Superconductivity and two dimensionality: experimental facts, theoretical issues, novel materials

Warren E. Pickett University of California Davis

Emphasis: el-ph coupling and nonmagnetic el-el coupling → higher T_c in this talk.

Graphane CH

Autumn School "Emergent Phenomena in Correlated Matter," FZ Julich, Sept 2013

Ch. 11: Superconductors, W. E. Pickett

Coming soon: Lectures on Superconductivity Theory

Ch. 10: Correlated Superconductivity, A.-M. Tremblay

Ch. 12: Electron-Phonon Coupling, R. Heid

Ch. 13: Eliashberg Theory, G. A. C. Ummarino

Educational Sites for Superconductivity

University of Cambridge *Lectures on Superconductivity* http://www.msm.cam.ac.uk/ascg/lectures/introduction/welcome.php

MIT Open Courseware: *Applied Superconductivity* Very long URL, search for it.

Several others, mostly less extensive.

Also: work through the first 12-15 pages of BCS paper (Phys Rev, 1957)

And the book: *Superconductivity*, by J. R. Schrieffer (1964)

Word to the wise: regarding new, high temperature superconductors – don't believe all (or even much) of what you find online.

The Possibility of Room Temperature Superconductivity

& Related Topics

June 10th, 11th and 12th

FEATURED SPEAKERS Alexei A. Abrikosov **Meigan Aronson Neil Ashcroft Paul Capfield Paul Cho** Laura Greene **Arthur Freeman John Keiterson Gennady Logvenov** Igor Mazin Warren Pickett Mohit Randeria **John Sarrao Douglas Scalapino** Masashi Tachiki A. J. Leggett its be confirmed)

TOPICS

Workshop on

- Routes to higher transition temperature
- Materials
- Mechanisms
- Theoretical limits
- Exotic condensates

ORGANIZING COMMITTEE George Crabtree (ANL) Wai-Kwong Kwok (ANL) Boldizser Janke (ND) Michael R. Norman (ANL)

CONFERENCE REVIEW To be published by Physica C

CONFERENCE LOCATION McKenna Hall University of Natre Dame

For further information contact

Drew Sandler, Administrator | The Institute for Theoretical Sciences | 339C Nieuwland, Science Rall | University of Notre Denn | Notre Dame, IN 45555 email: esandle1@nd.edu | phone (574) 631-2668 | Fax (574) 631-5259 | www.theoryinstitute.org/ns

The Path to Room Temperature Superconductivity

Hotel Alexandra

Loen, Norway 17 - 23 June 2007

Organizers/Sponsors

Dr. <u>Harold Weinstock</u>, European Office of Aerospace R&D (AFOSR) Prof. <u>Paul C. W. Chu</u>, Houston International Materials Forum. U. Houston Prof. <u>Horst Rogallo</u>, U. Twente

All Presentations (link added 23 April 2010)

Upcoming Superconductivity Workshop (almost certain)

"(Toward) Room Temperature Superconductivity" Organizers: E K U Gross, A Sanna, L Boeri June-July 2014, Leiden, The Netherlands How to attract funding.....

ASTONISH

Atomic-scale STudies Of the Nature of and conditions for Inducing Superconductivity at High-temperatures A 2013 ERC funded research project R. Wiesendanger, Univ. of Hamburg

In the framework of the ERC Advanced Grant "ASTONISH" (Atomic-scale STudies Of the Nature of and conditions for Inducing Superconductivity at High-temperatures), the University of Hamburg is **seeking outstanding and enthusiastic young researchers with a strong record of creativity and achievements in the area of superconductivity** in MBE grown sample systems. The project aims at a novel surface-science based approach to unconventional superconductivity, combining atomically controlled vertical growth and lateral atomic-scale manipulation tools with a unique set of atomic-resolution characterization techniques, including elastic and inelastic scanning probe spectroscopy with spin resolution at relevant energy scales......

This announcement is currently active.

Why 2D? why low-Z? why doped insulators?

Why 2D?

- examples (following slides): many classes of good sc'ors
- phase space [N(E)] is more favorable than in 3D
- electronic and phononic structure may be distinctive

Why low-Z?

- mass is smaller \rightarrow good for el-ph high T_c
- bonding is stronger \rightarrow stronger el-ph coupling
- other factors?? many classes of good 2D sc'ors

Why doped insulator? Much of the point of this talk

A partial history of the pnictide superconductors

Think in terms of new compounds.....

