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7.2 Fakher F. Assaad

Continuous-time quantum Monte Carlo (CT-QMC) methods are a tool of choice to solve cor-
related electron problems embedded in bosonic or fermonic baths [1]. This is precisely the
problem that is encountered in dynamical mean-field theories (DMFT), where in the limit of in-
finite coordination number the environment can be replaced by a fermionic bath [2]. In DMFT,
the physics of the Hubbard model in the limit of infinite coordination number maps onto that of
the single-impurity Anderson model (SIAM). This mapping provides invaluable insight into the
important problem of the Mott transition [3]. The beauty of the CT-QMC algorithms lie in their
flexibility. Rather than being Hamiltonian-based – like the auxiliary-field QMC method (see
Ref. [4] for a review), they are action-based and allow the simulation of effective low-energy
models after having integrated out high-energy degrees of freedom. This aspect of the method
has spurred many applications. In the domain of model-building, screening effects by high
energy bands, which can be taken into account within the constrained random phase approx-
imation (cRPA) [5], naturally lead to a low-energy effective model with retarded interactions
which only has an action-based formulation. Retarded interactions are also obtained in the con-
text of electron-phonon interactions. Here, one can integrate out the bosonic phonon modes at
the expense of a retarded interaction [6–9]. Other applications of the algorithm have been in-
troduced in the realm of topological insulators [10, 11]. In this context, helical liquids can only
be realized as the edge theory of a quantum spin Hall insulator [12]. In many cases, correlation
effects can be neglected in the bulk but are dominant on the edge [13]. Thereby, one can retain
interactions along the edge of the system and view the bulk as a bath, which one can readily inte-
grate out [14–17]. Further applications of the CT-QMC include for example formulations along
the Keldysh contour (see Ref. [18]) or applications within the realm of extensions to DMFT
methods to include spatial fluctuations. Here one can mention cluster generalizations such as
the dynamical cluster or cellular DMFT approximations [19], the dual fermion approach [20],
the dynamical vertex approximation [21], or extended DMFT [22].

There is a price to the flexibility of the CT-QMC algorithms. In the best-case scenario – absence
of a sign problem – the computational time scales as the third power of the Euclidean volume;
to be more precise (Nimpβ)3, where β corresponds to the inverse temperature and Nimp to the
number of impurities. This scaling has to be contrasted with the auxiliary-field methods [4],
which have linear scaling in β. Such algorithms have recently been used in the context of
DMFT [23]. In the worst case, all stochastic methods are prone to the so-called negative sign
problem, which effectively leads to a signal-to-noise ratio that grows exponentially in the Eu-
clidian volume. There is to date no solution to this problem. Different algorithms or different
formulations of the same algorithm can lead to very different sign problems. Clever tricks such
as the fermion-bag approach can sometimes solve the problem in special situations [24].

Another issue when opting for stochastic algorithms – as opposed to NCA or tensor-network
based approaches – is the fact that QMC operates on the imaginary time axis. To produce
spectral functions on the real-frequency axis so as to compare with experiments, analytical con-
tinuation is necessary. This is a numerically ill-conditioned problem which limits the precision
for the calculation of spectral functions. This issue may be especially severe when considering
multi-orbital problems with complicated spectral line-shapes. The only solution to this prob-
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lem is to work directly on the real time axis, or to analytically continue spectral functions with
simple line shapes.
The CT-QMC approach is the method of choice for thermodynamics and equal time correlation
functions. It is unbiased. Given an adequate error analysis, exact results are reproducible within
the cited error-bars. The CT-QMC methods have different formulations. The interaction expan-
sion (CT-INT) [25] and auxiliary-field (CT-AUX) [26, 27] approaches turn out to be identical,
with CT-INT being the more general. The CT-INT is a weak coupling method and to access the
strong coupling it is more convenient to use the hybridization expansion CT-HYB [28].
The organization of this lecture is the following. In section 2, we concentrate on the CT-INT
[25, 26] approach in the context of the SIAM. We will review this algorithm in detail, since it
has the potential for tackling lattice problems. In section 3, we will cover the basic ideas of
the CT-HYB algorithm [28]. The CT-HYB is certainly the method of choice for multi-orbital
models in the strong coupling limit. In section 4, we provide a generalization of the CT-INT
method to tackle problems with bosonic baths. Here, the bosonic bath corresponds to a phonon
mode that after integration leads to a retarded interaction.
For completeness, we have included an appendix that reviews the basic ideas of the Monte
Carlo method as well as a discussion of error analysis. This is an important aspect of the
implementation of CT-INT algorithms.

1 The single impurity Anderson model (SIAM)

The Anderson impurity model [29] describes the formation and screening of local magnetic
moments in a metallic host. The metallic host is described by a conduction electron band with
dispersion relation ε(k). The impurity state is described by a localized Kramers doublet orbital.
The localized nature of the impurity orbital obliges one to include the Coulomb repulsion in
terms of a Hubbard U. Finally, a hybridization matrix element Vk allows for charge transfer
between the localized orbital and extended Bloch states. In second quantization, the model is
given by

ĤSIAM =
∑
k,σ

ε(k) ĉ†k,σ ĉk,σ +
∑
k,σ

(
Vk ĉ

†
k,σf̂σ + V̄k f̂

†
σ ĉk,σ

)
+ εf

∑
σ

n̂σ + U n̂↑n̂↓. (1)

Here, ĉ†k,σ creates a Bloch electron with z-component of spin σ, f̂ †σ an electron on the Kramers
doublet localized orbital and n̂σ = f̂ †σf̂σ. A discussion of the physics described by the single
impurity Anderson model can be found in Ref. [30]. In the spirit of action based CT-QMC
algorithms, it is convenient to integrate out the conduction electrons. To carry out this step, we
introduce fermion coherent states |c, f〉 that satisfy

ĉk,σ|c, f〉 = ck,σ|c, f〉, f̂σ|c, f〉 = fσ|c, f〉, (2)

with ck,σ and fσ being Grassmann variables. Using standard many body formalism, reviewed
for example in [31], the partition function of the SIAM is given by a path integral over Grass-
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mann variables

ZSIAM = Tr
[
e−βĤSIAM

]
=∫

D
{
c†cf †f

}
e−

∫ β
0 dτ[

∑
k,σ c

†
k,σ(τ)

∂
∂τ
ck,σ(τ)+

∑
σ f
†
σ(τ)

∂
∂τ
fσ(τ)+HSIAM(c†,c,f†,f)] .

(3)

Since the Grassmann variables satisfy anti-periodic boundary conditions in β, we can define the
Fourier transform

fσ(iωm) =
1√
β

∫ β

0

dτeiωmτfσ(τ) (4)

with ωm = (2m+ 1) π/β a fermionic Matsubra frequency. An equivalent equation holds for
the conduction electrons.
Owing to the fact that the action is bilinear in the conduction electrons one can integrate them
out with a Gaussian integration to obtain our final result

ZSIAM =

∫
D
{
f †f
}
e−S(f

†,f) with

S(f †, f) = −
∫ β

0

dτdτ ′
∑
σ

f †σ(τ)G−10 (τ − τ ′) fσ(τ ′) + U

∫ β

0

dτ f †↑(τ)f↑(τ)f †↓(τ)f↓(τ).
(5)

Here G0(τ − τ ′) = −〈T f̂σ(τ)f̂ †σ(τ ′)〉0 corresponds to the non-interacting f -Green function.
The Gaussian integration yields

G−10 (τ − τ ′) = −δ(τ − τ ′)
[
∂

∂τ ′
+ εf

]
+∆(τ − τ ′) with ∆(iωm) =

∑
k

|Vk|2

iωm − ε(k)
. (6)

The above equation is the starting point for both the CT-INT and CT-HYB algorithms. The
CT-INT follows the idea of expanding in the interaction term, whereas the CT-HYB expands in
the hybridization. In this lecture, we will assume that the fermonic bath possesses U(1) gauge
symmetry. Generalizations of the CT-INT to account for superconducting leads can be found in
Refs. [32, 33].

2 CT-INT

In this section, we will describe in some detail the implementation of the CT-INT and show that
it is equivalent to the CT-AUX

2.1 The partition function

Anticipating the elimination of the sign problem in some cases and to establish the equivalence
between the CT-INT and CT-AUX algorithms, we will rewrite the Hubbard interaction as

U

2

∑
s=±1

(n̂↑ − ρ/2− sδ) (n̂↓ − ρ/2 + sδ) . (7)
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Here we have introduced a additional Ising variable s, and ρ corresponds to the average elec-
tronic density. We will discuss the additional parameter δ later on in this section. Starting from
the action in Eq. (5), we can Taylor expand in the Hubbard interaction to obtain

ZSIAM

Z0

=
∞∑
n=0

(
−U
2

)n
1

n!

∫ β

0

dτ1
∑
s1

· · ·
∫ β

0

dτn
∑
sn

∏
σ

〈[nσ(τ1)− ασ(s1)] · · · [nσ(τn)− ασ(sn)]〉0

(8)
The expectation value 〈•〉0 is taken with respect to the non-interacting SIAM with partition
function Z0 and we have used the short cut notation

ασ(s) = ρ/2 + σsδ . (9)

The thermal expectation value is the sum over all diagrams, connected and disconnected, of a
given order n. Using the general formulation of Wick’s theorem, this sum can be expressed as
a determinant where the entries are the Green functions of the non-interacting system

〈[nσ(τ1)− ασ(s1)] · · · [nσ(τn)− ασ(sn)]〉0 =

det



g0(τ1, τ1)− ασ(s1) g0(τ1, τ2) · · · g0(τ1, τn)

g0(τ2, τ1) g0(τ2, τ2)− ασ(s2) · · · g0(τ2, τn)

· · · ·
· · · ·
· · · ·

g0(τn, τ1) g0(τn, τ2) · · · g0(τn, τn)− ασ(sn)


︸ ︷︷ ︸

≡Mσ(Cn)

, (10)

where we have defined the Green function:

g0(τ1, τ2) = 〈T f̂ †σ(τ1)f̂σ(τ2)〉0 , (11)

which we have assumed to be spin-independent. In the above, T corresponds to the time or-
dering. The product of the two determinants is nothing but the sum over connected and dis-
connected Feynman diagrams. The summation over individual Feynman diagrams reduces the
negative sign problem and, as we will see later, eliminates it altogether for a class of problems.
A configuration Cn is defined by the n Hubbard vertices and Ising spins introduced in Eq. (7)

Cn = {[τ1, s1] · · · [τn, sn]} . (12)

With the short-hand notation∑
Cn

=
∞∑
n=0

∫ β

0

dτ1
∑
s1

· · ·
∫ β

0

dτn
∑
sn

, (13)

the partition function can conveniently be written as

ZSIAM

Z0

=
∑
Cn

W (Cn), with W (Cn) =

(
−U

2

)n
1

n!

