid behavior with enhanced susceptibility [19].

If I' = I'r < 0 (ferromagnetic coupling, as for example the coupling arising from direct
Coulomb exchange) the renormalized coupling constant I goes to zero in the D’ — 0 limit
(scaling to weak coupling). This means that the local spin becomes asymptotically free and
yields a Curie-type susceptibility, which diverges for 7' — 0. For small but finite coupling we
can account for the ferromagnetic interaction perturbatively (expansion in orders of I'r). In f
electron materials often both ferro and antiferromagnetic exchange couplings are present, the
first, ['w, arising from the Coulomb exchange, the second, /', from the hybridization. There
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Fig. 13:  Sketch of the scaling diagrams for the two-channel Kondo model. I' = —Jyy, and
I'r = —Jg. For I' > 0 (antiferromagnetic) and I'r < 0 (ferromagnetic) the antiferromag-
netic coupling scales to strong coupling and ferromagnetic one to weak coupling (right bottom
quadrant). From Ref. [18].

are therefore two possibilities. If both exchange interactions couple the impurity with the same
conduction channel, only the total coupling 'z + I" matters. Thus a |I'z| > I" suppresses the
Kondo effect. If, however, ferromagnetic and antiferromagnetic exchange interaction couple
the impurity to different conduction channels, a |I'z| > I" does not suppress the Kondo effect
(Fig. 13), but merely reduces Tk. In the infinite || limit the model describes an undercom-
pensated Kondo effect [18].

4 Conclusion

In this lecture we introduced some of the fundamental aspects of magnetism in correlated sys-
tems. We have seen two distinct regimes, the itinerant and the local moment regime. In the first
regime we can, in most cases, treat correlation effects in perturbation theory. In the world of
real materials this is the limit in which the density-functional theory (DFT), in the local-density
approximation or its simple extensions, works best. If the system is weakly correlated we can
calculate the linear-response function in the random-phase approximation and understand fairly
well magnetism within this approach.

The opposite regime is the strong-correlation regime, in which many-body effects play a key
role. In this limit perturbation theory fails and we have in principle to work with many-body
methods. If, however, we are interested only in magnetic phenomena, at integer filling a strong
simplification comes from mapping the original many-body Hamiltonian into an effective spin
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model. The exact solution of effective spins models requires in general numerical methods
such as the Monte Carlo or quantum Monte Carlo approach, or, when the system is small
enough, exact diagonalization or Lanczos. These techniques are discussed in the lectures of
Werner Krauth, Stefan Wessel and Jiirgen Schnack. The density-matrix renormalization group
(DMRG), particularly efficient for one-dimensional systems, is instead presented in the lectures
of Ulrich Schollwock and Jens Eisert.

To work with material-specific spin models we need to calculate the magnetic exchange pa-
rameters. Typically this is done starting from total-energy DFT calculations for different spin
configurations, e.g., in the LDA+U approximation. The LDA+U approach is based on the
Hartree-Fock approximation, and therefore when we extract the parameters from LDA+U cal-
culations we have to keep in mind the shortcomings of the method. Furthermore if we want to
extract the magnetic couplings from total energy calculations we have to make a guess on the
form of the spin model. More flexible approaches, which allow us to account for actual corre-
lations effects, are based on Green functions and the local-force theorem [20], as discussed in
the lecture of Sasha Lichtenstein, or on canonical transformations [12,21].

In strongly-correlated materials localized and itinerant moments physics can often be observed
in the same system, although in different energy or temperature regimes. This is apparent in the
case of the Kondo effect. For a Kondo impurity the susceptibility exhibits a Curie behavior at
high temperature and a Fermi-liquid behavior at low temperature. In correlated transition-metal
oxides Fermi liquid and local-spin magnetism can both play an important role but at different en-
ergy scales. Furthermore, in the absence of a large charge gap downfolding to spin models is not
really justified. The modern method to bridge between localized and itinerant regime and deal
with the actual complications of real systems is the dynamical mean-field theory (DMFT) [6].
Within this technique we solve directly generalized Hubbard-like models, however in the local
self-energy approximation. DMFT is the first flexible approach that allows us to understand the
paramagnetic Mott metal-insulator transition and thus also magnetism in correlated materials
in a realistic setting. Modern DMFT codes are slowly but steadily becoming as complex and
flexible as DFT codes, allowing us to deal with the full complexity of strongly-correlated mate-
rials. While this is a huge step forwards, we have to remember that state-of-the-art many-body
techniques have been developed by solving simple models within certain approximations. We
have to know very well these if we want to understand real materials and further advance the
field. In DMFT we solve self-consistently an effective quantum-impurity model, a generaliza-
tion of the Anderson model. Thus a lot can be learnt from the solution of the Anderson model
in the context of the Kondo problem. Much can be understood alone with simple arguments, as
Anderson or Noziéres have shown us, reaching important conclusions on the Kondo problem
with paper and pencil.
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Appendices

A Formalism

The formulas in this Appendix are in atomic units: The numerical value of e, m and 4 is 1, that
of up is 1/2, and energies are in Hartree.

A.1 Matsubara Green functions

A.1.1 Imaginary time and frequency Green functions

The imaginary time Matsubara Green function is defined as

Gap(T) = —<TCa(Tl)CE(T2)> = —%Tf €_B(H_”N)Tca(71)cz(72) ;

where 7 is the time-ordering operator, T = (71, 72), Z = Tre AH=1N) is the partition function,
and the imaginary time operators o(7) = ¢(7), c¢/(7) are defined as o(7) = e H=1N) g e=7(H=1N),
The indices « and [ are the flavors; they can be site and spin indices in the atomic limit, and
k and spin indices in the non-interacting electrons limit. Writing explicitly the action of the

time-ordering operator we obtain
Gasg(T) = —=O(11 = 1)(ca(m)ch(2)) + O(r2 — 1) (ch(T2)ca ().

Using the invariance of the trace of the product of operators under cyclic permutations, one can
show that the following properties hold

Gap(T) = Gap(n — ),
Gop(T) = —Gop(T+ B) for — g <71 <0.

The Fourier transform on the Matsubara axis is
1 [ G
Gopliv,) = 5 / dre" " Gop(T) = / dre™ " Gop(T),
-8 0
with v, = (2n + 1)7/B. The inverse Fourier transform is given by
1 &
Gaﬁ<7'> = E Z eiwnTGag(Z'Vn).

The convergence of G,s(7) is only guaranteed in the interval —3 < 7 < (. A discussion of this
can be found in the lecture of Robert Eder. Finally, if n, is the number of electrons for flavor
«, one can show that

GooT = 07) = =14+ n4, Gau(t = B7) = —n4q. (28)
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Fig. 14: The function Gy, (T) defined in Eq. (30) for a state well below the Fermi level (red)
and at the Fermi level (blue) and 8 = 2 (eV)~'. The green line shows the atomic G(1) from
Eq. (32) forU =6 eVand h = 0.

A.1.2 Non-interacting limit

For a non-interacting system described by

Hy = Z Z ELM ko (29)
k o

we can show that

Gro(7) = —(T |y (1), (O)])
= —[6(7) (1 = ny(er)) — O(=T)ng(ex)] e 77, (30)
where
1
no(ek) = T aem

The Fourier transform at Matsubara frequencies is

. 1

gka@”n) — -

Wy = (er — 1)
To obtain the analytic continuation of this Green function on the real axis we substitute

iy, = w+i07.
A.1.3 Matsubara sums

The non-interacting Green function G, (2) has a pole at z, = &5 — p; the Fermi function n,,(2)
has instead poles for z = iv,,. Let us consider the integral

1
—j{ Fro(2)ns(2)e*Tdz = 0,
c

27
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where 0 < 7 < [ and where the function Fj,(z) is analytic everywhere except at some poles
{z,}. The contour C is a circle in full complex plane centered at the origin and including the
poles of the Fermi function (Matsubara frequencies) and the poles of Fg,(z). The integral is
zero because the integrand vanishes exponentially for |z| — co. Furthermore

Res [n,(iv,)] = —l.

p

Using Cauchy’s integral theorem we then have

% Z €T Fro (V) = Z Res [Fro(2p)] no(2p)e".

Zp

We can use this expression and (28) to show that

%Ze—i”nogk(,(wn) = Gro(07) = no(ex),

%Ze—wgkg(w = Guo(07) = ng (o) — 1.

In a similar way we can show that

1 )

520 G0 Gl i) = T = () el
1 ivn 0T . . . . nk+q — Nk
6 zn: (& gkza(zyn)gk—&—qa(“/n + 'me) = iwm T Errq — 5k7

where in the last relation w,,, = 2mm /[ is a Bosonic Matsubara frequency.

A.1.4 Atomic limit

It is interesting to consider a half-filled idealized atom described by the Hamiltonian
N2
H=¢ey) n,+U (T —Sj) + guphsS,. 31)

For 7 > 0 we can calculate explicitly the Green function obtaining

1 1
21+ ePU2 cosh (Bguph/2)

The Fourier transform of G, (7) is

G, (1) = [GT(U_Q#BhO')/2 + 6(5_7)(U+9#Bh(7)/2j| _ (32)

w_ i W4
vy + (U — gupho)/2 v, — (U + gugho) /2]’

Gy (iv,) =

where
1 1 4 ePU/2pEBgupha/2
" 21+ ePU2 cosh (Bguph/2)”

Since the Green function is written as the sum of functions with one pole, the analytic continu-

w4

ation is simple, as in the non-interacting case. We replace iv,, with w + 0.
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A.1.5 Lehmann representation

Using the Lehmann representation we can rewrite

1

Wy — €

o (i) = / Ao (2) e,

where Ag,(e) = —1Im [Gy,(¢)] is the spectral function. The spectral function is related to the
density of states as follows

po(e) = Nik Z Ak (€)

A.2 Linear response theory

A.2.1 Theory

The response of a system described by the Hamiltonian H to a small magnetic field h(r,t) is
given by the linear correction to the Hamiltonian, i.e.,

Z(SH (r:1) ZM (r; )k, (r; 1), (33)

where M (r;t) is the magnetization operator in the Heisenberg representation
M, (r;t) = ™M, (r)e !

and v = x, y, z. To linear order in the perturbation, and assuming that the perturbation is turned
on adiabatically at t) = —o0

(M, (r: 1)) = <My(r))0—i2/dr’/ 4t (M, (r: 1), 6 Ho (' )]},

where (M, (7)) is the (equilibrium) thermal average in the absence of the perturbation. By
replacing > , 6H,/(7';t") with the expression (33) we obtain

S(M, (ri)) = (M, (ri)) — (M (r))o =i 3 / dr’ / 4t (M (758), My (r' ) Yo (173 ).

The function
Xow (7,75 1) = i([My(r;t), My (r'; 1)])oO(t — 1) (34)

is the so-called retarded response function. It is often convenient to work with the operators
AM,(r;t) = M,(r;t) — (M, (7))o which measure the deviation with respect to the average
in the absence of perturbation; since numbers always commute, we can replace M, (r;t) with
AM,(r;t) in the expression (34).
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If the Hamiltonian H has time translational invariance symmetry the retarded response function
depends only on time differences ¢ — t’. For the Fourier transform we have

S(M,(r;w)) = Z/dfr/xw/(r,r’;w)h,,/('r’;w).

For a lattice with lattice translational invariance, if we Fourier transform to reciprocal space and
integrate over the unit cell

S(M,(qiw)) = / dr / dr'e" "Xy (g, v w)hy (g, 7 w).
Finally, if the perturbation depends on 7’ only through a phase we obtain

S(M,(qiw)) = / dr / dr'e "y (q,r v )y (g w) = Xow (G w)hu (g w).
In the w = 0 and g — 0 limit we have

. 0M,
X (050) = hh,rilo oh,’

where h,, = h,/(0;0).

A.2.2 Kramers-Kronig relations and thermodynamic sum rule

Important properties of the spin susceptibility are the Kramers-Kronig relations

Re[x(g;w)] — Re[x(g;00)] = %73 /_ o WCM
Im[x(q;w)] = —%p/f“Rdxmxigingmxwﬂ&A

where P is the Cauchy principal value, and Re and Im indicate the real and imaginary part.
The first Kramers-Kronig relation yields the sum rule

1 [+ Im[x(q;w')]

Refx(g:2 = 0)] - Relx(g:o)] = P [ @)l (35)

o)

In the g = 0 limit, Eq. (35) is known as thermodynamic sum rule.

A.2.3 Fluctuation-dissipation theorem and static susceptibility

We define the spin correlation function

Sw(g;it) = (AS,(q;t)AS,(—q)),
= (Su(g; )5Sy (=q) )y — (5u()) (S (=),
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where AS,(q;t) = S,(q;t)—(S,(q))oand (S,(q))o = (S.(q;0))o. The fluctuation-dissipation
theorem relates S, (q; t) with the magnetic susceptibility. First, one can show that the follow-

ing relation holds

1
m{x,(q; )] = (915)°5 (S (1) = Surv(@5 1))
The correlation function has the property
S, (q;w) = S, (q; —w).

Thus, in w space Eq. (36) is replaced by

1 1
I AU S =51 N 2SW’ W), = .
m[x,.(q; w)] 20 +n3)(9u3) (@), npw) = ——
Assuming kT large and using Eq. (35) one can then show that
o _ (g918)° L
Re[XW’(Qa W= 0)] - Re[XW’(‘L OO)] ~ SW’(Qat = 0)-

kT

A.2.4 Imaginary time and frequency response function

We define the susceptibility in imaginary time as

Xuz/<q; 7, T/) = (TAMV(‘L T)AMV’ (_q7 Tl))O

= (TM,(q;7) My (=q; 7))o — (Mo (q))o{ M. (=q))o,

(36)

where AM,(q;7) = M,(q;7) — (M,(q; 7))o = M,(q;7) — (M,(q))o. As in the case of the

Green function, by using the invariance properties of the trace one can show that

Xw/’<q; T, T/) = Xl/l/(q; T — T/)'

The response function in imaginary time is related to the response function at the Bosonic

Matsubara frequency iw,, through the Fourier transforms

1 — W T .
Xow (@ T) = BZ@ " Xow (@ im),

XVI/I(q; ZWm) = / dTeiWMTXVV’(q; 7—)'

In the rest of the Appendix we replace for simplicity the notation (), with ().



Magnetism: Models and Mechanisms 3.39

A.3 Magnetic susceptibility

A.3.1 Spin and magnetization operators

The spin operators .S, are defined as

1
= 5 > dac,,
oo’

where v = z,y, z and o, are the Pauli matrices

0 1 0 —1 1 0
Op = oy = , 0, = )
1 0 1 0 0 -1
The magnetization operators M, are defined as M,, = —gugS,.

A.3.2 Matsubara magnetic susceptibility

The magnetic susceptibility for a single-band system can be expressed as
Xz=(q;T) = (gp)° Z oo’ X177 (1 37)

where 0 = 1 or —1 depending if the spin is up or down, T = (71, 72 73, 74) and

/ 11 /
) = G AT,

XET(T) = (T (71)Cht g0 (72) s gor (T3) s (7))

— (T (T )Ck—i-qa( 2)><Tck+qa/(Ts)CLa/(T4)>-

In Fourier space

Xz (q; W) = Z oo’ quw (iwm),

where w,,, = 2mm /[ is a Bosonic Matsubara frequency and

qao — qUU w-T qao
Xyt (1wnm) 16////d7'e ().

The integral for each 7 component is from —f to 5 and v = (v, =V, — Win, Vs + Win, — V).

A.3.3 Generalized Matsubara two-particle Green function

We define the generalized two-particle Green function

X535 (1) = (Tea(m)eh(ra)e, (1)el(a)) — (Tea(m)ch (o)) (T, (15)cf(ra)). (38)

The Fourier transform of (38) is

W) =) = 5 [[[[ar e



3.40 Eva Pavarini

From the symmetry properties of the trace we find that vy, = —v; — v — v3. If we redefine
V] = Uy, Vo = —VUy, — Wy, V3 = Vpy + Wy, and vy = —1,,y We obtain
v = (Vm —Vn — Wm,y Vp! + W, _Vn’)a

1 .
Xowh (i9m) = 7 / / / / dr ellmenmtinmatiml 08 (39)

where 7;; = 7; — 7;. The complex conjugate is given by

afSyé * afyo .
|:ani7 (Zwm)] =X f{yl —n'/— 1( Zwm)’

where v_,,_1 = —vp,and v_,y_1 = — V.

A.3.4 Symmetry properties

Let us now analyze the symmetry properties of (39). By using the fact that the response function
(38) is real in 7 space and by exchanging the indices 1 and 4, 2 and 3 in the integrand, we find

5 5
X (i) = X (i0m)

and hence, if « = 6, § = 7, v,, = v/}, is a reflection axis for the absolute value of (39)

afyé Xi’;/ia(lwm)‘

Xnn (Zwm ‘_

An additional reflection axis can be found by first shifting the frequency v,, = v, — w,,

1 )
G ) = ¢ [[ [ [ dr ecenmmatnana i

and then exchanging in the integrand the indices 12 with 34 and vice versa. Hence

5 5 .
X (iwm) = X305 (—itm)
so that, if « =y and 8 = 6, V11, = —V, is @ mirror line
75015

afyd
Xn+mn Zwm ’ -

-1, n—m—l(iwm) :

A.3.5 Non interacting limit

For a non-interacting system Wick’s theorem yields

XS(T) = —(Teum)el(ma)(Te,(r3)ch(m))
= —Gas(114)Gp(—T23).

