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Forschungszentrum Jülich, 2013, ISBN 978-3-89336-884-6
http://www.cond-mat.de/events/correl13



12.2 Rolf Heid

1 Introduction

Electrons and ions are the fundamental building blocks of solids. The understanding of most
solid state properties rests on the knowledge of the related quantum objects, electronic quasipar-
ticles and phonons, respectively. Solving the quantum mechanical problem of the electron-ion
coupling for extended systems is, however, a formidable task. Still, because of the large mass-
difference between electrons and ions, they can be treated to a first approximation as indepen-
dent dynamical subsystems. In the last decades, highly efficient numerical methods have been
developed to solve the electronic part of the problem from first principles. Most of them are
based on density functional theory and allow nowadays a routine investigation of the electronic
structure of many compounds. The phonon problem took longer to be tackled from first prin-
ciples, because an accurate solution of the electronic structure is a prerequisite for calculating
the fundamental vibrational properties with sufficient accuracy. The development of a linear-
response scheme, the so-called density functional perturbation theory, more than 20 years ago
opened the door to efficient and accurate approaches and has matured into powerful numerical
tools.
The interaction among these constituents, the electron-phonon coupling, influences or even
dominates a variety of physical phenomena in solids. This is most noticeable in metals, where
low-energy electronic excitations are strongly influenced by lattice vibrations – with important
consequences for, e.g., electronic transport and thermodynamical properties. It also represents
a natural source for electron pairing underlying the macroscopic quantum phenomenon of su-
perconductivity.
In these lecture notes, I will give an introduction to the basic concepts underlying the modern
numerical techniques to calculate phonons and electron-phonon coupling from first-principles
within the framework of density functional theory. In Section 2, I will present an overview
of the perturbational scheme to calculate phonon properties, and discuss some peculiarities of
current implementations. Section 3 is devoted to the first principles approach to the electron-
phonon coupling. Connection will be established to experimentally accessible quantities, like
quasi-particle renormalization, and to the electron pairing interaction which enters the theory of
superconductivity.

1.1 Electron-ion Hamiltonian and adiabatic approximation

We consider a solid to be build up from electrons and ions, where an ion consists of the nucleus
and the tightly bound core electrons. The dynamics of electrons and ions in a crystal is described
by the total Hamiltonian

H = Te + Vee + Ti + Vii +He−i , (1)

where Te and Ti are the kinetic energies of electrons and ions, respectively, Vee denotes the
Coulomb interaction among electrons, Vii the interaction energy between ions, and He−i the
interaction between electrons and ions.
The task of finding solutions for the Schrödinger equationHΨ(r,R) = EΨ(r,R), where r and
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R stand for the set of electron and ion coordinates, respectively, can be drastically simplified
due to the large difference of the electron mass m and the ion mass M : The light electrons
can be considered as moving much faster than the heavy ions. They follow instantaneously the
motion of the ions, while the latter perform small vibrations around their rest positions. As first
shown by Born and Oppenheimer [1] for molecules and later applied to solids by Chester and
Houghton [2], this picture can be proven by introducing a small parameter κ which scales to
0 for M → ∞. To this end, they considered small displacements of the ions from their rest
positions of the form

Ri = R0
i + κui . (2)

A proper form for κ can be inferred from the requirement, that the kinetic energy of the ions
should be of the same order as the potential term: quadratic in u. This leads to the choice
κ = (m/M)1/4, which is less than 0.1 for all elements except H and He. One can now perform
a systematic expansion of the Hamiltonian and wavefunctions in terms of this small parameter.
To lowest order, the total wavefunction can be written as a product Ψ(r,R) = χ(R)ψ(r;R),
where the electronic wavefunction depends only parametrically on the ion coordinates. The
electronic wavefunction obeys the equation

[Te + Vee +He−i(R)]ψn(r;R) = En(R)ψn(r;R) , (3)

where the dependence on R enters via the interaction He−i. The ion wavefunction is a solution
of

[Ti + Vii + En(R)]χ(R) = Eχ(R) . (4)

This level of approximation is called the adiabatic or Born-Oppenheimer approximation. It
describes a decoupling of the dynamics of the electrons and ions and neglects electronic exci-
tations induced by the ionic motion. The electron system enters in (4) via the energies En(R)

of the n-th eigenstate. Usually, one can resort to the ground state and drop the index n, because
”normally” encountered excited states at finite temperatures do not deviate much on the scale
relevant for the ionic motion. Nevertheless this term includes the important effect of screening
of the ionic motion by the valence electrons, which is, however, the same for the ground state
as for the excited states.
To go beyond the adiabatic approximation, one uses the solutions of (3) to expand the wave-
function of the solid in the form

Ψm(r;R) =
∑
n

χmn(R)ψn(r;R) . (5)

The eigenvalue problemHΨm = EmΨm leads to the following equation for the ionic part

[Ti + Vii + En(R)]χmn(R) +
∑
n′

∆Hnn′χmn′(R) = Emχmn(R) . (6)

The new feature with respect to (4) is the appearance of two additional terms ∆H = ∆H(1) +
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∆H(2) given by

∆H
(1)
nn′ = − 1

M

∑
i

∫
dr3N ψ∗n(r;R)∇Riψn′(r;R) · ∇Ri (7)

∆H
(2)
nn′ = − 1

2M

∑
i

∫
dr3N ψ∗n(r;R)∇2

Ri
ψn′(r;R) . (8)

They contain derivatives of the electronic wavefunctions with respect to the ion coordinates,
and take into account possible excitations in the electronic subsystem due to the motion of the
ions. Among these two non-adiabatic terms ∆H(1) is typically the dominant one, because from
the expansion of ψn it contains terms of order κ, while ∆H(2) involves terms of order κ2 .
Corrections to Ψ(r,R) beyond the adiabatic approximation can be shown to be of order κ3

and corrections to the energy are of order κ6. The expansion parameter κ only depends on
the mass ratio and not on the strength of the electron-phonon interaction. Thus the adiabatic
approximation is adequate for both free-electron-like systems and for compounds possessing
tighter bound valence electrons like transition metals.

1.2 Phenomenological theory of lattice dynamics

Within the adiabatic approximation, the statics and dynamics of the ions are governed by an
effective potential

Ω(R) = Vii(R) + E0(R) , (9)

where E0(R) denotes the electronic ground-state energy for a given ion configuration R. The
effective potential Ω builds the starting point of the microscopic theory of lattice dynamics,
which has been outlined in a number of review articles [3–5].
Dynamical properties are derived by a systematic expansion of Ω for atom displacements u

around a chosen reference configuration, Ri = R0
i + ui, leading to

Ω(R) = Ω(R0) +
∑
iα

Φa(i)uiα +
1

2

∑
iαjβ

Φαβ(i, j)uiαujβ + . . . . (10)

Greek indices α and β denote Cartesian coordinates, while i and j are atom indices. The term
of first order is the negative of the force acting on an atom in the reference configuration

Fiα = − ∂Ω

∂Riα

∣∣∣∣
0

= −Φα(i) . (11)

It vanishes if one chooses as reference the equilibrium configuration that minimizes Ω. The
second-order coefficients are given by

Φαβ(i, j) =
∂2Ω

∂Riα∂Rjβ

∣∣∣∣
0

. (12)

Their physical meaning becomes more evident when one considers the case where only a single
ion at site i is displaced from the equilibrium position by uiα. Then the force felt by an atom at
site j is given by:

Fjβ = −
∑
iα

Φαβ(i, j)uiα . (13)
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Thus, to lowest order, Φαβ(i, j) describes a linear relationship between displacement and re-
sulting force. They are the 3D equivalent of a spring constant and are called harmonic force
constants. Higher-order coefficients are denoted as anharmonic force constants. The harmonic
approximation is based on truncating the sum after the second order.
In periodic crystals, the atoms are characterized by two indices i = (lκ), which denote the unit
cell (l) and the atoms inside a unit cell (κ), respectively. For periodic boundary conditions, the
Fourier transform of the force constant matrix is related to the dynamical matrix

Dκακ′β(q) =
1√

MκMκ′

∑
l

Φαβ(lκ, 0κ
′)e−iq(R0

lκ−R
0
0κ′ ) , (14)

which determines the equation for the normal modes or phonons,∑
κ′β

Dκακ′β(q)ηκ′β(qj) = ω2
qjηκα(qj) . (15)

ωqj and ηκα(qj) denote the energy and polarization of the normal mode determined by the
wavevector q and branch index j.
These quantities enter into the relationship between the atom displacements and the usual
phonon annihilation and creation operators bqj and b†qj describing quantized normal modes

ulκα = eiqR
0
lκ

1√
Nq

∑
qj

Aqj
κα(bqj + b†−qj) with Aqj

κα =
ηκα(qj)√
2Mκωqj

. (16)

A complete characterization of the harmonic vibrational spectrum requires the knowledge of
either the normal modes for the whole Brillouin zone, or the force constants for all atom bonds.
For a metallic system, the latter representation is often more economical since the lattice inter-
action in real space is rather short ranged due to electronic screening.

2 Density functional perturbation theory

2.1 Lattice dynamics from first principles

The goal is now to calculate the basic quantities determining the dynamics of the ions. The first
term in the effective potential (9) is the Coulomb interaction among the ions, whose contribution
to the force constants can be readily obtained. The second term represents the electronic con-
tribution, which incorporates all important physical properties like bonding and screening. It
requires a sophisticated and accurate treatment of the electronic system, as provided by density
functional theory.

2.1.1 Basics of density functional theory

The foundations of density functional theory (DFT) have been worked out by Hohenberg, Kohn,
and Sham [6, 7] in the mid 60’s, and are outlined in numerous reviews [8–10]. Here we only
mention the essential features which we need later.
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In DFT, the ground-state energy of a system of interacting electrons moving in an external
potential vext is obtained by minimizing the functional

E[n] = F [n] +

∫
d3r vext(r)n(r) (17)

with respect to the electron density n(r). At its minimum, n(r) is the true electron density
of the interacting system. The functional F [n] is universal, i.e. independent of the external
potential. For practical applications, the scheme developed by Kohn and Sham has proven to be
very useful. They showed that the minimum principle allows us to map the complex many-body
problem onto a fictitious system of non-interacting electrons that in its ground state possesses
the same inhomogeneous density as the interacting system [7]. They expressed the energy
functional as

F [n] = Ts[n] + EH [n] + Exc[n] , (18)

where Ts represents the kinetic energy of the non-interacting electrons (we adopt Rydberg
atomic units defined by ~2 = 2m = e2/2 = 1)

Ts[n] =
∑
i

fi

∫
d3r ψ∗i (r)

(
−∇2

)
ψi(r) (19)

and EH [n] the Hartree energy

EH [n] =

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
(20)

with the single-particle representation of the density

n(r) =
∑
i

fi|ψi(r)|2 . (21)

Here fi denotes the occupation number of the single-particle state ψi. The wavefunctions of the
fictitious electrons obey a single-particle equation (Kohn-Sham equation){

−∇2 + veff(r)
}
ψi(r) = εiψi(r) . (22)

The effective potential veff(r) is a functional of the density and given as a sum of the external
potential and a screening potential

veff [n] = vext + vscr[n] = vext + vH [n] + vXC [n] . (23)

The screening potential is obtained via functional derivatives of the last two terms in the total
energy functional (18). It consists of the Hartree potential

vH(r)[n] =
δEH
δn(r)

=

∫
d3r′

2n(r′)

|r− r′|
(24)

which describes an average electrostatic potential originating from the other electrons, and the
exchange-correlation potential vXC(r) = δEXC/δn(r).
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By this formulation, the original many-body problem has been cast into a set of single-particle
equations (21)–(23) that has to be solved self-consistently. The complexity of the original many-
body problem is transferred to the task of determining the exchange-correlation energy EXC .
The big success of DFT partly rests on the empirical fact that already simple approximations to
vXC often give very accurate results. The most widely used ansatz is the local-density approxi-
mation (LDA)

vLDA
XC (r) =

d(nεhom
XC (n))

dn

∣∣∣
n=n(r)

, (25)

where εhom
XC (n) represents the exchange-correlation energy density of the homogeneous inter-

acting electron gas. For εhom
XC various parametrizations derived from analytical and numerical

studies exist [9]. Another popular ansatz is the generalized-gradient approximation (GGA),
where in addition to LDA a dependence of vXC on the local gradient of the electron density is
considered to better account for inhomogeneous density distributions [11–13].

2.1.2 Application to lattice dynamics

As we have seen in Sec. 1.2, lattice-dynamical properties are determined by the adiabatic lattice
potential Ω, which equals the ground-state energy for a fixed ion configuration. Hence, lattice
dynamics depends only on ground-state properties of the electronic system, and is accessible
in the framework of density functional theory. An overview of the various methods to extract
lattice-dynamical properties from ab-initio calculations have been given in [14]. One can divide
them into two main classes: (i) direct methods and (ii) linear-response techniques.
The direct methods are based on ground-state calculations for the ideal crystal and for geome-
tries with ions displaced from their equilibrium position. The frozen-phonon (FP) technique is
conceptually the simplest and historically the first-applied method and uses the quadratic depen-
dence of the total energy from the displacement to extract the frequency of a normal mode [15].
Since this requires a priori knowledge of the phonon eigenvector, it can typically be used only
in cases where symmetry completely determines its form.
A more efficient scheme employs the linear relationship (13) between an ionic displacement
and the forces felt by other ions in the unit cell [16–18]. This can be achieved with little
numerical expenses, as forces can be derived directly from quantities obtained in a ground-state
calculation with the help of the Hellman-Feynman theorem. A single calculation then gives
information about a complete row of the dynamical matrix. The complete dynamical matrix
can be constructed using a few appropriately chosen displacements. Hence, this approach does
not require any a priori information about the normal modes. Since frozen-phonon calculations
employ finite displacements of ions, their results principally contain all anharmonic effects,
which could be used to extract higher anharmonic coupling constants.
A disadvantage of the direct methods is the need to resort to supercells to extract properties
for non-zero wavevector phonons. A complete determination of the phonon spectrum requires
supercells with sizes larger than the effective range of the lattice interactions [19–22].
The alternative approach consists of calculating the derivatives of the total energy directly within
perturbative schemes. In particular, the dynamical matrix is obtained from the second deriva-
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tives via Eq. (12). It has the big advantage that it works directly in reciprocal space and gives
access to the dynamical matrix at arbitrary wavevectors without the need for supercells. We
will discuss this scheme in some detail now.

2.2 Linear response formulation

Here we show how the perturbative approach is set up within the DFT framework. We will first
present some general considerations before applying them to the specific case of perturbations
induced by ionic displacements in periodic crystals.