∏
σ

detMσ(Cn) . (14)

Here Mσ(Cn) is the n× n matrix of Eq. (10).
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2.2 Observables and Wick’s theorem

Observables Ô(τ) can now be computed with

〈Ô(τ)〉 =

∑
Cn
W (Cn)〈〈Ô(τ)〉〉Cn∑

Cn
W (Cn)

, (15)

where for Ô(τ) =
∏

σ Ôσ(τ) we have

〈〈Ô(τ)〉〉Cn =

∏
σ〈T [n̂σ(τ1)− ασ(s1)] · · · [n̂σ(τn)− ασ(sn)] Ôσ(τ)〉0∏

σ〈T [n̂σ(τ1)− ασ(s1)] · · · [n̂σ(τn)− ασ(sn)]〉0
. (16)

We will compute the single-particle Green function and then show that any many-particle Green
function can be expressed in terms of this quantity. This statement corresponds to Wick’s theo-
rem, which holds when expanding around a Gaussian theory.
Using the determinant identity given by Eq. (10), one will readily see that the single-particle
Green function is given by the ratio of two determinants:

〈〈T f̂ †σ(τ)f̂σ(τ ′)〉〉Cn =
detBσ(Cn)

detMσ(Cn)
(17)

where

Bσ(Cn) =


g0(τ1, τ

′)

Mσ(Cn)
...

g0(τn, τ
′)

g0(τ, τ1) . . . g0(τ, τn) g0(τ, τ
′)

 . (18)

To compute the ratio of the two determinants, we use the determinant identity

det(A + u⊗ v) = det(A)
(
1 + v ·A−1u

)
(19)

as well as the Sherman-Morrison formula

(A + u⊗ v)−1 = A−1 − A−1u⊗ vA−1

1 + v ·A−1u
(20)

to obtain

det (A + u1 ⊗ v1 + u2 ⊗ v2) =

det(A)
[(

1 + v1 ·A−1u1

) (
1 + v2 ·A−1u2

)
−
(
v2 ·A−1u1

) (
v1 ·A−1u2

)]
,

(21)

where the outer product is given by (u⊗ v)i,j = uivj and the scalar product by u·v =
∑

i uivi.
Eq. (20) can be formally derived by Taylor-expanding (1 + A−1u⊗ v)−1. Eq. (19) can equally
be formally demonstrated by using the fact that det(A) = exp Tr log (A).
Decomposing the Bσ(Cn) matrix as

Bσ(Cn) =


0

Mσ(Cn)
...
0

0 . . . 0 1

+ u1 ⊗ v1 + u2 ⊗ v2 (22)
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with
u1 = (g0(τ1, τ

′), . . . , g0(τn, τ
′), g0(τ, τ

′)− 1) , (v1)i = δi,n+1

and
(u2)i = δi,n+1, v2 = (g0(τ, τ1), . . . , g0(τ, τn), 0)

yields the following expression for the single-particle Green function

g(τ, τ ′)Cn ≡ 〈〈T f̂ †σ(τ)f̂σ(τ ′)〉〉Cn = g0(τ, τ
′)−

n∑
r,s=1

g0(τ, τr)
(
Mσ(Cn)−1

)
r,s
g0(τs, τ

′) . (23)

An important consequence of a continuous-time formulation is that one can compute the Green
function directly in Matsubara frequencies. With the Fourier transformation of Eq. (4) one
obtains:

g(iωm, iω
′
m)Cn = δωm,ω′mg0(iωm)− g0(iωm)

(
1

β

n∑
r,s=1

e−iωmτr
(
Mσ(Cn)−1

)
r,s
eiω
′
mτs

)
g0(iω

′
m).

(24)
For a given configuration of vertices Cn, translation symmetry in imaginary time is broken
such that g(iωm, iω

′
m)Cn has to be a function of two Matsubara frequencies. Clearly, translation

symmetry has to be restored after summation over the configurations Cn has been carried out.
One can use this fact to define improved estimators for the Green function.
Higher-order Green functions may be computed by using the matrix identity demonstrated in
App. B [32]. Here we consider Green functions of the form 〈T f̂ †σ(1)f̂σ(1′) . . . f̂ †σ(m)f̂σ(m′)〉.
For every configuration Cn, a relation similar to Wick’s theorem can be found, which greatly
simplifies the calculation of higher-order Green functions. The application of the ordinary Wick
theorem to the denominator and the numerator of Eq. (16) yields

〈〈T f̂ †σ(1)f̂σ(1′) . . . f̂ †σ(m)f̂σ(m′)〉〉Cn =
detBσ(Cn)

detMσ(Cn)
, (25)

where now Bσ(Cn) is a C(n+m)×(n+m) matrix given by

Bσ(Cn) =



g0(τ1, 1
′) . . . g0(τ1,m

′)

Mσ(Cn)
... . . . ...

g0(τn, 1
′) . . . g0(τn,m

′)

g0(1, τ1) . . . g0(1, τn) g0(1, 1
′) . . . g0(1,m

′)
... . . . ...

... . . . ...
g0(m, τ1) . . . g0(m, τn) g0(m, 1

′) . . . g0(m,m
′)


. (26)

Defining the matrices Bij
σ(Cn) ∈ C(n+1)×(n+1),

Bij
σ(Cn) =


g0(τ1, i

′)

Mσ(Cn)
...

g0(τn, i
′)

g0(j, τ1, ) . . . g0(j, τn) g0(j, i
′)

, (27)
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we can make use of the determinant identity (145) yielding

detBCn

detMCn

=
1

(detMCn)n
det

detB11
Cn

. . . detB1m
Cn

... . . . ...
detBm1

Cn
. . . detBmm

Cn

. (28)

From Eq. (17) and (18), it is obvious that detBij
σ(Cn)/ detMσ(Cn) is identical to the contribu-

tion of the configuration Cn to the one particle Green’s function 〈T f̂ †σ(j)f̂σ(i′)〉. Hence, Wick’s
theorem holds for every configuration Cn and is given by

〈〈T f̂ †σ(1)f̂σ(1′) . . .f̂ †σ(m)f̂σ(m′)〉〉Cn =

det

 〈〈T f̂
†
σ(1)f̂σ(1′)〉〉Cn . . . 〈〈T f̂ †σ(1)f̂σ(m′)〉〉Cn

... . . . ...
〈〈T f̂ †σ(m)f̂σ(1′)〉〉Cn . . . 〈〈T f̂ †σ(m)f̂σ(m′)〉〉Cn

 .
(29)

This demonstrates that knowing the single particle Green function 〈〈T f̂ †σ(τ)f̂σ(τ ′)〉〉Cn suffices
to compute any observable.

2.3 The negative sign problem

For each configuration of vertices Cn, we are able to compute arbitrary correlation functions.
Due to the dimension of the configuration space, it is prohibitively expensive to carry out the
summation over Cn exactly. One will thus opt for a stochastic Monte Carlo approach which, for
completeness sake, is reviewed in Appendix A.
A prerequisite for applying the Monte Carlo approach is that the weight, W (Cn), of Eq. (14)
is positive. For quantum systems, a positive formulation is not always possible, and one will
decide to sample |W (Cn)|. Thereby, we will carry out the Monte Carlo evaluation with

〈Ô(τ)〉 =

∑
Cn
W (Cn)〈〈Ô(τ)〉〉Cn∑

Cn
W (Cn)

=

∑
Cn
|W (Cn)|sign(W (Cn))〈〈Ô(τ)〉〉Cn∑

Cn
|W (Cn)|∑

Cn
|W (Cn)|sign(W (Cn))∑

Cn
|W (Cn)|

(30)

and separately compute the numerator and denominator. The denominator corresponds to the
average sign. On general grounds, one can argue that it is given by the ratio of two partition
functions and thereby decays exponentially with the inverse temperature and the number of
impurities Nimp

〈sign〉 =

∑
Cn
W (Cn)∑

Cn
|W (Cn)|

' e−∆βNimp . (31)

In other words, at low temperatures there is a next to perfect cancellation of positive and negative
weights. The sign problem is a consequence of the law of large numbers which states that the
error on the average sign scales as

σsign ∼
1√
TCPU

, (32)
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where TCPU corresponds to the computational time. Obviously, to obtain sensible results, we
will require that

σSign
〈sign〉

� 1 (33)

such that

TCPU � e2∆βNimp . (34)

Hence the required CPU time will scale exponentially with inverse temperature and number of
impurities. Note that one can counter the sign problem if one can define an improved estimator
for the average sign such that the fluctuations are greatly suppressed! Let us furthermore note
that the pre-factor ∆ is formulation dependent. One can for instance mention recent work of
Huffman et al. [24], who have found a CT-INT formulation for spin-polarized electron problems
at half-band filling that is free of the sign problem. Hence in this case ∆ = 0. There are other
problems which are free of the negative sign problem. To show this, for the special case of
attractive and repulsive Hubbard interactions, we will consider the mapping of the CT-INT to
the CT-AUX [26, 27, 34]. This mapping allows the use of results derived in the framework of
the Hirsch-Fye [35] and auxiliary-field QMC (for a review see Ref. [4]) algorithms to argue for
the absence of the sign problem.
Let us start with the repulsive Hubbard interaction, which we will write as

HU =
U

2

∑
s=±1

[(n̂↑ − 1/2) + sδ] [(n̂↑ − 1/2)− sδ] = −U (δ2 − 1/4)

2

∑
s=±1

eαsm̂ (35)

with

cosh(α)− 1 =
1

2

1

δ2 − 1/4

and magnetization m̂ = n̂↑ − n̂↓. This identity relies on the fact that m̂4 = m̂2 and requires
δ > 1/2. Using this identity, the weight of a vertex configuration is given by