We take as example the one band model (29) and set « = ko, 5 = k + qo, v = k + qo’, and
0 = ko’. Then, in the paramagnetic case, the magnetic susceptibility is given by

111
Xzz(Q§ 7') = QMB ZEFZZQ}«; T14 gk+qa(7'32)
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Its Fourier transform is

Xox(Qiwn) = (9uB) WZZXW W),

where
1
Z ana ZWm = _ﬁm zk: za: gka(iyn)gk—&—qa ('Lyn + iwm)én,n“
Thus the static susceptibility is

(@ 0) = — (gun)’ i]\% Ty Mo (Ekrq) = o (€k)

€ — €
. k+q k

Finally, in the ¢ — 0 and 7" — 0 limit we find

X+(0:0) = 7§ (gms)? pler)

dns (e
pler) = _ZNkZ dsk

T=0

A.3.6 Atomic limit

We calculate the local atomic susceptibility for the system described by the Hamiltonian (31)
starting from the general expression (38). In the sector 7; > 7,1 we have

1

Xg,g,('r) — m (67'12(]/24-734U/2 + 6 B T12)U/2— 7—34U/2)
(&

The magnetic susceptibility for 7; > 7,., is then given by

2
- |. 00 (guB) 1 (B—T12—734)U/2
Xzz( ) g:U’B ZO'O' Xo-a - 45 (1+65U/2)6 )

which depends only on 715 + 734. If we perform the Fourier transform we recover formula for
the uniform static susceptibility

0:0) = o 1 U2 21 1 07
x=:(030) = (gus)” s opors = (9ms) 452;; a0’ X
where
1 1 1+ ePU/2

00'0 _
Z 00 Xn () = ﬁiun —U/2ivy —UJ2  ePU/2 Q.0
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A.3.7 Alternative formulation

The spin susceptibility can also be obtained from x%? (T) with T = (7, 71, 73, 73). We have
X2 (1) = X2 (rs) = (TM(m) MY (m3)) — (ME)(M),
where M = —gupS® is the magnetization at site . Its Fourier transform is
) = [ dnacrmontd (na).
By Fourier transforming to the reciprocal space we find

Xzz(q;Tl?)) = <7-Mz(q;7-1)Mz(_q;T3)>_<Mz(q)><Mz(_q)>7

Xzz(qazwm) = /dTeimeBXzz(q;TlS)-
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4.2 Robert Eder

1 Introduction

A quantity of central importance for the description of correlated electron systems is the elec-
tronic self-energy X (k,w). It may be viewed as a momentum- and energy-dependent correction
to the energy of an electron that describes the effects of its interaction with the other electrons.
Here the word ‘correction’ is by no means supposed to imply that ¥'(k,w) is small. Quite the
contrary, for example, in a Mott-insulator X'(k,w) contains a term of the form U/h(w — wy),
with U the intra-atomic Coulomb repulsion, and this term is both large and strongly dependent
on the energy w. In fact, the very reason why density functional calculations do not reproduce
the single-particle excitation spectrum — or ‘band structure’ — of Mott-insulators is that they
implicitly assume an w-independent self-energy and thus miss this ‘correction’ of order U.

It would therefore seem desirable to have a theoretical principle that allows us to actually com-
pute the self-energy of a correlated electron system, and in fact it can be shown that X' (k, w)
obeys a stationarity condition that can be used for that purpose. More precisely, Luttinger and
Ward have shown in a seminal paper [1] that the grand canonical potential {2 of an interacting
fermion system can be expressed as a functional of its self-energy, {2 = (2[X], and that this
functional is stationary with respect to variations of 3:

692
0¥ (k,w)

Unfortunately a straightforward application of the stationarity property — e.g. by introducing
‘trial self-energies’ that depend on a number of variational parameters — is not possible because
(2[X] involves the so-called Luttinger-Ward functional F'[X], which is defined as a sum over
infinitely many Feynman diagrams and thus cannot be evaluated for a given trial self-energy.
A possible approximation would be to truncate the Luttinger-Ward functional, thereby keep-
ing only a selected class of Feynman diagrams, typically ‘bubbles’ or ‘ladders’. These are the
famous conserving approximations of Baym and Kadanoff [2] and one example for such an
approximation is the very successful GW-approximation proposed by Hedin [3]. On the other
hand, the truncation of the Luttinger-Ward functional ultimately is a poorly controlled approxi-
mation that may be less suitable for strongly correlated electrons.

In 2003, however, an entirely new idea on how to apply the stationarity principle for X' in
strongly correlated electron systems was put forward by Potthoff, the so-called variational clus-
ter approximation (VCA) [4-6]. The basic idea of the VCA is to generate trial self-energies
XY for an infinite lattice by exact diagonalization of finite clusters and, in the course of doing
s0, to evaluate the exact value of the Luttinger-Ward functional F'[X] numerically. Variation of
XY is performed by varying the single-particle terms of a cluster that serves as the ‘self-energy
preparation-lab’. Put another way, the VCA seeks the best approximation to the self-energy
of an infinite lattice amongst ‘cluster-representable’ ones, i.e. functions X'(k,w) which can be
generated as the exact self-energies of finite clusters. This is a new way for generating approx-
imations in strongly correlated electron systems and in the following the variational principle
itself, the basic idea of the VCA, and some selected applications will be presented.
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2 Notation and brief review of field theory

First we define the notation and give a brief review of some concepts from field theory. While
this will be rather cursory, introductions to the use of field theory in statistical physics can be
found in many textbooks [7-9], in the present notes we try to be consistent with Fetter and
Walecka (FW) [8].

We assume that the solid in question can be described as a periodic array of atomic orbitals
centered on the nuclei of the atoms that form the basis of the lattice and we assume periodic
boundary conditions. We choose the unit of length such that the unit cell has volume 1. All
orbitals are taken as mutualy orthogonal. The number of unit cells in the crystal is /N and
the number of atoms in the basis 7.4;,,,- The orbitals can be labeled by a triple of indices

(i,n,v) where ¢ € {1,..., N} denotes the unit cell, n € {1,...,nam} the basis atom and
v € {S, Pz, Dy, Pz, dyy - . . } the type of orbital. The number of orbitals per unit cell is 7, [10].
We introduce fermionic creation and annihilation operators, CZWW and ¢, , ,, ., for electrons in

these orbitals, where o denotes the z-component of spin. It will often be convenient to contract
(i,n,v,0) into a single ‘compound index’ «, so that the Hamiltonian — assumed to be time-
independent — can be written as H = Hy + Hy, with

Hy = Y tagches (1)
76
1

Hy = 3 > Vagan cheheses )
a,B,7,0

Note the factor of 1/2 and the ‘inverted” order of indices on the interaction matrix element 1/
in (2) which follows from the prescription of second quantization [7-9], see e.g. the lecture of
E. Koch. The Fourier transform of the Fermion operators reads

T 1

c o 1 E eik~ (Ri+rn) c
k7/3 - / i7n7V7U )
N %

where we have introduced the orbital index § = (n, v, o). Since this second ‘compound index’
always comes together with either a momentum k or a cell index ¢ no misunderstanding is
possible. The Hamiltonian now can be written as

Hy = > ) tap(k) g s 3)
k o

1
Hi = oo 303 Vapan(kKoa) g choqs e s *

kk,q a,p,7,6

Equation (3) defines the 2n,,, X 2n,,, matrix t(k), whose eigenvalues F,, (k) give the nonin-
teracting band structure. This formulation allows H| to describe magnetic systems or include
spin-orbit coupling. With the explicit prefactor of 1/N in (4) the matrix elements V' in (4) are
of order 1.
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In all that follows we consider a grand canonical ensemble with inverse temperature 5 = 1/kgT
and chemical potential p. The thermal average of any operator O is given by

(O)yn = %ﬂ( <H“MO) (5)
with the grand partition function
Z = Tr (e‘ﬂ(H_“N)) . (6)
Introducing the imaginary-time Heisenberg operator
c (1) = erH-uNE o o—T(H-pN)/h

the imaginary time Green’s function is defined as

Goslr) = ~6) (er) ) +6(-) (cheu()) ™
1
- = ( —O(+7) ; e~ BEBi—uN:) T(Ei—Ej+p)/h <z‘ca|j><jlcg’2>

—7) Y e A BB/ ) \y><yrca\>) ®)
1,J

where |i) are the exact eigenstates of the system with energies £; and particle number N; and
O(1) is the Heaviside step function. G(7) is a matrix with row dimension 2Nn,,, which can
be made block-diagonal by introducing the spatial Fourier transform

_ (R;—Rj+ry—r
Glnwo) v on(k,T) = — E ) Gl Gt o) (T)

where G (k, 7) is @ 21y X 2n,,, matrix.

From (8) it is easy to see that G is well-defined only if 7 € [—(h, Sh] when E; are unbounded
from above [11], and that for 7 € [—Sh, 0] one has G(7 + Sh) = —G(7). It follows that G(7)
has the Fourier transform (see equation (25.10) in FW)

G(r) = — Z e G(iw,),

oo
G(iw,) = / dr """ G(1),
0

The w, = (2v + 1) /[h are called the (Fermionic) Matsubara frequencies. From (8) we obtain

Ga . , _ . . T
i) = X T Ey DUl

1 1
_ <%, ;> _<% a> ©)
iw, + 5 —5L "/, —iw, — 3= 3L "/,
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Fig. 1: Top: Graphical representation of the Dyson equation. Middle: Self-energy diagrams
have two open ends. Bottom: The convention for the representation of the Green’s function
implies the labeling of the entry points of the self-energy.

where the Liouville operator L is defined by LX = [H, X|. When viewed as function of a
complex variable z, all elements of G(z) are analytic in the complex z-plane except for the real
axis, where there are poles at z = (E; — E; — p)/h. It is this property on which the usefulness
of the imaginary-time Green’s function is based: its Fourier transform G(z) can be analytically
continued to a line infinitesimally above the real axis and then gives the Fourier transform of
the retarded real-time Green’s function — from which single-particle spectral function i.e. the
photoemission and inverse photoemission spectrum of a system can be obtained. For this rea-
son the Fourier transform (9) is often called ‘the’ Green’s function and when we speak of the
Green’s function in the following we always mean (9). The first line in (9) is the Lehmann
representation of the Green’s function.

It is shown in textbooks of field theory [7-9] that the imaginary-time Green’s function can be
expanded in Feynman diagrams and the self-energy ¥ (k,iw,) can be introduced in the stan-
dard way, see Figure 1. The self-energy can be expanded in diagrams which have two ‘entry
points’ an incoming and an outgoing one, see Figure 1. Following FW [8], we represent the
Green’s function G, by a directed line with an arrow running 8 — « (the reason is that it is
the creation operator that has the index (3, see (7)). In the Dyson equation the orbital indices
of the Green’s function and the self-energy must take the form of consecutive matrix products,
e.g. G§,%,3G}, - otherwise the summation of the geometric series would not be possible. It
follows that the element X, 3 must have the label o on the outgoing entry and the label 3 on the
incoming one, see Figure 1. This will be of some importance later on.

Note that the real time Green’s function at finite temperature does not allow for a Feynman dia-
gram expansion — this is why the digression of calculating the imaginary time Green’s function
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Q)
Fig. 2: Real part of the Green’s function G(w) for real w. The dashed vertical lines give the
position of the poles, w;.

and analytically continuing its Fourier transform is necessary. It follows from the diagrammatic
expansion that the Green’s-function obeys the Dyson equation (see (26.5) of FW)

<z‘w,,+u/h—t(k)/h—E(k,iwy))G(k,iwy) — 1

Bh
(—8T+p/h—t(k)/h)G(k,T)—/O Yk, —7) Gk, T)dr = (7). (10)

where the second equation is the Fourier-transform of the first and FW (25.21) was used.

Let us finally briefly discuss the analytic structure of the Green’s function and self-energy. For
simplicity we specialize to a single band and assume that the z-component of spin is a good
quantum number so that the Green’s function is a scalar. It can be seen from (9) that the Fourier

transform of the Green’s function has the form
2

Glw) = Z wfiwi

1

where «; and w; are real numbers. It has poles on the real axis and the real part of G(w) looks
like in Figure 2. This shows that in between any two successive poles w; and w;,; the Green’s
function crosses zero with a negative slope

G(w) ~ =B} (w = ).
Near the crossing point (; we thus have

Yw) = -G Hw)+w+p—t
&
= w_Ci—i—...

where o; = 1/2. The self-energy thus has poles on the real axis as well, and these poles are

‘sandwiched’ in between the poles of the Green’s function. Luttinger has shown [12] that X'(w)
is essentially determined by these poles and their residua in that it can be written as

2w =+ w(fg-

Y

with a real constant 7).
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3 Proof of the theorem by Luttinger and Ward

3.1 Statement of the theorem

The grand canonical potential £2(7T", ;1) contains all thermodynamical information about a sys-
tem at fixed temperature 7" and chemical potential p. It is defined as the logarithm of the grand
partition function

1

2 = 3 In(Z).

7 = Ze_ﬂ(Ei_MNi),

i

where the sum is over all eigenstates of the system with energy E; and particle number NV;.
The latter can indeed be evaluated for noninteracting particles and in this way one obtains for
example the grand canonical potential of noninteracting Bloch electrons

2Norb

1
Qnon—in = -3 In(1+ ~B(En(k)—n) . 12
SRR R R -

As shown in textbooks of statistical mechanics, expression (12) allows one to derive the com-
plete thermodynamics of metals. However, it is in general not possible to evaluate the grand
partition function for a system of interacting particles of macroscopic size.
Luttinger and Ward, however, derived a relation for for the grand canonical potential of inter-
acting fermions [1]. More precisely, they considered the following quantity

2 = — lim %Z e v <1n det(—G_l(k, iwy)> +Tr <G(k,iwy)2(k, iwy)>) +P[G]. (13)

vV

Here ) denotes summation over the Fermionic Matsubara frequencies and @[G] is the so-
called Luttinger-Ward functional which is defined as a sum over closed, linked Feynman-
diagrams (the precise definition will be discussed below). The important point here is that a
closed Feynman diagram is simply a number, so that ¢[G] indeed assigns a (real) number to
each possible Green’s function . Regarding the logarithm of the determinant in (13), we recall
that the determinant of a matrix is given by the product of its eigenvalues (the matrix need not
be Hermitian for this to be true), so the logarithm of the determinant is the sum of the logarithms
of the (complex) eigenvalues of —G 1.

In the following, we want to show that in fact 2 = (2, the true grand canonical potential
and thereby follow the original proof by Luttinger and Ward. The basic idea is to multiply the
interaction part of the Hamiltonian, (2), by a scale factor, H; — A\H;, then show Q) = 1 for
A = 0 —i.e. the noninteracting limit — and next show that N2 = 2. Obviously, this proves
the identity of the two expressions for any .
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(a) (b) (©)

Fig. 3: (a) Integration contour C used in (15). Since the integrals along the two contours in (b)
are zero and the contributions from the circular arcs vanish, the integral along the contour in
(a) is equal to that over the contour C' in (c).

3.2 Thecase A =0

In this limit, ¥ = 0 and ¢[G] = 0 (the latter property follows because all interaction lines in all
diagrams are zero) so that only the first term in (13) remains and

Glkw) = wt(u—tk)/h

2norb

ndet(-G (k) = Y In (—w— (u—En(k))/h>. (14)

We now replace the sum over Matsubara frequencies by a contour integration, a standard trick
used in field theory (see e.g. section 25 of FW) and obtain

- %Z e“"n det(— G (k, iw,)) = 2i j{ dw f(w) e In det( — G~ (k,w)), (15)

™ Jc

where

1
efhw + 17

flw) =

is the Fermi function and the contour C encircles the imaginary axis in counterclockwise fash-
ion, see Figure 3a. Next we note that the integrals along the two clover-shaped contours in
Figure 3b are zero, provided the integrand is analytic in the interior of the two curves. Since
the Fermi function has all of its poles along the imaginary axis, which is outside of the curves
in 3b, we only need to consider possible singularities of In det(—G~!(k, w)). In principle, the
complex logarithm has a branch-cut along the negative real axis which could be problematic.
However, a quick glance at (14) shows that as long as w has a nonvanishing imaginary part,
the argument of the logarithm can never be purely real. Singularities of the logarithm thus oc-
cur only on the real axis, which also is exterior to the contours 3b. The integral along these
contours therefore is indeed zero. Next, Jordan’s lemma can be invoked to establish that the
integral along the large semicircles vanishes. Here, the Fermi function f(w) guarantees that the
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contribution from the semicircle with R(w) > 0 vanishes, whereas the factor e does the same
for the semicircle with f(w) < 0. It follows that the integral along the contour C in Figure
3a is equal to that along the contour C’ in 3¢ (note the inverted direction of the curves in 3c as
compared to 3b). Next, we insert

flw) = —ﬁih %m (1+e™) (16)
and integrate by parts. Thereby the Fermi function and the factor e”* again make sure that the
contributions from R (w) = £oo vanish and we obtain

S P do (1 e ) ( Z In (—w + (1 En<k>>/h>>

2”07‘5

L e 1
_mm]{,dm (14 o) nzlwﬂu—En(k))/fo(")'

Now we substitute hw — 2z and use the theorem of residues (thereby remembering that C’

encircles the poles of the Green’s function on the real axis in clockwise fashion) and after taking
the limit  — 0 obtain the expression (12), which completes the first step of the proof.

