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Collège de France
Place Marcelin Berthelot, Paris

Contents
1 Introduction 2

2 Why DMFT? 3
2.1 Atomic physics in the solid-state: Mott insulators . . . . . . . . . . . . . . . . 3
2.2 Atomic physics in the solid-state: metals close to the Mott transition . . . . . . 5
2.3 Origin of the Mott phenomenon: blocking of charge, not magnetism . . . . . . 7

3 DMFT in a nutshell 10
3.1 DMFT: solids as self-consistently embedded atoms . . . . . . . . . . . . . . . 10
3.2 When is DMFT exact or accurate? . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 From particles to waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 How good metals turn bad: quasiparticles beyond Landau theory and spectral
weight transfers 14

5 Atomic physics in the solid-state: Hund’s metals 16

6 Growing correlations: superexchange, pseudogap, and cluster extensions of DMFT 17

7 Hiking down the energy trail: DMFT as a compass 18

E. Pavarini, E. Koch, D. Vollhardt, and A. Lichtenstein
DMFT at 25: Infinite Dimensions
Modeling and Simulation Vol. 4
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1 Introduction

Materials are made of atoms. Kanada in ancient India and Democritus in ancient Greece al-
ready had this intuition, and by now this is not exactly a surprising or revolutionary statement.
However, many standard solid-state physics textbooks do not emphasize this point of view very
strongly, to say the least. Condensed matter physics is often presented there as the science of the
electron gas, the underlying atoms being merely responsible for producing a periodic potential.
Thanks to Bloch’s theorem and independent particles pictures, invoking Walter Kohn and Lev
Landau as tutelary figures, the emphasis is quickly put on electrons, or at best quasiparticles.
So much for the atoms, which many students will then view as annoying curiosities that one
should soon forget, and of no use for the final exam.
Chemists of course, know better. We condensed-matter physicists have a lot to learn from
chemists, but we have trouble discussing with them when the first thing we show is a bunch of
energy bands (notwithstanding that a colourful plate of spaghetti can be truly enjoyable food
for thought). To enter a constructive dialogue with a chemist, better speak about atomic or
molecular orbitals, bonding, hybridization, etc.
Physicists working on materials with strong electron correlations have learned the hard way
that atoms matter. More precisely: an atom is a small many-body problem in itself, whose
eigenstates are multiplets (not just Slater determinants built out of the hydrogen atom single-
particle levels). In order to describe the physics of strongly correlated materials (especially the
ones with the most localized orbitals such as f -electron compounds), it is a good idea to adopt
a theoretical framework in which these atomic multiplets are correctly described, at least for a
subset of the atomic shells.
Of course, how we perceive reality depends on the scale at which we look at it. This has been
beautifully formalized by the renormalization group: to each scale (in terms of distance, energy,
or time) corresponds an appropriate effective theory. While there is no doubt that at high-
enough energy (short time-scales, short distances) localized atomic excitations are important,
why should they matter at low-energy (long time-scales, long distances)?
For many materials (the weakly correlated ones), they do not – hence the validity of the standard
model of condensed-matter theory textbooks alluded to above. The reason is that, in this case,
the kinetic energy of the quasiparticles (which are only slightly renormalized from independent
electrons in their periodic potential) is a very high-energy scale. Over all the range of energies
or temperatures where most experiments are conducted, the quasiparticles remain long-lived
and form a non-degenerate Fermi gas with a very high effective Fermi energy (or, equivalently,
a high degeneracy temperature or quasiparticle coherence scale).
In materials with strong electronic correlations, this is no longer true. The relevant orbitals (typ-
ically: the d-orbitals of transition-metals and their oxides, the f -orbitals of rare-earths, actinides
and their compounds, the molecular orbitals of organic conductors) are very localized and their
bandwidth (just the bare one obtained from bandstructure) is comparable or even smaller than
the typical matrix elements of the screened Coulomb interaction. In such a situation, there is
not such a clear separation of energy scales, and we cannot dispose of atomic correlations so