W (Cn) =

(
U (δ2 − 1/4)

2

)n
1

n!
〈Teαs1m̂(τ1) . . . eαsnm̂(τn)〉0 (36)

where 〈•〉0 corresponds to the thermal expectation value with respect to the non-interacting
model. Several comments are in order. (i) The notation K = Uβ(δ2− 1/4) makes the mapping
to the CT-AUX explicit [27]. (ii) For δ > 1/2 , U (δ2 − 1/4) is positive for the repulsive case.
(iii) For a given set of Ising fields, the thermal expectation value has precisely the same structure
as in the Hirsch-Fye and auxiliary-field QMC algorithms [4]. It hence follows that the CT-INT,
CT-AUX, Hirsch-Fye and auxiliary-field QMC algorithms have the same sign problem for re-
pulsive Hubbard interactions. Thus, as shown in Ref. [36], the SIAM is free of the negative sign
problem. By the same token, one can argue that a class of one-dimensional problems [6] and
problems with particle-hole symmetry such as the Kane-Mele-Hubbard model [37, 13] are sign
problem free if formulated within the CT-INT. Studies of correlation effects in one-dimensional
helical liquids [15] hinge on this observation.
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For attractive interactions, one can use a similar identity as above. In this case, we have to adopt
a different convention for the δ-shift

HU =
U

2

∑
s=±1

[(n̂↑ − 1/2) + sδ] [(n̂↑ − 1/2) + sδ] =
U (δ2 − 1/4)

2

∑
s=±1

eαs(n̂−1) (37)

with n̂ = n̂↑ + n̂↓. Again, the above equation relies on the fact that (n̂− 1)4 = (n̂− 1)2 and
the same equation as above holds for α. Thus, for the attractive case, the weight reads

W (Cn) =

(
−U (δ2 − 1/4)

2

)n
1

n!
〈Teαs1(n̂(τ1)−1) . . . eαsn(n̂(τn)−1)〉0 . (38)

Since U < 0 and δ > 1/2, −U (δ2 − 1/4) is positive. Furthermore, provided that the non-
interacting model factorizes into identical spin-up an spin-down real representable Hamiltoni-
ans, the thermal expectation value reads

〈Teαs1(n̂(τ1)−1) . . . eαsn(n̂(τn)−1)〉0 =
[
〈Teαs1(n̂↑(τ1)−1/2) . . . eαsn(n̂↑(τn)−1/2)〉0,↑

]2
, (39)

which is manifestly positive. Here 〈•〉0,↑ corresponds to the thermal expectation value in the
spin-up sector. Factorization is not necessarily required for the absence of the sign problem in
the presence of attractive interactions. In general, time-reversal-symmetric fermionic problems
where time reversal symmetry is present for every configuration Cn, are free of the minus sign
problem. This follows essentially from Kramers theorem and is proven in Ref. [38].

2.4 The Monte Carlo sampling

At this point, we will assume that the weight is positive such that we can carry out Monte
Carlo importance sampling. Only two moves are required to guarantee ergodicity: addition and
subtraction of vertices. Vertex addition corresponds to the proposal

Cn = {[τ1, s1] · · · [τn, sn]} → Cn+1 = {[τ1, s1] · · · [τi, si], [τ ′, s′], [τi+1, si+1] · · · [τn, sn]} (40)

where we add the vertex τ ′, s′ at position i in the string. The proposal probability reads

T 0
Cn→Cn+1

=
1

n+ 1︸ ︷︷ ︸
Position in string

1

β︸︷︷︸
Value of τ ′

1

2︸︷︷︸
Value of s′

. (41)

Vertex removal corresponds to

Cn = {[τ1, s1] · · · [τn, sn]} → Cn−1 = {[τ1, s1] · · · [τi, si] , [τi+2, si+2] , · · · [τn, sn]} , (42)

where vertex i has been removed. The probability to propose this move reads

T 0
Cn→Cn−1

= 1/n , (43)
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which corresponds to the probability of choosing vertex i under the assumption that each vertex
is equally probable. As shown in Appendix A (see Eq. (132) ), the Metropolis acceptance reads

PC→C′ = min

(
T 0
C′→CW (C ′)

T 0
C→C′W (C)

, 1

)
. (44)

Thus

PCn→Cn+1 = min

(
− Uβ

(n+ 1)

∏
σ detMσ(Cn+1)∏
σ detMσ(Cn)

, 1

)
PCn+1→Cn = min

(
−(n+ 1)

Uβ

∏
σ detMσ(Cn)∏
σ detMσ(Cn+1)

, 1

)
.

Note that in our formulation the ordering of the vertices is important since we have defined the
integration without time-ordering

∫ β
0

dτ1 · · ·
∫ β
0

dτn as opposed to a time-ordered formulation∫ β
0

dτ1
∫ τ1
0

dτ2 · · ·
∫ τn−1

0
dτn. The reader is encouraged to show that both formulations lead to

the same acceptance/rejection ratios. In practical implementations one will also include a move
that keeps the vertex number constant but flips the value of the Ising spin. Strictly speaking,
this move is not necessary but has the potential of improving the autocorrelation time. For
repulsive interactions, this statement follows from the notion that summing over the Ising fields
will restore the broken SU(2) spin-symmetry.

2.5 Fast updates

The Monte Carlo dynamics relies on the calculation of ratios of determinants. Such ratios can
be computed using the determinant identities of Eq. (21). For instance, under vertex addition
we will have to compute for each spin sector

detMσ(Cn+1)

detMσ(Cn)
=

det


g0(τ1, τ

′)

Mσ(Cn)
...

g0(τn, τ
′)

g0(τ
′, τ1) . . . g0(τ

′, τn) g0(τ
′, τ ′)− ασ(s′)


detMσ(Cn)

=

det




0

Mσ(Cn)
...
0

0 . . . 0 1

+ u1 ⊗ v1 + u2 ⊗ v2


detMσ(Cn)

=
(
1 + v1 ·M−1

σ (Cn)u1

) (
1 + v2 ·M−1

σ (Cn)u2

)
−
(
v2 ·M−1

σ (Cn)u1

) (
v1 ·M−1

σ (Cn)u2

)
.

with
u1 = (g0(τ1, τ

′), . . . , g0(τn, τ
′), g0(τ

′, τ ′)− ασ(s′)− 1) , (v1)i = δi,n+1
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and
(u2)i = δi,n+1, v2 = (g0(τ

′, τ1), . . . , g0(τ
′, τn), 0).

Carrying out the calculation yields

detMσ(Cn+1)

detMσ(Cn)
= g0(τ

′, τ ′)− ασ(s′)−
n∑

i,j=1

g0(τ
′, τi)

[
M−1

σ (Cn)
]
i,j
g0(τj, τ

′) . (45)

Hence, provided that the matrix M−1
σ (Cn) is known, computing the ratio involves n2 operations.

The vertex removal takes a very simple form. Assume that we remove the nth vertex of the
configuration Cn. Then for a given spin sector, we will have to compute

detMσ(Cn−1)

detMσ(Cn)
=

det


g0(τ1, τ1)− ασ(s1) . . . g0(τ1, τn−1) 0

...
...

...
g0(τn−1, τ1) . . . g0(τn−1, τn−1)− ασ(sn−1) 0

0 . . . 0 1


detMσ(Cn)

=
det [Mσ(Cn) + u1 ⊗ v1 + u2 ⊗ v2]

detMσ(Cn)
(46)

with
u1 = −

(
[Mσ(Cn)]1,n , . . . , [Mσ(Cn)]n,n − 1

)
, (v1)i = δi,n

and
(u2)i = δi,n, v2 = −

(
[Mσ(Cn)]n,1 , . . . , [Mσ(Cn)]n,n−1 , 0

)
.

Evaluating the above gives

detMσ(Cn−1)

detMσ(Cn)
=
[
M−1

σ (Cn)
]
n,n
. (47)

Again, provided that we have the matrix M−1
σ (Cn) at hand, the computational cost for comput-

ing the ratio for vertex removal is negligible.
Having computed the ratio of determinants, we can compute the acceptance probability, draw
a pseudo-random number, and accept or reject the move. If accepted, we will have to upgrade
the matrix M−1

σ (Cn). This is readily done with the use of the Sherman-Morrison formula of
Eq. (20) and involves n2 operations.
In some cases, it is desirable to add more than one vertex at a time. For this purpose, it is more
useful to use the Woodbury formula

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 (48)

with A ∈ Cn×n, U ∈ Cn×k, C ∈ Ck×k and V ∈ Ck×n. The Woodbury identity reduces to the
Sherman-Morrison formula of Eq. (20) at k = 1 and C = 1. A discussion of block updates as
well as a demonstration of various matrix identities can be found in Ref. [39].
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2.6 Average expansion parameter

A crucial issue concerns the average expansion parameter 〈n〉 since it will determine the average
size of the matrix Mσ(Cn). The computational effort to visit each vertex – a sweep – will then
scale as 〈n〉3. For a general interaction term Ĥ1, the average expansion parameter is [6]

〈n〉 =
1

Z

∑
n

(−1)nn

n!

∫ β

0

dτ1 · · ·
∫ β

0

dτn 〈TĤ1(τ1) · · · Ĥ1(τn)〉0

= − 1

Z

∑
m

(−1)m

m!

∫ β

0

dτ1 · · ·
∫ β

0

dτm

∫ β

0

dτ 〈TĤ1(τ1) · · · Ĥ1(τm)Ĥ1(τ)〉0

= −
∫ β

0

dτ〈Ĥ1(τ)〉 . (49)

For the Hubbard model, replacing Ĥ1 by the form of Eq. (7), we obtain

〈n〉 = −βU
[
〈(n̂↑ − 1/2)(n̂↓ − 1/2)〉 − δ2

]
, (50)

where we have set ρ = 1/2. Thus, the computational time for a sweep scales as in the Hirsch-
Fye approach, namely as (βU)3. The algorithm can be used for lattice models withN correlated
sites. In this case, the computational time for a sweep scales as (NβU)3, which is more expen-
sive than the auxiliary-field approach, which scales as βUN3. As mentioned in the introduction,
the advantage of the CT-INT method lies in the fact that it is action-based such that fermionic
and bosonic baths can be easily implemented.