2.2.1 Energy derivatives

Let us consider a situation where the external potential vext depends on a set of adiabatic per-
turbation parameters Λ = {λa, a = 1, . . . , p}. Each vΛext determines an electronic ground state
with density nΛ(r) and total energy EΛ = F [nΛ] +

∫
d3r nΛ(r)vΛext(r), which depends on the

perturbation via the external potential and implicitly via the density. Its derivative then contains
two contributions

∂EΛ

∂λa
=

∫
d3r nΛ(r)

∂vΛext(r)

∂λa
+

∫
d3r

δEΛ

δn(r)

∂nΛ(r)

∂λa
. (26)

Due to the variational principle, the second term vanishes for each finite Λ. Thus the first
derivative depends on the ground-state density only. This represents the DFT equivalent of the
well known Hellman-Feynman-Theorem [23].
The second-order derivatives are then given by

∂2EΛ

∂λa∂λb
=

∫
d3r

∂nΛ(r)

∂λb

∂vΛext(r)

∂λa
+

∫
d3r nΛ(r)

∂2vΛext(r)

∂λa∂λb
. (27)

For practical purposes it is important that the second derivatives require only the knowledge of
the first-order variations of the electron density. Therefore, it is sufficient to consider only the
linear response of the electron system.

2.2.2 Linear response within the Kohn-Sham scheme

The linear response within the DFT scheme is obtained by standard perturbation techniques
under the condition that the effective potential entering the Kohn-Sham equations depends on
the ground-state density itself. Thus its linear variation is given by

δveff(r) = δvext(r) + δvscr(r) = δvext(r) +

∫
d3r′I(r, r′)δn(r′)

I(r, r′) ≡ δvscr(r)

δn(r′)
=
δvH(r)

δn(r′)
+
δvXC(r)

δn(r′)
=

2

|r− r′|
+

δ2EXC
δn(r)δn(r′)

. (28)

This induces a first-order variation of the single-particle wavefunctions

δψi(r) =
∑
j(6=i)

〈j|δveff |i〉
εi − εj

ψj(r) . (29)
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Using a similar expression for δψ∗i (r) gives

δn(r) =
∑
i

fi[ψ
∗
i (r)δψi(r) + δψ∗i (r)ψi(r)]

=
∑
i6=j

fi − fj
εi − εj

〈j|δveff |i〉ψ∗i (r)ψj(r) . (30)

Eqs. (28) and (30) must be solved self-consistently to obtain the first-order variation of the
density. To proceed, one can write the linear relationship (30) between δn and δveff more
explicitly

δn(r) =

∫
d3r′χ0(r, r

′)δveff(r
′) (31)

χ0(r, r
′) =

∑
i6=j

fi − fj
εi − εj

ψ∗i (r)ψj(r)ψ
∗
j (r
′)ψi(r

′) . (32)

Here, χ0 represents the charge susceptibility of the non-interacting Kohn-Sham system. It is
expressed solely by ground-state quantities [24]. In the case of a periodic system, this is just
the well-known Adler-Wiser form [25, 26]. Although obtained by perturbation theory, Eq. (32)
is exact because the Kohn-Sham equations describe non-interacting electrons.
In combination with Eq. (28) this leads to

δveff = δvext + Iχ0δveff , (33)

which can be solved for δveff

δveff = [1− Iχ0]
−1δvext = ε−1δvext , (34)

where ε = 1− Iχ0 denotes the static dielectric matrix and describes the screening of the ”bare”
perturbation from the external potential.
The problem is now reduced to a calculation of ε−1. Historically this was the first route to
be explored [27, 28]. Direct application of these equations, however, has several practical dis-
advantages. It requires an inversion of the matrix ε(r, r′), which for periodic systems is most
conveniently done in Fourier space. This inversion turns out to be the bottleneck of this scheme,
as a proper convergence often requires a large number of Fourier components. Attempts to per-
form this inversion in direct space using a Wannier representation did not lead to significant
improvements [29]. In the calculation of χ0 in Eq. (32), unoccupied orbitals do enter, which are
not available for bandstructure methods employing minimal basis sets (e.g. LMTO).

2.2.3 Modern formulation: Density functional perturbation theory

An important progress has been achieved by a new formulation of the linear-response approach
that avoids some of the aforementioned problems of the dielectric matrix approach. It is called
density functional perturbation theory (DFPT) and has been proposed independently by Zein et
al. [30–32] and Baroni et al. [33, 34]. A concise description can be found in [35]. We will give
a short outline for the case of a non-metallic system.
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The expression (30) for the first-order density variation contains a double sum over electronic
states. The prefactor (fi− fj)/(εi− εj) restricts it to combinations where one state comes from
the valence space and the other from the conduction space. Using time-reversal symmetry, this
can be rewritten as

δn(r) = 2
∑
vc

1

εv − εc
〈c|δveff |v〉ψ∗v(r)ψc(r) . (35)

To avoid summation over the conduction states, one rewrites

δn(r) = 2
∑
v

ψ∗v(r)∆v(r) (36)

with
|∆v〉 =

∑
c

1

εv − εc
|c〉〈c|δveff |v〉 . (37)

This quantity fulfills the following linear equation:

(H − εv)|∆v〉 = −
∑
c

|c〉〈c|δveff |v〉 = −Pcδveff |v〉 = (Pv − 1)δveff |v〉 . (38)

Here Pc =
∑

c |c〉〈c| denotes the projector onto the conduction space, and Pv = 1 − Pc is the
projector onto the valence space. By this reformulation, only valence-state quantities enter the
equation for ∆v, and one avoids an expensive summation over conduction states.

2.2.4 Beyond linear response: (2n+ 1) theorem

As shown above, the first derivative of the energy depends solely on the unperturbed ground-
state density, while second-order derivatives require knowledge of the density and its first-order
derivatives. Both results are special cases of the so-called (2n+1) theorem, which states that all
derivatives of the total energy up to (2n+ 1)-th order with respect to the adiabatic perturbation
can be calculated from the knowledge of all derivatives of the Kohn-Sham eigenstates and
density up to n-th order. In the framework of density-functional theory this theorem also holds
for nonlocal external potentials and is thus applicable within pseudopotential methods. The
proof given by Gonze et al. [36–38] essentially rests on the variational property of the energy
functional.
As a corollary of this theorem, harmonic as well as third-order anharmonic force constants
merely require calculation of the linear variations of the Kohn-Sham eigenstates and the density.
Both are accessible by linear-response calculations.

2.3 Phonons in periodic lattices

Here we discuss the details of the calculations of the interatomic force constants within the
density functional perturbation approach. To this end, we consider periodic displacements of
the ions from their equilibrium positions, Rlκ = R0

lκ + ulκ, of the form

ulκα = dκαe
iqR0

lκ + d∗καe
−iqR0

lκ , (39)
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where l denotes the unit cell, κ specifies the ion inside a unit cell, and α indicates Cartesian co-
ordinates. The complex amplitudes dκα allow us to vary the relative phase of the displacement.
It is convenient to denote the corresponding derivatives by δqκα ≡ ∂

∂dκα
and δ−qκ′β ≡ ∂

∂d∗κα
. The

electronic contribution to the dynamical matrix can be then written as a mixed derivative

Dκακ′β(q) =
1√

MκMκ′
δqκαδ

−q
κ′βE

∣∣∣∣
u=0

. (40)

Usually, the external potential is expressed as a superposition of atomic potentials vκ centered
at the instantaneous positions of the ions

vext(r) =
∑
lκ

vκ(r−Rlκ) . (41)

Its first-order variation, evaluated at the equilibrium positions, is given by

δqκαvext(r) = −
∑
l

∇r
αvκ(r−R0

lκ)e
iqR0

lκ

= −eiqr
∑
l

eiq(R0
lκ−r)∇r

αvκ(r−R0
lκ) . (42)