DMFT: Materials from an Atomic Viewpoint 3.3

easily. In Mott insulators [1], this has a dramatic consequence: the electrons remain localized
because the cost in Coulomb energy is too high for them to move in comparison to the potential
gain in kinetic energy.
In metallic systems, strong correlations also have drastic effects: the effective degeneracy tem-
perature of the quasiparticles is often renormalized to very low values, for example down to a
few Kelvin in heavy-fermion compounds (Kondo effect [2]), and still as low as ∼ 25 K in a
metallic oxide such as Sr2RuO4 [3]. As a consequence, Landau’s Fermi liquid theory, which
postulates a degenerate Fermi gas of very long-lived quasiparticles, only applies below a very
low energy scale (when it applies at all). Dealing properly with atomic correlations is then cru-
cial. In particular, these atomic correlations determine how, and by how much, the quasiparticle
coherence scale is renormalized in comparison to the bare bandwidth. Furthermore, regimes
where quasiparticles are no longer fully coherent become apparent in experiments even at not
very high temperatures. The crossover corresponding to the gradual destruction of the quasi-
particles as the system is heated up (or equivalently, how quasiparticles emerge as the system
is cooled down) must be addressed in order to understand the experimental observations – of-
ten characterized by large transfers of spectral weight between low-energy and intermediate- or
high-energy excitations.
In order to address these issues, we need a theoretical description that adapts itself to the energy
scale at which we look at the system. At high-energy, it has to correctly describe atomic physics,
correlations, and multiplet structures. At low energy, it has to account for the emergence of
long-lived quasiparticles. And it has to describe how this process takes place as the energy scale
is lowered. This is what Dynamical Mean-Field Theory (DMFT) does. The term dynamical is
perhaps not ideally chosen, since we are not talking here about the out-of-equilibrium dynamics
of the system. Instead, it indicates that the theory handles the different time-scales or energy-
scales involved in the excitation spectrum of the system at equilibrium. In order to do so, DMFT
introduces a generalization of the classical Weiss mean-field concept to that of a full function
of energy (or time scale).
Let me end this introduction on a disclaimer. These are not standard lecture notes (such as
the ones in [4]). Many good reviews exist by now which can be consulted for an introduction
to DMFT and its extensions, as well as for detailed technical aspects. Rather, I would like to
present a set of physical issues which in my view motivate the DMFT concept. I will do this
with hindsight, not necessarily following the historical development of the theory.

2 Why DMFT?

2.1 Atomic physics in the solid-state: Mott insulators

In Fig. 1, I reproduce the early angular-integrated photoemission spectra of some transition
metal oxides, from the pioneering work of Fujimori and coworkers [5]. All these oxides have a
common feature: the d-shell of the transition-metal is nominally occupied by a single electron
(d1 configuration). As one moves from top (ReO3) to bottom (YTiO3), the degree of correlation
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Fig. 1: Photoemission spectra of several d1 transition metal oxides, as reported in Ref. [5]. The
strength of electronic correlations increases from ReO3 (a weakly correlated metal) to YTiO3

(a Mott insulator). The plain lines are the densities-of-states obtained from band structure
calculations. A lower Hubbard band around −1.5 eV is clearly visible for the most correlated
materials, both for the metallic (SrVO3) and the Mott insulating (LaTiO3, YTiO3) materials.

increases (for reasons mentioned below). LaTiO3 and YTiO3 are Mott insulators. Their spectra
display a clear peak around −1.5 eV binding energy. This feature cannot be reproduced from
band-structure calculations (based, e.g., on DFT-LDA). It is, however, very easy to understand
as an atomic-like transition. The photoelectron kicks an electron out of the d-shell, inducing
a d1 → d0 transition. In the jargon of correlated electrons physicists, this is called a lower
Hubbard band (LHB), but it really has nothing to do with a band – at least not when we look at it
from the point of view of single-particle spectroscopy: it is an atomic-like transition, broadened,
of course, by the solid-state environment.
The simplest way to model this is to consider a caricature of an atom: a single atomic level at
energy εd, which can be occupied by zero, one, or two electrons with opposite spin. Neglecting
any orbital quantum number, the hamiltonian of such a Hubbard atom reads

Hat = εd(n̂↑ + n̂↓) + U n̂↑n̂↓ (1)
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in which U is the repulsion energy that the two electrons have to pay to sit in the same atomic
level (In the solid, screening has to be taken into account when evaluating U ). There are four
eigenstates: |0〉, | ↑ 〉, | ↓ 〉, | ↑↓ 〉, with energies 0, εd, εd, 2εd + U , respectively. The energy
of the transition d1 → d0 is εd, hence the above measurement provides information on the
effective position of the transition-metal atomic level in the solid. In such a simple model, one
would also expect another peak in the electron addition spectrum (inverse photoemission) at an
energy εd + U , corresponding to the transition d1 → d2. Measuring both transitions provides
information about U . This can be summarized in the spectral function of this simple isolated
Hubbard atom, which reads (nd = 〈n̂↑ + n̂↓〉)