Recall:

- Cuprates began with La-Ba-Cu-O with $T_c=30$ K
- Fe pnictides began with LaONiP with $T_c = 5K$

So: pay attention to new discoveries.

Bi404S3 system

Mizuguchi et al., arXiv:1207.3145 was an early paper. A dozen or two papers available now.

Superconducting in the Bi-S bilayer at $T_c = 4.5K$

Apparently, electron carriers in the Bi p_x , p_y bands

Nonstoichiometric, i.e.doped.

A new platform for higher T_c? Not yet?

Y 20 K at 115 GPa, Ca 25 K at 161 GPa

C. Buzea et al., Supercond. Sci. Technol. 18 (2005) R1-R8

Elemental Superconductors versus Time

• Historical development of the critical temperature of simple elements (C. Buzea *et al.*, Supercond. Sci. Technol. **18** (2005) R1–R8)

Elemental Superconductors versus Z

Highest critical temperature of simple elements plotted vs. atomic number.

[C. Buzea et al., Supercond. Sci. Technol. 18 (2005) R1-R8]

(missing Li)

1972 Nobel Prize in Physics

"For their jointly developed theory of superconductivity, usually called the BCS theory." [This is the weak-coupling theory.]

John Bardeen, Leon Cooper, J. Robert Schrieffer Phys. Rev. 108, 1175-1204 (1957)

The genuine article: Eliashberg theory for real materials, including strong coupling. Scalapino, Schrieffer, Wilkins, PR ~ 1965

Electron-Phonon Coupling

Matrix element: mplitude for scattering from the one-electron state $|kj\rangle$ to the state $|k+Qj\rangle$ via the phonon Qv

$$M_{\vec{k}+\vec{Q}j',\vec{k}j}^{\vec{Q}v} = \left\langle \vec{k} + \vec{Q}j' \middle| \delta^{\vec{Q}v} V_{eff} \middle| \vec{k}j \right\rangle$$

An electron moving through the lattice disturbs the positions of the ions (electron-phonon interaction), a later electron experiences the deformation, with a net attractive interaction.

 $v_{ph}/v_{el} << 1$ is the expansion parameter in perturbation theory

The physical picture (a crude version)

1st three: Bernd Matthias's rules for finding high T_c superconductors (~1970).
 Last four: extended to ~1980 understanding.

- 1. Must have d electrons (not just s-p, nor f)
- 2. High symmetry is good, cubic is best
- 3. Need a peak in density of states at Fermi level
- 4. Must spread the coupling over all phonons
- 5. Coulomb interaction must be docile
- 6. Stay away from oxides
- 7. Stay away from magnetism

1st three: Bernd Matthias's rules for finding high T_c superconductors (~1970). Last three: extended to ~1980 understanding.

- 1. Must have d electrons (not just s-p, nor f)
- 2. High symmetry is good, cubic is best
- 3. Need a peak in density of states at Fermi level
- 4. Must spread the coupling over all phonons
- 5. Coulomb interaction must be docile
- 6. Stay away from oxides
- 7. Stay away from magnetism
- 8. Stay away from theorists!

Bernd Matthias's rules for finding high Tc superconductors (~1970). Extended to ~1980 understanding.

- 1. Must have d electrons (not just s-p, nor f) \times MgB₂
- 2. High symmetry is good, cubic is best X Best are 2D!
- 3. Need a peak in density of states at Fermi level X MgB₂, ...
- 4. Must spread the coupling over all phonons $X MgB_2$
- 5. Coulomb interaction must be docile X Cuprates, FeSCs
- 6. Stay away from oxides X Cuprates, BKBO
- 7. Stay away from magnetism X Cuprates, FeSCs, HFs
- 8. Stay away from rules for finding higher $T_c!$

Akimitsu's Discovery (2001): $T_c=40K$ in MgB₂

- 1. MgB₂: covalent bonds driven metallic by chemistry
- 2. Deformation potential D=13 eV/A

(amazingly large for a metal)

MgB₂ is naturally "hole-doped."

Highly focused EPI

3. 2D (cylinder) Fermi surfaces focus coupling strength

4. Yet structure remains stable: intrinsic covalency and very strong bonds

J. M. An and WEP, Phys. Rev. Lett. (2001) J. Kortus et al., Phys. Rev. Lett. (2001) Y. Kong et al., Phys. Rev. B (2001) K.-P. Bohnen et al., Phys. Rev. Lett. (2001)more......