The quantity defined by the lattice sum has the periodicity of the original lattice. Thus the
derivative δqκα can be considered to carry a momentum q.
When using a Bloch representation for the electronic eigenstates, the variation of the effective
potential, δqκαveff , connects states of momentum k with those of momentum k+ q. The Fourier
transform of the first order density variation takes the form

δqκαn(q+G) = − 4

V

∑
kv

〈kv|e−i(q+G)r|∆q
κα(kv)〉 , (43)

where V denotes the crystal volume. The quantity appearing on the right hand side is closely
related to the first-order variation of the valence state |kv〉 and is defined by (see Eq. (37))

|∆q
κα(kv)〉 =

∑
c

|k+ qc〉〈k+ qc|δqκαveff |kv〉
εc(k+ q)− εv(k)

. (44)

It is obtained by solving the inhomogeneous linear equations (see Eq. (38))

(Hk+q
KS − εv(k))|∆

q
κα(kv)〉 = (P k+q

v − 1) δqκαveff |kv〉 . (45)

Eqs. (43) and (45) together with (28) constitute a set of equations that is solved self-consistently
for a fixed q to obtain δqκαn. As a by-product, δqκαveff is also calculated.
The electronic contribution to the dynamical matrix takes the form

δqκαδ
−q
κ′βE =

∑
G

[
δqκαn(G+ q)δ−qκ′βvext(G+ q) + δqκαδ

−q
κ′βvext(G)

]
. (46)

Typically, first principles calculations along these lines are performed on a grid of q-points that
form a regular lattice and span the whole Brillouin zone. Discrete Fourier transforms are then
applied to interpolate dynamical matrices on arbitrary points in between.
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2.3.1 Technical aspects and extensions

The above derivation sketched the main ideas behind the perturbative approach. Practical im-
plementations in existing band structure techniques require a variety of extensions and general-
izations, which will be briefly discussed here.
Metals: Originally, the scheme was formulated for non-metallic systems and first applied in
the framework of the plane-wave pseudopotential method. An extension to metallic systems
has been derived by de Gironcoli, which contains essentially technical modifications related to
the appearance of fractional occupation numbers for electronic states with energies close to the
Fermi energy [39].
Non-local potentials: The above derivation assumed a local external potential. Modern pseu-
dopotential approaches typically use also non-local forms, for which the above derivation is
not strictly valid. It can be modified to include these forms, with the caveat that the dynamical
matrix (46) cannot be expressed solely in terms of the density variation anymore but explicitly
involves first-order variations of the wavefunctions, too.
Basis-set corrections: In many implementations, the electronic states are expanded in terms of a
basis set. If the basis functions do not depend on the ionic positions, as is true of plane waves, the
formulation given above is essentially unchanged. However, if the basis set depends explicitly
on the position of the ions, it gives rise to additional contributions related to the change of the
basis functions under an ionic displacement. These basis set corrections are known as Pulay
corrections in the context of force calculations. Similar correction terms occur for methods
based on ultrasoft pseudopotentials, as their construction requires the introduction of auxilliary
charges centered at ionic sites.
Spin polarization: Extension to spin-polarized DFT is straightforward. The two spin sectors can
be treated independently in the perturbation calculation, because the perturbation potential δqv
connects states of equal spins only. The dynamical matrix is then given as a sum of contributions
from each spin.
Relativistic corrections: Extensions of the semi-relativistic framework, where spin-orbit cou-
pling is neglected, have recently been worked out in the context of pseudopotentials [40, 41].
Here spin-orbit coupling can be easily incorporated by an additive term in the pseudopotential
vext → vSR + vSOC . It depends on the ion positions and gives rise to additional terms in δvext

which entangle spatial and spin degrees of freedom.

3 Electron phonon coupling

3.1 Density functional perturbation approach to electron phonon vertex

3.1.1 Form of electron-phonon vertex

In the previous section, we have shown how the dynamics of the ions can be calculated quanti-
tatively within the DFT approach. This was done on the basis of the adiabatic approximation,
where the electronic subsystem entered the ionic equation-of-motion via a static screening term
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only. Now we go one step further and consider the effect of a dynamical coupling between the
electronic and phononic subsystems. Here, only the main ideas to derive the basic form of the
electron-phonon vertex are sketched. A more elaborate discussion can be found in the book of
Grimvall [42].
Let us consider again the general Hamiltonian of a solid given in Eq. (1) and look at the matrix
element

〈nα|H|n′α′〉 , (47)

where a state |nα〉 denotes the product of separate electronic and phononic wavefunctions. In
the adiabatic approximation, only diagonal elements n = n′ and α = α′ are present. Non-
vanishing off-diagonal elements come from the non-adiabatic terms ∆H in Eq. (6). For the
most important one, ∆H(1), one obtains

〈nα|∆H(1)|n′α′〉 =
∫
χ∗α(ψ

∗
n∇Rψn′) · ∇Rχα′ . (48)

As before one assumes that all quantities are expanded around the equilibrium positions R =

R0 + u in a fast converging expansion in terms of u. To get an explicit expression, we describe
the change in the electronic wavefunction by an effective potential V (R) due to small ionic
displacements, giving ∫

ψ∗n∇Rψn′ ∝ 〈n|∇RV |n′〉 , (49)

where |n〉 and |n′〉 denote unperturbed electronic states. The remaining ionic matrix element∫
χ∗α∇Rχα′ is proportional to the momentum operator, which depends linearly on the phonon

creation and annihilation operators.
Thus the off-diagonal matrix elements in (47) describe the probability of emission or absorption
of a phonon under a simultaneous excitation in the electronic subsystem. The electronic tran-
sition probabilities are determined by the first-order variation of the effective potential V (R)

with respect to the ion coordinates as the perturbation operator.

3.1.2 Electron-phonon vertex in density functional perturbation theory

In the context of DFT, the electron-phonon coupling (EPC) matrix elements are defined as tran-
sition probabilities of Kohn-Sham states induced by a change in the potential due to a small ion
displacement. If one would choose the electron-ion interaction potential, one obtains according
to Eq. (42)

〈k+ qν ′|δqκαvext|kν〉 = −〈k+ qν ′|eiqr
∑
l

eiq(R0
lκ−r)∇r

αvκ(r−R0
lκ)|kν〉 . (50)

It is convenient to switch to the normal-mode representation

g
(0)qj
k+qν′,kν =

∑
κα

Aqj
κα〈k+ qν ′|δqκαvext|kν〉 , (51)

where qj denotes the normal modes with momentum q and mode index j, and the coefficients
Aqj
κα are defined in (16). This expression describes a rigid shift of the ionic potential, and
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Fig. 1: Diagrammatic representation of the screened electron-phonon vertex within the DFT
framework. Blue zigzag lines represent phonons, black lines electron propagators, and the
dashed lines the effective electron-electron interation.

constitutes the so-called bare electron-phonon coupling matrix elements. Such a rigid-ion ap-
proximation is only justified in cases where all electrons are tightly bound to the ions as in an
ionic crystal. For metals, in particular, this approximation typically fails, because it neglects
the reaction of the electrons on the disturbance, which tend to screen the perturbation of the
potential.
Within DFT the screened electron-phonon matrix elements are given by the variation of the
effective potential

gqλk+qν′,kν =
∑
κα

Aqj
κα〈k+ qν ′|δqκαveff |kν〉 . (52)