Ad(ω) =
(
1− nd

2

)
δ(ω − εd) +

nd
2
δ(ω − εd − U) . (2)

The message of this section is: the single-particle excitation spectrum of Mott insulators is most
easily understood in terms of atomic transitions. Bandstructure calculations do not handle this
properly. A proper description of many-body atomic eigenstates (multiplets) [6] is required
to understand these spectra. Of course, the eigenstates of our oversimplified Hubbard atom
are so simple that they hardly deserve to be called multiplets. Orbital degrees of freedom
and additional matrix elements of the Coulomb interaction must be included for a realistic
description.

2.2 Atomic physics in the solid-state: metals close to the Mott transition

Let us now turn to the spectrum of SrVO3 shown in Fig. 1. This material is a metal, as indicated
by the presence of low-energy spectral-weight and the absence of a gap. Nonetheless, the
atomic-like transition (LHB) at ∼ −1.5 eV is still visible. Hence, the high-energy spectrum
of such a metal is not so different from that of related Mott insulators, indicating that atomic
physics is relevant for correlated metals as well. This is not even a very correlated metallic state,
rather one with an intermediate level of correlations still far away from the Mott transition. As
compared to the band-theory mass, the measured quasiparticle effective mass is enhanced by
approximately a factor of two.
But this is high-energy. What about low-energy excitations ? For this, we have to turn to more
recent photoemission experiments, which have disentangled the relative contributions of the
surface and the bulk [7,8]. The spectra obtained in Ref. [8] are reproduced in Fig. 2. There, we
see that the bandwidth of the low-energy part of the density of states, corresponding to quasi-
particle excitations, is narrowed by roughly a factor of two as compared to the bandstructure
(LDA) calculation. This is in line with the measured enhancement of the quasiparticle effective
mass.
This phenomenon was understood early on by Brinkman and Rice [9] as being due to the Hub-
bard repulsion U . Their description was based on the simple Gutzwiller approximation. As the
system approaches the metal-to-Mott-insulator transition, the spectral weight Z of the quasi-
particle excitations diminishes, and vanishes at the transition point UBR. In this simple de-
scription (which neglects the effect of the superexchange on quasiparticles), the effective mass
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Fig. 2: Photoemission spectra of SrVO3 and CaVO3 . Left: comparison to an LDA calculation
(dashed curve) and to the LDA spectrum narrowed by a factor 0.6 (plain curve). Right: com-
parison to an LDA+DMFT calculation. Reproduced from Ref. [8]. See also Ref. [11] for the
LDA+DMFT spectrum of SrVO3 and of the oxides in Fig. 1.

correspondingly diverges at the transition as m?/m = 1/Z. The quasiparticle bandwidth is
uniformly reduced by a factor Z.

The Brinkman-Rice description focuses solely on quasiparticles, however, and cannot address
at the same time the high-energy part of the excitation spectrum. An important achievement
of DMFT is the ability to describe both types of excitations on an equal footing. The actual
spectrum of a Mott-correlated metal has three salient spectral features (Fig. 3): lower and upper
Hubbard-bands at high energy, and a narrowed density of states corresponding to quasiparticle
excitations at low energy. This three-peak structure has become some sort of icon of DMFT,
and is to a large extent a prediction of the theory [10]. Confirmation and precise comparison
to photoemission had to wait, in particular, for a proper identification of the photoemission
signal associated with the bulk. As the Mott transition is reached, spectral weight is trans-
ferred from the quasiparticles to the Hubbard bands. DMFT allows for a detailed description
of these spectral-weight transfers, as coupling or temperature is varied, and this is essential
in comparing to experiments. The development of materials-realistic calculations with DMFT
(the LDA+DMFT framework, which combines DFT-based electronic structure with a DMFT
treatment of many-body correlations) makes quantitative comparison to experiments possible,
as displayed in Fig. 2 for SrVO3 . Importantly, it also allows for both a qualitative and precise
answer to questions such as: why are SrVO3 and CaVO3 metallic, while LaTiO3 and YTiO3

