Auxiliary-field quantum Monte Carlo for correlated electron systems

Shiwei Zhang [shiwei@wm.edu] College of William & Mary, Virginia, USA

Outline

- Interacting quantum matter -- a grand challenge
- > need methods with: accuracy, computational scaling
- A general framework for correlated electron systems: Constrained path (phase-free) AFQMC
- An ``emergent" of independent-electron solutions
- > How does the sign problem occur? How to control it?
- Applications
- Hubbard models/optical lattice
- both molecules and solids

Labs

Packages for both Labs at

http://www.democritos.it/montecarlo2012/index.php/Main/Program

Revised version of Lab 1 will be available: physics.wm.edu/~shiwei

- Lab 1: Jie Xu, Huy Ngyen, Hao Shi, SZ
 - Matlab code (more direct and interactive, slow!)
 - Fermi Hubbard model
 - exercises range from basic exploration to advanced additions to the code (optional)
- Lab 2: Wirawan Purwanto, SZ
 - ➤ C++ code
 - Bose Hubbard model: AFQMC for trapped bosons
 - > exercises range from basic to advanced

Collaborators:

- Wissam Al-Saidi (Pittsburgh)
- Chia-Chen Chang (UC Davis)
- Simone Chiesa
- Henry Krakauer
- Wirawan Purwanto
- Hao Shi
- Jie Dorothy Xu (Citi Group)
- Fengjie Ma
- Yudis Virgus

Support:

- NSF: electronic structure; method development
- DOE ThChem: quantum chemistry
- DOE SciDAC (UIUC, W&M, Princeton); DOE cmcsn network (Cornell, W&M, Rice, LLNL)
- Computing: DOE INCITE (Oak Ridge) and NSF Blue Waters (UIUC)

The electronic problem

e.g. Density functional theory

"Bread and butter" calculations

- Density functional theory (DFT) with local-density types of approximate functionals: LDA, GGA,
- Independent-electron framework

$$H = H_{1-\text{body}} + H_{2-\text{body}} = -\frac{\hbar^2}{2m} \sum_{i=1}^N \nabla_i^2 + \sum_{i=1}^N V_{\text{ext}}(\mathbf{r}_i) + \sum_{i
$$H_{\text{LDA}} = H_{1-\text{body}} + \sum_{i=1}^N f_{\mathbf{c}}(n(r_i)) \qquad \text{LDA}$$$$

• In 2nd quantization:

GAMESS, Gaussian,

$$\begin{split} \text{LDA:} \quad & \hat{H}_2 \to \sum_i f_c(n_i) \hat{n}_i \\ \text{HF:} \quad & c_i^{\dagger} c_j^{\dagger} c_k c_l \to \langle c_i^{\dagger} c_l \rangle c_j^{\dagger} c_k + \cdots \end{split}$$

 $\hat{H} = \sum_{i,j}^{M} T_{ij} c_j^{\dagger} c_j + \sum_{i,j,k,l}^{M} V_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$

Independent-electron solution

The solution looks like:

"Bread and butter" calculations

• Independent-electron:

- Change the Hamiltonian "If you don't like the answer, change the question!"

- Demand a single-determinant solution

Difficulties with correlated electrons

- Often incorrect in strongly correlated systems
 - high T_c
 - magnetic systems
 - low dim./nano

- e.g., NiO is insulating, but is predicted to be metallic
- Even in `conventional' systems, small errors can make qualitative differences

typical DFT error of 1% in lattice cnst → no ferroelectricity

Why doesn't it always work

How long does it take to drive A -> B? ``mean-field":

- Williamsburg traffic: **yes**
- Beijing traffic: **NO**

Sensitivity of functional: Many-body solution?

"Bread and butter" calculations

• Independent-electron:

- Change the Hamiltonian "If you don't like the answer, change the question!"