It is instructive to look at it from a many-body perturbation perspective. Fig. 1 shows a diagram-
matic representation of the screened vertex. The bare vertex is screened by virtual electron-hole
excitations coupled via an effective interaction. From the relationship (34) between the external
(bare) and effective (screened) perturbation, we can see that within the DFPT framework, the
electron-hole bubble is represented by the charge-susceptibility of the non-interacting Kohn-
Sham system (32). The effective interaction is given by the kernel I defined in Eq. (28) and
incorporates both the Coulomb interaction and contributions from exchange and correlation.
We have seen in Sec. 2.3 that the first-order variation of the effective potential is calculated as
a by-product in the DFPT self-consistent procedure. As the EPC matrix elements contain only
this quantity and the unperturbed Kohn-Sham states, they can be calculated by a comparatively
small numerical effort after a DFPT cycle is converged. They provide detailed microscopic
information about how the coupling depends on the momenta of the electronic and phononic
states as well as on the character of the electronic wavefunctions and the displacement pattern
of the normal mode, respectively.
The spin dependence is incorporated in the EPC vertex in a straightforward way. In the semi-
relativistic framework, when spin-orbit coupling is neglected, spin and spatial degrees-of-free-
dom are independent, and the perturbation due to the ion displacements does not flip the spin.
As a consequence the EPC vertex is spin-diagonal. The EPC vertex in the presence of spin-orbit
coupling has a more complex form. In the context of the pseudopotential method, it was shown
that a second additive contribution to the perturbation operator appears, δveff → δvSReff + δvSOC ,
which results in off-diagonal spin terms [43].
The EPC matrix elements are the essential ingredients for a numerical approach to a variety of
physical properties. In the following I will discuss in some detail (i) renormalization of phonon
properties, (ii) phonon-mediated pairing interaction and superconductivity, and (iii) self-energy
effects for electronic states. Emphasis will be on how one can connect theoretical predictions
with experimental observations to test the accuracy of the first principles EPC matrix elements,
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Fig. 2: (a) Diagrammatic representation of the phonon self-energy up to second order in the
electron-phonon vertex. Blue zigzag lines represent phonons, black lines electron propagators,
and the dashed lines the effective electron-electron interaction. The leading contributions in the
limit ω → 0 can be summed up with the help of the screened vertex introduced in Fig. 1. They
are shown for (b) real part and (c) imaginary part of Π , respectively.

which by themselves are not directly measurable.
In these applications one frequently encounters the problem that one needs EPC matrix elements
on momentum grids, which are finer than the ones used in the DFPT cycle. Denser k grids can
be applied in a straightforward way because the calculation of the EPC matrix elements is done
separately from the DFPT part, so that only additional Kohn-Sham states need to be calculated.
This is a numerically rather cheap procedure. In contrast, the DFPT calculation of δqκαveff is
much more demanding. Therefore, matrix elements gqjk+qν′,kν for intermediate q are obtained
by interpolation techniques. One way is to interpolate δqiveff given on a regular qi-grid and use
exact Kohn-Sham states to evaluate the matrix elements. An alternative route is to use electron
and phonon Wannier functions to represent the EPC matrix elements and utilize their spatial
localization to interpolate them on very fine momentum grids [44, 45].

3.2 Phonon self-energy and linewidth

On the level of DFPT in the harmonic approximation, phonons are elementary excitations of the
lattice, which do not interact and therefore have infinite lifetime. The interaction with electrons
results in renormalized quasiparticle properties expressed by the phonon self-energy Π . The
renormalized phonon Greens function is obtained from the bare Greens function D0,qj(ω) =

1/(ω − ωqj)− 1/(ω + ωqj) via the Dyson equation D−1 = D−1
0 −Π as

Dqj(ω) =
2ωqj

ω2 − ω2
qj − 2ωqjΠqj(ω)

. (53)

For not too large self-energies, the renormalization of the phonons leads to (i) a broadening of
the quasiparticle peak of the spectral function, i.e. a finite linewidth, which is proportional to
the inverse lifetime, and (ii) to a shift of the peak position. The linewidth is connected to ImΠ ,
and the peak shift to ReΠ .
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In the following, we briefly sketch the approach to the phonon renormalization in the DFPT
framework. It basically focuses on the lowest-order corrections beyond the adiabatic approx-
imation. The starting point is a diagrammatic representation of the self-energy contributions
coming from second-order EPC as sketched in Fig. 2(a). In general, the electron-hole bubble
depends on the frequency ω and varies on the scale of electronic energies. These are usually
much larger than typical phonon frequencies relevant for the renormalization. Therefore, to
lowest order, one can take the static limit ω = 0, and the series of diagrams can be summed up
with the help of the screened vertex introduced above in Fig. 2(b). This gives a contribution to
ReΠ only, which has the form

ReΠqj(0) =
1

Nk

∑
kνν′

gqjk+qν′,kν

(
g

(0)qj
k+qν′kν

)∗ f(εkν)− f(εk+qν′)

εkν − εk+qν′
. (54)

Here f(ε) = (1 + e(ε−µ)/kBT )−1 denotes the Fermi distribution function. Eq. (54) involves
both the screened and bare vertices due to fact that the screening enters in a symmetric way,
and using the screened vertex on both sides would result in a double counting of the diagrams
containing the dashed lines.
It is now instructive to see that this static renormalization is already included in the DFPT
procedure. This can be seen by using the definitions of the screened and bare vertices

ReΠqj(0) =
1

Nk

∑
kνν′

gqjk+qν′,kν

(
g

(0)qj
k+qν′kν

)∗ f(εkν)− f(εk+qν′)

εkν − εk+qν′

=
1

Nk

∑
kνν′

∑
κακ′β

Aqj
καA

−qj
κ′β 〈k+ qν ′|δqκαveff |kν〉〈kν|δ−qκ′βvext|k+ qν ′〉

×f(εkν)− f(εk+qν′)

εkν − εk+qν′

=
1

Nk

∑
kνν′

∑
κακ′β

Aqj
καA

−qj
κ′β

∫
d3rδqκαn(r)δ

−q
κ′βvext(r) . (55)

In the last step the linear-response expression (30) for the first-order variation of the electronic
density was applied. Comparison with Eq. (46) shows that this term corresponds to the first
contribution to the dynamical matrix which comes from the variation of the density. Thus this
renormalization is already taken into account on the level of DFPT.
The situation is different for ImΠ . This is a true non-adiabatic property, and one has to go
beyond the static approximation. The dominant contribution in the limit ω → 0 is obtained by
replacing in each term of the series in Fig. 2(a) one electron-hole bubble by its imaginary part
and taking the static limit for all others. Then again, the series can be summed up, but now both
vertices in the diagram are screened (Fig. 2(c)). This leads to the following expression for the
linewidth (half-width at half maximum)

γqj = −2 ImΠqj(ωqj)

= 2π
1

Nk

∑
kνν′

∣∣gqjk+qν′,kν

∣∣2 (f(εkν)− f(εk+qν′)
)
δ
(
ωqj + (εkν − εk+qν′)

)
. (56)
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Fig. 3: Phonon dispersion (left panel) and linewidths (right panel) for two high-frequency
branches of YNi2B2C along the [001] direction. Shown are inelastic neutron scattering results
(symbols) together with first principles predictions (lines) [47].