Y. KONG, O. V. DOLGOV, O. JEPSEN, AND O. K. ANDERSEN

PHYSICAL REVIEW B 64 020501(R)

FIG. 1. Left: Calculated phonon dispersion curves in MgB₂. The area of each circle is proportional to the mode λ . The insets at the bottom show the two ΓA E eigenvectors (not normalized), which apply to the holes at the top of the σ bands (bond-orbital coefficients) as well as to the optical bond-stretching phonons (relative change of bond lengths). Right: $F(\omega)$ (full curve and bottom scale), $\alpha^2(\omega)F(\omega)$ (broken), and $\alpha_{tr}^2(\omega)F(\omega)$ (dotted). See text. Electron-Phonon Coupling: General Results for $\lambda_{Q\nu}$ and $\gamma_{Q\nu}$ P. B. Allen, PR B6, 2577 (1972)

$$\begin{split} \lambda &= \frac{1}{N_{\nu}} \sum_{Q,\nu=1}^{N_{\nu}} \lambda_{\vec{Q},\nu} = 2 \int \frac{\alpha^2 F(\omega)}{\omega} d\omega \\ \alpha^2 F(\omega) &= \frac{2}{\pi N(0)\omega} \sum_{Q\nu} \gamma_{Q\nu} \delta(\omega_{Q\nu} - \omega) \\ \omega_{Q\nu}^2 &= \Omega_{Q\nu}^2 + 2\Omega_{Q\nu}^2 Re \ \Pi(Q, \omega_{Q\nu}) \\ \gamma_{Q\nu} &= \frac{\Omega_{q\nu}}{\omega_{Q\nu}} Im \ \Pi(Q, \omega_{Q\nu}) \\ &= \pi \sum_k |M_{k,k+Q}|^2 \delta(\varepsilon_k) \delta(\varepsilon_{k+Q}) \\ \lambda &= \frac{1}{N_{\nu}} \sum_{Q\nu} \lambda_{Q\nu} = \frac{4}{\pi N(0)} \sum_{Q\nu} \frac{\gamma_{Q\nu}}{\omega_{Q\nu}^2} \end{split}$$

3% of phonons have $\lambda \sim 25!$ Rest of phonons have $\lambda \sim 0.3$

$$\lambda_{\vec{Q},\nu} = 4 \frac{2}{\omega_{\vec{Q},\nu}} \sum_{k} |M_{k,k+Q}|^2 \delta(\varepsilon_k) \delta(\varepsilon_{k+Q})$$

$$= 4 \frac{4\pi V_c |M|^2}{\omega_{\vec{Q},\nu} c k_F^2} \frac{1}{x\sqrt{1-x^2}}, x \equiv \frac{Q}{2k_F}$$

Phonon Renormalization (Self Energy)

simple and distinctive phase space in 2D

Phonon softening in MgB₂

Extreme Electron-Phonon Coupling: Kohn Anomalies

$$\omega_{Q\nu}^2 = \Omega_{Q\nu}^2 + 2\Omega_{Q\nu}^2 \Pi(Q, \omega_{Q\nu})$$

$$\Pi(Q, \omega) = -2\sum_{k} |M_{k,k+Q}|^2 \frac{f_k - f_{k+Q}}{\varepsilon_{k+Q} - \varepsilon_k - \omega - i\delta}$$

2D dispersion, slowly varying matrix elements give

$$\Pi_{\nu}(Q, \omega) = -2|M_{\nu}|^2 \chi_L^{2D}(Q, \omega)$$

2D Kohn Anomaly

Y. KONG, O. V. DOLGOV, O. JEPSEN, AND O. K. ANDERSEN

FIG. 1. Left: Calculated phonon dispersion curves in MgB₂. The area of each circle is proportional to the mode λ . The insets at the bottom show the two ΓA E eigenvectors (not normalized), which apply to the holes at the top of the σ bands (bond-orbital coefficients) as well as to the optical bond-stretching phonons (relative change of bond lengths). Right: $F(\omega)$ (full curve and bottom scale), $\alpha^2(\omega)F(\omega)$ (broken), and $\alpha^2_{i\nu}(\omega)F(\omega)$ (dotted). See text.

PHYSICAL REVIEW B 64 020501(R)

BCS: $T_c \sim e^{-1/\lambda}$ (No) theoretical limit on T_c .