- Demand a single-determinant solution

An auxiliary-field perspective

• Independent-electron:

$$\hat{H} = \hat{H}_{1} + \hat{H}_{2} = \sum_{i,j}^{M} T_{ij} c_{j}^{\dagger} c_{j} + \sum_{i,j,k,l}^{M} V_{ijkl} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}$$

$$\text{HF:} \quad c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \rightarrow \langle c_{i}^{\dagger} c_{l} \rangle c_{j}^{\dagger} c_{k} + \cdots$$

- Change the Hamiltonian
- Demand a single-determinant solution
- Can we turn the Hamiltonian blue without changing it?

Yes. Consider the propagator
$$e^{- au\hat{H}}$$

 $\doteq e^{- au\hat{H}_1}e^{- au\hat{H}_2} + \mathcal{O}(au^2)$

An exact many-body formalism as an emergent phenomenon of independent-electron solutions

AFQMC: "emergent" mean-field solutions

A toy problem - trapped fermion atoms (1-D Hubbard, BC=box)

• Use a crude lattice basis with i = 1, 2, 3, 4 sites (circles). In second quantized form:

$$H = K + V = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

 near-neighbor

• Parameters: $t; U \propto a_s$

What is the ground state when U=0 ?

- Diagonalize H directly:

Single-particle Hamiltonian

Diagonalize H to find single-particle energies and w.f's Plot wf in order of 1, 2, 3, 4

Put fermions in lowest levels:

→ many-body wf:

.3717480339	6015009557	.3717480339
.6015009541	3717480349	.6015009541
.6015009553	.3717480339	6015009553
.3717480350	.6015009543	.3717480350

What is the ground state when U=0?

- Diagonalize H directly
- Alternatively, power method:
 a
 b
 c
 b
 c
 b
 c
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 <lid
 d
 <

To obtain ground state, use projection in imaginary-time:

$$\begin{split} |\Psi^{(n+1)}\rangle &= e^{-\tau \hat{H}} \ |\Psi^{(n)}\rangle \quad \xrightarrow{n \to \infty} \quad |\Psi_0\rangle \\ \tau: \text{ cnst, small } \quad |\Psi^{(0)}\rangle: \text{ arbitrary initial state} \end{split}$$

2. Show that the operator $\exp(-\beta H)$ projects out the ground state $|\phi_0\rangle$ from any initial state that is not orthogonal to the ground state. That is, given an arbitrary $|\psi^{(0)}\rangle$ that satisfies $\langle \psi^{(0)} | \phi_0 \rangle \neq 0$, we have

$$\lim_{\beta \to \infty} \exp(-\beta H) |\psi^{(0)}\rangle \propto |\phi_0\rangle.$$

What is the ground state when U=0?

- Diagonalize H directly
- Alternatively, power method: 1 2 3 4 4 site label

$$e^{-\tau H}$$
: $\left(\begin{array}{c} 4 \times 4 \end{array}\right) \otimes \left(\begin{array}{c} 4 \times 4 \end{array}\right) \equiv B_K \text{ operate on any } |\Psi^{(0)}\rangle \text{ repeatedly } \Rightarrow |\Psi_0\rangle$

Theorem: For any $\hat{v} = \sum_{ij} v_{ij} c_i^{\dagger} c_j$, $e^{\hat{v}} |\phi\rangle = |\phi'\rangle$ where $\Phi' \equiv e^v \Phi$ in matrix form

[Define projection operator exp(-tau*H): F > P := tau -> convert(evalf(exponential((H+1.6),-tau)),Matrix); For example exp(-0.1*H) looks like: (tau=0.1) > P(0.1);.8564116151 .08549878210 .004271380206 .0001422371517 .08549878209 .8606829955 .08564101925 .004271380206 .004271380206 .08564101925 .8606829955 .08549878210 .0001422371517 .004271380206 .08549878210 .8564116153 > Pick an arbitrary initial wf to project from: --- note we're only writing out the up component > 1. -1. $PsiT := \begin{vmatrix} 1. & -1. \\ & \\ 1. & 1. \end{vmatrix}$ Project for a beta of 10, i.e. exp(-n*tau*H)|Psi_T>, with n*tau=10: > (v0, v1) =Multiply(P(10,), PsiT).866609121199999999 -.000063659800000043740 1.40220301329999986 -.0000393430999999777598 1.40220301359999988 .000039343400000025819 .866609121099999991 .0000636596999999961000 > GramSchmidt({v0,v1},normalized); {[-.6015041283, -.3717422466, .3717450812, .6015031834], [.3717488488, .6015014581, .6015004522, .3717472200]