3 CT-HYB

In this section we will provide a very succinct overview of the basic formulation of the CT-
HYB. For a detailed discussion of the algorithm, the reader is referred to the review article [1]
and references therein.

3.1 The partition function

In contrast to the CT-INT, the CT-HYB carries out the expansion in the hybridization matrix
∆(τ − τ ′). The action of the SIAM is decomposed into local

Sloc(f
†, f) =

∫ β

0

dτ
∑
σ

f †σ(τ)

[
∂

∂τ
+ εf

]
fσ(τ) + U

∫ β

0

dτ f †↑(τ)f↑(τ)f †↓(τ)f↓(τ) (51)

and hybridization

Shyb(f
†, f) = −

∫ β

0

dτdτ ′
∑
σ

f †σ(τ)∆(τ − τ ′) fσ(τ ′) (52)
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parts. Taylor expanding in Shyb gives

ZSIAM =

∫
D
{
f †f
}
e−Sloc(f

†,f)
∑
n

1

n!

∑
σ1...σn

∫ β

0

dτ1dτ
′
1 . . . dτndτ

′
n

× f †σ1(τ1)fσ1(τ
′
1) . . . f

†
σn(τn)fσn(τ ′n)∆(τ1 − τ ′1) . . . ∆(τn − τ ′n). (53)

The insight of Ref. [28] is to sum up a set of configurations corresponding to the permutations
of the Grassmann variables f . As we will see, the weight of this sum of configurations is
given by an n × n determinant of the hybridization function. This is the crucial step in the
basic formulation of the algorithm that leads to the absence of a sign problem for the SIAM. To
achieve this, it is convenient to introduce the notation

x = (τ, σ),

∫
dx =

∑
σ

∫ β

0

dτ, ∆x,x′ = ∆(τ − τ ′)δσ,σ′ (54)

such that∑
σ1...σn

∫ β

0

dτ1dτ
′
1 . . . dτndτ

′
nf
†
σ1

(τ1)fσ1(τ
′
1) . . . f

†
σn(τn)fσn(τ ′n)∆(τ1 − τ ′1) . . . ∆(τn − τ ′n)

=

∫
dx1dx

′
1 . . . dxndx

′
n f
†
x1
fx′1 . . . f

†
xnfx′n ∆x1,x′1

. . . ∆xn,x′n

=
1

n!

∑
P∈Sn

∫
dx1dx

′
P (1) . . . dxndx

′
P (n) f

†
x1
fx′

P (1)
. . . f †xnfx′P (n)

∆x1,x′P (1)
. . . ∆xn,x′P (n)

. (55)

In the above P is a permutation of n objects, and we have merely replicated the result n! times.
Using the anti-commuting property of the Grassmann algebra, one can show that

f †x1fx′P (1)
. . . f †xnfx′P (n)

= (−1)Pf †x1fx′1 . . . f
†
xnfx′n

where (−1)P is the sign of the permutation. Since dx1dx′P (1) . . . dxndx
′
P (n) = dx1dx

′
1 . . . dxndx

′
n

Eq. (55) transforms as

1

n!

∫
dx1dx

′
1 . . . dxndx

′
n f †x1fx′1 . . . f

†
xnfx′n

∑
P∈Sn

(−1)P∆x1,x′P (1)
. . . ∆xn,x′P (n)

=
1

n!

∫
dx1dx

′
1 . . . dxndx

′
n f †x1fx′1 . . . f

†
xnfx′n det

∆x1,x′1
. . . ∆x1,x′n

...
...

∆xn,x′1
. . . ∆xn,x′n

 (56)

Using the above, the partition function is written as

ZSIAM

Zloc
=
∑
n

1

n!2

∫
dx1dx

′
1 . . . dxndx

′
n 〈f †x1fx′1 . . . f

†
xnfx′n〉loc det

∆x1,x′1
. . . ∆x1,x′n

...
...

∆xn,x′1
. . . ∆xn,x′n

 (57)
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where

Zloc =

∫
D
{
f †f
}
e−Sloc(f

†,f)

and

〈•〉loc =
1

Zloc

∫
D
{
f †f
}
e−Sloc(f

†,f) • .

For the special case where the hybridization function is spin diagonal, one can simplify the
above equation. In this case, the spin variables {σ′1 . . . σ′n} have to be a permutation of {σ1 . . . σn}
such that

σ′i = σP (i) with P ∈ Sn. (58)

Hence,

∫
dx1dx

′
1 . . . dxndx

′
n 〈f †x1fx′1 . . . f

†
xnfx′n〉loc det

∆x1,x′1
. . . ∆x1,x′n

...
...

∆xn,x′1
. . . ∆xn,x′n


=
∑
P∈Sn

∑
σ1...σn

∫ β

0

dτ1dτ
′
1 . . . dτndτ

′
n 〈f †τ1,σ1fτ ′1,σP (1)

. . . f †τn,σn,fτ ′n,σP (n)
〉loc

× det

∆(τ1,σ1),(τ ′1,σP (1)) . . . ∆(τ1,σ1),(τ ′n,σP (n))

...
...

∆(τn,σn),(τ ′1,σP (1)) . . . ∆(τn,σn),(τ ′n,σP (n))

 .

For a given permutation P one can carry out the substitution τ ′i = τ ′′P (i). This substitution leaves
the integration measure invariant such that the above reads

∑
P∈Sn

∑
σ1...σn

∫ β

0

dτ1dτ
′′
1 . . . dτndτ

′′
n 〈f †τ1,σ1fτ ′′P (1)

,σP (1)
. . . f †τn,σn,fτ ′′P (n)

,σP (n)
〉loc

× det


∆(τ1,σ1),(τ ′′P (1)

,σP (1)) . . . ∆(τ1,σ1),(τ ′′P (n)
,σP (n))

...
...

∆(τn,σn),(τ ′′P (1)
,σP (1)) . . . ∆(τn,σn),(τ ′′P (n)

,σP (n))

 .

One can get rid of the permutation under the integral by reordering the Grassmann variables
fτ ′′
P (i)

,σP (i)
as well as the columns of the matrix. In this process, the minus signs cancel and the

sum over the permutations gives a factor n!. Hence, the partition function reads

ZSIAM

Zloc
=

∑
n

1

n!

∑
σ1...σn

∫ β

0

dτ1dτ
′′
1 . . . dτndτ

′′
n 〈f †τ1,σ1fτ ′′1 ,σ1 . . . f

†
τn,σn,fτ ′′n ,σn〉loc

× det

∆(τ1,σ1),(τ ′′1 ,σ1)
. . . ∆(τ1,σ1),(τ ′′n ,σn)

...
...

∆(τn,σn),(τ ′′1 ,σ1)
. . . ∆(τn,σn),(τ ′′n ,σn)

 . (59)
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3.2 The Monte Carlo sampling and evaluation of the trace

For the SIAM where the hybridization matrix is spin-diagonal, we can define a configuration as

Cn = {[τ1, τ ′1, σ1] · · · [τn, τ ′n, σn]} (60)

and the weight of a configuration as

W (Cn) =
1

n!
〈f †τ1,σ1fτ ′′1 ,σ1 . . . f

†
τn,σn,fτ ′′n ,σn〉loc det

∆(τ1,σ1),(τ ′′1 ,σ1)
. . . ∆(τ1,σ1),(τ ′′n ,σn)

...
...

∆(τn,σn),(τ ′′1 ,σ1)
. . . ∆(τn,σn),(τ ′′n ,σn)

 (61)

such that ZSIAM
Zloc

=
∑

Cn
W (Cn). The simplest possible proposal matrix to add a vertex reads,

T 0
Cn→Cn+1

=
1

n+ 1︸ ︷︷ ︸
Position in string

1

β︸︷︷︸
Value of τ

1

β︸︷︷︸
Value of τ ′

1

2︸︷︷︸
Spin up or spin down

. (62)

To remove a vertex
T 0
Cn→Cn−1

=
1

n
. (63)

With the above we are now in a position to compute the Metropolis acceptance ratio given in
Eq. (132). The update of the hybridization matrix follows the same ideas as in the CT-INT.
The computationally expensive part of the CT-HYB algorithm is the evaluation of the trace〈
·
〉

loc. In general, as the expectation value is taken with respect to the local Hamiltonian, the
operators can be represented by matrices in a basis of the local Hilbert space.
One particular basis that is often used is the eigenbasis of the local Hamiltonian. This makes
the time evolution of the operators trivial but leads to dense operator matrices, which have to
be multiplied. Here the main drawback of the CT-HYB becomes apparent: the size of the local
Hilbert space D, and thus of the operator matrices, grows exponentially with the number of
local degrees of freedom. Thus, simulation of larger systems become unfeasible quite rapidly.
Nevertheless, there are strategies to simulate multi-orbital systems as well as small clusters for
Cluster-DMFT applications.
To reduce the size of the matrices that have to be multiplied, one can exploit certain symmetries
of the Hamiltonian. This allows splitting the matrices into blocks of size di � D [40], such that∑

i di = D. Each block contains all the states associated with a certain value of a conserved
quantity. The most obvious conserved quantities are the total f -particle number Nf and the
z-component of the total spin Sz. There are well-defined rules governing how an operator
connects the different blocks corresponding to different quantum numbers. As an example, the
creation operator f̂ †↑ connects the blocks (Nf , Sz) and (Nf + 1, Sz + 1/2).
In Ref. [41], another set of conserved quantities was identified, which leads to even smaller
matrix blocks. For each orbital or site, the projection onto single occupation

PSa = (na,↑ − na,↓)2, a = 1 . . .M (64)
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Considered symmetries None Nf Nf , Sz Nf , Sz, PS

N = 3 64 = 43 20 9 3
N = 5 1024 = 44 252 100 10

Table 1: Largest matrix block size, with different sets of conserved quantities taken into account.

commutes with the local Hamiltonian. This makes the whole sequence of PS=(PS1, . . . , PSM)

a good quantum number, so that the Hamiltonian can be written in a block-diagonal form with
respect to PS. The resulting reduction of the matrix block sizes is shown in table 1.

Besides the matrix code described above, there are other possibilities for calculating the local
trace. An algorithm based on a Krylov-subspace method was brought forward in Ref. [42].
Here the particle-number basis is used, so that applying operators to states is trivial. However,
now the time evolution becomes more involved. Another recent proposal uses matrix product
states for the propagation in time [43].