3.3 Calculation of 912/0X

To obtain the derivative of the true grand potential {2 with respect to A we start from the formula

A 6%9(/\) = —% % In <Tr (eiB(HOH‘Hl)*/‘N))
— % Tr ()\Hl e—B(Ho-&-)\Hl)—uN)
= (AHi),

where (...), denotes the thermal average calculated at interaction strength . The last quantity
thus is the expectation value of the interaction Hamiltonian for interaction strength . This can
be computed by making use of the equation of motion of the Green’s function, a procedure
found in many textbooks, see e. g. Equation (23.14) of FW. One has

Oy = g i S (g #09) Gofh ),

T—0~

where the subscript A on the Green’s functlon implies that this is the exact Green’s function for
interaction strength A. Next we recall the Dyson equation (10), which holds for any A

Bh
(=0, + (31 — t(K)) /B) Gk, 7) — / i Sk r— ) Gk ) = 8(7).
0
Since 6(7 < 0) = 0 we have lim, .- 6(7) = 0 and obtain

Bh
)\%Q(A) — E}L%l-z/ dr' Tr(Z\(k, 7 — ') GA(k,T'))

= % %;Tr Ih(k,iw,) Gk, iw,) . (17)
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3.4 Definition and properties of the Luttinger-Ward functional

As already mentioned, the Luttinger-Ward functional |G/ is defined as a sum over infinitely
many Feynman diagrams with certain properties. The diagrams which contribute are closed,
which means they have no external lines. They are moreover connected, which means that they
cannot be decomposed into sub-diagrams that are not connected by lines. And finally, only
skeleton diagrams are taken into account in the Luttinger-Ward functional. A skeleton diagram
is a diagram where no Green’s function line contains a self-energy insertion. In other words, it
is impossible to draw a box around any part of the diagram so that only two Green’s function
lines cross the box.

At this point we need to discuss an important property of the skeleton diagrams. Let us consider
a self-energy diagram. It contains one Green’s function line from the entry-point to the exit-
point, and a number of Green’s function loops. Starting from the entry-point we may follow the
Green’s function line and draw a circle around each self-energy insertion that we encounter until
we reach the exit point. This procedure will eliminate a number of loops, that means enclose
them in a self-energy insertion. Then, we continue along the first interaction line which is not
eliminated until we reach a Fermion loop that is not yet eliminated. We follow the Green’s
function line along this loop and again draw a circle around each self-energy insertion. We
proceed to the next interaction line that has not yet been eliminated and so on. We end up
with a diagram in which all self-energy insertions are inside circles. Replacing the circles by
straight lines we obviously obtain a skeleton-diagram for the self-energy. It is easy to see that
the skeleton diagram to which a given self-energy diagram is reduced is unique. All self-energy
diagrams thus can be grouped into classes such that all members of one class can be reduced to
the same skeleton diagram. Conversely, all members of one class can be obtained by starting
out from the skeleton-diagram and inserting the full Green’s function for each Green’s function
line in the diagram, which we write as

Tkw) = Y ZEM(kw). (18)

Here X(>™ denotes the set of all n'" order skeleton diagrams (i.e. diagrams with n interaction
lines) with the Green’s function lines replaced by the full Green’s function.

Having defined the diagrams contributing to |G| each diagram is now translated into a mul-
tiple sum according to the standard Feynman rules for the imaginary-time Green’s function in
momentum space (see section 25 of FW). However, there is one crucial difference: whereas in a
standard Feynman diagram a Green’s function line corresponds to a factor G°(k, w) (the nonin-
teracting Green’s function), in the Luttinger-Ward functional we replace G°(k,w) — G(k,w)
where G(k,w) is the argument of the functional ¢[G]. As an example, the expression corre-
sponding to the diagram in Figure 4 is

- 2
(mi—QlN) (_1)2 Z Z Z Z Vavﬁv‘w(k’ k/’ q) ‘/51,’717011,51 (k +4q, k/ - q, _q)

k’klvq ava’Yﬁ O‘l’ﬁla’h 751 l/,l//,p,
X Goy ok + q,iw, + w,) Gss, (K iw,) Gg, g(kK' — q,wy — wy,) Gyqy (K wyr) o (19)
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Fig. 4: Left: A diagram contributing to the Luttinger-Ward functional. Right: the elements of
the diagram.

The Luttinger-Ward functional |G| thus consists of an infinite sum of multiple sums which
involve the interaction matrix elements | of the Hamiltonian (4) and the function G for which
the functional is to be evaluated.

Let us briefly discuss the scaling with system size, N. By the Feynman rules an n** order dia-
gram has the prefactor (1/N)". On the other hand, there are n interaction lines, and 2n Green’s
function lines, so that there are 3n momenta. The n interaction lines give rise to 2n momentum
conservation conditions, one for each end of a line. However, in a closed diagram one of these
momentum conservation conditions is fulfilled trivially so that there remain n + 1 momenta to
be summed over (see the above example). Each sum runs over N momenta so that the total
diagram is of order /V — as it has to be because {2 is an extensive quantity.

In addition to the factors originating from the Feynman rules, each diagram is multiplied by
—1/(BS) where the positive integer S is the symmetry factor of the diagram. A very de-
tailed discussion of these symmetry factors is given in section 2.3 of Negele-Orland [9]. The
definition is as follows: first, the diagram is drawn such that all interaction lines are in x-
direction. The n interaction lines of a diagram are labeled by integers i € {1...n} and the
ends of each interaction line are labeled by 12 and L (for ‘right end’ and °‘left end’), see Fig-
ure 5a. Any Green’s function line in the diagram now can be labeled by the ends of the in-
teraction lines where it departs and where it ends: (,S5;) — (j,52) with 4,5 € {1...n}
and S1, Sy € {R, L}. Obviously, the diagram is characterized completely by the 2n ‘directed
quadruples’ (i,S7) — (7,.52). Then, we consider the following operations on the diagrams: a)
any permutation of the indices 7, b) exchange of the labels R and L on an arbitrary number of
interaction lines, ¢) any combination of a permutation followed by label exchanges. Such an
operation obviously changes the quadruples which characterize the connectivity of the diagram:
[(4,51) — (4,52)] = [(¢',57) — (§, 5%)]. The symmetry factor of a diagram then is the num-
ber of symmetry operations — including identity — where the new labels (i’,S7) — (j',S5) are
a permutation of the old ones, (7,.51) — (7, .52) (Negele-Orland then call the transformed dia-
gram a deformation of the first one). As an example, consider the diagram in Figure 5a. Label
exchange on, say, the interaction line 2 leads to the diagram shown in 5b, which however is not
a deformation of the original diagram. This can be seen by considering e.g. the line connecting
the R-end of 1 and the R-end of 2. In 5a this line would have the label (2, R) — (1, R), whereas
it would be (1, R) — (2, R) in 5b. This means that the direction of momentum flow along the
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Fig. 5: Determination of the symmetry factor S for a diagram.

line would be reversed. On the other hand, the permutation of the labels 1 and 3 followed by
label exchange on interaction line 2 leads to the diagram 5c¢ which indeed is a deformation of
the original diagram. In Figure 5d the Green’s function lines are numbered by 1 — 6 and Table
1 gives the quadruples corresponding to these lines in Figures 5a and Sc. Obviously the two sets
of quadruples are a permutation of each other. It turns out that this is the only symmetry oper-
ation which leaves the diagram invariant, so that, taking into account the identity operation, the
diagram has S = 2. Since a symmetry operation corresponds to a permutation of the quadruples
(7,51) — (4, Se) that characterize the individual Green’s function lines in a diagram, it defines
a mapping between these lines whereby each line is mapped onto the one that gets its label. For
example, from Table 1 one reads off the corresponding mapping for the operation connecting
Saand Sc:

If two Green’s function lines 7 and j are mapped onto each other the lines are equivalent in the
sense that the diagram could be deformed such that the deformed diagram is precisely the same
as the original one but with line j now taking the place of line 7 and vice versa.

Let us now assume that a diagram has the symmetry factor S. This means that all Green’s
function lines can be grouped into disjunct classes such that the lines belonging to one class are
mapped onto each other by one of the S symmetry operations. For example, the diagram in 5
has the classes (1,2), (3,6) and (4,5). Since a diagram with n interaction lines has 2n Green’s
function lines the number of classes is 2n/S which will be of importance later on.

Line 5(a) 5(c)
1 (1,L)—@3,L) @G,L)—(1,L)
2 3,L—a,Ly (1,L)—@G.L)
3 (LR —»2,L) (3B.R)—(2,R)
4 2,R)—(1,R) (@2,L)—3,R)
5 2,L)—@3B,R) (2,R)—(1,R)
6 3,R)—2,R) (1,R)—(2,L)

Table 1: Quadruples describing the connectivity of the diagrams Figure 5a and Figure 5c. The

numbers of the Green’s function lines are given in Figure 5d.
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Fig. 6: Variation of G implies opening the lines of a Feynman diagram.

Next, we want to see the meaning of this definition. In fact, the Luttinger-Ward functional is
the generating functional of the self-energy, or, more precisely:

0P 1
I ——— P 'R TR 2
0Gopk,iw,) B oK, i) (20)

To see this, consider an infinitesimal change G,s(k,iw,) — Gas(k,iw,) + 0Gap(k,iw,) as
in Figure 6. The initial diagrams correspond to multiple sums over products of Green’s func-
tions where all internal frequencies, momenta, and orbital indices are summed over, subject to
the condition of energy/momentum conservation at each interaction vertex, see (19). The first-
order change then also can be viewed as a sum of diagrams but with a single missing line, which
corresponds to the variation 6G that has been factored out. Another way to state this is to say
that differentiating with respect to an element of G amounts to successively opening each of
the lines in the initial closed diagram and summing the remaining diagrams. These remaining
diagrams obviously look like self-energy diagrams in that they have two entry points. We now
need to show, however, that the diagrams not only look like possible contributions to the skele-
ton diagram expansion of the self-energy, but that they come with exactly the right numerical
prefactors. At this point, the additional prefactors of —1//.S turn out to be crucial.

We first note that the momentum and frequency which flow into/out-of the diagram are fixed
by the momentum and frequency of G. Regarding the orbital indices, we recall that G5 cor-
responds to a directed line 5 — «. The resulting self-energy-like diagrams therefore all have
the matrix index « on their incoming entry and S on their outgoing entry and, comparing with
Fig. 4, we see that this assignment of indices corresponds to Y/5,. Moreover, all internal mo-
menta, frequencies and matrix indices in the remaining diagrams are summed over — subject
to the condition of frequency and momentum conservation at the interaction lines — as would
be the case in the true self-energy diagrams. Second, the order n of a diagram, i.e. the number
of interaction lines, is not changed by opening a Green’s function line, so that the prefactor
(—1/BR*N)™ of the closed diagram is also the correct prefactor for the resulting self-energy di-
agram. Third, opening a Green’s function line reduces the number of closed fermion loops by 1
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and the factor (—1) in —1/35 takes care of this. Lastly, we need to discuss the symmetry factor
S. Let us consider a diagram with n interaction lines, which accordingly has 2n Green’s func-
tion lines and moreover assume that the diagram has the symmetry factor S. As we saw above,
the 2n Green’s function lines can be divided into classes of S members which are mapped into
each other by the symmetry operations, and the number of these classes is 2n/S. A symmetry
operation maps a Green’s function line ¢ onto an equivalent one 7, so it is possible to deform the
diagram such that it looks exactly the same as the original one but with line j in place of line :.
This means, however, that "opening’ the line 7 also gives exactly the same self-energy diagram
as opening line j. Accordingly, from the single closed diagram of degree n with symmetry
factor S we obtain 2n/S different skeleton diagrams for the self-energy, and each is produced
S times, see also Figure 7. This factor of S, however, precisely cancels the prefactor 1/5. It
follows that each skeleton-diagram for the self-energy is produced with the same prefactor 1/4.
Differentiating ¢[G| with respect to G5(k, iw, ) thus gives 1/ times the sum of all skeleton
diagrams for X, (k, iw, ), with the noninteracting Green’s function replaced by the full one,
and this is exactly Yz, (k, iw, ) itself, see (18), proving (20).

We have just seen that all skeleton-diagrams for the self-energy can be obtained by differenti-
ating the Luttinger-Ward functional with respect to G, whereby the differentiation corresponds
to opening one line in a closed diagram. We then may ask if this operation can be reversed,
namely if the Luttinger-Ward functional can be obtained by starting from the skeleton-diagram
expansion of the self-energy and closing the diagrams by reconnecting the entry-points of the
self-energy by a Green’s function. More precisely, we consider an expression of the form

% YN Gapslk,iw,) B5 (k,iw,) | 1)

vk o,

We have seen that an n'* order diagram contributing to ¢[G] with symmetry factor S produces
2n/S different skeleton-self-energy diagrams, and each of them S times and with a factor of
(—1), so that the remaining prefactor was 1//3. Upon closing the fermion line again, according
to (21), each of these diagrams produces the original closed diagram (it is easy to see that for
each self-energy diagram there is exactly one closed diagram from which it can be obtained).
Since there are 2n/S self-energy diagrams originating from the original closed diagram the
latter is produced 2n/S times and thus has the additional prefactor —2n /S5, where the factor
of (—1) is due to the additional fermion loop in the closed diagram. In the expansion of |G/,
however, the diagram would have had the prefactor —1/.53, or, put another way, closing the sum
of all n* order skeleton diagrams for ¥ according to (21) produces the n* order contribution
to (G| with an additional prefactor of 2n so that

1
P — o zk: Tr G(k, iw,) 2™ (k, iw, ). (22)
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Fig. 7: The diagram on the left has n = 3 and S = 2 and accordingly 3 classes of symmetry-
equivalent Green’s function lines. The lines are labeled by the number of the classes, compare
Figure (5) and Table 1. Successively opening the lines of the diagram produces the three differ-
ent self-energy diagrams in the center column and each of them is produced S = 2 times. The
right column shows the diagrams redrawn to more look like self-energy diagrams.

3.5 Calculation of 8£2/9X\

We proceed to the the final step of the proof and compute 92 JOA. If we vary the interaction
strength \ there are two places in the expression 2 in (13) where this makes itself felt. Namely,
the self-energy 32 will change, and moreover the interaction matrix elements V' in the Luttinger-
Ward functional (compare 19) that have a prefactor of A\ will also contribute to the variation.
Let us first consider the variation of 3 and compute

o1
820[75 (k, iwy) ’

There are three terms in (13) and we consider them one after the other. The first two terms
involve a sum over momentum and frequency and obviously only those terms with momen-
tum k and frequency w, will contribute. Accordingly, in the following equations we omit the
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arguments (k, iw, ) for brevity. Then we find by using the chain rule for differentiation
0 ( 1 _ > ( (-G 1)
——In det (-G™! =
agaﬂ B ( ) 5 Z

j In det G1>—W
e (=67 5.

- T3 Z(_Gv,u) Opa Ov,
"%

B
1
= =G -
3 B,
In going to the 2" line we used the identity from the Appendix and the Dyson equation
-G = —w—pu/h+ 3
from which it follows that
(-G !
—< ) dpa Ou .
0%, 3 o

We proceed to the second term:

o 1 1 0G,,,
A (—BTrZG) azaﬁ ( ZEW Gw> =3 (Gﬁ,ﬁ%‘zv#a%ﬁ) .

Lastly we consider the Luttinger-Ward functional. Usmg again the chain rule we find

0PG] 8(15[G G, Z
0Zap 4= 0G., 0505 B ”“82 '
Adding up the three terms we thus obtain the important result
o0

9% 2
o5 iwy) (23)

In other words: the expression 2, which will be seen to be equal to the grand potential (2 in
a moment, is stationary with respect to variations of the self-energy. This is the stationarity
condition for 3 which is the basis of the VCA.

First, however, we have to complete the proof and evaluate )\ Q(/\) Since there is no variation
of {2 due to a variation of X, the only remaining source of Varlatlon are the interaction lines in
the Luttinger-Ward functional. Namely any n'" order diagram has the prefactor of A" so that

0
9 — e
A@)\ n

Using (22) we thus obtain

=S "no = ZQBZTrGAksz )20 (K, iw, )
_ % > TrGalk,iw,) (Z = (k, ’iwl,)>
v,k n

1 . .
= % ;kj Tr G)\(k, ZWV) EA(k7 ZWV) :
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Comparing with (17), we see that this is equal to )\ +{2(X\) which completes the proof.
Let us summarize the results that we have obtalned.

1. The grand canonical potential {2 of an interacting Fermi system is given by eqn. (13).
2. The Luttinger-Ward functional is the generating functional of X (k, iw, ), see eqn. (20).

3. @[G] depends only on the interaction matrix elements V,,5, in the Hamiltonian and the
Green’s function G which is the argument of the functional.

4. (2 is stationary under variations of ¥ (k, iw, ) see (23).