Same as from direct diag.:

ground-s	tate wf:		
.3717480339	6015009557		.3717480339
.6015009541	3717480349		.6015009541
.6015009553	.3717480339	•	.6015009553
.3717480350	.6015009543		.3717480350_

What is the ground state when U=0?

- Diagonalize H directly
- Alternatively, power method:

$$e^{-\tau H}$$
: $\left(4 \times 4 \right) \otimes \left(4 \times 4 \right) \equiv B_K \text{ operate on any } |\Psi^{(0)}\rangle \text{ repeatedly } \Rightarrow |\Psi_0\rangle$

- Applies to any non-interacting system
- Re-orthogonalizing the orbitals prevents fermions from collapsing to the bosonic state
 -> i.e., no `sign problem' in non-interacting systems

- What is the probability to find the electron configuration shown in the picture? That is, how to calculate $\langle R | \phi \rangle$?
- How to calculate $E_0 = \langle \phi | H | \phi \rangle$ from the wave function?
- How to calculate the density matrix? The spin-spin correlation function?

A: Simple matrix manipulations (See Lab exercises)

What is the ground state when U=0?

- Diagonalize H directly
- Alternatively, power method:

$$e^{-\tau H}$$
: $\left(4 \times 4 \right) \otimes \left(4 \times 4 \right) \equiv B_K$ operate on any $|\Psi^{(0)}\rangle$ repeatedly $\Rightarrow |\Psi_0\rangle$

What is the ground state, if we turn on U?

- Lanczos (scaling!)
- Can we still write $e^{-\tau H}$ in one-body form?

Yes, with Hubbard-Stratonivich transformation

AFQMC: "emergent" mean-field solutions

Hubbard-stratonivich transformation

• Interacting two-body problem can be turned into a linear combination of non-interacting problems living in fluctuating external fields ('completion of square'):

$$e^{\tau \hat{v}^2} \xrightarrow{\text{Hubbard-Strotonivich transformation}} \int e^{-\sigma^2/2} e^{\sigma \sqrt{\tau} \hat{v}} d\sigma \qquad \sigma: \text{ auxiliary field}$$

$$\bullet \dots \bullet \longrightarrow \begin{cases} \bullet & \bullet \\ + & \bullet \\ \bullet & \bullet \\$$

• Illustration of HS transformation — Hubbard-like interaction:

$$e^{-\tau U n_{i\uparrow} n_{i\downarrow}} \to e^{\tau U (n_{i\uparrow} - n_{i\downarrow})^2/2} = \text{factor} \times \int e^{-\frac{1}{2}x^2} e^{\sqrt{\tau U} x (n_{i\uparrow} - n_{i\downarrow})} dx$$

$$e^{-\tau U n_{i\uparrow} n_{i\downarrow}} \to e^{-\tau U (n_{i\uparrow} + n_{i\downarrow})^2/2} = \text{factor} \times \int e^{-\frac{1}{2}x^2} e^{\sqrt{\tau U} \operatorname{i} x (n_{i\uparrow} + n_{i\downarrow})} dx$$

Or trick by Hirsch:

$$e^{-\tau U n_{i\uparrow} n_{i\downarrow}} = e^{-\tau U (n_{i\uparrow} + n_{i\downarrow})/2} \cdot \sum_{x=\pm 1} \frac{1}{2} e^{\gamma x (n_{i\uparrow} - n_{i\downarrow})} \qquad \cosh \gamma = e^{\tau U/2}$$

Back to toy problem

What is the ground state, if we turn on U?