3.3 Selected applications

The CT-HYB is clearly the method of choice to tackle complex impurity problems at strong
coupling and with the full Coulomb repulsion. In the context of the DMFT, extracting the local
Green function is essential. In this context it is important to point out the work of Hafermann et
al. [44], which describes an improved estimator for computing the self-energy.

In a two-orbital model, the inclusion of the Hund’s coupling J greatly influences the critical
Hubbard interaction Uc for the Mott transition [45]. A three-orbital model studied in Ref. [46]
exhibits not only the Mott phase at integer fillings, but also a non-Fermi-liquid frozen-moment
phase. In Ref. [47], models with only d-orbitals and with d- and additional oxygen p-orbitals
where compared. With the p-orbitals included, the filling of the d-orbitals changes significantly,
which thereby leads to a very different low-energy behavior.

Another recent application of the CT-HYB method in the context of DMFT is the study of
models for topological Kondo insulators conducted in Ref. [48]. It was found that, starting from
the non-interacting case, switching on the Hubbard interaction can drive the system through
a series of transitions. In particular, a transition was observed between different topological
states that are distinct due to the point-group symmetry of the lattice considered. Meanwhile,
in Ref. [49] it was found that the edge spectrum of topological Kondo insulators is governed by
the same scale as the bulk heavy-fermion state, namely the coherence scale Tcoh. This makes
it possible to infer information about the bulk coherence from the topological properties of the
system.
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4 Application of CT-INT to the Hubbard-Holstein model

The CT-INT allows for a very simple and efficient inclusion of phonon degrees of freedom.
The path we follow here is to integrate out the phonons in favor of a retarded interaction and
then solve the purely electronic model with the CT-INT approach. Starting from the Hubbard-
Holstein model with Einstein phonons we show how to integrate out the phonons, describe
some details of the algorithm, and then present results for the crossover from adiabatic to anti-
adiabatic phonons in the one-dimensional Holstein model.

4.1 Integrating-out the phonons

The Hubbard-Holstein Hamiltonian we consider reads

Ĥ = −
∑
i,j,σ

ti,j ĉ
†
i,σ ĉj,σ+U

∑
i

(n̂i,↑ − 1/2) (n̂i,↓ − 1/2)+g
∑
i

Q̂i (n̂i − 1)+
∑
i

(
P̂ 2
i

2M
+
k

2
Q̂2
i

)
(65)

Here, n̂i =
∑

σ n̂i,σ and the last two terms correspond respectively to the electron-phonon
coupling, g, and the phonon energy. The Hamiltonian is written such that for a particle-hole
symmetric band, half-filling corresponds to chemical potential µ = 0. Opting for fermion
coherent states

ĉi,σ|c〉 = ci,σ|c〉 , (66)

ci,σ being a Grassmann variable, and a real space representation for the phonon coordinates

Q̂i|q〉 = qi|q〉 , (67)

the path integral formulation of the partition function reads

Z =

∫
D{q}D

{
c†c
}
e−(SU+Sep) , (68)

with

SU =

∫ β

0

dτ
∑
i,j,σ

c†i,σ(τ)

(
δi,j

∂

∂τ
− ti,j

)
cj,σ(τ) + U

∑
i

(ni,↑(τ)− 1/2)(ni,↓(τ)− 1/2)

Sep =

∫ β

0

dτ
∑
i

(
Mq̇i

2(τ)

2
+
k

2
q2i (τ) + g qi(τ)(ni(τ)− 1)

)
. (69)

In Fourier space,

qj(τ) =
1√
βN

∑
k,Ωm

e−i(Ωmτ−kj)qk,m , (70)

where Ωm is a bosonic Matsubara frequency, the electron-phonon part of the action reads

Sep =
∑
Ωm,k

M

2

(
Ω2
m + ω2

0

)
q†k,mqk,m + gqk,mρ

†
k,m ,

ρ†k,m =
1√
βN

∫
dτ
∑
j

e−i(Ωmτ−kj)(nj(τ)− 1) . (71)
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Gaussian integration over the phonon degrees of freedom leads to a retarded density-density
interaction ∫

D{q} e−Sep = e
∫ β
0 dτ

∫ β
0 dτ ′

∑
i,j [ni(τ)−1]D0(i−j,τ−τ ′)[nj(τ ′)−1] . (72)

For Einstein phonons the phonon propagator is diagonal in real space,

D0(i− j, τ − τ ′) = δi,j
g2

2k
P (τ − τ ′) with

P (τ) =
ω0

2 (1− e−βω0)

(
e−|τ |ω0 + e−(β−|τ |)ω0

)
. (73)

Hence the partition function of the Hubbard-Holstein model takes the form

Z =

∫
D
{
c†c
}
e−(SU−

∫ β
0 dτ

∫ β
0 dτ ′

∑
i,j [ni(τ)−1]D0(i−j,τ−τ ′)[nj(τ ′)−1]) .

In the anti-adiabatic limit, limω0→∞ P (τ) = δ(τ) such that the phonon interaction maps onto
an attractive Hubbard interaction of magnitude g2/k. We are now in a position to apply the
CT-INT algorithm by expanding in both the retarded and the Hubbard interactions.

4.2 Formulation of CT-INT for the Hubbard-Holstein model

To avoid the minus-sign problem at least for one-dimensional chains with nearest neighbor
hopping matrix element t, we rewrite the phonon retarded interaction as

HP (τ) = − g
2

4k

∫ β

0

dτ ′
∑
i,σ,σ′

∑
s=±1

P (τ − τ ′) [ni,σ(τ)− α+(s)] [ni,σ′(τ
′)− α+(s)] . (74)

For each phonon vertex, we have introduced an Ising variable s. Summation over this Ising
field reproduces, up to a constant, the original interaction. Since the phonon term is attractive,
the adequate choice of signs is α+(s) ≡ 1/2 + sδ, irrespective of the spin σ and σ′. Following
Eq. (7), we rewrite the Hubbard term as

HU(τ) =
U

2

∑
i,s

∏
σ

(ni,σ(τ)− ασ(s)) . (75)

To proceed with a description of the implementation of the algorithm, it is useful to define a
general vertex

V (τ) = {i, τ, σ, τ ′, σ′, s, b} , (76)

where b defines the type of vertex at hand, Hubbard (b = 0) or phonon (b = 1). For this vertex,
we define a sum over the available phase space

∑
V (τ)

=
∑

i,σ,σ′,s,b

∫ β

0

dτ ′, (77)
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a weight

w [V (τ)] = δb,0
U

2
− δb,1P (τ − τ ′) g

2

4k
, (78)

as well as

H [V (τ)] = δb,0δσ,↑δσ′,↓δ(τ − τ ′) [ni,↑(τ)− α+(s)] [ni,↓(τ)− α−(s)] (79)

+ δb,1 [ni,σ(τ)− α+(s)] [ni,σ′(τ
′)− α+(s)] .

With the above definitions, the partition function can now be written as

Z

Z0

=
∞∑
n=0

(−1)n

n!

∫ β

0

dτ1
∑
V1(τ1)

w[V1(τ1)] · · ·
∫ β

0

dτn
∑
Vn(τn)

w [Vn(τn)] 〈TĤ [V1(τ1)] · · · Ĥ [Vn(τn)]〉0.

(80)
As for the Hubbard model, a configuration consists of a set of verticesCn = {V1(τ1), . . ., Vn(τn)}.
With the short-hand notation∑

Cn

=
∑
n

∫ β

0

dτ1
∑
V (τ1)

· · ·
∫ β

0

dτn
∑
V (τn)

(81)

and

W (Cn) =
(−1)n

n!
w[V1(τ1)] · · ·w [Vn(τn)] 〈TĤ [V1(τ1)] · · · Ĥ [Vn(τn)]〉0 (82)

the partition function takes a form amenable to Monte Carlo sampling

Z

Z0

=
∑
Cn

W (Cn). (83)

The Monte Carlo sampling follows precisely the scheme presented in Sec. 2.4, namely the
addition and removal of vertices. To be more specific, we consider the following form for
vertex addition

T 0
Cn→Cn+1

= PU
1

n+ 1

1

L

1

β

1

2
+ (1− PU)

1

n+ 1

1

L

1

β
P (∆τ)

(
1

2

)3

. (84)

The first term corresponds to the addition of a Hubbard vertex and has the same form as in
Eq. (41). Note the additional factor 1/L, which corresponds to the choice of the lattice site.
This move is carried out with probability PU . The second term corresponds to the addition
of the phonon vertex and is carried out with probability 1 − PU . The factor P (∆τ) allows
a direct sampling of the phonon propagator. In particular, for a randomly chosen value of τ ,
τ ′ = τ + ∆τ . The factor (1/2)3 accounts for the choice of the Ising field, as well as for the
choice of the spin variables σ, σ′ entering into the density-density two-body term. The vertex
removal retains the same form as for the SIAM

T 0
Cn→Cn−1

=
1

n
. (85)
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4.3 The quarter-filled Holstein model
from adiabatic to anti-adiabatic phonons

The concept of pre-formed fermion pairs or bosonic degrees of freedom that condense to form
a superfluid can be found in many domains of correlated quantum many-body systems. Ex-
amples include the resonating valence bond theory of high-temperature superconductivity [50],
Mott metal-insulator transitions in cold atoms [51], or transitions between charge-density-wave
and superconducting states in the family of dichalcogenides [52]. As an interesting applica-
tion of the CT-INT to the Holstein model, we show that these concepts can be carried over to
one dimension where, in the absence of continuous symmetry breaking, the phase transition is
replaced by a crossover.
In the anti-adiabatic limit ω0 →∞, P (τ) in equation (73) reduces to a Dirac δ-function, facili-
tating the above-mentioned mapping of the Holstein model onto the attractive Hubbard model,
with U = g2/k. The ratio of this binding energy and the bandwidth W = 4t gives the dimen-
sionless electron-phonon coupling

λ =
g2

kW
. (86)

In this section, we set λ = 0.35 and concentrate on the quarter-filled band with kF = π/4.
Figure 1 shows equal-time correlation functions