Looking at the above proof one might worry about the fact that it assumes a continuous evo-
lution of the system with increasing interaction strength )\ - whereas we are interested e.g. in
Mott-insulators where we have reason to believe that a phase transition occurs as a function
of . However, Potthoff has recently given a nonperturbative proof of the theorem [6, 13] that
means all of the above properties of the grand potential, the Luttinger-Ward functional and the
self-energy remain valid in a strongly correlated electron system where a Feynman-diagram ex-
pansion of the Green’s function and the adiabatic continuity with the noninteracting system can
no longer be assumed valid.

4 The variational cluster approximation

In the preceding section we have seen that the grand canonical ensemble of a system is sta-
tionary with respect to variations of the self-energy. In order to rewrite {2 as a functional of
the self-energy we need to change the argument of the Luttinger-Ward functional from G to
3. Since X is the derivative of ¢ with respect to G this can be achieved, following [4], by
introducing the Legendre-transform of the Luttinger-Ward functional:

F[E] = - >y 5 Gaﬁ k ) Gag(k, iw,)

kv a8

= ZZG‘W (k,iw,) Ysa(k, iw,)

kv a8

= @[G[E]]—BZ Tr G(k, iw,) B(k, iw,) .

By virtue of being a Legendre transform this new functional obviously satifies

oF 1 .
m = —BGﬁa(k, Zwy) . (24)

Moreover, the second and third term in (13) together are nothing but F'[3], whence

2 =— lim % Z e [In det (—iw, + (t(k) — p)/h+ 2(k, iw,))] + F[Z] . (25)

n—0+t
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Fig. 8: Left: The 2D Hubbard model. Center: The 2D Hubbard model partitioned into 2 x 2
clusters. Right: Partitioning into larger/smaller clusters, with or without additional bath sites
and additional hopping integrals. All systems have a different kinetic energy H, but exactly the
same interaction part Hy; accordingly, they all have the same Luttinger Ward functional.
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Here we have used the Dyson equation to replace —G ™! in the first term. This expresses (2 as
a functional of 3, and this functional is known to be stationary with respect to variations of its
argument at the exact X (this is also easily verified using the identity from the Appendix together
with (24)). One might now try and either derive Euler-Lagrange equations or introduce a trial
self-energy containing some variational parameters, e.g., of the form (11) with only a certain
number of poles (o;, (;) retained, and perform the variation with respect to these parameters.
Unfortunately this procedure does not work, because the functional F'[¥] was defined as the
Legendre transform of the Luttinger-Ward functional ®[G|, which in turn was defined as a sum
over an infinite number of Feynman diagrams and thus is completely impossible to evaluate for
a given trial self-energy.

At this point Potthoff’s new idea comes into play. For definiteness let us assume that we are
interested in a 2D Hubbard model, shown schematically in Figure 8a. Then, we might partition
the plane into finite clusters and set the hopping between the clusters to zero, so that they
become disconnected, see Fig. 8b. The resulting array of clusters has been termed the reference
system. The finite clusters also can be decorated in various ways by noninteracting bath orbitals,
they can be larger than just 2 X 2 or contain hopping terms not included in the original Hubbard
Hamiltonian, see Fig. 8c. As long as the resulting clusters are not too big, the Fock space of
a single cluster has a manageable size and the clusters can be treated by exact diagonalization.
This gives us all eigenstates |i) together with their energies F; and particle numbers N;. Using
these, we may numerically evaluate the grand partition function Z and obtain the potential 0
for a single cluster. In addition, we can calculate the Green’s function matrix é(w) using the
Lehmann representation or the Lanczos algorithm [14], invert it and extract the self-energy
Zvl(w) For all of this it is actually sufficient to know all eigenstates with F; — p/N; within
a window of ~ 10 kgT above the minimum value, which can be obtained by the Lanczos
algorithm even for clusters of size N ~ 10 — 20. Next, we revert to expression (25) and obtain

the numerical value of F[X]:

n—0t [

FI$] = 04 lim — 3 e [m det (—zwy +(E—p)/ht i:(w,,)) } . (@6)

where t is the kinetic energy of the cluster, i.e., the matrix t,5 in (1). This procedure gives
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us the exact self-energy i(w) of the cluster together with the exact numerical value of the
corresponding Luttinger-Ward functional. An important point is that all matrix elements iag
that have one index « or 3 on a bath site are zero. This can be seen, e.g., from the diagrammatic
expansion of the self-energy. The cluster self-energy 3 therefore has non-vanishing entries only
for the correlated sites of the original lattice problem.

At this point the crucial observation by Potthoff comes into play: we have seen above that
the Luttinger-Ward functional ¢[G] was a sum over Feynman diagrams into which, apart from
numerical factors, only two quantities do enter: the interaction matrix elements V' of the Hamil-
tonian and the Green’s function G which is the argument of the functional, see e.g. (19). In
our example with the 2D Hubbard model, however, the full 2D Hubbard model and the array of
clusters, which may include non-interacting bath sites, differ only in their single-particle terms
H, but do have exactly the same interaction part H;. It follows that the functional ¢[G| and
hence its Legendre transform F'[X] are identical for the two systems. Since, however, we are
able to calculate the self-energy of the cluster and the corresponding value of the Luttinger-
Ward functional exactly, we may use these as trial self-energies for the lattice system. In other
words, we make the ansatz for the lattice system

Qe = — lim %Zew”" [In det (—G'(k, iw,) )] + F[X],
=0t k,v
Glkw) = (w+(n—t0k)/h— Sk, w)>_1 | 27)

Here t(k) is now the kinetic energy matrix of the lattice system whereas f](k, w) is the spatial
Fourier transform of the cluster self-energy (which may have no k-dependence at all, depending
on the geometry of the reference system). Accordingly, G’ is the approximate Green’s function
of the lattice system.

Then, how do we perform the variation of the self-energy? The answer is that the single-particle
Hamiltonian Hy of the cluster used to compute the trial self-energies s completely arbitrary,
because the only requirement for the equality of the Luttinger-Ward functionals was the equality
of the interaction part /;. If we change the single-particle terms of the reference system, i.e. the
hopping integrals or site-energies, the self-energy of the cluster will change. The self-energy
and its Luttinger-Ward functional thus become functions of the single-particle terms fag of the
reference system: (2,4 = Qlatt(fag). Then, we demand that

anatt
s

=0, (28)

which is a condition on the parameters of the reference system, £, and we denote the solution of
(28) by #*. The physical interpretation is that the VCA is seeking the best approximation to the
self-energy of the lattice-system amongst those functions i(k, iw, ) that can be represented as
the exact self-energies of the reference system for some values of the single-particle parameters

tap. After solving (28) we obtain an approximate self-energy 3:(k,iw,) and an approximate
value of the grand canonical potential (2;,,;. Since (2;,;; can be obtained for arbitrary values
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of T" and p or other external parameters, thermodynamical quantities such as particle number,
entropy or specific heat can be obtained by doing the procedure for different 7" and © and
differentiating.

As an example we address an interesting property of the VCA The particle number N, of any
system can be obtained in two different ways (the second is a combination of FW (23.9) and
(25.10)):

Ne=——=— lim > ™" TrG'(k,iw,).

Since the VCA gives both (2, and G'(w), it is natural to ask if the two ways of calculating N,
give the same result, and this question has been addressed by Aichhorn ez al. [15]. We first note
that the chemical potential of the reference system has to be the same as that of the physical
system. Next, let us assume that we regroup the orbital energies of the cluster, .., by separating
the center of gravity

Trt

2norb

and introducing 2n,,;, — 1 relative energies #/ , so that #,, = ., + . Since in all calculations
for the reference system the chemical potential 1 and € only appear in the combination p — €,
the derivative of any cluster quantity A with respect to the chemical potential ;. obeys

0
Oe |.

tu

Next we consider the change of the approximate (2,4 induced by a change of x. A variation
of 1 will make itself felt at a variety of places. Looking at (26) and (27) we see that x appears
explicitely in these. Moreover, p appears in the grand partition function Z and the Green’s
function G of the reference system, so that the cluster self-energy itself will change with .
As a consequence of these changes, we have to take into account that £*, the solution of (28),
will change as well: * — * + 6t*, so that the situation becomes somewhat complicated.
Fortunately enough, the first-order change of (2,,;; due to a variation of {* is zero; this is exactly
the stationarity condition (28). We thus need to consider only the change of (2, for fixed
parameters ¢. Using the last identity in the Appendix we obtain

lp 1 903(k, iw,) OF 3]
— = i _E iwyn 'k, iw,) | - — —2— _
o |, worpe=t ) | g on |, o e
1 0%(k,iw,) OF %]
— I - zwynT k _ ,
LY Ze el e A )
M
anatt
= lim — Y 7 Tr G'(K, iw,) — .
S 5 Ze P ) = 5

The presence of the first term in the last line can be be understood by noting that ;. appears
explictly in the approximate cluster Green’s function G’ (see (27)) whereas € does not. At this
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point we note that if ¢ has been included into the set of cluster parameters which are subject
to variation, the last term vanishes (because this is exactly equation (28) for fag = ¢) and the
two expressions for the particle number indeed give the same result. The VCA thus gives a
thermodynamically consistent particle number if and only if the center of gravity of the orbital
energies in the reference system is included into the set of parameters to be varied.

To conclude this section we briefly comment on the evaluation of terms like

1 .
S=— 9" 1n det(—G ! (iw,)),
3 ; ( (iwy))

where G may be either the Green’s function of the reference system as in (26) or the approx-
imate Green’s function of the lattice system as in (27). The form of this term suggests that
we proceed exactly as in the first step of the proof of the Luttinger-Ward theorem, namely to
convert the sum over Matsubara-frequencies into a contour-integral, deform the contour using
Jordan’s lemma as in Figure 3, replace the Fermi function according to (16) and integrate by
parts. One obtains

1 B 1 0A(w)
“ B }{/dwlog(l—i-e A );)\nw) o

where \, (w) are the eigenvalues of G(w). There are two types of singularities of the integrand
in this expression:

1. zeros of an eigenvalue (which corresponds to a singularity of an eigenvalue of ) i.e.

Mo =) - 5B - L

2. singularities of an eigenvalue, i.e.

b, 1 OAw) 1
w =1, AMw) Ow W=,

Mw) ~

In this way we obtain the expression derived by Potthoff [4]:

S = —% (Z log(1 4 e ) — Zlog(l + 6_6@)> ;

7

An alternative is to simply evaluate the contour integral numerically.

S5 Applications of the VCA

5.1 Metal-insulator transition in a dimer

As a simple illustration of the procedure we study Potthoff’s re-derivation of the phase diagram
for the metal-insulator transition in the Hubbard model [16]. We consider a half-filled single-
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Fig. 9: Left: The physical Hubbard model (top) which is a true infinite lattice system and the
reference system which is an array of identical dimers. Right: Schematic representation of the
parameters of a single dimer (see the Hamiltonian (29)).

band Hubbard model on a bipartite N-site lattice

T U al U
H = kzpt(k> Ck7o_ck’a. + 5 ; (nz — 1)(”1 _ 1) _ NE
f Y U
— kzp t(k> Ck,ock,d + U ; nin ni,J, _ 5 ; n;

where n; = CI7TCi’T + cz 1C;,- For simplicity we assume this Hamiltonian has particle-hole
symmetry. More precisely, under the transformation ¢’ <+ ¢ we have n; — 1 — 1 — n; so
that the interaction part is invariant, whereas the first term changes sign. If the hopping term
connects only sites on different sublattices, which is what we assume, this sign change can
370_ — —CZU on the sites ¢ of one sublattice.
This transformation exchanges photoemission and inverse photoemission spectrum and implies
p="U/2.

For the reference system, Potthoff chose N dimers with one ‘Hubbard-site’ hybridizing with

be compensated by the gauge transformation c

one bath-site, see Figure 9, whereby the Hamiltonian for one dimer reads
U U U
_ - _ T T _ T el _ _ _ =
H—uN=-V EJ (clb, +blc,)+ (eb 2) E(, blb, + 5 (ne—1)(n.— 1) 5 (29)

Here b} creates an electron in a bath site and n, = c%cT + cIc - We have to write ¢, — U/2
because i = U/2. Since we want to generate particle-hole symmetric self-energies we have
to impose particle-hole symmetry also in the reference system. The transformation ¢’ <« ¢,
b ++ —b indeed converts the Hamiltonian into itself except for the second term. Setting ¢, =
U/2, however, eliminates this term and particle-hole symmetry is restored. The only remaining
parameter to be varied therefore is V.

The Fock space of the dimer has a dimension of 4 x 4 = 16, so all eigenstates can be readily
obtained. If we construct basis functions with fixed particle number, spin, and z-component
of the spin, the problem in fact can be broken down to diagonalizing 2 X 2 matrices, i.e. the
reference system can be solved analytically. To further simplify the calculations, Potthoff used
a semielliptical density of states of width W' = 4 for the conduction band

pole) = 1\/4—62.

27
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Fig. 10: (a): 2 versus V at'T' = 0, variation of U, (b): {2 versus V at U = 5.2, variation with
T, (c): the resulting phase diagram.

Figure 10a then shows §2(V') at T' = 0 for different values of U. For smaller U there are two
stationary points: a maximum at V' = 0 and a minimum at finite V', which is the physical
solution. At U, =~ 5.85 the two extrema coalesce into a single minimum at V' = 0, which is the
only stationary point for larger U. This change from finite V' to V' = 0 precisely corresponds to
the metal-insulator transition. To see this we note that in the special case of 7' = 0 and u = U /2
the self-energy of the dimer can be evaluated exactly [17]:

2
Q+U—< L, ) (30)

E p—
) 27" 8 \wt3V T w—3v

Note that this has exactly the form (11) derived by Luttinger [12]. The k integrated Green’s
function then is (note that u = U/2)

Glw) = /Zde

For real w the single particle spectral density, i.e. the combined photoemission and inverse

pol€)
w+U/2—e—X(w) G

photoemission spectrum, is given by

1
— = lim Y G(w + ).
T d—0

Alw) =
This is shown in Figure 11 for different 1/, together with the imaginary part of the self-energy.
Since we only want to see qualitatively the effect of vanishing V', U = 5 was kept throughout.
Then 3 (w) shows two Lorentzian peaks located at 3V as expected from (30). Each of these
peaks creates a gap in the density of states, so that there are three regions with nonvanishing
spectral density. As V' — 0 the two poles of X'(w) approach each other and the spectral weight
in the inner region around w = 0 which corresponds to the Fermi energy, becomes smaller

and smaller. Eventually, at IV = 0 the two peaks merge and there is no more spectral weight
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Fig. 11: Single particle spectral function and imaginary part of the self-energy (calculated
with an imaginary part of 0.05 for the frequency) obtained from the angle integrated Green’s
function (31) and the self-energy (30). Parameter values are U = 5andV = 0.4 (top), V = 0.2
(center) and V' = 0 (bottom).

at the chemical potential; the system is an insulator now, which is the scenario predicted by
dynamical mean-field theory (DMFT) [18]. It remains to be mentioned that DMFT calculations
find U, ~ 5.84 [19].

Next, Figure 10b shows 2(1) for the fixed value of U = 5.2 and different temperatures 7.
For most temperatures there are three stationary points whereby the local maximum can be
discarded. It follows that there are actually two possible solutions for each temperature between
T = 0.10 and T" = 0.12. This implies that there is a 1" order phase transition between these
two temperatures. Repeating the procedure for various U gives the phase diagram in Figure 10c.
There is only a metallic solution for small U, at a first U.; a second insulating solution starts
to appear, at U, there is a first order metal-insulator transition and on from U, there is only an
insulating solution. The results obtained in this way by the, essentially analytical, solution of
a dimer are qualitatively very similar to those obtained by extensive numerical renormalization
group [20] and quantum Monte Carlo [21] calculations in the framework of DMFT. The main
deficiency of the dimer calculation is the underestimation of the critical temperature 7 in Figure
10c by about a factor of two.
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Fig. 12: Variation of (2 with h in (32) for the half-filled 2D Hubbard model. The reference
system is an array of 10-site clusters. Reprinted with permission from [22], Copyright 2004 by
the American Physical Society.

5.2 Discussion of spontaneous symmetry breaking

As already mentioned, the VCA gives an estimate of the grand potential {2. This property makes
the VCA of particular usefulness for the discussion of ordering transitions. For definiteness, let
us assume we want to discuss antiferromagnetism in the 2D Hubbard model and let us assume
that we partition the planar model into an array of finite clusters as in Figure 8. Then, since the
single-particle terms of the reference system are completely arbitrary, we may include a term

Hy = hY 9% (nj;—n;) (32)
J
with Q = (m,7) into H,. This term represents a staggered magnetic field which breaks the
spin-rotation symmetry of the Hamiltonian. It has to be stressed, however, that no magnetic field
whatsoever is added to the Hamiltonian of the lattice system. The self-energy fl(w) computed
in the reference system with A # 0, however, incorporates this broken symmetry in various
ways; for example the self-energy for the two spin-directions will be different and the sites of
the cluster are divided into inequivalent sublattices. If we now determine the optimum value of
the parameter h from the standard requirement
Ot
oh

there are two possible outcomes: we will usually always find a solution with A* = 0, which

=0

corresponds to the paramagnetic state. It may happen, however, that there is a second solution
with h* # 0, see Figure 12 for an example, and if this gives a lower {2 it follows that even in the
complete absence of any magnetic field the grand potential of the lattice system can be lowered
by a self-energy which incorporates broken symmetry. The lattice system thus undergoes a
transition to a state of spontaneously broken symmetry. In this way, not only various kinds of
magnetic ordering but also superconductivity, charge, or orbital ordering can be discussed, see
the review by Potthoff [6].
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5.3 Photoemission spectra of NiO, CoO and MnO

Lastly, we consider beyond-band-structure calculations for realistic models of 3d transition
metal compounds. Very often these have a rock-salt structure, such as NiO, CoO and MnO,
or a Perovskite structure, such as LaCoOs. In both cases the transition metal ion is surrounded
by an octahedron of oxygen ions.