- With U, same as U=0, except for integral over $x \rightarrow$ Monte Carlo

Recall: Monte Carlo methods

We will use two things which are foundations to QMC

 Monte Carlo is great at evaluating many-dimensional integrals (most efficient beyond d>4~6)

2) Monte Carlo can solve integral equations via random walks

1) Monte Carlo integration

To evaluate many-dimensional integral $G = \int_{\Omega} f(x)g(x)dx$ f(x) > 0; $\int_{\Omega} f(x)dx = 1$ f(x): probability density

• Sampling a PDF f(x) means obtaining a sequence $\{x_1, x_2, \dots, x_i, \dots\}$ so that

 $\operatorname{Prob}\{x_i \in (x, x + dx)\} = f(x)dx$

i.e., the probability distribution of the sequence is f(x)

• If f(x) is successfully sampled, then

$$G_{M} \equiv rac{1}{M} \sum_{i=1}^{M} g(x_{i}) \quad
ightarrow G$$

2) Random walks to solve integral equations:

• An integral equation of the form

$$\Psi'(x) = \int_{\Omega} G(x, y) w(y) \Psi(y) dy$$

can be viewed as a random walk

• For example,

$$\Psi'(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-(x-y)^2} \sqrt{2} e^{-\frac{1}{2}y^2} \Psi(y) dy$$

conditional prob. for particle to jump to x if it is currently at y

"birth/death" prob

prob. for particle to be at y

Q: What is the resulting prob. distribution of particles?

(transport problem)

Summary: an auxiliary-field perspective

Consider the propagator $e^{-\tau \hat{H}} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)$ • Independent-electron: $e^{-\tau \hat{H}_{\text{LDA}}(n)} \doteq e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_{\text{xc}}(n)}$

Thus, LDA calculation:

$$e^{-\tau} \hat{H}_{ISD}(1) \rightarrow e^{-\tau \hat{H}_{ISD}(1)} \rightarrow |SD^{(0)}\rangle \rightarrow |SD^{(0)}\rangle$$

Single-determinant solution

• Many-body: $\hat{H}_2 = -\sum_{\gamma} \hat{v}_{\gamma}^2$ $e^{-\tau \hat{H}} \rightarrow e^{-\tau \hat{H}_1} \int e^{-\sigma^2/2} e^{\sigma \sqrt{\tau} \hat{v}} d\sigma$

Propagation leads to multi-determinants

Importance sampling to make practical SZ & Krakquer, '03 Different form --> Hartree, HF, pairing, . Purwanto & SZ, '05

Two-site Hubbard model

* note `antiferromagnetism'

Two-site Hubbard model

How AFQMC works:

+

- Formalism similar to LGT
- But this formulation allows
 a natural way to control
 sign problem

Full electronic Hamiltonians

• Electronic Hamiltonian: (Born-Oppenheimer)

$$H = H_{1-body} + H_{2-body} = -\frac{\hbar^2}{2m} \sum_{i=1}^{M} \nabla_i^2 + \sum_{i=1}^{M} V_{ext}(\mathbf{r}_i) + \sum_{i < j}^{M} V_{int}(|\mathbf{r}_i - \mathbf{r}_j|)$$
can choose any single-particle basis
$$\hat{H} = \sum_{i,j}^{N} T_{ij} c_i^{\dagger} c_j + \sum_{i,j,k,l}^{N} V_{ijlk} c_i^{\dagger} c_j^{\dagger} c_k c_l \int \chi_i^{\star}(\mathbf{r}_1) \chi_j^{\star}(\mathbf{r}_2) \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \chi_k(\mathbf{r}_2) \chi_l(\mathbf{r}_1) d\mathbf{r}_1 d\mathbf{r}_2$$

$$\cdot \text{ An orbital:} \quad |\varphi_m\rangle = \sum_{i=1}^{N} \varphi_{i,m} |\chi_i\rangle$$