CO(q) =
∑
r

eiqr
(
〈Ô†rÔ0〉 − 〈Ô†r〉〈Ô0〉

)
, (87)

for charge, Ôr = n̂r,↑ + n̂r,↓; spin, Ôr = n̂r,↑ − n̂r,↓; pairing, Ôr = ĉ†r,↑ĉ
†
r,↓; and single-

particle, Ôr = ĉr,↑ + ĉr,↓, degrees of freedom at various phonon frequencies. In the adiabatic
limit ω0/t = 0, any λ > 0 leads to an insulating state with 2kF long-range charge order
corresponding to the Peierls instability. We choose the coupling strength λ = 0.35 such that
we have a metallic Luther-Emery liquid with dominant 2kF charge correlations for low phonon
frequencies and then study the evolution as a function of increasing ω0/t. In particular, we
have verified that for ω0/t = 0.1, the lowest nonzero frequency considered in the following,
there is no long-range order; this can be seen from the finite-size dependence of the charge
susceptibility [53].
The density (or charge) structure factor is plotted in Fig. 1(a). For classical phonons (ω0 = 0) the
Peierls instability leads to long-range 2kF charge order at zero temperature. As discussed above,
quantum lattice fluctuations (occurring for ω0 > 0) can melt this order and lead to a state with
dominant but power-law 2kF charge correlations [8], as confirmed by the cusp at 2kF = π/2

in Fig. 1(a). The magnitude of the peak at q = 2kF initially decreases and then saturates
upon increasing the phonon frequency, signalling competing ordering mechanisms as well as
enhanced lattice fluctuations. The linear form of the charge structure factor at long wavelengths
[see figure 1(a)] indicates a 1/r2 power-law decay of the real-space charge correlations and
hence a metallic state.
In Fig. 1(b), we present the pair correlation function in the onsite s-wave channel. In contrast to
the density correlator, which picks up diagonal order, P (r) detects off-diagonal order charac-
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Fig. 1: Static correlation functions for different values of the phonon frequency ω0/t at λ = 0.35
for a quarter-filled band (n = 0.5). The panels show (a) the charge structure factor, (b) the
pairing correlator, (c) the spin structure factor, and (d) the momentum distribution function.
Here L = 28 and βt = 40.

teristic of a superconducting state. In the Peierls state obtained for classical phonons, diagonal
long-range charge order leads to an exponential decay of pairing correlations at long distances.
The fluctuations resulting from a finite phonon frequency close the charge gap and render the
pairing correlations critical. Comparing figures 1(a) and 1(b), we see that the suppression of the
2kF charge correlations is accompanied by an increase of the pairing correlations, especially at
large distances. A possible interpretation is that with increasing phonon frequency, the trapping
of bipolarons in the 2kF lattice modulation gives way to a “condensation” (in the usual sense of
superfluidity in one dimension) of those preformed pairs. A detailed study of the dynamics of
the observed crossover can be found in Ref. [54].
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5 Concluding remarks

The aim of this lecture was to give a detailed theoretical overview of the CT-INT and to com-
ment on the general formulation of the CT-HYB. For the SIAM, the CT-QMC methods are easy
to implement and the interested reader is encouraged to try. It is essential to point out once
again that the CT-QMC methods are action based such that the pool of potential applications is
extremely large.
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A Basic principles of Monte Carlo methods
in statistical mechanics

In this section, we show how to use the Monte Carlo method to compute integrals of the form

〈O〉P =

∫
Ω

dx P (x)O(x) . (88)

Ω is a discrete or continuous configuration space with elements x, P (x) is a probability distri-
bution on this space, ∫

Ω

dxP (x) = 1 and P (x) ≥ 0 ∀ x ∈ Ω, (89)

and O is an observable or random variable.
To illustrate why stochastic methods are useful, let us assume Ω to be a subspace of Rd with
volume V = Ld. One can break up Ω into hypercubes of linear dimension h and approximate
the integral by a Riemann sum. The required number of function evaluations N then scales as
V/hd = (L/h)d = ed ln(L/h). Hence, the numerical effort – which is nothing but the number
of function evaluations – grows exponentially with the dimension d. In contrast, stochasitc
methods provide an estimate of the integral with statistical uncertainty scaling as the inverse
square root of the number of function evaluations, irrespective of the dimensionality d. Hence,
in the large-d limit, stochastic methods become attractive. This result stems from the central
limit theorem.

A.1 The central limit theorem

Before proceeding in illustrating and proving the central limit theorem, let us introduce some
notation. We will denote by PO(O) the probability that the observable O takes the value O.
Hence in terms of integrals over the configuration space,

PO(O) =

∫
Ω

dx P (x) δ(O(x)−O) (90)

such that

〈O〉p =

∫
dO PO(O)O, and 〈O2〉p =

∫
dO PO(O)O2. (91)

Suppose that we have a set of configurations {xi | i ∈ 1 . . . N} distributed according to the
probability distribution P (x), then we can approximate 〈O〉P by

〈O〉P ∼
1

N

N∑
i=1

O(xi)︸ ︷︷ ︸
=Oi

= X. (92)

Clearly, X will depend upon the chosen set {xi | i ∈ 1 . . . N} . Hence the relevant question
is the distribution of X , P(X), for a given value of N . The central limit theorem tells us that
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Fig. 2: Boxes correspond to the distribution results obtained after 10000 simulations. For each
simulation we draw N = 8000 points. For a single simulation, we obtain σ = 0.0185. The
heavy line corresponds to the result of central limit theorem with above value of σ.

provided that theO1 · · · ON are statistically independent and thatN is large enoughP(X) reads

P(X) =
1√
2π

1

σ
exp

[
−(X − 〈O〉P )2

2σ2

]
with σ2 =

1

N

(
〈O2〉P − 〈O〉2P

)
. (93)

Thus irrespective of the dimension d, the convergence to the exact result scales as 1/
√
N , and

the width of the above normal distribution, σ, corresponds to the statistical error. For practical
purposes, one estimates σ by

σ2 ≈ 1

N

 1

N

N∑
i=1

O(xi)
2 −

(
1

N

N∑
i=1

O(xi)

)2
 . (94)

More general methods for estimating the error are discussed in section A.2.
Before demonstrating the central limit theorem we give a simple example, the evaluation of the
number π obtained with

π = 4

∫ 1

0

dx

∫ 1

0

dy Θ(1− x2 − y2). (95)

Here Θ is the Heaviside function, Θ(x) = 1 for x > 0 and vanishes otherwise. In this ex-
ample we have P (x, y) ≡ 1. To generate a sequence of N points (x, y)i from this probability
distribution, we draw random numbers, x, y, in the interval [0, 1]. For N = 8000 we obtain
an error σ = 0.0185 with the use of Eq. (94). To check the central limit theorem, we repeat
the simulation 10000 times with different random numbers. Fig. (2) shows the thus obtained
distribution which compares well to the result of the central limit theorem.
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We now demonstrate the central limit theorem.
Proof: The probability of obtaining the result X reads

P(X) =

∫
dO1 · · · dON PO(O1,O2, · · · ,ON) δ

(
X − 1

N

N∑
i=1

Oi

)
. (96)

The assumption that the Oi are statistically independent means that the combined probability
factorizes

PO(O1,O2, · · · ,ON) = PO(O1)PO(O2) · · ·PO(ON).

Furthermore, using the representation δ(x) = 1
2π

∫
dλ eiλx of the Dirac-δ function, we can

reduce the above expression of P(X) to

P(X) =
1

2π

∫
dλ dO1 · · · dON PO(O1) · · ·PO(ON) eiλ(X−

1
N

∑
iOi)

=
1

2π

∫
dλ eiλX

(∫
dO PO(O) e−i

λ
N
O
)N

=
N

2π

∫
dλ e−NS(λ,X) with S(λ,X) = −iλX − ln

∫
dO PO(O) e−iλO (97)

As N →∞ the saddle point approximation becomes exact

P(X) ' N

2π

∫
dλ e

−N
(
S(λ∗(X),X)+

(λ∗(X)−λ)2

2
∂2

∂λ2
S(λ,X)

∣∣∣
λ=λ∗(X)

)

=

√
N

2π ∂2

∂λ2
S(λ,X)

∣∣
λ=λ∗(X)

e−NS(λ
∗(X),X) with

∂

∂λ
S(λ,X)

∣∣∣∣
λ=λ∗(X)

= 0 (98)

such that λ∗(X) is determined by:

X =

∫
dO PO(O)O e−iλ∗(X)O∫
dO PO(O) e−iλ∗(X)O . (99)

To proceed, we again use that for large values of N we can expand around the saddle point

d

dX
S(λ∗(X), X)

∣∣∣∣
X=X∗

=

 ∂

∂λ
S(λ,X)

∣∣∣∣
λ=λ∗(X)︸ ︷︷ ︸

=0

d

dX
λ∗(X) +

∂

∂X
S(λ∗(X), X)


X=X∗

= −iλ∗(X∗) = 0. (100)

Hence with Eq. (99) we have X∗=〈O〉P . Expanding around X∗ (note that S(λ∗(X∗), X∗)= 0)
yields

P(X) =

√
N

2π ∂2

∂λ2
S(λ,X∗)

∣∣
λ=λ∗(X∗)

e
−N (X−〈O〉P )

2

2
d2

dX2 S(λ
∗(X),X)

∣∣∣
X=X∗ . (101)
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Using Eqn. (100) and (99) we obtain

d2

dX2
S(λ∗(X), X)

∣∣∣∣
X=X∗

= −i dλ
∗(X)

dX

∣∣∣∣
X=X∗

=
1

〈O2〉P − 〈O〉2P

∂2

∂λ2
S(λ,X∗)

∣∣∣∣
λ=λ∗(X∗)

= 〈O2〉P − 〈O〉2P (102)

such that

P(X) '

√
N

2π (〈O2〉P − 〈O〉2P )
e
−N (X−〈O〉P )

2

2
1

〈O2〉P−〈O〉
2
P . (103)

This completes the demonstration of the central limit theorem. The two important conditions
for the validity of the theorem are that (i) the O1 · · · ON are statistically independent and that
(ii) N is large.