It is well-known that these materials are often not well described by LDA calculations and it
is widely accepted that the reason is the strong Coulomb-repulsion between electrons in the 3d
shells of the transition metal ions. The description of this Coulomb interaction is the subject of
multiplet theory, which was initiated in the 1920’s to explain the optical spectra of atoms and
ions in the gas phase. Multiplet theory is discussed in many textbooks of atomic physics, in
particular the books by Slater [23] and Griffith [24] should be mentioned, as well as [25].

We assume that the orbitals which describe the 3d electrons in the Hamiltonian (2) are anal-
ogous to atomic wave functions in that they can be labeled by the set of quantum numbers
v = (n,l,m, o) where n = 3 is the principal quantum number, [ = 2 the total orbital angular
momentum quantum number, m € {—I[,...l} the z-component of orbital angular momentum,
and 0 = +1/2 the z-component of spin. n and / could be omitted because they are identical
for all 3d orbitals, but we keep them to stay consistent with Slater and Griffith. We introduce
creation and annihilation operators d}yy and d, , for electrons in the 3d shell of the transition
metal ion 7. The Coulomb interaction between the 3d electrons then can be written as

1
Hl = 52 Z V(Vl,l/g,l/g,y4) djyld;rygdzugdzm

i V1,U2,U3,V4

V(Vla Vo, 13, 7/4) = 50’1 o4 602 o3 5m1+m2,m3+m4 (33)

X Z (lymy; Lymy) ¥ (lsma; lymsy) RE(nily, noly, nsls, naly) .

Here the Gaunt coefficients c*(Im;1'm’) are given by

/ 4
*(lm; 'm Y 2k+1/ d¢ _ldCOS( )Y (6, 0) Vi (0,0) Yy, (0,0)  (34)

and the Slater integrals R* by

k
r

R (nlll,nglg,nglg,n4l4 /dT’I“/dT T’/2Rn111 Rn212( /)rk+1 Rn4l4<r)R;3l3<T,)' (35)
>

The Gaunt coefficients are pure numbers, which do not depend on the specific ion and are
tabulated in textbooks [23-25]. The calculation of the Slater integrals requires knowledge of
the radial wave function Rj3.(r) of the 3d shell, which is often obtained from Hartree-Fock
wave functions for the free transition metal ion in question. In any case, the parameters c¢* and
R* can be assumed to be known. More detailed analysis shows, moreover, that for a d-shell
only the terms with k£ = 0, 2, 4 in the sum in (33) differ from zero; the sum thus is finite and the
Coulomb matrix elements can be calculated without problems. The noninteracting part of the
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Hamiltonian can be written as

Ho = > > (tu,u),(j,A) dl, pja+H -c.) +Y Y Cuud, d;,,

1,0 VA i V1,2

+ Z Z i), (G e) PI,M Pjxg - (36)

6] AL,A2

The first term describes hybridization between the 3d-orbitals and orbitals on other atoms,
which are created by p; \ Where A is shorthand for some set of quantum numbers which specify
these orbitals. The second term contains the orbital energies of the d-electrons and the effects
of the crystalline electric field. The third term describes hybridization between orbitals other
than the 3d orbitals. The matrix elements Z(;, (jx) and t; x,),(j,n,) can be expressed in terms of
relatively few parameters such as (pdo), (pdn) ... by use of the Slater-Coster tables [26]. For a
given compound the parameters in (36) can be obtained, e.g., by a fit to an LDA band structure.
It was shown in the pioneering work by Fujimori and Minami [27] that the momentum integrated
photoemission spectra of transition metal oxides can be reproduced very well by considering
an octahedron-shaped cluster comprising only a single transition metal ion and its six nearest
neighbor oxygen ions. If only the transition metal 3d and the oxygen 2p shells are taken into
account such a cluster has 5 4 6 - 3 = 23 orbitals per spin direction. This number can be re-
duced considerably by noting that in octahedral symmetry for each of the five 3d orbitals there
is precisely one linear combination of O-2p orbitals on the neighboring oxygen atoms that hy-
bridizes with it, so that the number of relevant orbitals is only 10 per spin direction, which is
well manageable by the Lanczos algorithm. The Hamiltonian for the cluster reads

H = ) (tadl poo+He)+ Y capdl,ds,+ Y Capbhopp, + Hi.  (37)

o0 o,B,0 a,fo

Here piw create electrons in the bonding combinations of O-2p orbitals and H; is given in (33).
The finding of Fujimori and Minami immediately suggests an obvious generalization of Pot-
thoff’s treatment of the single-band Hubbard model: instead of a dimer consisting of a sin-
gle correlated site and a single bath site. see Figure 9 and the Hamiltonian (29), we use an
octahedron-shaped cluster comprising the 5 correlated 3d orbitals and 5 bath sites correspond-
ing to the the bonding combinations of oxygen 2p orbitals, i.e., precisely the Hamiltonian (37)
as reference system. The larger size of the clusters makes the calculation more demanding in
that the eigenstates of the reference system and the Green’s functions now have to be obtained
by the Lanczos algorithm. Moreover, the reference system contains more than just one parame-
ter so that (28) actually represents a system of coupled nonlinear equations. The problem still is
manageable, however, for the necessary numerical procedures and possible algorithms for the
solution of (28) see Refs. [28] and [29].

Here we proceed to some of the results. Figure 13 shows angle-integrated valence band photoe-
mission spectra for the three transition metal oxides NiO, CoO, and MnO. For each compound
the figure compares the computed spectral density with transition metal 3d character and for
oxygen 2p character to experimental valence band photoemission spectra obtained with high
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Fig. 13: Angle integrated valence-band photoemission spectra obtained by the VCA for transi-
tion metal oxides NiO (left), CoO (center), and MnO (right), compared to experimental spectra
taken with high and low photon energy. Reprinted with permission from [28], Copyright 2008
by the American Physical Society.

(top) and relatively low photon energy (bottom). It can be seen that the experimental spectra
change substantially with photon energy, and the main reason is the dependence of the pho-
toionization cross section on photon energy [30]. As a rule of thumb, one may say that at X-ray
energies the spectra show predominantly the transition-metal 3d-like spectral density, whereas
it is the oxygen 2p-like spectral density at low photon energy. Taking this into account, there
is good overall agreement between the theoretical and experimental spectra. One may also
compare k-resolved spectra and also find good agreement [28].

6 Summary

In summary, Potthoff’s new idea of introducing a reference system to generate trial self-energies
[4] allows one to combine the classic field theoretical work of Luttinger and Ward [1] with the
numerical technique of exact diagonalization of finite systems, resulting in a method for treating
strongly correlated lattice systems by exact diagonalization: the variational cluster approxima-
tion. Its variational nature makes the VCA particularly useful as exemplified by the ‘dimer-
DMFT’ description of the metal-insulator transition. Since the VCA always gives an estimate
for the grand potential, it is particularly useful for treating ordering transitions. By combining
this with the very successful cluster method for transition metal oxides [27], it allows one to
perform electronic structure calculations using realistic models of transition metal oxides.
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7 Appendix: A theorem on determinants

Here we prove the identity
Jln(det A) _ 4l
aAZ] I '

We use Lapalace’s formula and expand det(A) in terms of minors
det(A) = > (=1)"" Ay .
I=1n

Since none of the minors M;; contains the element A;; we find

aln(det A) (—1)i+jMZ‘j

Next, the i column of A~! is the solution of the system of equations
Ac = ey,

where e; is the i'® column of the unit matrix, which has all elements equal to zero, except for
the i*", which is one. We use Kramer’s rule and find for the j** element of the i** column

. det(A))
A7l = J
It det(A) ’

where A; is the matrix where the j* column has been replaced by ¢;. Now we use again

Laplace’s formula for det(A;) and obtain

(=1 My

-1 _
A = e

which proves the theorem.
As an application we assume that the matrix elements of A are functions of some parameter «.
We then find

81n(det A) . 8ln(det A) QAZJ . 1 6AU . 1 0A
a T 2 0A; 0o _;Aﬁ g~ 0\ a5 )

.3



4.30 Robert Eder

References

[1] J.M. Luttinger and J.C. Ward, Phys. Rev. 118, 1417 (1960)

[2] G. Baym and L.P. Kadanoff, Phys. Rev. 124, 287 (1961)

[3] L. Hedin, Phys. Rev. 139, A796 (1965)

[4] M. Potthoff, Eur. Phys. J. B 32, 429 (2003)

[5S] M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)

[6] M. Potthoff: Self-Energy-Functional Theory
in A. Avella and F. Mancini (eds.): Strongly Correlated Systems (Springer (2012); see also
preprint arXiv:11082183

[7]1 A.A. Abrikosov, L.P. Gorkov and 1.E. Dzyaloshinksi:
Methods of Quantum Field Theory in Statistical Physics
(Prentice-Hall, New Jersey 1964)

[8] A.L. Fetter and J.D. Walecka: Quantum Theory of Many-Particle Systems
(McGraw-Hill, San Francisco, 1971)

[9] J.W. Negele and H. Orland: Quantum Many-Particle Systems
(Addison-Wesley, Redwood, 1988)

[10] The main difference as compared to FW is that due to the LCAO-like formulation we are
using discrete momentum sums rather than integrals i.e. as compared to FW one has to
replace # [ dk — % > - Similarly, the volume of the crystal is simply V' = N.

[11] G. Baym and N. D. Mermin, J. Math. Phys. 2,232 (1961)
[12] J.M. Luttinger, Phys. Rev. 121, 942 (1961)
[13] M. Potthoff, Condens. Mat. Phys. 9, 557 (2006)

[14] E. Koch: The Lanczos Method
in E. Pavarini, E. Koch, A. Lichtenstein, and D. Vollhardt (eds.):
The LDA+DMFT approach to strongly correlated materials
Modeling and Simulation Vol. 1 (Forschungszentrum Jiilich, 2011)
http://www.cond-mat.de/events/correlll

[15] M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke Phys. Rev. B 74, 024508 (2006)
[16] M. Potthoff, Eur. Phys. J. B 36, 335 (2003)

[17] E. Lange, Mod. Phys. Lett. B 12, 915 (1998)



The Variational Cluster Approximation 4.31

[18] A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

[19] G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, and D.S. Fisher,
Phys. Rev. Lett. 74, 2082 (1995)

[20] R. Bulla, T.A. Costi, and D. Vollhardt, Phys. Rev. B 64 045103 (2001)
[21] J. Joo and V. Oudovenko, Phys. Rev. B 64 103102 (2001)

[22] C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and M. Potthoff,
Phys. Rev. B 70, 245110 (2004)

[23] J.C. Slater: Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960)
[24] J.S. Griffith: The Theory of Transition Metal lons (Cambridge University Press, 1961)

[25] R. Eder: Multiplets in Transition Metal lons
in E. Pavarini, E. Koch, F. Anders, and M. Jarrell:
Correlated Electrons: From Models to Materials
Modeling and Simulation Vol. 2 (Forschungszentrum Jiilich, 2012)
http://www.cond-mat.de/events/correll?2

[26] W.A. Harrison: Electronic Structure and the Properties of Solids (Dover, 1989)
[271 A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984)

[28] R. Eder, Phys. Rev. B 78, 115111 (2008)

[29] R. Eder, Phys. Rev. B 81, 035101 (2010)

[30] D.E. Eastman and J.L. Freeouf, Phys. Rev. Lett. 34, 395 (1975)






5 Magnetism: From Stoner to Hubbard

Alexander Lichtenstein
|. Institut far Theoretische Physik
Universitat Hamburg, 20355 Hamburg, Germany

Contents

1 Introduction

2  From Stoner to Hubbard
3 From LDA to DMFT

4 Realistic DMFT scheme

5 Solution of quantum impurity problem
5.1 Hirsch-Fye quantum Monte Carlo . . . . . ... ... ... ..........
5.2 Continuous-time quantum Monte Carlo . . . . . . . ... ... ... .....
5.3 Fluctuation exchange approximation . . . . . . . . .. . ... ... ......

6 Effective magnetic interactions in LDA+DMFT
7 LDA+DMEFT results for itinerant ferromagnetic metals

8 Conclusions

E. Pavarini, E. Koch, and U. Schollwéck

Emergent Phenomena in Correlated Matter

Modeling and Simulation Vol. 3

Forschungszentrum Jilich, 2013, ISBN 978-3-89336-884-6
http://www.cond-mat.de/events/correll3

10

12
12
14
18

19

21

30



5.2 Alexander Lichtenstein

1 Introduction

We will discuss a realistic approach to magnetism and electronic structure of correlated materi-
als which takes into account dynamical many-body effects. The scheme combines the features
of the itinerant electron theory (Stoner) of magnetic crystals with the localized-moment descrip-
tion (Heisenberg) in a unified spin-fluctuations approach for a generalized multiorbital Hub-
bard model. Moreover, we analyze the calculation of effective exchange interaction-parameters
based on the realistic electronic structure of correlated magnetic crystals.

2 From Stoner to Hubbard

We start to discuss the different models of magnetic materials (Fig. 1) with the simplest one-
band Stoner Hamiltonian

H, = (ek + I{n_0)) ChyCho (1)
ko

where ¢, is the energy band spectrum and [ is a Stoner interatomic exchange parameter. In
this case the temperature-dependent magnetic properties are related to the so-called Stoner ex-
citations from the occupied ”spin-up” to the unoccupied “spin-down” band. They reduce the
magnitude of the magnetization, so that finally at the Curie point the itinerant system becomes
a nonmagnetic metal.

If we compare the Stoner model with a standard Hubbard approach with the Hamiltonian

Hh = Z tijCIOng + Z UTLZ‘TTLu s (2)

ijo i

where t;; are the hopping parameters and U the characteristic Hubbard Coulomb interaction,
then one can easily realize that the Stoner model is just a mean-field approximation to the
Hubbard model. In the weakly correlated case the only possible magnetic excitations are spin-
flips, and the corresponding energy is of the order I - M with M = (ny — n;) which is much
larger than realistic Curie temperatures. In the opposite limit, the strongly correlated Hubbard
model at half-filling [1], one can derive an effective Heisenberg model

He ==Y J;5-S;. 3)
tj
The kinetic exchange interactions .J;; = —2t;;t;;/U are of the order of magnetic (Néel) tran-

sition temperatures. The Heisenberg model describes well the magnetism of localized 4 f-
materials. In the case of transition metals, where both longitudinal and transverse magnetic
fluctuations are important, the most appropriate model is the Hubbard Hamiltonian, Eq. (2).

We can discuss the different approaches to estimate the effective Heisenberg interactions, pre-
sented in Figs. 2 to 4. In Fig. 2 a simple two-site spin-model for the Heisenberg interaction with
the singlet and triplet states is compared with the so-called Slater one-electron model for anti-
ferromagnetic states, which results in an additional factor of two in the definition of the effective
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Stoner Heisenberg Hubbard
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Fig. 1: Schematic view of different models of magnetism: Stoner model for itinerant weakly
correlated electrons, Heisenberg model for localized magnetic moments and Hubbard model
for the spin-fluctuations model of correlated electrons.

exchange interaction. In Fig. 3 the solution of the two-site Hubbard model for the many-body
sector with one spin-up and one spin-down electron is shown, which results in the famous An-
derson kinetic exchange interaction [1]. Finally, one can show that the mean-field solution of
the Hubbard model with band energies modified via infinitesimal spin-rotations results in the
same effective exchange interactions of a classical Heisenberg model (Fig. 4). In this case we
used the so-called “local force theorem™ which was originally formulated for density functional
theory [2] and will be proven later (Sec. 6) using the Baym-Kadanoff approach. This theo-
rem gives a simple recipe to obtaine the total energy difference for a small perturbation of the
charge- or spin-density as a change from the non-selfconsistent band energy for corresponding
perturbation. In our case the energy of the infinitesimal spin-rotation in the two-site mean-field
rotationally invariant Slater (spin-polarized LDA) model have been calculated and compared
with the corresponding classical Heisenberg model (Fig. 4). We can see that both schemes give
exactly the same effective exchange parameter.