• A Slater determinant:

$$\begin{pmatrix} \varphi_{1,1} & \varphi_{1,2} & \cdots & \varphi_{1,M} \\ \varphi_{2,1} & \varphi_{2,2} & \cdots & \varphi_{2,M} \\ \vdots & \vdots & & \vdots \\ \varphi_{N,1} & \varphi_{N,2} & \cdots & \varphi_{N,M} \end{pmatrix} \qquad N : \text{basis} \\ M : \text{electrons}$$

WINU

Slater determinant random walk (preliminary I)

- In general, we can choose any single-particle basis $\{|\chi_i\rangle\}$, with $i = 1, 2, \dots, N$
- A single-particle orbital (labeled by m) is given by $\hat{\varphi}_m^{\dagger}|0\rangle \equiv \sum_{i=1}^N \varphi_{i,m}|\chi_i\rangle$
- If we have M identical fermions $(M \leq N)$, a Slater determinant $|\phi\rangle$ is given by:

$$|\phi\rangle \equiv \hat{\varphi}_1^{\dagger} \hat{\varphi}_2^{\dagger} \cdots \hat{\varphi}_M^{\dagger} |0\rangle$$

• $|\phi\rangle$ is represented by an $N \times M$ matrix:

$$\Phi \equiv \begin{pmatrix} \varphi_{1,1} & \varphi_{1,2} & \cdots & \varphi_{1,M} \\ \varphi_{2,1} & \varphi_{2,2} & \cdots & \varphi_{2,M} \\ \vdots & \vdots & & \vdots \\ \varphi_{N,1} & \varphi_{N,2} & \cdots & \varphi_{N,M} \end{pmatrix}$$

• E.g., $\langle \phi | \phi' \rangle = \det(\Phi^{T} \Phi'); \quad G_{ij} \equiv \frac{\langle \phi | c_{i}^{\dagger} c_{j} | \phi' \rangle}{\langle \phi | \phi' \rangle} = [\Phi' (\Phi^{T} \Phi')^{-1} \Phi^{T}]_{ij};$ any 2-body correlation $\leftarrow \{G_{ij}\}$

Slater determinant random walk (preliminary II)

HS transformation:

For example in electronic systems:

$$H = K + V_{e-I} + V_{e-e} + V_{I-I}$$

In plane-wave one-particle basis $|k\rangle \equiv \frac{1}{\sqrt{\Omega}}e^{i\mathbf{G}_k\cdot\mathbf{r}}$:

$$V_{e-I} = \sum_{i \neq j} V_{local}(\mathbf{G}_{i} - \mathbf{G}_{j})c_{i}^{\dagger}c_{j} + \sum_{i,j} V_{NL}(\mathbf{G}_{i}, \mathbf{G}_{j})c_{i}^{\dagger}c_{j}$$

$$V_{e-e} = \frac{1}{2\Omega} \sum_{i,j,\mathbf{Q}\neq 0} \frac{4\pi}{|\mathbf{Q}|^{2}} c_{\mathbf{G}_{i}+\mathbf{Q}}^{\dagger}c_{\mathbf{G}_{j}-\mathbf{Q}}^{\dagger}c_{\mathbf{G}_{i}}$$

$$derive$$

$$\rightarrow -\frac{1}{2\Omega} \sum_{\mathbf{Q}\neq 0} \frac{4\pi}{|\mathbf{Q}|^{2}} \rho^{\dagger}(\mathbf{Q}) \rho(\mathbf{Q})$$

$$\sum_{i} c_{\mathbf{G}_{i}+\mathbf{Q}}^{\dagger}c_{\mathbf{G}_{i}}$$

$$\sum_{\mathbf{Q}\neq 0} \sqrt{\frac{4\pi}{|\mathbf{Q}|^{2}}} \left([\rho^{\dagger}(\mathbf{Q}) + \rho(\mathbf{Q})]^{2} - [\rho^{\dagger}(\mathbf{Q}) - \rho(\mathbf{Q})]^{2} \right)$$

$$i \hat{v}$$

Slater determinant random walk (preliminary II)