A.2 Jackknife and bootstrap methods for error evaluation

The jackknife and bootstrap methods [55] provide alternative ways of estimating the error (94).
These methods become particularly useful, if not essential, when one wishes to estimate the er-
ror on f(〈O1〉, · · · , 〈On〉), where f is an arbitrary function of n variables. For a given sequence
of configurations {x1 · · · xN} drawn from the probability distribution P (x), the jackknife fo-
cuses on the samples that leave out one configuration at a time

fJi = f

(
1

N − 1

∑
j 6=i

O1(xj), · · · ,
1

N − 1

∑
j 6=i

On(xj)

)
. (104)

The error estimate on f is then given by

(
σJf
)2 ≈ N

 1

N

N∑
i=1

(fJi )2 −

(
1

N

N∑
i=1

fJi

)2
 . (105)

One may verify explicitly that for n = 1 and f(x) = x Eq. (105) reduces to Eq. (94) up to a
factor (N/(N − 1))2, which tends to unity in the large N limit.
An alternative method for determining errors of f is the bootstrap algorithm. For a given sample
ofN configurations {x1 · · · xN} drawn from the probability distribution P (x), we can construct
NN sets of N configurations, {xi1 · · · xiN} with i1 ∈ 1 · · ·N , i2 ∈ 1 · · ·N , · · · , iN ∈ 1 · · ·N ,
which correspond to the ideal bootstrap samples. For a given bootstrap sample, defined by the
vector i = (i1, · · · , iN),

fBi = f

(
1

N

N∑
k=1

O1(xik), · · · ,
1

N

N∑
k=1

On(xik)

)
. (106)

The bootstrap estimate of the error is given by

(
σBf
)2 ≈ 1

NN

NN∑
i

(fBi )2 −

 1

NN

NN∑
i

fBi

2

. (107)
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Again, one may check that for the special case n = 1 and f(x) = x, Eq. (107) reduces
to Eq. (94). Clearly, when N is large, it is numerically out of reach to generate all of the NN

bootstrap samples. Typically, to estimate the right-hand side of Eq. (107), 200 or more bootstrap
samples are generated stochastically. Since each bootstrap sample is equally probable we can
generate them with: ik = trunc(N ∗ ξk + 1) where ξk is a random number in the interval [0, 1)

and the function trunc returns an integer by truncating the numbers after the decimal point.

A.3 Markov chains

Our task is now to generate a set of states distributed according to a given probability distribu-
tion. Here we will consider a discrete space Ω with Ns states; x runs over all the states 1 · · ·Ns,
and P (x) denotes the probability of the occurrence of the state x. We introduce a Monte-Carlo
time t and a time dependent probability distribution Pt(x) that evolves according to a Markov
process: the future (t + 1) depends only on the present (t). To define the Markov process, we
introduce a matrix Ty,x, which corresponds to the transition probability from state x to state y.
The time evolution of Pt(x) is given by

Pt+1(y) =
∑
x

Ty,xPt(x). (108)

T has to satisfy the properties ∑
y

Ty,x = 1 and Ty,x ≥ 0 . (109)

Hence, if Pt(x) is a probability distribution then Pt+1(x) is also a probability distribution.
T has to be ergodic

∀x, y ∈ Ω ∃ s | (T s)y,x > 0 . (110)

Thus, we are assured to sample the whole phase space provided the above is satisfied. Last, we
have the requirement of stationarity∑

x

Ty,x P (x) = P (y) . (111)

Once we have reached the desired distribution P (x) we wish to stay there. Stationarity is
automatically satisfied if

Ty,x P (x) = Tx,y P (y) (112)

as may be seen by summing on both sides over x. This relation is referred to as detailed balance
or microreversibility. However, one has to keep in mind that only stationarity and not detailed
balance is essential.
Given the above, in the Monte Carlo simulation we will generate the Markov Chain

x1, x2, . . . , xn ,
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where the conditional probability of sampling the state xt+1 given the state xt reads

P (xt+1|xt) = Txt+1,xt . (113)

Our aim is now to show that when n → ∞ the fraction of the time one can expect the Markov
process to be in state x is P (x), independent of the initial state x1. In other words as n → ∞
the set of states x1 · · · xn are distributed according to P (x).
At step t in the Markov chain, the state xwill occur on average with probability, [T t]x,x1 . Hence,
we have to show that

lim
n→∞

1

n

n∑
t=1

[
T t
]
x,x1

= P (x) . (114)

We will first show the above under the assumption that T is regular. That is, there is an integer
N such that TN has only positive, non-zero, entries. If T is regular then T is ergodic. However
the inverse is not true so that the condition of regularity is more stringent than that of ergodicity.
After the demonstration, we will argue on the basis of a simple example that Eq. (114) is equally
valid for ergodic but not regular transition matrices.
We now demonstrate Eq. (114) for regular transition matrices.
Proof: We introduce the set of vectors of real numbers, at

at+1 = atT and dt = max(at)−min(at) (115)

where max(at) corresponds to the largest element of the vector a. Since

[at+1]x =
∑
y

[at]y Ty,x ≤ max(at)
∑
y

Ty,x = max(at)

and [at+1]x =
∑
y

[at]y Ty,x ≥ min(at)
∑
y

Ty,x = min(at) (116)

the sequence dt satisfies
dt+1 ≤ dt. (117)

We now show that there is a subsequence that is strictly decreasing. Let us consider vector
at with max(at) = [at]M = aM and min(at) = [at]m = am. We define the vector aM (am)
by replacing all the elements of at apart from the minimal (maximal) one by aM (am). Hence
am ≤ at ≤ aM where the inequalities hold element-wise. Furthermore let ε be the minimal
entry in TN . In light of the assumption that T is regular, ε > 0. With those definitions, we have

[at+N ]x =
[
atT

N
]
x
≤
[
aMTN

]
x

= aM
∑
y 6=m

TNy,x + amT
N
m,x

= aM
(
1− TNm,x

)
+ amT

N
m,x = aM − (aM − am)TNm,x

≤ aM − (aM − am)ε

and [at+N ]x ≥
[
amt T

N
]
x

= am + (aM − am)TNM,x ≥ am + (aM − am)ε. (118)
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With the above inequalities,

dt+N = max(at+N)−min(at+N) ≤ aM− (aM−am)ε−am− (aM−am)ε = dt(1−2ε) (119)

Hence, dt+mN ≤ dt(1 − 2ε)m such that the series dt+mN decreases at least exponentially with
increasing m. Recalling that dt+1 ≤ dt, we can find positive numbers τ and b such that

dt ≤ be−t/τ . (120)

In particular, we can set a1 = ei such that eiT corresponds to the ith row of the matrix T .
Hence, since dt tends towards zero in the limit t→∞, the ith row of matrix T t tends towards a
constant when t→∞. Hence, we have

lim
t→∞

T t =



α1 · · · α1

α2 · · · α2

· · ·
· · ·
· · ·

αNs · · · αNs


(121)

where Ns denotes the total number of states. Many comments are now in order.

(i) Since T satisfies Eq. (109), so does T t for all values of t. Thus
∑Ns

x=1 αx = 1 and αx > 0.
In other words α is a probability vector.

(ii) Due to Eq. (120), T tx,y = αx +∆
(t)
x,y with |∆(t)

x,y| ≤ be−t/τ .

(iii) For any probability vector v, limt→∞ T
tv = α.

Hence, there is a unique asymptotic distribution: α.

(iv) Due to the stationarity condition, we have T tP = P for all values of t and hence also for
t→∞. Since there is a unique asymptotic distribution, α = P.

The validity of Eq. (114) now follows from

lim
n→∞

1

n

n∑
t=1

[
T t
]
x,x1

= lim
n→∞

1

n

n∑
t=1

(
P (x) +∆(t)

x,x1

)
= P (x) + lim

n→∞

1

n

n∑
t=1

∆(t)
x,x1

. (122)

However since ∣∣∣∣∣
n∑
t=1

∆(t)
x,x1

∣∣∣∣∣ ≤
n∑
t=1

∣∣∆(t)
x,x1

∣∣ ≤ b

n∑
t=1

e−t/τ (123)

and b
∑n

t=1 e
−t/τ is a convergent series as n→∞, Eq. (114) is satisfied. QED

We now show on the basis of a simple example that if T is ergodic but not regular, Eq. (114) is
still valid. Consider Ns = 2 and

T =

(
0 1

1 0

)
, T 2n =

(
1 0

0 1

)
, T 2n+1 = T. (124)
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T is ergodic but not regular. It is cyclic and in contrast to the regular transition matrices the
limt→∞ T

t does not exist. However, since

TP = P with P =

(
1/2
1/2

)
(125)

and for even and odd values of n

1

2n

2n∑
t=1

T t =

(
1/2 1/2
1/2 1/2

)
,

1

2n+ 1

2n∑
t=1

T t =

(
1/2 1/2
1/2 1/2

)
+

1

2n+ 1
T, (126)

Eq. (114) holds. For further reading and a more precise and mathematical oriented discussion
of Markov chains, the reader is referred to [56].