3 From LDA to DMFT

The calculation of thermodynamic properties and excitation spectra of different magnetic mate-
rials is one of the most important problems of the microscopic theory of magnetism. We intro-
duce a general functional approach which will cover density-functional theory (DFT), dynami-
cal mean-field theory (DMFT) and Baym-Kadanoff (BK) theories [3]. Let us start from the full
many-body Hamiltonian describing the electrons moving in the periodic external potential V(1)
of the ions with chemical potential x4 and interacting via the Coulomb law U (r—7') = 1/|r—1r'|.
We use atomic units o = m = e = 1. In the field-operator representation the Hamiltonian has
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Magnetism of H,: Heisenberg vs. Slater
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Fig. 2: Exchange interaction in a two-site Heisenberg model.
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Fig. 3: Exchange interaction in the two-site Hubbard model.
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Exchange: Local force approach
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Fig. 4: Exchange interaction in the two-site mean-field rotationally invariant Slater model.

the form

Ho= X [ardie| 59t v - G @

We can always use a single-particle orthonormal basis set ¢, (), in solids for example Wannier
orbitals with a full set of quantum numbers, e.g., site, orbital and spin index n = (i, m, o), and
expand the fields in creation and annihilation operators

J(T) = Z¢n(r)€n (5)
Plr) = Y enlr)d,

Going from fermionic operators to the Grassmann variables {c;;, ¢, } we can write the functional
integral representation for the partition function of the many-body Hamiltonian in the imaginary
time domain using the Euclidean action S

7z = /D[c*,c]e_s (6)

1
S = Z c1(0- + ti2)co + 3 Z c1caUnaszacycs, (7

12 1234
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where the one- and two-electron matrix elements are defined as
* 1 2
ti1g = dr ¢1(r) _§V +V(r) — p| ¢2(r) (8)

Uisge = /ﬁﬁ/mwﬂm@wmﬂr—wwammw»

and we use the following short definition of the sum: >, ... =, [ dr...
The one-electron Green function is defined via the simplest non-zero correlation function for
fermions

1
Gra = ~(163)s =~ [ DIe" dcjexp(=3) ©)

and gives all information on the spin-dependent electronic structure of correlated materials.
The main difficulties of strongly interacting electronic systems are related to the fact that the
higher-order correlation functions do not separate into a product of lower-order correlation func-
tions. For example the two-particle Green function or generalized susceptibility (X) is defined
in the following way [4]

1
X234 = {c10265¢)) s = 7 /D[c*,c]clcgcgcz exp(—59), (10)

and can be expressed as a simple non-interacting” part and a connected correlated contribution
through the exact Green function and the full vertex function 7934 [5]

X1234 = G14G23 - G13G24 + Z Gll’G22’F1’2’3’4’G3’3G4’4 : (11)

172734/

In principle, the spin-dependent part of the two-particle correlation function or generalized
magnetic susceptibility contains all information on the magnetic properties of solids.

Modern computational material science is based on the density-functional (DFT) approach [6].
It is a common practice to use this scheme not only for the total energy calculations and re-
lated quantities such as charge and spin densities, but also for different spectral characteristics.
Sometimes the agreement of the computational results with the experimental data is very im-
pressive, despite the absence of a reliable theoretical background. In principle, the energies of
Kohn-Sham quasiparticles [6] which are calculated in standard band theory are just auxiliary
quantities for the total energy calculation.

The DFT functional is defined in the following way: the Kohn-Sham potential Vixg = Vo +
Vi + V.. plays the role of the effective one-electron potential, where all exchange-correlations
effects V. are taken into account. In this case, V,,; is the external potential and V} is the
Hartree potential. In principle the exchange-correlation potential V.. is known only for the
homogeneous electron gas [8]. Therefore in practical applications one uses the so-called local-
density approximation (LDA) to DFT. The total-energy functional reads

Eiot[n] = To[n] + Vewe[n] + Vi [n] + Vie[n] (12)
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where T is the kinetic energy of the non-interacting systems. Finally, if we define the total
electron density as

n(r) = Z 1 (r)di(r) (13)

the local-density approximation to the DFT reads

Tl + Vil = X [ ar o) |39 4 Vi) = o) )
Euln] = % / dr n(r)U(r — 1')n(r) (15)
E.[n] = /drn(r)em(n(r)) (16)

where £(n) is exchange correlation density for the homogeneous electron gas, which has been
calculated with quantum Monte Carlo (QMC) [8]. The variational principle leads to the Kohn-
Sham effective one-electron equation (in atomic units)

[—%Vz + Veae(r) + Vi + V;c} k(1) = epdr(r) . (17)

In the one-band case the back Fourier transform of ¢;, will give an effective Kohn-Sham hopping
parameter t(R) to ¢;;, where 7, j are the lattice indices. For the realistic multi-orbital case one

can use the efficient first-principle Wannier-function parameterization of the energy bands to

LDA
im,jm’?

get the multi orbital (/m) hopping matrix elements ¢ which will be used in the magnetic
many-body formalism.

In the DFT scheme we lose information about the non-equal time Green function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function, and
restrict ourselves only to the ground state energy of the many-electron system. Moreover, we
also lose information about all collective excitations in solids, such as plasmons or magnons,
which can be obtained from the generalized susceptibility.

Despite all achievements of the quantitative electronic structure theory, the list of difficulties and
shortcomings is growing, especially when considering the magnetic d- and f-electron systems.
In a number of cases the theory appears even qualitatively inadequate. First, the DFT scheme
cannot describe correctly the phenomenon of “Mott insulators” [7], as was first observed by
Terakura et al. [9] in their attempt of calculating the electronic structure of 3d-metal oxides.
Later we faced similar problems in field of high-7;. superconductors [10] and other compounds
[11]. The Ce- and U- based “heavy fermion” compounds such as CeCug, UPts, etc, are other
“hot-spots”: normally the calculated effective masses are orders of magnitude smaller than
what is experimentally observed [12]. Even for the pure 3d-metals some qualitative differences
between theory and experiment exists. For example, there are at least three difficulties with the
photoelectron spectra of ferromagnetic nickel [13]: (1) the measured width of the occupied part
of the d-band is 30% narrower than calculated (ii) the spin-splitting is half of what is predicted

by LDA and (iii) the band structure cannot describe the famous 6 eV satellite. Calculations for
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paramagnetic spin-disordered states [14] lead to the conclusion that Ni has no local magnetic
moments above the Curie temperature 7, in clear contradiction with experimental results [15].
For iron, standard band theory cannot explain the data about spin polarization of thermionic
electrons [16—18] and some features of angle-resolved photoemission spectra [18-20]. All these
difficulties raise questions about the DFT approach: what is the “electron spectrum” that we
really calculate and how can we improve the electronic theory for magnetic d- and f-systems?
It was understood many years ago that all these problems are connected with the inadequate
description of many-body effects in DFT calculations of the excitation spectra. Methods such
as GW [21] and simplified LDA+U [11] have been proposed to improve the situation. These
methods are very useful for the description of antiferromagnetic transition-metal oxides as Mott
insulators [11]. However, one should note that LDA+U is just a mean-field approximation
and cannot describe correlation effects which are, by definition, the many-body effects beyond
Hartree-Fock. For example, in these approaches one needs spin- or orbital-ordering to describe
the Mott insulator and it is impossible to describe correctly the electronic structure of NiO
or MnO in the paramagnetic phase. At the same time, the magnetic ordering should not be
important for the basic physics of Mott insulators [7]. All the “Hartree-Fock-like” approaches
fail to describe the renormalization of the effective mass in the heavy fermion systems. There are
also many problems concerning the electronic structure and itinerant magnetism of 3d metals
as described above. Thus, one needs some practical ways of incorporating correlation effects
in the electronic structure of solids.

In principle, there are two ways to include them into DFT calculations. The first uses a time-
dependent DFT formalism which can guarantee, in principle, an opportunity to calculate exact
response functions [22], in the same sense as the Hohenberg-Kohn theorem guarantees the total
energy in usual “static” DFT [6]. However, all the expressions for this time-dependent non-local
DFT in real calculations are based on RPA-like approximations which do not give a satisfactory
description of really highly correlated systems. They are excellent for investigating the plas-
mon spectrum of aluminum, but not for understanding the nature of high-7,. superconductivity
or heavy fermion behavior. Another way is to use an “alternative” many-body theory devel-
oped in the 50s by Gell-Mann and Brueckner, Galitskii and Migdal, Beliaev and many others
in terms of the Green functions rather than the electron density [23]. We try to formulate such
a computational approach as a generalization of LDA+U scheme, the so-called “LDA+DMFT”
method. The main difference between LDA+DMFT and LDA+U is that in the former dynam-
ical fluctuations, the real correlation effects, are accounted for by a local but energy dependent
self-energy X(w).

A comparison of the standard DFT theory in the local-density approximation (LDA) and the
LDA+DMEFT approach is represented in table I. First of all, LDA is based on the Hohenberg-
Kohn theorem stating that the total energy Fi. is a functional of charge (and spin) densities,
while the LDA+DMFT scheme considers the thermodynamic potential {2 as a functional of
exact one-particle Green functions. This approach in many-particle theory has been introduced
in the works by Luttinger and Ward [24] and Baym and Kadanoff [25]. The Green function
in LDA+DMEFT plays the same role as the density matrix in LDA. We stress the dynamical
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Table 1: Comparison of LDA and realistic DMFT schemes

LDA LDA+DMFT

Density functional Baym-Kadanoff functional
Density p(r) Green-Function G(r, ', w)
Potential V,..(r) Self-energy X;(w)

Eiot = Esp — Eye 2 =2y, — (2

E,, = Zk:<kp €k Qg = —Trin[-G™1]
Eij=Ep+ [ pVicdr — Ey, Qg =T XG — Prwy

nature of the correlation effects that are taken into account in the LDA+DMFT approach since
the density in the LDA is just the static limit of the local Green function. Further, the self-
energy J is treated analogously to the exchange-correlation potential, the local approximation
for Y/, which is assumed to be energy-dependent but not momentum-dependent, corresponds
to the local approximation for V... In both formalisms the thermodynamic potential can be
represented in a “single-particle” form, (2, minus the contributions of the “doubly counted
terms”, {2,.. This will be important for the consideration of the so-called “local force theorem”
and the computation of magnetic interaction parameters. The single-particle contribution to the
thermodynamic potential in the LDA+DMFT would have the same form as in the LDA if we
were taking into account only the poles of the Green function and neglected the quasiparticle
damping. However, even then the quasiparticle energies are not quite the same since the poles
of the Green functions do not coincide, generally speaking, with the “Kohn-Sham” energies.
The quantity @y is the Luttinger-Ward generating functional for the self energy, or the sum of
all the skeleton diagrams without free legs [24].

The difficulty with finite temperature effects is one of the main shortcomings of a standard DFT
formalism. In all realistic calculations the temperature is included in the Fermi distribution
functions and in the lattice constants via the thermal expansion [26]. At the same time, for the
itinerant electron magnets the temperature effects connected with the “Bose” degrees of free-
dom due to spin waves and paramagnons are much more important [27]. In principle, these
effects could be taken into account in DFT via the temperature dependence of the exchange-
correlation potential, the corresponding terms being nonlocal. It is not easy to propose an
adequate expression for such temperature-dependent non-local potential. One of the first at-
tempts in this direction is based on simple RPA-like considerations [28]. On the other hand,
in LDA+DMFT-type scheme all calculations are naturally carried out for finite temperatures by
using Matsubara frequencies, as is usual in many-body theory [23].

The main assumption of the LDA+DMFT approach is the importance of only intra-site “Hub-
bard correlations” with the local approximation for the self-energy. It is worthwhile to stress a
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difference of this kind of locality from the locality in DFT theory. In the latter, the local approx-
imation means that the exchange-correlation energy is calculated for the homogeneous electron
gas [8]. It is known from exact QMC calculations that the correlation effects lead to some in-
stabilities of the state of homogeneous electron gas (magnetism, charge ordering, etc) only for
electron densities which are orders of magnitude smaller than ones typical for real metals (the
critical values of the parameter r, are of order of hundred in comparison with the “normal”
range 2-6 for metals). At the same time, magnetism and charge ordering are rather usual for
real compounds with the d- and f-elements. It thus seems that the “atomic-like” features of
d- and f-states are of crucial importance to describe the correlation effects in real compounds.
Only these features are taken into account in the Hubbard-like terms for the d- or f-states in
LDA+DMFT approach. Therefore one can view the LDA+DMFT as the simplest way for quan-
titative considerations of correlation effects in transition metals and their compounds, based on
the LDA description for all non-correlated electrons in the systems.

The investigation of correlation effects in the electronic structure and magnetism of iron-group
metals is still far from having found the final picture and attracts continuous interest (see, e.g.,
[14,29-31] and references therein). Despite many attempts, the situation is still unclear both
theoretically and experimentally. For example, there is no agreement on the presence of a
5 eV satellite in the photoemission spectrum of iron [19,20], and on the existence of local spin
splitting above the Curie temperature in nickel [32]. From the theoretical point of view, different
approaches such as second-order perturbation theory [30,33], the 7-matrix approximation [29,
34], the three-body Faddeev approximation [35], and the moment expansion method [36] were
used. Unfortunately, the range applicability of these schemes is not clear. Here we present the
LDA+DMFT approach [18,37,38] which is based on the combination of standard band-theory
techniques (LDA) with dynamical mean-field theory (DMFT) [39].

4 Realistic DMFT scheme

In the LDA+DMFT approach we consider the renormalisation of the “bare” LDA energy or
electron hopping due to correlation effects. Of course the ¢;; contain already some part of the
correlation effects but only those which may be considered in the local density approximation.
The most important “rest” in strongly correlated system is the correlations of the Hubbard type
[41] due to the intra-site Coulomb repulsion. Therefore we start from the general form of the
LDA+DMFT Hamiltonian

1
H = Z LA el ChoCimar + 5 C ol A e e (18)

m1m2m1m2 mi1o zm2o' 2m2c7 1mla
ijo{m} i{om}

where the (i, j) represents different crystal sites, {m} label different orbitals and the {o} are
spin indices. Coulomb matrix elements are defined in the usual way (see Eq. (8) with the the
screened Coulomb interactions in the basis of localized Wannier functions).

The simplified form of the LDA+DMFT Hamiltonian is related to the diagonal “density-density
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approximation”
H = Z t?’rg,?’m’czmaci/m%
{imo}
1 . 1 , .
+§ Z Urlnm’nimonim’fa + +§ . Z (U;nm’ - anm/)nimﬂnimlﬂ (19)
imm’o im#m'o

where i is the site index and m the orbital quantum numbers, o =1, | the spin projection, c', ¢
the Fermi creation and annihilation operators (n = c'c), and t*P* is the effective single-particle
Hamiltonian obtained from the non-magnetic LDA with the correction for double counting
of the average interactions among d-electrons. In the general case of a spin-polarized LDA
Hamiltonian this correction is presented in Refs. [18,37,40]. In the magnetic LDA it is just a
shift “back” of correlated d-states with respect to the s and p-states by the average Coulomb
and exchange potential

1— 1—
Eie = 5Una(l =na) = 57 [nay(1 = nat) + nay (1 = nay)]

with U and J being the average Coulomb and exchange interactions and ng; = ngr + ngy the
total number of correlated d( f)-electrons.
The screened Coulomb and exchange vertices for the d-electrons

Ui = (mm/|Usgerr (7 — ") jmm) (20)
'm) (21)

I = (mm/|Uger(r — 7")|m

are expressed via the effective Slater integrals. We use the minimal spd-basis in the LMTO-TB
formalism [42] and numerical orthogonalization for the tLDA(k:) matrix [37]. The local density
approximation [6] is used for the self-consistent electronic structure calculation.

In order to find the best local approximation for the self-energy we use the DMFT method
[43] for real systems. This scheme becomes exact in the limit of infinite lattice coordination
number [44]. The DMFT approach reduces the lattice many-body problem (Eq. (21)) to the
self-consistent solution of an effective one-site Anderson model. In this case we need a local
Green-function matrix which has the following form in the orthogonal Wannier representation

Gliw) = Y {(iw + p)1 — 1P (k) — Z(iw)} (22)

where 1 is the chemical potential. Note that due to the cubic crystal symmetry of ferromagnetic
bcce-iron the local Green function in the absence of spin-orbit interaction is diagonal both in
the orbital and the spin indices. The so-called bath Green function that defines the effective
Anderson model and preserves the double-counting of the local self-energy is obtained as a
solution of the impurity model via [43]

G Hiw) = G (iw) + X(iw) (23)
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S Solution of quantum impurity problem

5.1 Hirsch-Fye quantum Monte Carlo

As discussed above, DMFT maps the many-body system onto a multi-orbital quantum impurity,
i.e., a set of local degrees of freedom in a bath described by the Weiss field function G. The
impurity action (here n,,,, = ¢! cmo and ¢(7) = [cmo (7)] is a vector of Grassman variables) is
given by:

Simp = —/05 dT/OB dr’ Tric' ()G (1, 7")e(r)]

1 A , ,
3 2 /0 A7 [Unimenig 0”5+ Ut = T )15 105" ] (24)

m,m’,o

It describes the spin-, orbital-, energy-, and temperature-dependent interactions of a particular
magnetic 3d-atom with the rest of the crystal and is used to compute the local Green function
matrix

Golr —7) = — / Die,elle=Smre(r)el (), 2>

where Z is the partition function.