This expression contains the T -dependence via the Fermi distribution functions f . It can be
further simplified as long as the electronic structure has no peculiarities on the scale of phonon
energies. The δ-function forces the energy difference εkν − εk+qν′ to be small, hence the dif-
ference of the Fermi distribution functions can be approximated with the help of its energy
derivative f ′ = df/dε

f(εkν)− f(εk+qν′) ≈ f ′(εkν)(εkν − εk+qν′)→ −f ′(εkν)ωqj . (57)

Finally, the phonon frequency is neglected in the δ function.
At low temperatures, the energy derivative of the Fermi distribution function is strongly peaked
at the Fermi energy. In the limit T → 0, it can be replaced by f ′(εkν) → −δ(εkν − εF ). We
finally arrive at an expression for the EPC-induced phonon linewidth valid in the limit T → 0

γqj = 2πωqj
1

Nk

∑
kνν′

|gqjk+qν′,kν |
2δ(εkν − εF )δ(εk+qν′ − εF ) . (58)

It contains only quantities that are available within the DFPT approach to the EPC. The deriva-
tion of (58) was first given by Allen [46]. This form of the linewidth is most often used in
first-principles calculations. One must, however, be aware of the approximations underlying its
derivation. It is only valid in the limit T → 0 and also breaks down in the limit q→ 0 for met-
als because intraband scattering events involve arbitrarily small energy differences εkν− εk+q,ν ,
and the phonon frequency cannot be neglected anymore.
Phonon linewidths can be measured by, e.g., inelastic neutron or x-ray scattering experiments.
However, when comparing theory and experiment, one should keep in mind that the above
formula only represents the contribution to the linewidth coming from EPC. Experimentally,
one needs to separate it from other possible contributions to the linewidth, most importantly
those related to anharmonic decay processes, which often is not easy to achieve.
An example is shown for two high-frequency modes of the superconductor YNi2B2C in Fig. 3.
Measurements were done at low T , where anharmonic contributions are supposed to play a
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minor role. The calculations do predict the size and momentum dependence of the linewidths
reasonably well, demonstrating that even for compounds with rather complex lattice structure
these calculations are reliable.
As we will see in the discussion of superconductivity given below, the same expression (58)
enters the pairing properties. As such Eq. (58) provides a link between the pairing strength of a
phonon mode and the linewidth, the latter being an experimentally accessible quantity.
As discussed in Sec. 3.1, the concept of electron-phonon coupling goes beyond the adiabatic
approximation, and we leave the firm base of DFT. The above derivation showed, however, that
to a first approximation the phonon linewidth can still be calculated within the DFPT scheme.
To include further non-adiabatic corrections as for, e.g., the frequency renormalization, a more
general framework like the time-dependent DFT is required. Such a generalization was outlined
recently by Saitta et al. [48].

3.3 Phonon mediated pairing interaction and superconductivity

Superconductivity is a macroscopic quantum phenomenon of the electron system. Its origin lies
in an instability of the Fermi liquid state and leads to a new ground state of correlated paired
electrons (Cooper pairs). In their seminal paper, Bardeen, Cooper, and Schrieffer (BCS) [49]
have shown that this state is stabilized when there is a small attractive interaction among two
electrons. Such an attractive interaction is always provided by the electron-phonon coupling,
which thus represents a natural source for pairing in any metal. EPC is known to be the pairing
mechanism in most superconductors, which are commonly termed classical superconductors
to distinguish them from more exotic materials where other types of pairing mechanism are
suspected.
The BCS theory treated the EPC only in a simplified form appropriate for the weak coupling
limit. Soon after a more complete theory was worked out, applying many-body techniques (for
a review see, e.g., Scalapino [50]) . The resulting Eliashberg theory [51] extends the framework
of BCS into the strong coupling regime and allows a quantitative prediction of many proper-
ties of the superconducting state. An important property of the superconducting state is that
the quasiparticle spectrum is gapped. The size of the gap plays the role of an order parame-
ter. It is determined from a self-consistent solution of a set of equations which generalize the
BCS gap equations. An important feature of these so-called Eliashberg gap equations is that
only normal-state properties enter, which specify a particular material. These include details
about the electronic structure and the phonon-mediated pairing interaction, quantities which are
readily accessible within the first principles approach to EPC outlined above.
As the Eliashberg theory will be presented in detail in another lecture of this Autumn School,
I will focus here on the procedure to calculate the effective electron-electron interaction. The
physical process behind the phonon-mediated interaction is the exchange of a phonon between
two electrons, shown schematically in Fig. 4. This translates into the so-called Eliashberg
function

α2Fkν,k′ν′(ω) = N(εF )
1

Nq

∑
qj

|gqjk′ν′,kν |
2 δ(ω − ωqj) . (59)
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Fig. 4: Diagrammatic representation of the effective electron-electron interaction mediated by
the exchange of a phonon.

Here N(εF ) is the electronic density-of-states at the Fermi energy per spin. The sum extends
over all phonon modes mediating the interaction, which also determine its frequency depen-
dence. Both coupling vertices are represented by screened matrix elements, and its implicit
momentum conservation restricts the sum to q = k′ − k. For the superconducting pairing, this
interaction is most effective for electronic states with energies |εkν − εF | ≤ ωphonon. Thus, in
practice one evaluates (59) only for states right at the Fermi surface (for an elaborate discussion
of the underlying assumptions and approximations see [52]).
Most superconductors exhibit surprisingly isotropic superconducting gaps. The reason is that
defects, which are always present in real materials, tend to wash out the momentum dependence
of the interaction. In many cases, it is sufficient to consider the Fermi surface average leading
to the isotropic Eliashberg function α2F (ω) =

∑
kν,k′ν′ wkνwk′ν′α

2Fkν,k′ν′(ω) with wkν =

δ(εkν − εF )/N(εF ). Taking momentum conservation into account, this is typically cast into the
form

α2F (ω) =
1

N(εF )

1

Nq

∑
qj,kνν′

|gqjk+qν′,kν |
2δ(ω − ωqj)δ(εkν − εF )δ(εk+qν′ − εF ) . (60)

Within Eliashberg theory, important characteristics like the superconducting transition temper-
ature often depend on integrated quantities only. One such quantity is the isotropic coupling
constant defined by

λ = 2

∫
dω

α2F (ω)

ω
, (61)

which is the dimensionless measure of the average strength of the coupling. Commonly, values
larger than 1 are characterized as strong coupling. The factor 1/ω in the integral indicates
that low-energy modes are generally more effective than high-energy modes in mediating the
pairing.
At this stage it is useful to make a connection to the expression for the phonon linewidth derived
in the limit T → 0. Using Eq. (58), the isotropic Eliashberg function can be written as

α2F (ω) =
1

2πN(εF )

1

Nq

∑
qj

γqj
ωqj

δ(ω − ωqj) (62)

and the isotropic coupling constant as

λ =
1

πN(εF )