McMillan equation for
$$T_c$$

saturates for $\lambda > 1$

$$T_{c} = \frac{f_{1}f_{2}\omega_{1og}}{1.20} \exp\left(-\frac{1.04(1+\lambda)}{\lambda - \mu^{*} - 0.62\,\lambda\mu^{*}}\right)$$

Allen-Dynes equation for $T_{\rm c}$ (1975)

$$\begin{split} f_1 &= [1 + (\lambda/\Lambda_1)^{3/2}]^{1/3} , \\ f_2 &= 1 + \frac{(\overline{\omega}_2/\omega_{\log} - 1)\lambda^2}{\lambda^2 + \Lambda_2^2} \end{split}$$

 $T_c = \frac{\langle \omega \rangle}{1.20} \exp\left(-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\,\lambda)}\right)$

,

 $Λ_1 = 2.46(1 + 3.8 μ *),$ $Λ_2 = 1.82(1 + 6.3 μ *)(\overline{ω}_2 / ω_{log})$

From full "Eliashberg theory" in the strong coupling regime $\lambda >> 1, T_c \rightarrow \lambda^{1/2}$

Extremely encouraging news for those interested in high T_c!

Strong Coupling: Good News, Bad News Good news: T_c is unbounded in Eliashberg theory Bad news: real materials are complicated

P. B. Allen

Fig. 3. Causative relations are indicated by arrows. High T_c is partly a direct consequence of the primary factors, and partly indirect through the phonon dispersion. Dashed lines with arrows represent less certain relationships.

Electron-Phonon Coupling Strength Calculated for Li_{1-x}BC

Rosner, Kitiagorodsky, WEP, Phys. Rev. Lett. (2002)

The "complete understanding" of el-ph mechanism allows a rational search and/or design of new/better examples. It is the materials that are complex and devious.

Why 2D? why low-Z? why doped insulators?

Why 2D?

- examples (following slides): many classes of good sc'ors
- phase space [N(E)] is more favorable than in 3D
- electronic and phononic structure may be distinctive

Why low-Z?

- mass is smaller \rightarrow good for high T_c (isotope effect)
- bonding is stronger \rightarrow stronger el-ph coupling
- other factors?? many classes of good 2D sc'ors

Why doped insulator? Much of the point of this talk

Design of higher T_c superconductors: is it viable?

Rational Design/Search for new hTS

Example of one design criterion: doped 2D insulators

Select band structure to enable the phonons to use more of the Brillouin zone

MgB2-like materials (a brief mention)

Graphane

"up to 90K"

0.002

Û

0

200

Doped graphane CH

Coupling character

1000

1200

1400

300

Phonon Frequency (cm⁻¹)

600

400

A newer MgB₂-like example, hole-doped BeB_2C_2 BeB₂C₂: isoelectronic with LiBC, isoelectronic with MgB₂

MgB₂C₂ has received some study: hex B-C layers, not flat due to Mg positions. Could be quite interesting if hole-doped; no superconductivity yet produced..

Be_{1-x}B₂C₂: Moudden, Eur. Phys. J. B 64, 173 (2008). Guessed at structure(s). Found indications (predictions) of relatively high T_c.

2010: B. Albert's group determined the structure: P2₁/c? No. Pmmm, yes.

Calculations (Ylvisaker and WEP): when doped, very MgB₂-like. Could have $T_c \sim 50$ K if structure can be retained. A puzzle in 2D superconductivity electron-doped ZrNCL, HFNCL, TINCL

Alkali-doped ionic insulators: A_xZrNCl (15 K), A_xHfNCl (25 K), A_xTiNCl (17 K) Yamanaka et al. 1998--; Shamoto et al. 1998

SmSItype layer structure

Structure is somewhat MgB₂-like; so is it electron-phonon?