The local Green functions for the imaginary time interval [0, 3] with the mesh 7, = [A7, [ =
0,...,L —1,and At = /L, where § = 1/T are calculated in the path-integral formalism
[43,45]

Gl — % > det[O(s)] * Gl (s) - (26)

Here we redefined for simplicity m = {m, o}, and the so-called fermion-determinant det[O(s)]
as well as the Green function for an arbitrary set of auxiliary fields G(s) = O~!(s) are obtained
via the Dyson equation [46] for the imaginary-time matrix (G,,(s) = G (s)):

Gy = (1= (Gl ~ (e ~ 1) G,

m

where the effective fluctuation potential from the Ising fields s! , = +1is

Lm<m
l l
Vm = E )‘mm’smm’o-mm’ ) where Omm! — { _17 m>m'
m/ (#m) ’

and the discrete Hubbard-Stratonovich parameters are A,y = arccosh[exp(%ATUmm/)] [46].
Using the output local Green function from QMC and input bath Green functions the new self-
energy is obtain via Eq. (23) and the self-consistent loop can be closed through Eq. (22). The
main problem of the multiband QMC formalism is the large number of the auxiliary fields
st .. For each time slice [ it is equal to M (2M — 1) where M is the total number of orbitals,
giving 45 Ising fields for a d-shell. We computed the sum over these auxiliary fields in Eq.(26)
using importance-sampling QMC, and performed a dozen self-consistent iterations over the
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Fig. 5: Spin-resolved density of d-states and magnetic moments for ferromagnetic iron calcu-
lated in LDA (top) and LDA+QMC (bottom) for different average Coulomb interactions with
J=0.9 eV and temperature T=850 K.

self-energy Egs. (22,23,26). The number of QMC sweeps was of the order of 10 on the CRAY-
T3e supercomputer. The final G,,(7) has very little statistical noise. We use the maximum
entropy method [47] for analytical continuations of the QMC Green functions to the real axis.

Comparison of the total density of states (DOS) with the results of LDA calculations (Fig. 5)
shows reasonable agreement for the single-particle properties of the not “highly correlated” fer-
romagnetic iron. We calculate bcc-iron at its experimental lattice constant with 256 k-points in
the irreducible part of Brillouin zone. The Matsubara summation corresponds to the tempera-
ture of about 7" = 850 K. The average magnetic moment is about 1.9 pz, which corresponds to
a small reduction of the LDA-value of 2.2 pp for such a high temperature. The DOS curves in
the LDA+J approach with the exact QMC solution of on-site multi-orbital problem is similar
to that obtained within the simple perturbative fluctuation-exchange (FLEX) approximation de-
scribed below. The discussion of the results and the comparison with experimental data will be
given in Section 4.
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5.2 Continuous-time quantum Monte Carlo

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution
of the underlying Anderson impurity model remains a formidable quantum many-body problem
that requires accurate solvers. Recently a new class has emerged, the continuous-time quantum
impurity solvers. These are based on stochastic, i.e., Monte-Carlo methods and mainly come in
two different flavors: The weak and strong-coupling approach.

The weak-coupling or interaction expansion (CT-INT) continuous-time quantum Monte Carlo
algorithm for fermions was originally introduced by Aleksey Rubtsov [48]. The power of the
new CT-QMC scheme is that it performs the path integral without any transformation to effec-
tive non-interacting models and that it can be used for any complicated electron-electron vertex.
We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-
purity problem with a Hubbard-type interaction Un4n;. The generalization to the multiorbital
case can be found in Ref. [49]. To start, the action for the Anderson impurity model, up to an
irrelevant additive constant, is divided into a Gaussian Sy and an interacting part Sy

B B
So = Z/o dT/O dr' ¢ (T)[0r — i+ Alr = 7') + Uao(1)d(r — ]eo(7)), (27

8
Su = U/O drler(T)er(r) — ar(T)][ef(T)ey(r) — ay(T)] - (28)

The parameters « are introduced to control the sign problem. A formal series expansion for the
partition function is obtained by expanding the exponential in the interaction term,

— * o - _1 K A g * *
Z = /e Sole”c] Z %Uk/o dry .. ./0 dry [¢R(T1)er(T1) — aq(m)][ef (1) ey (1) —
k=0
—ay(m)]. . [G(T)er(me) — o ()] [e] (i) ey () — ey ()] D™, o] - (29)
Using the definition of the average over the noninteracting action:

1

(o = g/D[C*,C]...eXp(—SO), (30)
0

the partition function can be expressed in the following form

. B B
Z:ZDZ/ czﬁ.../ dry sgn(2) |2] (31)
k=00 k-1
where the integrand is given by

2 = (=D Ui (r)er(m) — aq(m)][€; () ey (1) — ay(m)] ..
G (e () — aq(m)le] () ey (7)) — ay (7))o - (32)

Note that here the range of time integration has been changed such that time ordering is ex-
plicit: 7, < ... < 7,1 < 7. For a given set of times all k! permutations of this sequence
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Fig. 6: The four contributions to the partition function for k = 2. The interaction vertices are
depicted by squares. Bare Green functions are shown as lines. Vertical arrows indicate the spin
direction. Connecting the vertices by Green functions in all possible ways is the interpretation
of the determinant.

contribute to Eq. 29. These can be brought into the standard sequence by permuting quadruples
of Grassmann numbers, and hence without gaining an additional sign. Since all terms are sub-
ject to time-ordering, their contribution to the integral is identical, so that the factor 1/k! in (29)
cancels. A configuration can be fully characterized by specifying a perturbation order £ and an
(unnumbered) set of k times: Cy, = {7y, ..., T}

The Monte Carlo algorithm performs importance sampling over this configuration space. The
weight of a configuration is thereby taken to be equal to the modulus of the integrand, Eq. 32.
Since S is Gaussian, the average over the noninteracting system can be evaluated using Wick’s
theorem. Hence the weight of a configuration is essentially given by a fermionic determinant of
a matrix containing the bare Green functions

O = (~)FU* [ [ det 57, (33)
where the local Green function in the « fields is equal to

(97)ij = 90 (1i — 7j) — o (T3)0ij - (34)

Note that determinants for different spin orientations factorize since the Green function is diag-
onal in spin-space.

The hybridization expansion (CT-HYB) or strong-coupling algorithm was initially introduced
by Philipp Werner et al. [50] and has been generalized to multi-orbital systems with general
interactions [51, 52]. Here the algorithm is discussed in the segment representation, which
allows for a very fast computation of the trace for density-density type interactions. The action
is regrouped into the atomic part

B B
Su = / dr 3 ¢ (n)[0s — plea(7) + U / drcs(r)er(r)e (T)ey(r) (35)
0 - 0
and the part of the action S which contains the hybridization term:

B B
S\ = —/ dT’/ dTZCU(T)A(T —7ex (7). (36)
0 0 =
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Fig. 7: Diagrammatic representation of the six contributions to the partition function for spin-
less fermions at k = 3. An electron is inserted at the start of a segment (marked by an open
circle) and removed at the segment endpoint. The hybridization function lines A(; — T ) (shown
in red) are connected to the segments in all possible ways. The sign of each diagram is given
on the left. The diagrams can be collected into a determinant. Reproduced from Ref. [50].

Here the sign is taken out by reversing the original order of ¢ and ¢* to avoid an alternating sign
in the expansion. To simplify the notation, consider first the spinless fermion model, which is
obtained by disregarding the spin sums and interaction in Egs. (35), (36). The series expansion
for the partition function is generated by expanding in the hybridization term

1 5 8 8 8
Z = /D[C*, C]efsal Z H / dT{ / dT1 c. / d'T]/C / diX
k - JO 0 0 0

X (1) (1) ... e(m) e (1) Al — 11) ... AT, — 77,)- (37)

The important observation now is that, at any order, the diagrams can be collected into a deter-
minant of hybridization functions. The partition function then takes the form

Z = ZatZ/dTl/d’Tl / di/ kdm ) (17,) - c(rl)c*(T{))atdetA(k), (38)

where the average is over the states of the atomic problem described by S,. Here det A)
denotes the determinant of the matrix of hybridizations A;; = A(r; — 7;). The diagrams con-
tributing to the partition function for £ = 3 are shown in Fig. 7. A diagram is depicted by a
collection of segments, where a segment is symbolic for the time interval where the impurity
is occupied. The collection of diagrams obtained by connecting the hybridization lines in all
possible ways corresponds to the determinant. Collecting the diagrams into a determinant is
essential to alleviate or completely suppress the sign problem. Note that the imaginary time
interval in Eq. (38) is viewed as a circle denoted by o7;. The trajectories in the path integral are
subject to antiperiodic boundary conditions which is accommodated by an additional sign if a
segment winds around the circle.

For the single-orbital Anderson impurity model with Hubbard interaction the segment picture
still holds and gives a very intuitive picture of the imaginary time dynamics. A configuration is
visualized by two separate timelines, one for each spin. The additional sum over spins, » |

01...0%"°
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Fig. 8: Example one band CT-HYB: a segment picture: blue dots illustrate annihilation op-
erators, red ones creation operators, and the black line represent the hybridization function
A(1; — 7). The green regions represent the time interval at which two electrons are present on
the impurity with the total time 1, for which the U price has to be paid.
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Fig. 9: Comparison of the weak coupling (CT-INT) and strong coupling (CT-HYB) CT-QMC
impurity solvers for one-band semicircular model with U > W. In the insert the density of
states obtained with maximum entropy scheme is shown

which enters in the first line of Eq. (38), generates contributions such as the one shown in
Fig. 8. The only difference from the spinless fermion model is that when the impurity is doubly
occupied, the energy U has to be paid and the trace is e#(t+1)=Ula where [, is the time spent
on the impurity for an electron with spin ¢ and [/, is the time the impurity is doubly occupied.

In Fig. 9 we show the comparison of CT-INT and CT-HYB calculations for a strongly coupled
(U > W) single band model. The perfect agreement of these two complementary CT-QMC
schemes supports the important conclusion about the possibility of the numerically exact solu-
tion of quantum impurity problems.
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5.3 Fluctuation exchange approximation

The QMC method described above is probably the most rigorous practical way to solve an
effective impurity problem in the framework of DMFT. However, it is rather time consuming.
Besides that, in the previous section we did not work with the complete four-index Coulomb
matrix

(12 ]v| 34) = /drd’r’zﬁ ()5 (P ) vger (1 — ") b3 (r)hy(7") (39)

where we define for simplicity m; = 1.

For moderately strong correlations (which is the case of iron group metals) one can propose an
approximate scheme which is more suitable for the calculations. It is based on the fluctuation
exchange (FLEX) approximation by Bickers and Scalapino [53], generalized to the multiband
spin-polarized case [18,37,54]. The electronic self-energy in the FLEX is equal to

Y =S 4 x@ 4 p0h) 4 ) (40)

where the Hartree-Fock contribution has a standard form

T = Z [(13\v!24> > ng, — (13 v]42) n§4] : (41)

with the occupation matrix n{, = GJ,(1 — —0); this contribution to X' is equivalent to the
spin-polarized “rotationally-invariant” LDA+U method [40].
The second-order contribution in the spin-polarized case reads

T = =) (13]0] 74) Gg(7) x
{3-8}

[ (85 |v] 26) Z Ggs(7) G5 (—7) — (85 [v] 62) G&(r)%(—r)] @)
and the higher-order particle-hole (or particle-particle) contribution

TE (1) =D Wi (1) G5, (1) | (43)

34,0

with p — h (p — p) fluctuation potential matrix

(44)

W (1) [ Wi (i) W (iw) ] |

WY (iw) WH (iw)

where the spin-dependent effective potentials have a generalized RPA-form and can be found
in [18]. Note that for both the p-h and p-p channels the effective interactions, according to
Eq. (44), are non-diagonal matrices in spin space as in the QMC-scheme, in sharp contrast to
any mean-field approximation like LDA. This can be important for spin-dependent transport
phenomena in transition metal multilayers.
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We could further reduce the computational procedure by neglecting dynamical interactions in
the p-p channel since the most important fluctuations in itinerant electron magnets are spin-
fluctuations in the p-h channel. We take into account static (of 7-matrix type) renormaliza-
tions of the effective interactions, replacing the bare matrix Uyo 34 = (12 |v|34) in the FLEX-
equations with the corresponding spin-dependent scattering 7'—matrix

B

34> = (12[v]34) — 3 (12 o] 56) /d ) G2 () <78‘T“’
5678

<12 ‘T“’

34> . (45)
0

Similar approximation have been checked for the Hubbard model [55] and appear to be accurate
enough for not too large U. Finally, in the spirit of the DMFT-approach X' = X[G)], and all the
Green functions in the self-consistent FLEX-equations are in fact the bath Green-functions GY.

6 Effective magnetic interactions in LDA+DMFT

A useful scheme for analyses of exchange interactions in the LDA approach is the so called
“local force theorem”. In this case the calculation of small total energy changes reduces to
variations of the one-particle density of states [56,57]. First of all, let us prove the analog
of the local force theorem in the LDA+DMFT approach. In contrast with standard density-
functional theory, it deals with the real dynamical quasiparticles defined via Green functions
for the correlated electrons rather than with Kohn-Sham “quasiparticles” which are, strictly
speaking, only auxiliary states for the total energy calculations. Therefore, instead of working
with the thermodynamic potential as a density functional we have to start from the general
expression for {2 in terms of the exact Green function given in Table I. We have to also keep in
mind the Dyson equation G~' = Gy' — X and the variational identity 6@, = Tr X6G. Here
Tr = Tr,,1. is the sum over Matsubara frequencies Tr,,... = > ..., withw = 7T (2n+ 1), n =

0,+£1, ..., with T" the temperature, ¢ Lo the numbers of sites LE@'), the orbital quantum numbers
(L = [, m), and the spin projections o, correspondingly. We represent the expression for 2
as a difference of “’single particle” (sp) and ”double counted” (dc) terms as is usual in density-
functional theory. When neglecting the quasiparticle damping, (25, will be nothing but the
thermodynamic potential of ’free” fermions but with exact quasiparticle energies. Suppose we
change the external potential, for example, by small spin rotations. Then the variation of the
thermodynamic potential can be written as

502 = 6" Dy + 61024y — 6 Qe (46)

where ¢* is the variation without taking into account the change of the self-consistent po-
tential”, i.e. self energy, and ¢, is the variation due to the change of J'. To avoid a possible
misunderstanding, note that we consider the variation of (2 in the general “non-equilibrium”
case when the torques acting on spins are nonzero and therefore d(2 # 0. In order to study the
response of the system to general spin rotations one can consider either variations of the spin
directions at fixed effective fields or, vice versa, rotations of the effective fields, i.e. variations
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of X, at fixed magnetic moments. We use the second way. Taking into account the variational
property of @, it can be easily shown (cf. Ref. [24]) that

0102y = 6024 = Tt G6 X (47)

and hence
602 =060y, =—6"Tr In[¥ — Gy'] (48)
which is an analog of the “local force theorem™ in density-functional theory [57].

In the LDA+DMFT scheme, the self energy is local, i.e., is diagonal in the site indices. Let us
write the spin-matrix structure of the self-energy and Green function in the following form

where X% = (£ + ¥4)/2 and Xf = se;, with e; being the unit vector in the direction
of effective spin-dependent potential on site i, ¢ = (04, 0,,0.) are the Pauli matrices, Gf; =
Tr,(Gi;)/2 and G§; = Tr,(Gi;0)/2. We assume that the bare Green function G° does not
depend on spin directions and all the spin-dependent terms including the Hartree-Fock terms
are incorporated into the self-energy. Spin excitations with low energies are connected with the
rotations of vectors e;

de; = dp, X e; (50)

According to the local force theorem” (48) the corresponding variation of the thermodynamic
potential can be written as
502 = 5°0,, = Vidp, (51)

where the torque is equal to
V,=2Tr,.[X] X G . (52)

Using the spinor structure of the Dyson equation one can write the Green function in this expres-
sion in terms of pair contributions. As a result, we represent the total thermodynamic potential
of spin rotations or the effective Hamiltonian in the form [38]

Qopin = — > Trur { (G4 Z3) (G2.5)) — Z5G5E5GS — i (85 x G555) G} . (53)
ij

One can show by direct calculation that
0 2spin

oo

This means that (2;,,;, {e;} is the effective spin Hamiltonian. The last term in Eq. (53) is nothing

=V,. (54)

but a Dzialoshinskii-Moriya interaction term. It is non-zero only in the relativistic case where
X7 and G3; can be, generally speaking, “non-parallel” and G;; # Gj; for crystals without
inversion center.

In the non-relativistic case, one can rewrite the spin Hamiltonian for small spin deviations near
collinear magnetic structures in the following form

Qspm = - Z Jz’jei C €, (55)
]
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where
Jiy = T, (261,756, (56)

are the effective exchange parameters. This formula generalizes the LDA expressions of [57,58]
to the case of correlated systems.

The spin-wave spectrum in ferromagnets can be considered both directly from the exchange
parameters or from the energy of corresponding spiral structures (cf. Ref. [57]). In the non-
relativistic case when anisotropy is absent one has

g = 22 Yy (1 = cosq - Ry) = ~:1J(0) = J(a)] (57)

where M is the magnetic moment (in Bohr magnetons) per magnetic ion.

It should be noted that the expression for the spin-stiffness tensor D,z defined by the relation
wq = Dapqaqs (@ — 0) in terms of exchange parameters has to be exact as the consequence
of the phenomenological Landau-Lifshitz equations, which are definitely correct in the long-
wavelength limit. Direct calculation based on variation of the total energy under spiral spin
rotations (cf. Ref. [57]) leads to the following expression

2 LOGT (k) 0GY (K)
Dag——MTerij@ o ok, ) (58)

were k is the quasi-momentum and the summation is over the Brillouin zone. The expressions
Egs. (56) and (57) are reminiscent of usual RKKY indirect exchange interactions in the s-d
exchange model (with Y° instead of the s-d exchange integral). One can prove that this ex-
pression for the stiffness is exact within the local approximation [59]. At the same time, the
exchange parameters themselves, generally speaking, differ from the exact response character-
istics defined via static susceptibility since the latter contains vertex corrections. The derivation
of approximate exchange parameters from the variations of the thermodynamic potential can be
useful for the estimation of J;; in different magnetic systems.