1

Nq

∑
qj

γqj
ω2
qj

. (63)
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The dimensionless prefactor γqj/ωqj in (62) can be interpreted as a measure of the coupling due
to an individual phonon mode. The Eliashberg function is then given as a sum over all phonon
branches and averaged over phonon momentum.
Commonly, DFPT based calculations of the Eliashberg function are done by first calculating
γqj and then performing the sum over the phonon spectrum. The appearance of a product of
δ-functions in the expression (58), however, requires a careful numerical approach. Usually
the δ-functions are replaced by smoother functions like Gaussians, but to reach convergence
the k-summation has to be carried out on meshes which are denser than the one used for the
calculation of the phonon properties.
The strong-coupling superconductor Pb illustrates this general approach well because the effects
of EPC are especially pronounced and relativistic corrections are necessary for a satisfactory
quantitative description. Fig. 5(a) shows the phonon dispersion along high-symmetry directions,
comparing semi-relativistic (SR) results and those including the spin-orbit coupling (SOC) with
data from inelastic neutron-scattering experiments. The experimental scale of phonon frequen-
cies, and in particular the pronounced anomalous dips observed at various points along the
dispersion curves are fingerprints of strong EPC. They are much better reproduced when SOC
is included, which in addition improves the whole spectrum by lowering the frequencies as
compared to the SR calculation. Phonon linewidths shown in Fig. 5(b) for the same branches
exhibit a strong variation as a function of momentum. The values are generally larger for the
SOC calculation, indicating that the matrix elements are enhanced significantly. This is re-
flected in an enhanced α2F shown in Fig. 5(c), which much better agrees with the Eliashberg
function derived from tunneling spectroscopy experiments. The isotropic coupling constant λ
is increased from 1.08 to 1.56 by SOC, which matches well the experimental value of 1.55. A
closer look at the different contributions to λ reveals that about half of this increase originates
in the softening of the spectrum (due to the factor 1/ω in the expression for λ), while the other
half comes from an increase of the coupling matrix elements. This example demonstrates that
SOC can substantially modify the EPC [43].
Anisotropic superconducting states can be handled using the full momentum dependence of the
Eliashberg function (59). This has been done rarely in the past, as the fully anisotropic gap
equations are difficult to solve. A special class of anisotropic superconductors are multiband
superconductors, which possess several Fermi surface sheets. The superconducting gap can
vary among the different sheets but is approximately isotropic on a single sheet. In this case, a
partially averaged pairing function is appropriate

α2Fνν′(ω) =
1

N(εF )

1

Nq

∑
qj,k

|gqjk+qν′,kν |
2δ(ω − ωqj)δ(εkν − εF )δ(εk+qν′ − εF ) . (64)

The isotropic Eliashberg function is replaced by a matrix describing intraband and interband
pairing contributions.
A textbook example of such a multiband superconductor is MgB2. Here two types of electronic
states are present at the Fermi level: σ and π states, which are derived mainly from the boron p
states. Calculations of the band-resolved Eliashberg functions shown in Fig. 6 revealed that the
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Fig. 5: Phonon and electron-phonon coupling properties for the elemental superconductor Pb.
Figures show (a) the phonon dispersion, (b) the mode-dependent linewidth, and (c) the Eliash-
berg function (c). Black lines indicate results of calculations without spin-orbit coupling, and
red lines with spin-orbit coupling included. For comparison, blue symbols show experimental
results for (a) phonon frequencies obtained from inelastic neutron scattering experiments [53]
and (c) the Eliashberg function extracted from tunneling spectroscopy data [54].

pairing interaction is predominantly driven by the intraband σ-σ contribution. It originates from
a strong coupling to in-plane B vibrations which drive a large softening of branches connected to
the E2g modes (left panel in Fig. 6). This peculiar pairing interaction leads to a superconducting
state with gaps of different magnitude for the σ and π Fermi surfaces whose signature could be
found, e.g., in specific heat measurements. Tunneling spectroscopy gave strong support for the
predicted multiband pairing spectrum [55], too.
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Fig. 6: Left panel: Calculated phonon dispersion of the multiband superconductor MgB2. The
large frequency softening of the E2g-related branches due to a very strong EPC is indicated
by red arrows. Right panel: Calculated total and band-resolved Eliashberg functions of MgB2

demonstrating that the dominant coupling originates from a large intraband σ-σ pairing inter-
action.

3.4 Electron self-energy effects

Another important physical consequence of EPC is the renormalization of electronic quasiparti-
cles. This has particularly profound consequences for metals, as it strongly modifies electronic
states whose energy distance to the Fermi level is of the order of the phonon energies. Although
this is a small energy compared to typical electronic scales, it significantly influences Fermi
surface related properties like transport or thermodynamics.
Nowadays, there are a variety of experimental techniques that can probe the properties of elec-
tronic quasiparticles in fine detail. A well known example is angle-resolved photoemission
spectroscopy (ARPES), which essentially measures the quasiparticle spectral function of occu-
pied states, while unoccupied states can be accessed by, e.g., pump-probe experiments. Such
studies provide information about the energy and momentum dependence of the renormalization
due to EPC. As these techniques are rather surface sensitive, most applications were devoted to
surface electronic states (for a recent review, see [56]).
The renormalization is described by the electron self-energy, which via the Dyson equation
enters the renomalized electronic Green’s function as

G(kν, ε) =
(
ε− (εkν − µ)−Σ(kν, ε)

)−1
. (65)

For not-too-large self-energies, the spectral function Akν(ε) = −ImG(kν, ε + iδ) possesses a
well defined peak at a shifted quasiparticle energy determined by the real part of Σ

εkν = εkν − ReΣ(kν, εkν) . (66)

The quasiparticle acquires a finite lifetime leading to a linewidth (FWHM)

Γkν = −2ImΣ(kν, εkν) (67)

that is determined by the imaginary part.
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Fig. 7: Diagrammatic representation of the lowest-order contribution to the electron self-energy
from the electron-phonon coupling.

The relevant lowest order diagram due to EPC is shown in Fig. 7. It describes a virtual exchange
of a phonon. Note that in this case both coupling vertices are screened. This leads to the
following expression

Σ(kν, ε) =
1

Nq

∑
qj

∑
ν′

∣∣gqjk+qν′,kν

∣∣2( b(ωqj)+f(εk+qν′)

ε+ ωqj − εk+qν′ + iδ
+
b(ωqj)+1−f(εk+qν′)

ε− ωqj − εk+qν′ + iδ

)
. (68)

The T dependence now enters via both Fermi and Bose distribution functions, f(ε) and b(ω) =
[eω/kBT − 1]−1, respectively.
From Eq. (68) one can readily derive the expression for the imaginary part. It is convenient to
introduce two spectral functions which depend explicitly on the electronic state (kν)

α2F±kν(ε, ω) =
1

Nq

∑
qj

δ(ω − ωqj)
∑
ν′

∣∣gqjk+qν′,kν

∣∣2δ(ε− εk+qν′ ± ω) . (69)

Then the imaginary part can be cast in the form

ImΣkν(ε) = −π
∫ ∞

0

dω
{
α2F+

kν(ε, ω)[b(ω)+f(ω+ε)]+α
2F−kν(ε, ω)[b(ω)+f(ω−ε)]

}
. (70)

The appearance of δ-functions in (69) allows a straightforward numerical evaluation of Eq. (70).
In contrast, a direct calculation of ReΣ(kν, ε) via Eq. (68) requires a summation over many
intermediate electronic states, which converges slowly. Therefore, in practice, one obtains ReΣ
by making use of the Kramers-Kronig relation

ReΣ(kν, ε) =
1

π

∫
dε′

ImΣ(kν, ε′)

ε− ε′
. (71)

From (70) one readily obtains an expression for the EPC-induced quasiparticle linewidth

Γkν = 2π

∫ ∞
0

dω
{
α2F+

kν(εkν , ω)[b(ω)+f(ω+εkν)]+α
2F−kν(εkν , ω)[b(ω)+f(ω−εkν)]

}
. (72)

The two terms in this expression represent two different scattering processes, which are sketched
in Fig. 8. When a quasiparticle hole is created at the state (kν), electrons can scatter from
states with higher or lower energies, respectively. To conserve the total energy, the first process
is connected with the emission of a phonon and is described by α2F−kν . On the other hand,
α2F+

kν describes the scattering of an electron from a lower-energy state with the simultaneous
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Fig. 8: Illustration of the scattering processes contributing to the self-energy of a hole quasi-
particle with momentum k and band index ν. Electrons (red lines) can scatter virtually from
states with higher or lower energies under simultaneous emission or absorption of a phonon
(blue lines), respectively.