are insulating? The answer [11] is that increased distortions of the structure (tilts of the octa-
hedra) lead to a smaller bandwidth but also, importantly, to an increased splitting between the
energy levels within the t2g shell, hence reducing orbital degeneracy and lowering the critical
coupling associated with the Mott transition.
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Fig. 3: Schematic evolution of the momentum-integrated spectral function (total density of
states) as the coupling is increased, for the half-filled Hubbard model in its paramagnetic phase,
according to single-site DMFT. The low-energy (quasiparticle) part of the spectrum gradually
narrows down, while the corresponding spectral weight is transferred to the lower and upper
Hubbard bands (atomic-like excitations). Adapted from Ref. [12].

2.3 Origin of the Mott phenomenon: blocking of charge, not magnetism

A material with a partially filled band may end up being an insulator because of interactions
between electrons; this is the Mott phenomenon. Here, I want to address the following issue: is
the cause of this phenomenon related to magnetism? This question has often caused confusion
in the field and also provides a key motivation for DMFT.
At strong coupling (when, say, the Hubbard U is larger than the bandwidth 2D), the answer
to this question is quite clear: magnetism is not the cause of the Mott phenomenon. The driv-
ing force behind the Mott phenomenon in this regime is the blocking of translational (charge)
degrees of freedom. The electrons would have to pay too much in repulsive Coulomb energy
(U ) to get delocalized in comparison to the potential gain in kinetic energy. In this regime,
the Mott insulating gap is of order ∆g ' U − 2D ∼ U . Of course, we have to worry about
spin physics, but in this regime this physics involves a much smaller energy scale: the superex-
change J ∼ D2/U � U,D. As long as ∆g & T & J , the system is in a paramagnetic state
with fluctuating local moments signaled by a Curie-Weiss law for the magnetic susceptibility
and a large spin-entropy. When the system is cooled down below T ∼ J , this entropy starts to
be quenched out, and the local moments usually order (or in more exotic situations, they might
bind into singlets and form a spin liquid state). This is illustrated on Fig. 4. In many oxides,
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Fig. 4: Phase diagram of the Hubbard model for a three-dimensional cubic lattice with one
particle per site on average. The red line denotes the phase transition into a long-range ordered
antiferromagnet (Néel temperature). The black dashed line denotes the Mott gap; to the right of
this line the paramagnetic phase behaves as an incompressible Mott insulator. The blue dashed
line denotes the quasiparticle coherence scale. To the left of this line, the paramagnetic phase
behaves as an itinerant fermionic liquid with long-lived quasiparticles. Typical snapshots of
the wave-function in real space are displayed for each regime.

long-range spin ordering (and even the onset of spin correlations) occur at a temperature much
lower than the insulating gap. For example [1], LaTiO3 with ∆g ' 0.2 eV orders antiferro-
magnetically below TN ' 140 K, and YTiO3 with ∆g ' 1 eV orders ferromagnetically below
TC ' 30 K. Hence, there is an extended regime of temperature in which the system is a dis-
ordered insulating paramagnet with clearly insulating properties (apart from a small amount of
thermal excitations in the gap). Cuprates are, in this respect, rather exceptional in view of their
very high Néel temperature and large superexchange.
The weak-coupling regime is a different story. Magnetic long-range order and the opening of the
insulating gap occur simultaneously (Fig. 4). This is the Slater regime. There are actually very
few documented examples of antiferromagnetic Slater insulators, a recently investigated one
being NaOsO3 [13] – a rather weakly correlated oxide of a transition metal of the 5d series. This
crossover between a weak-coupling (Slater) regime in which the insulating character is linked to
magnetism and a strong-coupling (Mott) regime in which they become two completely distinct
phenomena is the U > 0 analogue of the BCS-BEC crossover that applies to the attractive
U < 0 case.
In a nutshell: the Mott phenomenon has nothing to do with magnetism at strong coupling.
The reason I am emphasizing this is because many theoretical descriptions, such as LDA+U,
can only describe Mott insulators by going into the ordered phase with magnetic long-range
order. The problem with this is that the magnetism is then the cause of the gap opening, and
this is not physically correct. A proper description must account for the fact that the system
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Fig. 5: Generic phase diagram of the half-filled fermionic Hubbard model, as obtained from
DMFT. For a lattice with frustration (e.g., with next-nearest neighbour hopping), the transition
temperature into phases with long-range spin ordering is reduced. Then, a first-order transition
from a metal to a paramagnetic Mott insulator becomes apparent. Adapted from Ref. [17].