7 LDA+DMFT results for itinerant ferromagnetic metals

We have started from the spin-polarized LDA band structure of ferromagnetic iron within the
LMTO method [42] in the minimal s, p, d basis set and used numerical orthogonalization to
find the H; part of our starting Hamiltonian. We take into account Coulomb interactions only
between d-states. The correct parameterization of the Hy; part is indeed a serious problem. For
example, first-principle estimations of average Coulomb interactions (U) [30,60] in iron lead to
unreasonably large values of order of 5-6 eV in comparison with experimental values of the U-
parameter in the range of 1-2 eV [30]. A semi-empirical analysis of the appropriate interaction
value [61] gives U ~ 2.3 eV. The difficulties with choosing the correct value of U are connected
with complicated screening problems, definitions of orthogonal orbitals in the crystal, and con-
tributions of the inter-site interactions. In the quasi-atomic (spherical) approximation the full
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Fig. 10:  Total spin-polarized density of states and d-part of the self-energy for iron with
U =23eVand J = 0.9 eV for the temperature T' = 750 K. Two different self-energies for
tog and e, d-states in the cubic crystal field symmetry are presented. The four different lines
correspond to imaginary-part spin-up (full line) and spin-down (dashed line) as well as real-
part spin-up (dashed-dot line) and spin-down (dashed-double-dot line).

U-matrix for the d-shell is determined by the three parameters U, J and ./ or equivalently by
effective Slater integrals F°, F? and F** [11,37]. For example, U = F°, J = (F?+ F*)/14 and
we use the simplest way of estimating 6./, or F', keeping the ratio F?/F* equal to its atomic
value 0.625 [62].

Note that the value of the intra-atomic (Hund) exchange interaction .J is not sensitive to the
screening and approximately equals 0.9 eV in different estimations [60]. For the most important
parameter U, which defines the bare vertex matrix Eq. (39), we use the value U = 2.3 eV for Fe
[61], U = 3 eV for Coand Mn and U = 4 eV for Ni and Cu. To calculate the spectral functions
A, (k,E) = —Try G, (k, E +i0) /7 and DOS as their sum over the Brillouin zone, we first
performed analytical continuations for the matrix self-energy from Matsubara frequencies to the
real axis using the Pade approximation [63], and then numerically inverted the Green-function
matrix as in Eq. (22) for each k-point. In the self-consistent solution of the FLEX equations we
used 1024 Matsubara frequencies and the FFT-scheme with an energy cut-off at 100 eV. The
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Fig. 11: Spectral function of ferromagnetic iron for spin-up (a) and spin-down (b) and the two
k-directions in the Brillouin zone compared with the experimental angle resolved photoemission
and de Haas van Alphen (at the Er=0) points.

sums over the irreducible Brillouin zone have been made with 72 k-points for SCF-iterations
and 1661 k-points for the final total density of states.

The depolarization of states near the Fermi level is another important correlation effect. The
decrease of the ratio P = [N; (Er) — N, (EF)] / [Ny (Er) + N, (EF)] is a typical sign of spin-
polaron effects [31,64]. In our approach these effects are taken into account through the WT(fh)
terms in the effective spin-polarized LDA+DMFT potential (Eq. (44)).

The energy dependence of self-energy in Fig. 10 shows the characteristic features of moder-
ately correlated systems. At low energies |E| < 1 eV we see a typical Fermi-liquid behavior
ImXY (E) ~ —FE? and 9ReX (E) /OE < 0. At the same time, for the states beyond this interval
within the d-bands the damping is rather large (of the order of 1 eV) so these states correspond
to ill-defined quasiparticles, especially for the occupied states. This is probably one of the most
important conclusions of our calculations. Qualitatively it was already pointed out in Ref. [33]
on the basis of model second-order perturbation-theory calculations. We have shown that this
is still the case for the realistic quasiparticle structure of iron with a reasonable value for the
Coulomb interaction parameter.

Due to the noticeable broadening of the quasiparticle states, a description of the computational
results in terms of effective band structure (determined, for example, from the maximum of the
spectral density) would be incomplete. We present in Fig. 11 the full spectral density A, (k, E)
including both coherent and incoherent parts as a function of k and . We see that in general
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Fig. 12: Spin-polarized partial 3d density of states for different transition metals at temperature
T=750 K. The full line is the spin-up, the dashed line the spin-down DOS.

the maxima of the spectral density (dark regions) coincide with the experimentally obtained
band structure. However, for occupied majority spin states at about —3 eV the distribution of
the spectral density is rather broad and the description of these states in terms of the quasi-
particle dispersion is problematic. This conclusion is in complete quantitative agreement with
raw experimental data on angle-resolved spin-polarized photoemission [65] with the broad non-
dispersive second peak in the spin-up spectral function around —3 eV.

Comparison of the DOS for transition metals in the Fig. 12 shows interesting correlation effects.
First of all, the most prominent difference from the LDA calculation is observed for antiferro-
magnetic fcc-Mn. There is the clear formation of lower and upper Hubbard bands around +
3 eV. Such behavior is related with the half-filled Mn d-shell, which corresponds to a large
phase space for particle-hole fluctuations. For ferromagnetic bcc-Fe, the p-h excitations are
suppressed by the large exchange splitting and a bcc structural minimum in the DOS near the
Fermi level. In the case of ferromagnetic fcc-Co and Ni, correlation effects are more important
than for Fe since there is no structural bcc-dip in the density of states. One can see the formation
of a "three-peak” structure for the spin-down DOS for Co and Ni and satellite formation around
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Fig. 13: The spin-wave spectrum for ferromagnetic iron in LDA and LDA+2. compared with
different experiments (circles [16], squares [17], and diamonds [18]) (a); The corresponding
spin-wave spectrum from the LDA+ 2. scheme in the (110) plane (b).

-5 eV. In order to describe the satellite formation more carefully one needs to include 7'-matrix
effects [29, 34] or use the QMC scheme in LDA+DMFT calculations. Finally, there are no big
correlation effects in non-magnetic fcc-Cu since the d-states are located well bellow the Fermi
level.

Using the self-consistent values for X, (iw) computed by QMC, we calculate the exchange
interactions (Eq. 56) and spin-wave spectrum (Eq. 57) using the four-dimensional fast Fourier
transform (FFT) method [66] in (k, iw) space with a mesh of 203 x 320. The spin-wave spectrum
for ferromagnetic iron is presented in Fig. 13 with comparison to the results of LDA-exchange
calculations [57] and with different experimental data [67—69]. The room-temperature neutron
scattering experiments have a sample dependence (Fe-12%Si in Ref. [67,69] and Fe-4%Si in
Ref. [68]) due to problems with the bcc-Fe crystal growth. Note that for high-energy spin-
waves the experimental data [69] has large error-bars due to Stoner damping (we show one
experimental point with the uncertainties in g space). On the other hand, the expression of
magnon frequency in terms of exchange parameters itself becomes problematic in that region
due to the breakdown of the adiabatic approximation. Therefore we think that the comparison
of our theoretical results with the experimental spin-wave spectrum for large energy needs addi-
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Fig. 14: LDA+DMFT results for ferromagnetic iron (1" = 0.8 T¢). The partial densities of
the d-states (full lines) are compared with the corresponding LDA results at zero temperature
(dashed lines) for the spin-up (red lines, arrow-up) and spin-down (blue lines, arrow-down)
states. The insert shows the spin-spin autocorrelation function for T=1.2 T¢.

tional investigation of Stoner excitations and calculations of the dynamical susceptibility in the
LDA+DMFT approach [43]. Within the LDA scheme one could use the linear-response formal-
ism [70] to calculate the spin-wave spectrum with the Stoner renormalizations, which should
give in principle the same spin-wave stiffness as our LDA calculations. Our LDA spin-wave
spectrum agrees well with the results of frozen magnon calculations [71,72].

At the lower-energy, where the present adiabatic theory is reliable, the LDA+DMFT spin-wave
spectrum agrees better with experiments than the result of the LDA calculations. Experimen-
tal values of the spin-wave stiffness D = 280 meV/A? [68] agree well with the theoretical
LDA+DMEFT estimate of 260 meV/A? [38].

Self-consistent LDA+DMFT results for the local spectral function of iron and nickel are shown
in Figs. 14 and 15, respectively. The LDA+DMFT approach describes well all the qualitative
features of the density of states (DOS), which is especially non-trivial for nickel. Our QMC
results reproduce well the three main correlation effects on the one particle spectra below T
[75-77]: the presence of the famous 6 eV satellite, the 30% narrowing of the occupied part of
d-band and the 50% decrease of exchange splitting compared to the LDA results. Note that the
satellite in Ni has substantially more spin-up contributions, in agreement with photoemission
spectra [77]. The exchange splitting of the d-band depends very weakly on temperature from
T =0.6TctoT = 0.9T¢. Correlation effects in Fe are less pronounced than in Ni, due to its
large spin-splitting and the characteristic bcc-structural dip in the density of states for spin-down



Magnetism: from Stoner to Hubbard 5.27

N}
]

<S(®)S(0)>

OO
N
N
»

Density of states, eV’

4 2
Energy, eV

Fig. 15: LDA+DMFT results for ferromagnetic nickel (T' = 0.9 T). The partial densities of
the d-states (full lines) is compared with the corresponding LDA results at zero temperature
(dashed lines) for the spin-up (red lines, arrow-up) and spin-down (blue lines, arrow-down)
states. The insert shows the spin-spin autocorrelation function for T=1.8 T¢.

states near the Fermi level that reduces the density of states for particle hole excitations.

Now we discuss the application of the LDA+DMFT approach to the description of finite-
temperature magnetic properties of iron and nickel. While density functional theory can, in
principle, provide a rigorous description of the thermodynamic properties, at present there is
no accurate practical implementation available. As a result the finite-temperature properties of
magnetic materials are estimated following a simple suggestion [57], whereby constrained DFT
at 7" = O is used to extract exchange constants for a classical Heisenberg model, which in turn is
solved using approximation methods (e.g., RPA, mean field) from classical statistical mechan-
ics of spin systems [57,78—-80]. The most recent implementation of this approach gives good
values for the transition temperature of iron but not of nickel [81]. While these localized spin
models give, by construction, at high temperatures a Curie-Weiss like magnetic susceptibility,
as observed experimentally in Fe and Ni, they encountered difficulties in predicting the correct
values of the Curie constants [82].

The uniform spin susceptibility in the paramagnetic state: x4—o = dM /dH was extracted from
QMC simulations by measuring the induced magnetic moment in a small external magnetic
field. The dynamical mean-field results account for the Curie-Weiss law which is observed
experimentally in Fe and Ni. As the temperature increases above 7T, the atomic character of
the system is partially restored resulting in an atomic-like susceptibility with effective moment

Hogr
o= —___ 59
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Fig. 16: Temperature dependence of ordered moment and inverse ferromagnetic susceptibility
for Fe (open squares) and Ni (open circles) compared with experimental results (filled symbols).

The temperature dependence of the ordered magnetic moment below the Curie temperature and
the inverse of the uniform susceptibility above the Curie point are plotted in Fig. 16 together
with the corresponding experimental data for iron and nickel [83]. The LDA+DMFT calcu-
lations describe the magnetization-curve and the slope of the high-temperature Curie-Weiss
susceptibility remarkably well. The calculated values of high-temperature magnetic moments
extracted from the uniform spin susceptibility are p.g = 3.09 (1.50)up for Fe (Ni), in good
agreement with the experimental data .z = 3.13 (1.62)up for Fe (Ni) [83].

One can estimate the value of the Curie temperature of Fe and Ni from the disappearance of spin
polarization in the self-consistent DMFT solution and from the Curie-Weiss law in Eq. (59).
Our estimates 7 = 1900 (700)K are in reasonable agreement with experimental values of
1043 (631)K for Fe (Ni) respectively [83], considering the single-site nature of the DMFT
approach, which is not able to capture the reduction of 7> due to long wavelength spin waves.
These effects are governed by the spin wave stiffness. Since the ratio Tz/a?D of the spin
wave stiffness D to T is nearly a factor of 3 larger for Fe than for Ni [83] (a is the lattice
spacing), we expect the Curie temperature from DMFT to be much higher than the observed
T in Fe than in Ni. Note that this is a consequence of the long-range oscillating character
of exchange interactions in iron compared to short-range ferromagnetic exchange interactions
in nickel [81]. Quantitative calculations demonstrating the sizable reduction of 7> due to spin
waves in Fe in the framework of a Heisenberg model were performed in Ref [81]. Moreover
including additional spin-flip terms in the rotationally invariant Coulomb matrix will drastically
reduce the effective Curie temperature for the case of iron with its approximately two unpaired
electrons [88].
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Within dynamical mean-field theory one can also compute the local spin susceptibility

Xloc =

w|S,

B
/ dr (S (v) S(0)) | (60)

where g, = 2 is the gyromagnetic ratio, S = %Emﬁ’g, cl GyerCmo the single-site spin op-
erator, and ¢ = (0,,0y,0,) are the Pauli matrices. It differs from the ¢ = O susceptibility
by the absence of spin polarization in the Weiss field of the impurity model. Eq. (60) cannot
be probed directly in experiments but it is easily computed in DMFT-QMC. Its behavior as a
function of temperature gives a very intuitive picture of the degree of correlations in the system.
In a weakly correlated system we expect Eq. (60) to be nearly temperature-independent, while
in a strongly correlated system we expect a leading Curie-Weiss behavior at high temperatures
Xioc = pi./(3T + C), where p,. is an effective local magnetic moment. In the Heisenberg
model with spin S, p2_ = S(S + 1)g? and for well-defined local magnetic moments (e.g., for
rare-earth magnets) this quantity should be temperature-independent. For the itinerant electron
magnets /i, 1S temperature-dependent, due to a variety of competing many body effects such
as Kondo screening and the reduction of local magnetic moment by temperature [27]. All these
effects are included in the DMFT calculations. The 7-dependence of the correlation function
(S (1) S(0)) results in the temperature dependence of 1., and is displayed in the inserts on
the Figs. 14,15. Iron can be considered as a magnet with very well-defined local moments
above T (the T7-dependence of the correlation function is relatively weak), whereas nickel is
a more itinerant electron magnet (stronger 7 -dependence of the local spin-spin autocorrelation
function).

The comparison of the values of the local and the g = 0 susceptibility gives a crude measure of
the degree of short range order which is present above T¢. As expected, the moments extracted
from the local susceptibility, Eq. (60), are a bit smaller ( 2.8 up foriron and 1.3 pp for nickel)
than those extracted from the uniform magnetic susceptibility. This reflects the small degree of
short-range correlations that remains well above T~ [85]. The high-temperature LDA+DMFT
data clearly show the presence of a local-moment above T~. This moment is correlated with the
presence of high energy features (of the order of the Coulomb energies) in the photoemission.
This is also true below 7T, where the spin dependence of the spectra is more pronounced for
the satellite region in nickel than for the quasiparticle bands near the Fermi level (Fig. 15).
This can explain the apparent discrepancies between different experimental determinations of
the high-temperature magnetic splittings [84, 86, 87] as being the result of probing different
energy regions. The resonant photoemission experiments [86] reflect the presence of local-
moment polarization in the high-energy spectrum above 7 in nickel, while the low-energy
ARPES investigations [87] result in non-magnetic bands near the Fermi level. This is exactly
the DMFT view on the electronic structure of transition metals above 7. Fluctuating moments
and atomic-like configurations are large at short times, which results in correlation effects in
the high-energy spectra such as spin-multiplet splittings. The moment is reduced at longer time
scales, corresponding to a more band-like, less correlated electronic structure near the Fermi
level.
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8 Conclusions

We have discussed a general scheme for investigating the magnetic properties for correlated
itinerant-electron systems. This approach is based on the combination of the first-principle
LDA scheme with dynamical mean-field theory. The application of the LDA+DMFT method
gives an adequate description of the quasiparticle electronic structure of ferromagnetic transition
metals. The main correlation effects in the electron energy spectrum are a strong damping of
the occupied states more than 1 eV from the Fermi level £ and essentially a depolarization of
the states in the vicinity of £r. We obtain a reasonable agreement with different experimental
spectral data (spin-polarized photo- and thermo-emission). The method is quite universal and
can be applied for other correlated d- and f-electron magnetic systems.

We discussed as well a general method for the investigation of magnetic interactions in corre-
lated electron systems. Our general expressions are also valid in the relativistic case and can be
used for the calculation of both exchange and Dzialoshinskii-Moriya interactions, and magnetic
anisotropy [38]. The illustrative example of ferromagnetic iron shows that correlation effects
in the exchange interactions may be noticeable even in such moderately correlated systems.
For rare-earth metals and their compounds, colossal magnetoresistance materials, or high-7
systems, this effect may be even more important.

This work demonstrates an essential difference between the spin density functional and the
LDA+DMFT approach. The latter deals with the thermodynamic potential as a functional of the
local Green function rather than the electron density. Nevertheless, there is a close connection
between the two techniques (the self-energy corresponds to the exchange-correlation potential).
In particular, an anal