absorption of a phonon. A similar interpretation can be given if a quasiparticle is created at
energies ε > εF .
While the emission and absorption spectra differ in principle, it is often found in practice that
the differences are small. This is due to the fact that the electronic energy scale is typically
much larger than the phonon energies. Therefore, emission or absorption of a phonon mainly
changes the momentum of the electron, while the energy change is negligible. In this case the
phonon energy in the δ-function of (69) can be dropped resulting in α2F±kν ≈ α2Fkν , with the
spectral function

α2Fkν(ε, ω) =
1

Nq

∑
qj

δ(ω − ωqj)
∑
ν′

∣∣gqjk+qν′,kν

∣∣2 δ(ε− εk+qν′) . (73)

This so-called quasielastic approximation leads to the simplified expression of the linewidth

Γkν = π

∫ ∞
0

dω
{
α2Fkν(εkν , ω)[2b(ω) + f(ω + εkν) + f(ω − εkν)]

}
. (74)

The coupling parameter is defined via

λkν = 2

∫
dω

α2Fkν(εkν , ω)

ω
. (75)

This dimensionless quantity characterizes the interaction strength of a specific electronic state
to the whole phonon spectrum, and depends both on the momentum and band character of the
electronic state. Numerical evaluation of the sum in (73) requires typically rather dense q-
meshes to reach convergence. To get the related matrix elements one resorts to interpolation
techniques mentioned in Sec. 3.1.2.
The Eliashberg function discussed in Sec. 3.3 is related to this state-dependent spectral function
via appropriate momentum averages at the Fermi energy. For the isotropic Eliashberg function
the relation α2F (ω) =

∑
kν wkνα

2Fkν(εF , ω) holds with weights wkν = δ(εkν − εF )/N(εF ),
and the isotropic coupling constant is given by λ =

∑
kν wkνλkν .
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Fig. 9: Illustration of the renormalization of an electronic band for a model coupling to an
Einstein-type phonon branch with energy Ω. (a) Real and imaginary part of the electron self-
energy. (b) Renormalized quasiparticle dispersion, showing a kink at the phonon frequency.

Experimentally, the coupling strength of individual electronic states can be probed in two dif-
ferent ways. The first is related to the T -dependence of the linewidth. In Eq. (74), it is contained
solely in the Bose and Fermi distribution functions. One can easily derive its behavior for the
two limiting cases, T → 0 and large T . For T → 0, n(ω) vanishes and one obtains

Γkν → 2π

∫ ωmax

0

dω α2Fkν(εkν , ω) . (76)

With increasing temperature, the linewidth increases for all energies. For temperatures larger
than the maximum phonon frequency, this T -dependence becomes linear, and its slope is deter-
mined by the average coupling parameter defined above

Γkν ≈ 2πλkνkBT . (77)

This relationship has been widely used to extract λkν from measurements of Γkν(T ) for surface
electronic states. The analysis is, however, complicated by the fact that the measured linewidth
also contains contributions from other decay channels, most noticeably due to electron-electron
interaction and due to elastic scattering at defects.
A second route to connecting theory and experiment are ARPES measurements of the spectral
function of electronic bands close to the Fermi energy. They provide more direct information
about the renormalization and the underlying self-energy. It is instructive to first look at a
simple model where only a single dispersionless phonon branch is involved in the coupling, i.e.
α2Fkν(ω) possesses one δ-type peak at the phonon frequency Ω (Einstein model). Fig. 9(a)
shows the resulting self-energy for T → 0. Its imaginary part exhibits a step at Ω because, for
ω < Ω, no phonons are available to promote the scattering, while for ω > Ω this scattering
channel is opened. The real part of the self-energy exhibits a peak at the phonon frequency,
which shows that the largest shifts of the quasiparticle peaks occur for electronic states with
ε − εF ≈ Ω. As a consequence, the renormalized dispersion shown in Fig. 9(b) exhibits a
kink-like structure right at the phonon energy.
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Fig. 10: Electronic-state dependent coupling constants for Pb. Left panel: band structure
along the high-symmetry directions KΓ and ΓL. Right panels: Momentum-dependent coupling
constants for the two bands crossing the Fermi level. Spin-orbit coupling was taken into account
in the calculations.

In the general case, many phonon modes of different energies contribute to α2Fkν(ω) resulting
in a broadened self-energy and kink structure. The coupling parameter is related to the slope of
ReΣ at the Fermi energy, and the exact relation

λkν =
∂ReΣ(kν, ε)

∂ε

∣∣∣∣
ε=εF ,T=0

, (78)

holds. It has been used to extract the coupling parameter from measurements of the renormal-
ized electronic bands.
Application of the first principles approach to a real system is exemplified for the case of lead
[57]. Fig. 10 shows the results for the coupling constant of electronic states for two bands
crossing the Fermi surface. One can observe that λkν can be significantly smaller or larger than
the Fermi-surface average of λ = 1.56 discussed in Sec. 3.3. The variations partly reflect that
the availability of intermediate states contributing to the renormalization depends on the binding
energy and partly result from a momentum dependence of the EPC matrix elements.
Connection to experiment can be established by comparing the self-energy of states at the Fermi
level. Fig. 11 shows data from angle-resolved photoemission spectroscopy experiments for the
state of band #8 at the crossing with the Fermi level along the K-Γ direction. The calculations
describe the data rather satisfactorily. For this state they predict a coupling constant of λk =

1.79, which is 15% larger than the Fermi-surface average.
The above-given analysis rests on a simplified solution of the Dyson equation which is justified
as long as the coupling does not become too large. A generalized treatment has been presented
by Eiguren et al. [59] that employs a self-consistent solution of the Dyson equation in the
complex plane. They showed that for larger coupling the renormalization process becomes
much more involved. It can lead to a complex structure of the electronic spectral function,
indicating a break-down of the quasiparticle picture.
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Fig. 11: Electronic self-energy for Pb. Compared are calculated and measured results for the
electronic state at the Fermi-surface crossing of band #8 along the KΓ direction (see Fig. 10).
Calculations (red lines) include spin-orbit coupling. Angle-resolved photoemission data (blue
symbols) were taken from Reinert et al. [58].

4 Summary

In this tutorial, I have given an introduction to the first principles approach to phonons and
electron-phonon interaction within the linear-response framework of density functional theory,
the so-called density functional perturbation theory. We have seen that adiabatic lattice vi-
brations are linked directly to electronic ground-state properties, and their properties can be
calculated efficiently within the DFPT scheme. In contrast, electron-phonon coupling is a truly
non-adiabatic property. Nevertheless, DFPT provides a simple way to quantify the screened
electron-phonon vertex, which is one of the central quantities determining physical observables
like phonon linewidth, electron renormalization, or phonon-mediated pairing interaction. This
approach is valid as long as the electronic structure does not possess peculiarities on the energy
scale of phonons.
This technique has been applied in recent years to a large variety of compounds. Its most com-
mon use was devoted to quantitative estimates of the pairing interaction for superconductors,
providing valuable information about the basic question of the pairing mechanism. Measure-
ments of quasiparticle renormalization are a more direct tool to gain information about the
energy and momentum dependence of the electron-phonon vertex, and offer the possibility to
check the accuracy of the DFPT predictions in greater detail. This route should be pursued
more systematically in the future. A current challenge in this field is to incorporate more so-
phisticated treatments of electron correlations in order to extend applications to systems where
strong correlations play a crucial role.
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