HS transformation for full V-matrices (e.g. Gaussian basis sets)

modified Cholesky decomposition

$$V_{ijkl} \doteq \sum_{\nu=1}^{J_{\max}} L_{ij}^{\nu} L_{kl}^{\nu}$$

can be realized with N^3 cost,

with Jmax typically 4--8*N

Summary: AF QMC framework

Random walks in Slater determinant space:

Recall
$$|\Psi^{(n+1)}\rangle = e^{-\tau \hat{H}} |\Psi^{(n)}\rangle \xrightarrow{n \to \infty} |\Psi_0\rangle$$
 SZ, Carlson, Gubernatis
 $\|\Psi^{(n+1)}\rangle = e^{-\tau \hat{H}} |\Psi^{(n)}\rangle \xrightarrow{\mathbf{N} \to \infty} |\Psi_0\rangle$ SZ, Krakauer
 $\int H^{-\sigma^2/2} e^{\hat{\mathbf{v}}(\sigma)} d\sigma \qquad 1\text{-body: } \sum_{i,j} v_{ij}(\sigma) c_i^{\dagger} c_j$

Exact so far (why don't we use path-integral formalism? later)

Summary: AF QMC framework

Structure -- loosely coupled RWs of non-orthogonal SDs:

A step advances the SD by 'matrix multiplications'

MnO

Importance sampling -> better efficiency

Summary: AF QMC framework

How does the weight 'w' come about?

 $\Phi = UDV$

We have formulated this as branching random walks

Basic idea of AFQMC, done with path-integrals over AF paths, has been around since the `80s. Koonin; Scalapino, Sugar, White; Hirsch; Baroni & Car; Sorella; Fahy & Hamann; Baer et. al. ...

The new formulation

- allows a close connection with DFT and HF
- makes possible a way to control the sign problem

The sign/phase problem

Hubbard model

4x4, n=0.875, U/t=8 (strongly corr)

- More severe at lower T, larger system size
- or in the most correlated regime

Koonin; Scalapino & White et al; Baroni & Car; Fahy & Hamman; Baer et al;

How does the sign problem happen?

- E.g., in Hubbard:
- • $e^{-\tau \hat{H}} \rightarrow$ paths in Slater determinant space
- Suppose $|\Psi_0\rangle$ is known; consider "hyper-node" line

If path reaches hyper-node

$$\begin{aligned} \langle \Psi_0 | \phi \rangle &= 0 \\ \Rightarrow \langle \Psi_0 | e^{-n\tau \hat{H}} | \phi \rangle &= 0 \end{aligned}$$

then its descendent paths collectively contribute 0

• MC signal is exponentially small compared to noise

In special cases (1/2 filling, or U<0), symmetry keeps paths to one side \rightarrow no sign problem $$_{\rm next}$\rightarrow$$

The sign problem

Sign/phase problem is due to --

To eliminate sign problem:

Use $\langle \Psi_T | \Psi
angle = 0$ to determine if "superexchange" has occurred

SZ, Carlson, Gubernatis, '97; SZ '00; Chang & SZ '10

How to control the sign problem?

require $\langle \Psi_{\mathbf{T}} | \phi \rangle > 0$ Trial wave function used to make detection

Connection to fixed-node, or restricted path (Ceperley), but in Slater determinant space --> different behavior

Controlling the sign/phase problem

- Free-projection is exact, but exponential scaling
- Constraining the paths to remove contamination
- N³ scaling, approximate -- high accuracy
- Constraint release: a systematically improvable approach with more computational cost (also Ceperley; Sorella)

Controlling the sign/phase problem: accuracy

Shi & SZ (unpublished, 2013)

The phase problem

Sign/phase problem is due to --

To eliminate sign problem:

Use $\langle \Psi_T | \Psi
angle = 0$ to determine if "superexchange" has occurred

To eliminate phase problem: Generalize above with gauge transform --> "phaseless constraint"