A.4 Construction of the transition matrix T

Having defined T , we now have to construct it explicitly. Let T 0
y,x be the probability of propos-

ing a move from x to y and ay,x the probability of accepting it. 1 − ay,x corresponds to the
probability of rejecting the move. T0 is required to satisfy Eq. (109). Since in general we want
to propose moves that change the initial configuration, T 0

x,x = 0. With ay,x and T 0
y,x we build

Ty,x with

Ty,x =

{
T 0
y,xay,x if y 6= x∑

z
z 6=x

T 0
z,x (1− az,x) if y = x

(127)

Clearly Ty,x satisfies Eq. (109). To satisfy the stationarity, we impose the detailed balance
condition to obtain the equality

T 0
y,x ay,x Px = T 0

x,y ax,y Py . (128)

Let us set

ay,x = F
(
T 0
x,yPy

T 0
y,xPx

)
(129)

with F :]0 :∞[→ [0, 1]. Since

ax,y = F
(
T 0
y,xPx

T 0
x,yPy

)
= F

 1
T 0
x,yPy

T 0
y,xPx

 , (130)

the detailed balance condition reduces to

F (Z)

F (1/Z)
= Z where Z =

T 0
x,yPy

T 0
y,xPx

. (131)

There are many possible choices. The Metropolis algorithm is based on the choice

F (Z) = min (Z, 1) . (132)
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Thus, one proposes a move from x to y and accepts it with probability Z =
T 0
x,yPy

T 0
y,xPx

. In the
practical implementation, one picks a random number r in the interval [0 : 1]. If r < Z (r > Z)
one accepts (rejects) the move. Alternative choices of F (Z) are for example

F (Z) =
Z

1 + Z
(133)

which is referred to as the heat-bath method.
That the so-constructed T matrix is ergodic depends upon the choice of T 0. In many cases, one
will wish to combine different types of moves to achieve ergodicity. For a specific move i, we
construct T (i) as shown above so that T (i) satisfies conditions (109) and (112). The moves may
be combined in two ways

T =
∑
i

λiT
(i),

∑
i

λi = 1 (134)

which is referred to as random updating since one picks with probability λi the move T (i).
Clearly, T equally satisfies (109) and (112), and the moves have to be chosen appropriately
to satisfy the ergodicity condition. Another choice is sequential upgrading. A deterministic
ordering of the moves is chosen to obtain

T =
∏
i

T (i). (135)

This choice does not satisfy detailed balance but does satisfy stationarity (111) as well as (109).
Again ergodicity has to be checked on a case to case basis.
The observable O may now be estimated with

〈O〉P ≈
1

N

N∑
t=1

O(xt). (136)

The required value of N depends on the autocorrelation time of the observable O

CO(t) =

1
N

∑N
s=1O(xs)O(xs+t)−

(
1
N

∑N
s=1O(xs)

)2
1
N

∑N
s=1O(xs)2 −

(
1
N

∑N
s=1O(xs)

)2 . (137)

One expects CO(t) ∼ e−t/τO , where τO corresponds to the MC time scale on which memory of
the initial configuration is lost. Hence, to obtain meaningful results, N � τO. Note that one
should also take into account a warm up time by discarding at least the first τO configurations in
the MC sequence. Naively, one would expect τO = τ . However, this depends on the overlap of
the observable with the slowest mode in the MC dynamics, which relaxes as e−t/τ . In particular
in a model with spin rotation symmetry the slowest mode may correspond to the rotation of the
total spin. In this case, observables that are invariant under a spin rotation will not be affected
by the slowest mode of the MC dynamics. Hence, in this case τO < τ .
We now consider the error estimation. To apply the central limit theorem, we need a set of
independent estimates of 〈O〉P . This may be done by regrouping the data into bins of size nτO.

Õn(t) =
1

nτO

nτO∑
s=1

O(x(t−1)nτO+s) (138)



CT-QMC 7.33

with t = 1 · · ·N/(nτO). If n is large enough (i.e. n ≈ 10− 20) then Õn(t) may be considered
as an independent estimate, and the error is given by

σn =

√√√√√ 1

M

 1

M

M∑
t=1

Õn(t)2 −

(
1

M

M∑
i=1

Õn(t)

)2
 (139)

where M = N/(nτO). If n is large enough, the error σn should be independent of n.

A.5 One-dimensional Ising model

We conclude this appendix with an example of a Monte Carlo simulation with error analysis for
the one-dimensional Ising model

H({σ}) = −J
L∑
i=1

σiσi+1 , σL+1 = σ1 (140)

where σi = ±1. This model is easily solved exactly with the transfer matrix method and thus
produces a useful testing ground for the MC approach. In particular at zero temperature, a phase
transition to a ferromagnetically ordered phase (J > 0) occurs [57]. Spin-spin correlations are
given by

g(r) =
1

L

L∑
i=1

〈σiσi+r〉 with 〈σiσi+r〉 =

∑
{σ} e

−βH({σ})σiσi+r∑
{σ} e

−βH({σ}) (141)

where β corresponds to the inverse temperature.
We now construct the transition matrix T corresponding to a random single site updating
scheme. For an L-site chain, we denote the spin configuration by

x = (σx,1, σx,2, · · · , σx,L). (142)

The transition matrix reads

T =
1

L

L∑
i=1

T (i) with T (i)
x,y = T (i),0

x,y ax,y and

T (i),0
x,y =

{
1 if x = (σy,1, · · · ,−σy,i, · · ·σy,L)

0 otherwise
(143)

The above corresponds to choosing a site i randomly, changing the orientation of the spin
(σi → −σi), and accepting the move with with probability ax,y corresponding to a heat-bath or
Metropolis algorithm. The MC time unit corresponds to a single sweep, meaning that L sites
are randomly chosen before a measurement is carried out.
Fig. 3 plots the autocorrelation time for g(r = L/2) on an L = 24 site lattice at βJ = 1 and
βJ = 2. From Fig. 3a one can extract the autocorrelation time: τO ≈ 11, 54 for βJ = 1, 2

respectively. Fig. 3b plots the error as a function of bin size in units of the τO (see Eq. (139)).
As one can see, n ≈ 10 is sufficient to get a reliable estimate of the error.
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Fig. 3: One dimensional Ising model on an L=24 site lattice. (a) Autocorrelation time (see
Eq. (137)) for g(r = L/2). The time unit corresponds to a single sweep. (b) Estimate of the
error (see Eq. (139)). Here, n corresponds to the size of the bins in units of the autocorrelation
time. n ∼ 10 is sufficient to obtain a reliable estimate of the error. After 2 × 106 sweeps, our
results yield g(r = L/2) = 0.076 ± 0.0018 and 0.909 ± 0.0025 for βt = 1 and 2 respectively.
The exact result is g(r = L/2) = 0.0760 and 0.9106 at βt = 1 and 2 respectively.
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B Proof of the determinant identity

In this section, a general determinant identity is proven [32] that can be used to derive Wick’s
theorem for contributions of a configuration Cn to physical observables. Let us define the
vectors ui, vi ∈ Cm and the numbers αij ∈ C. Further, let A ∈ Cm×m be a matrix of rank m.
We define the non-singular matrices Mn ∈ C(m+n)×(m+n) and Aij ∈ C(m+1)×(m+1) by

Mn =


A u1 . . . un

v1
T α11 . . . α1n

...
... . . . ...

vn
T αn1 . . . αnn

 , Aij =

(
A uj

vi
T αij

)
. (144)

With these definitions, the following determinant identity holds

detMn (detA)n−1 = det

detA11 . . . detA1n

... . . . ...
detAn1 . . . detAnn

. (145)

The identity can be proven by induction in n. It is trivial for n = 1, so we have to start with
n = 2, where we have to show

detM2

detA
=

detA11

detA

detA22

detA
− detA12

detA

detA21

detA
. (146)

For the following calculations, we introduce several vectors

u1
ij =

(
uj

αij − 1

)
, v2

ij =

(
vi

0

)
, u2 = v1 =

(
0

1

)
∈ Cm+1. (147)

u1
M =

 u2

α12

α22 −1

,v2
M =

 v2

α21

0

,u2
M = v1

M =

(
0

1

)
∈Cm+2. (148)

Let us define the expanded matrix Cex of a square matrix C as the matrix C expanded by one
row and one column containing a unit vector

Cex =

(
C 0

0T 1

)
. (149)

As a last definition, we introduce the abbreviation bij = vi
TA−1uj. Using these notations, we

can write the matrices Aij as

Aij = Aex + u1
ijv

1T + u2v2
ij
T
. (150)

To calculate the determinant detAij, we use the matrix determinant lemma det(A + uvT ) =

(1 + vTA−1u) detA, yielding

detAij

detAex
=
[
1+ v2

ij
T
(Aex + u1

ijv
1T )−1u2

]
(1 + v1TA−1ex u

1
ij) . (151)
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The inverse matrix of (Aex+u1
ijv

1T ) can be obtained from the Sherman-Morrison formula, and
a tedious calculation making use of the special form of the vectors and matrices gives the result

detAij

detA
= αij − bij. (152)

From this, the right-hand side of Eq. (146) can be easily obtained. For the left-hand side, we
have to perform an analogous calculation using the decomposition of the matrix M2

M2 = A11ex + u1
Mv1

M
T

+ u2
Mv2

M
T
. (153)

Again, we apply the matrix determinant lemma two times and insert the Sherman-Morrison
formula to calculate the inverse matrix of (A11ex + u1

Mv1
M
T

). Simplifying the result as far as
possible, we finally arrive at

detM2

detA
= (α11 − b11) (α22 − b22)− (α12 − b12) (α21 − b21) . (154)

If we compare (154) with (152), it is clear that Eq. (146) holds.
We now assume that for a certain value n ∈ N Eq. (145) holds. For n + 1, we can cast the
matrix Mn+1 in a form where we can make use of Eq. (145) holding for n

Mn+1 =


Ã ũ2 . . . ũn+1

ṽT2 α2,2 . . . α2,n+1

...
... . . . ...

ṽTn αn,2 . . . αn,n+1

ṽTn+1 αn+1,2 . . . αn+1,n+1

 , (155)

where we have introduced the new matrix Ã and the vectors ũi and ũj with

Ã =

(
A u1

v1
T α11

)
, ũi =

(
ui

α1i

)
, ṽi =

(
vi

αi1

)
. (156)

Further, we need the matrices Ãij defined analogously to (144)

Ãij =

(
Ã ũj

ṽTi αij

)
=

 A u1 uj

v1
T α11 α1j

vi
T αi1 αij

 . (157)

With these definitions, and with the abbreviations aij = detAij and ãij = det Ãij, we are now
able to apply Eq. (145) holding for n

detMn+1 (det Ã)(n−1) = det

 ã2,2 . . . ã2,n+1

... . . . ...
ãn+1,2 . . . ãn+1,n+1

 . (158)

For ãij , we make use of Eq. (145) with n = 2, which we have proved above

ãij =
1

detA
(a11aij − ai1a1j) . (159)
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Inserting this result in (158) yields a determinant with entries of the form a11aij − ai1a1j . We
make use of the multi linearity of the determinant to decompose this expression and we obtain
a sum of determinants with prefactors of the form aij . Eliminating zero contributions, the
resulting expression corresponds precisely to the Laplace expansion of a larger determinant,
and we finally obtain

detMn+1 detAn = det


a1,1 a1,2 . . . a1,n+1

a2,1 a2,2 . . . a2,n+1

...
... . . . ...

an+1,1 an+1,2 . . . an+1,n+1

 . (160)

This is the identity (145) for n + 1. Hence, we have derived the determinant identity for n + 1

using only the identity for n and n = 2. By induction, the identity (145) therefore holds for
every n ∈ N, as it is trivial for n = 1.
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