Heid & Bohnen (2006) el-ph coupling strength is not large enough

Bill et al. (2003) Coupling to/ screening by low energy plasmons is important 2.5 0.0 In-plane d band holds the carriers -5.0 Γ K M Γ

5.0

- Double hex Zr-N layer
- Strongly 2D bands
- Electron-doped
- Inverse 'isotope shift'
- Weak el-ph coupling

Superconductor-insulator transition at x=0.06

Increase in T_c upon Reduction of Doping in Li_xZrNCl Superconductors

PRL, 2009

Y. Taguchi,^{1,2} A. Kitora,¹ and Y. Iwasa^{1,2}

¹Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ²CREST. Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan

Metal Suparconductor 0.1 0.2 0.3 x FIG. 4 (color). (a) Magnetization at a field of 10 Oe (without

correction for demagnetizing field) is plotted against temperature for selected samples. (b) x dependence of the superconducting volume fraction determined by MH measurements at 2 K (or 5 K). Imperfect correction of the demagnetizing field is the reason the estimated volume fraction exceeds 100%. (c) x dependence of T_r , exemplifying rapid increase in T_r below x = 0.12.

Insulator-superconductor transition to optimal superconducting $T_c = 15.5$ K at x=0.06. Weak phonon coupling, no magnetism. Doped HfNCI: $T_c = 26$ K.

FIG. 5. Phonon dispersions of β -ZrNCI (a) and Li-doped ZrNCI model A (b) and model B (c), respectively. The vertical bars indicate the relative phonon linewidths γ/ω in % as calculated from the electron-phonon coupling [see Eq. (1)].

Li_x ZrNCl, x=0, x=1/6

Phonons and el-ph coupling: Heid and Bohnen, PR B (2005)

Nearly circular Fermi surfaces at the zone corner K points: almost perfect nesting at K! Focusing of scattering

Calculated el-ph coupling strength is 0.5, insufficient to account for $T_c=15$ K

FIG. 7. Cut through the Fermi surface orthogonal to the rhombobedral axis. Full circles indicate the original Fermi surface, open circles the Fermi surface shifted by the momentum K.

Electron doping of 2D ionic insulator BaHfN₂: Ba²⁺, Hf⁴⁺, N³⁻

HfN bilayer is related to, but different from, ZrNCI. BaHfN₂ has only one reactive cation, allowing vapor phase growth.

Expt.: D. H. Gregory et al. JSSC 137, 62 (1998) Theory: A. Kaur et al., PRB 82, 155125 (2010)

- Structure: ionic-covalent square Hf_2N_2 layer, cladded by BaN on each side-->neutral slabs
- ? Intercalate with Li, Na, ... to get superconductivity? as in ZrNCl.

Features of doped ionic 2D band insulators Relevant for the effective el-el interaction [Examples: A_x ZrNCl and isovalent: $T_c = 15-25K$]

- Low density 2DEG (one carrier for each ~4x4 supercell)
 - static lattice: weak screening behavior at small distance
 study ε⁻¹(r,r';ω) in a material-dependent way, look for attractive interaction in certain regions of q,ω
 - for 2D plasmons, ω_p(q) ~ q^{1/2} implying potential low energy dynamics and screening (Andreas Bill et al.)
 - dynamic lattice: calculate dynamic ionic polarizability, intermediate range interaction not well screened out
 - dynamic lattice: separated electrons sloshing in a sea of vibrating highly charged ions Zr⁴⁺, N³⁻, etc.
 - include dynamic electronic+charged lattice polarizability simultaneously (taking care of likely non-adiabatic effects, polaronic behavior, etc)

Total dielectric function: Algebraic sign, electron-lattice response, and superconductivity

P B Allen, M L Cohen, D R Penn, PRB 1988

FIG. 2. Feynman graphs for the effective electron-electron interaction which binds a Cooper pair in the BCS theory.

Effective el-el coupling: screened el-el interaction + el-lattice-el interaction Total effective interaction in mean field approximation

$$V_{12,MF} = v_{1/2} \epsilon_{s,MF}^{-1} v_{1/2} ,$$

$$\epsilon_{s,MF} = 1 - v_{1/2} \chi_0 v_{1/2} .$$

$$V_{12,\rm MF} = V_{\rm el} + \sum_{\alpha,\beta} \phi_{\alpha}(\mathbf{Q} + \mathbf{G}) D_{\alpha\beta}(\mathbf{Q}\omega) \phi_{\beta}(\mathbf{Q} + \mathbf{G}') , \qquad (67)$$

where the first term is the purely electronic part of the screened interaction

$$V_{\rm el} = \epsilon_{\rm MF, el}^{-1} (\mathbf{Q} + \mathbf{G}, \mathbf{Q} + \mathbf{G}', \omega) \frac{4\pi e^2}{\Omega (\mathbf{Q} + \mathbf{G})^2} . \tag{68}$$