SZ & Krakauer, '03; Chang & SZ, '10

Controlling the phase problem

Sketch of approximate **solution**:

- Modify propagator by "gauge transformation":
 phase → degeneracy (use trial wf)
- Project to one overall phase: break "rotational invariance"

 $\sum_{\phi} \frac{|\varphi\rangle}{\langle \Psi_T | \phi \rangle}$

• subtle, but key, difference from: real< $\Psi_T | \phi > 0$

(Fahy & Hamann; Zhang, Carlson, Gubernatis)

Before:

After:

Test application: molecular binding energies

• HF or LDA trial wf: same result

F₂ bond breaking

Mimics increasing correlation effects:

F₂ bond breaking --- larger basis

Purwanto et. al., JCP, '08

Periodic Solids

Silicon structural phase transition (diamond --> β -tin):

Excited states in solids

 Method can be generalized to excited states, by an additional orthogonalization step of the excited orbitals in each walker with virtual orbitals

- ZnO: LEDs, laser diodes band gap challenge:
 - GW: recent debates
 - hybrid: choice of functionals? predictive?
- **AFQMC:** uses GGA trial wf; high-quality smallcore pseudopotential; finite-size correction

Fundamental gap in ZnO (wurtzite)

method	Band gap (eV)		
GGA	0.77		
LDA+U	1.0		
Hybrid functionals	3.3; 2.9		
GW	3.4, 3.6, 2.56		
AFQMC	3.26(16)		
experiment	3.30, 3.44, 3.57		

Ma, SZ, Krakauer, NJP (2013)

Superconductivity: cold atomic gases

 $\frac{1}{--} \to -g\delta(r_{ij})$ The unitary Fermi gas: the electron gas, but with r_{ij} small unitarity large g 2-body scattering length <() infinity >() BCS **BEC of molecules** physics S.C Experimental measurement of ξ : Take $\rho \to 0$: 0.32(+13)(-10) [9] no other scale in the system => 0.36(15)[10] $E_0 = \xi E_{FG}$ 0.51(4) [11] 0.46(5)[12]universal constant: 0.46(+05)(-12) [13] HF --> 1 0.435(15) [14] BCS --> 0.59 0.41(15) [15] 0.41(2) [16] HF wrong (strong corr.!) int. $E/E_k \rightarrow 0$ as r_s grows 0.39(2) [16] Ен->0, Exc~-0.6Ek 0.36(1)[17]compiled by D.Lee, 2011

Superconductivity: cold atomic gases

• In this case, no sign problem in AFQMC. Trial wf is projected BCS (AGP) Need $\langle \Psi_{AGP} | c_i^{\dagger} c_j | \phi \rangle$ and $\langle \Psi_{AGP} | c_i^{\dagger} c_j | \phi \rangle$

Both can be done(Carlson, Gandolfi, Schmidt, SZ: arXiv:1107.5848)same scaling as single Slater determinant

Magnetism: Co adsorption on graphene

- Spintronics applications of graphene --- adsorb transition metal atoms to induce local moments?
- Conflicting theoretical results:
 - + GGA: min is Co low-spin, h~1.5
 - **+ B3LYP**: high-spin, h~1.8
 - ◆ GGA+U: high-spin, h ~ 1.9 (but global min is top site)
- AFQMC benchmark study in Co/benzene:
 - Gaussian basis sets
 as in quantum chem
 - as in quantum chem Do "release" in small basis to check accuracy -

Y. Virgus et al, PRB(R), '12

Co adsorption on graphene

- Co on benzene --- what are the states and what is the binding energy as a function of h?
 - AFQMC: spin: high -> high -> low h~1.5 (min)

- DFT incorrect dissociation limit (vdW problem)
- Neither is correct, ^b/_e
 but GGA better ^d
 than B3LYP here

Co adsorption on graphene

- What are the states and what is the binding energy as a function of h? (STM?)
 - Embedding ONIOM correction (W/ GGA or B3LYP)
 - + Nominal spin: high -> high -> low h~1.5 (min)