Dynamic lattice response

 $D_{\alpha\beta}^{-1} = M(\omega^2 - \Omega_0^2)\delta_{\alpha\beta} - \sum_{\mathbf{G}_1, \mathbf{G}_2} f_{\alpha}(\mathbf{Q} + \mathbf{G}_1)[\delta_{\mathbf{G}_1\mathbf{G}_2} + v_{1/2}(\mathbf{Q} + \mathbf{G}_1)\chi_{\mathbf{MF}, \mathbf{el}}(\mathbf{Q} + \mathbf{G}_1, \mathbf{Q} + \mathbf{G}_2, \omega)v_{1/2}(\mathbf{Q} + \mathbf{G}_2)]f_{\beta}(\mathbf{Q} + \mathbf{G}_2) ,$

Doped Band Insulating Oxides: a comparison to ponder

Two superconducting doped, highly ionic insulators

BaBiO₃

 $Ba^{2+}_{1-x}K^{+}_{x}Bi^{4+}(O^{2-})_{3}$ (BKBO): $T_{c} = 30+$ K at x=0.35-0.40 wide band perovskite, sp electron carrier system discussed as a negative-U, or valence skipping, system

SrTiO₃

Sr²⁺_{1-x}La³⁺_xTi⁴⁺(O²⁻)₃ (SLTO): T_c < 0.7 K at x<0.001 wide band perovskite, s-p electron carrier system van der Marel, van Mechelen, Mazin, arXiv:1109.3050: an anti-adiabatic electron-phonon system

Why (1) are these two doped insulators so different? Why (2) do most doped perovskites not superconduct at all?

Synopsis: T_c in 2D Triangular Oxides/Chalcogenides

Triangle Lattice Transition Metal Chalcogenides

A doped triangular lattice TM oxide: Li_NbO2

3d^{1+x} system

- ♦ a = 2.90 Å
- ♦ c = 10.46 Å
- ♦ Triangular Nb lattice
- ♦ Double layer unit cell
- Strongly layered structure
- T_c independent of x
- ♦ Li can be de-intercalated
- Nb trigonal prismatically coordinated*

[A. Stacy group (Berkeley, 1991-92)]

Experimental structure from Meyer and Hoppe, Angew. Chem. Int. **13,** 744 (1974)

A Single Band System: The LiNbO₂ Band Structure

[E. Ylvisaker and WEP]

- Nb⁴⁺ d¹ configuration
- Crystal field splitting gives
- single $d(z^2)$ band (per Nb)
- Bandwidth 1.8 eV
- Large **second** neighbor
- Substantial el-ph coupling

z _O	t_1	t ₂	t ₃	tz
0.117	24	107	17	231
0.126	73	104	43	27
0.136	136	97	68	28

A Single Band System: The LiNbO₂ Wannier Function

A Single Band System LiNbO₂: a DMFT study

Lee, Kunes, Scalettar, WEP, PRB 2007

Likely $Li_{1/2}NbO_2$ is a correlated electron system. However, U for the Wannier function is not known. The origin of pairing is a mystery at present. A doped triangular lattice TM oxide: NaxCoO2*nH2O

Na_xCoO₂, the Dehydrated Superconductor Just add water!

J.D. Jorgensen et al. (ANL) Phys. Rev. B <u>68</u>, 214517 (2003)

K. Takada et al., Nature <u>422</u>, 53 (2003); Adv. Mater. <u>16</u>, 1901 (2004) [NIMS, Tsukuba]

Phase Diagram of Na_xCoO₂

M.L. Foo et al. (Princeton), Phys. Rev. Lett. <u>92</u>, 247001 (2004)

Several reports of H₂O-tooxonium (H₃O)⁺ conversion in sample; shift in Co mean valence

- Takada et al., J Mater Chem 14, 1448 (2004)
- Karpinnen et al., Chem Mater 16, 1693 (2004)
- Milne et al., Phys Rev Lett 93, 247007 (2004)
- Takada et al., Adv. Mater. 16, 1901 (2004)
- Chen et al., cond-mat/0501181

Another self-doped s-p 2D superconductor besides MgB2: NaAlSi

NaAlSi: self-doped semimetallic superconductor with Al free electrons and covalent Si holes [NaAlSi: Z=11:13:14] [LiBC: Z= 3:5:6]

sp electron superconductor, semimetal

 $T_c = 7 \text{ K}$ [Kuroiwa *et al.*, Physica C (2007)]

Related systems

- Isovalent to LiBC and (sort of) MgB₂
- More closely related to CaAlSi
- Al₂Si₂ layer structure like Fe-pnictides:
 Si-Al-Si layer ↔ As-Fe-As layer

Rhee, Banerjee, Ylvisaker, WEP, Phys Rev B (2010)

NaAlSi

unusual semimetallic quasi-two-dimensional superconductor

Sharp narrow peak within deep pseudogap Peak is Si 3p character

Steep slope means high thermopower:

Thermoelectric Application? $\mathbf{S}(T) \rightarrow -\frac{\pi^2 k_B}{3e} \left. \frac{d \ln \boldsymbol{\sigma}(E)}{dE} \right|_{\varepsilon_F} k_B T$ $\boldsymbol{\sigma}(E) = 4\pi e^2 \langle \vec{v}(E) \vec{v}(E) \rangle N(E) \tau(E)$ $d \ln N(E) / dE|_{\varepsilon_F} = -4.0 \text{ eV}^{-1}$

- Al electron pockets, Si hole pockets
- Ionic Na, covalent (and ionic) AI-Si
- Free-electron-like AI 3s bands
- Valence states Si-derived, 2D
- s-p electrons, no magnetism

Si 3s,3p holes: covalent-like bands

NaAlSi Fermi Surfaces

Black: holes. Yellow: electrons.

What is $\lambda \& T_c$ (calculated)? No answer yet to this question.

DFT linear response el-ph coupling calcs?

Accurate integrated λ value is difficult to obtain due to small Fermi surfaces and code architectures

An unusual new cuprate superconductor; a high temperature superconductor?

hole-doped delafossite CuALO2

Triangular lattice delafossite CuAlO₂

Linear O-Cu-O trimers

Layered structure, rhombo stacking

AIO₄ units (hexagonal)

Mostly studied as a transparent metal & thermoelectric (is naturally a slightly hole-doped conductor)

CuAlO₂ Electronic structure

Band plot along hexagonal lines in BZ

CuAlO₂ Hexagonal Points

Rigid band Fermi surfaces

(a) Er=0.372 Ry. (lightly p-type doped CuAlO

(b)E F=0.340Ry.(heavilyp-typedopedCuAlO2)

Nakanishi & Katayama-Yoshida

Flat band all around sides of "hexagonal BZ"

E. R. Ylvisaker & WEP (2002)

CuAlO₂: the active Cu $d(z^2)$ - O p_z Wannier function (valence band maximum): unexpected character

CuAIO₂ Hexagonal Points

Unusual spectral density shift: doping 0.3 holes into Cu(Mg,AI)O₂

- Doping holes
- from Al layer to Cu layer
- introduces dipole layer (recall polar catastrophe?!)
- large O 2p $\leftarrow \rightarrow$ Cu 3d shift

Effects:

- changes character around E_F
- screens the EP matrix elements

This is a <mark>2D</mark> physics aspect: - dipole layer / potential shift

$CuAl_{0.7}Mg_{0.3}O_2$ phonon dispersion, weighted by $\lambda\omega^2$ Full DFT linear response for metallic phase E. R. Ylvisaker and WEP, EPL 2013

[24x24x24 mesh] Calculated $\lambda \sim 0.2$; so $T_c \sim 0$ rather than $T_c \sim 50$ K

Not superconducting even at optimal doping.

Full self-consistent calculation for the doped system is necessary for definitive results.

Final Comments

Most interesting new sc'ors in last 25 years are

- 2D structurally and electronically, both the magnetic and nonmagnetic examples
- doped insulators (some hole, some electron)

These two features hold for both

- Mott insulating parent phases (viz. cuprates)
- Fe-based pnictide system
- MgB₂ is intrinsically self-doped
- band ionic insulator parent phases (viz. HfNCI)

There surely are some very general characteristics favorable for superconductivity that we do not yet fathom (many new doped 2D insulators do **not** superconduct).

Superconductivity and two dimensionality: experimental facts, theoretical issues, novel materials

CuAlO₂

An area for new discoveries in materials physics

Graphane CH

Acknowledgments

Students: Joonhee An, Michelle Johannes, Deepa Kasinathan, Kwan-woo Lee, Erik Ylvisaker, Amandeep Kaur

Postdocs: Helge Rosner, Ruben Weht, Jan Kunes

Undergraduate student: Alex Kitiagorodsky