Co adsorption on graphene

- Spintronics applications of graphene --- adsorb transition metal atoms to induce local moments?
- Conflicting theoretical results:
 - + GGA: min is Co low-spin, h~1.5
 - + B3LYP: high-spin, h~1.8
 - ◆ GGA+U: high-spin, h ~ 1.9 (but global min is top site)

Y. Virgus et al, PRB(R), '12; unpublished

Binding energy of Co/C_6H_6 as a function of height h

Magnetic properties in the 2D Hubbard model

- Model for CuO plane in cuprates?
- Half-filling: antiferromagnetic (AF) order

(Furukawa & Imada 1991; Tang & Hirsch 1983; White et al, 1989;)

AF correlation:

What happens to the AF order upon doping?

Challenges for many-body calculations

AFM? Phase separation? Stripes?

- Large body of numerical work --- Conflicting results
 - GFMC (Cosentiri et al.; Sorella et al.)
 - GFMC in t-J (Hellberg & Manousakis, 1997, 2000)
 - DMRG w/ open BC (White, ...)
 - DMFT (Zitler et al. 2002)
 - DCA (Macridin, Jarrell et al. 2006)
 - Variational Cluster (Aichhorn et al. 2007)
 - many others
- > Challenges:
 - Many competing orders with tiny energy differences: high accuracy
 - Reaching the thermodynamic limit reliably

sensitivity to both finite-size and shell effects (numerical derivative!)

Equation of state -- 2D Hubbard model

- Free-electron trial w.f.
- Twisted average boundary condition (Zhong & Ceperley, '01)
 20 ~ 300 random twists
- Different lattice sizes in good agreement for n < 0.9
- "Unstable" region is found on 8x8, 12x12, 16x16

frustrated long wavelength mode ?

Spin-spin correlation

- Use rectangular lattices to probe correlation length L > 16
- Up to 8x128 supercell (dimension of CI space: 10⁶⁰⁰ ! vs. 'DFT' 1k x 1k)
- Detect spatial structures using correlation functions

8x32

$$C(\mathbf{r}) = \frac{1}{N_s} \sum_{\mathbf{r}'} \langle \mathbf{S}_{\mathbf{r}} \cdot \mathbf{S}_{\mathbf{r}+\mathbf{r}'} \rangle$$

Equation of state, again

TABC removes one-body shell effects, but not two-body finite-size effects:

- Instability is from frustration of SDW due to finite size
- At n = 0.9375, need L>~32 to detect SDW state (Previous calculations: Ly~12, with large shell effects)

Wavelength versus doping

Doping h = (1-n) dependence

4x64, U/t = 4.0

- Wavelength decreases with doping; as does the amplitude
- SDW terminates at finite doping (~0.15), enters paramagnetic state
- Wavelength appears $\propto 1/h$

C.-C. Chang & SZ, PRL,'10

Dependence on U

Smectic state - connection and difference to `stripe phase':

- At U/t=4, charge is uniform:
 - No peak in charge struc. factor
 - holes fluid-like (de-localized)
- At U/t=8-12, CDW develops:
 - Peak in structure factor
 - Clumps of density=1, separated by dips (SDW nodes)
 - Consistent with DMRG results at large U/t (White et al, '03, '05)
 - holes Wigner-like (localized)

Summary

- Computational framework for correlated electronic systems (equilibrium)
 * Both materials specific and model Hamiltonians
 - + Much development still to be done, but a blueprint for systematic calculations
- Exact calculation of Bertch parameter in BCS-BEC crossover
- Co adsorption on graphene: double-well high-low spin states
- Magnetic phases in 2D Hubbard:
 - + AF SDW, long wavelength modulation
 - + Wavelength $\propto 1/h$
 - SDW amplitude decreases with doping, vanishes at n~0.85(5)
 - Holes "liquid like"

- Quantum simulations provide a 'new' tool for studying quantum matter:
 - + The algorithms have reached a turning point
 - Need you! Many opportunities for breakthroughs