is insulating even when the local moments fluctuate, and that this is due to charge blocking.
This is very difficult to achieve in any static (energy-independent) mean-field in which the
insulating gap develops because of a rigid shift of spin-polarized bands. Instead, a proper
theory must handle two widely separated energy scales: the gap in the charge sector and the
much smaller superexchange scale in the spin sector. This is a key motivation for DMFT (and
LDA+DMFT), which is able to describe a Mott insulator with fluctuating local moments and
no broken symmetry in the regime ∆g & T & J .

These considerations raise the following question. Imagine one is able to frustrate magnetic
long-range order to a large degree, e.g., by considering the Hubbard model on a lattice with
next-nearest neighbour hopping or geometric frustration. What would eventually happen at
low-temperature to the crossover between the metallic state at small U/D and the paramag-
netic Mott insulating state at large U/D? DMFT answers this question in the following way
(Fig. 5): the crossover becomes a first-order transition below a critical temperature TMIT. The
point (TMIT, UMIT) is a second-order (Ising) critical endpoint, and the situation is analogous to
the liquid-gas transition between two phases which have the same symmetry. Such a first-order-
metal to Mott insulator transition ending in a critical endpoint is observed in several materials,
such as V2O3 and κ-BEDT organic compounds. In those materials, the transition is always
accompanied by a discontinuous change in lattice parameters. In my view however, the driv-
ing force behind the transition is clearly of electronic origin, and the lattice just follows. From
a theory point of view, however, it is still a somewhat open call whether such a purely elec-
tronic first-order transition occurs for finite-dimensional frustrated lattices. Cluster extensions
of DMFT (for reviews, see e.g. [14–16]) have provided solid evidence that this is indeed the
case, as have recent variational Monte Carlo studies by M. Ogata et al.



3.10 Antoine Georges

3 DMFT in a nutshell

3.1 DMFT: solids as self-consistently embedded atoms

How does DMFT manage to simultaneously describe atomic-like excitations at high energy
and the formation of long-lived quasiparticles at low energy? The basic concept is illustrated
in Fig. 6. The idea is to start from the atom (or from a specific atomic shell) and embed it
into an effective medium with which it can exchange electrons [10] (for a review, see e.g. [18]).
Focusing for simplicity on the single-level Hubbard atom introduced above, this embedding can
be described by the following Hamiltonian (single-impurity Anderson model)

Himp = Hat +
∑
pσ

Ep a
†
pσapσ +

∑
pσ

(
Vp a

†
pσdσ + V ∗p d

†
σapσ

)
. (3)

This Hamiltonian was introduced many decades ago in order to describe a magnetic impurity
atom embedded into a conduction electron gas [2]. It is important to note that the physics
of the impurity atom does not depend on the details of the dispersion relation Ep and of the
hybridisation matrix elements Vp. All the relevant information can be condensed in the energy-
dependent hybridisation function

∆(iωn) =
∑
p

|Vp|2

iωn − Ep
=

∫
dω
−Im∆(ω)/π

iωn − ω
, − 1

π
Im∆(ω) =

∑
p

|Vp|2δ(ω − Ep) . (4)

The second equation expresses Fermi’s golden rule: when coupled to the bath, the atomic level
is broadened in an energy-dependent way, proportionally to the square of the hybridisation
matrix element and to the available density of states in the bath. For path-integral afficionados,
one can equivalently state that the physics of the embedded atom is described by the following
effective action (obtained by performing the Gaussian integral over the bath degrees of freedom)

Simp = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

d†σ(τ)G−10 (τ − τ ′) dσ(τ ′) + U

∫ β

0

dτ n↑(τ)n↓(τ) (5)

in which
G−10 (iωn) = iωn − εd −∆(iωn) (6)

plays the role of an effective bare propagator for this action.
In the DMFT context, the Anderson impurity model is introduced in order to provide a repre-
sentation of the local Green’s function of the lattice problem. Denoting by G(k, iωn) the lattice
Green’s function, one requires that

Gloc(iωn) ≡
∑
k

G(k, iωn) = Gimp[iωn, ∆] . (7)

This equation should be understood in the following manner. Imagine one knows the exact
local Green’s function Gloc of the lattice model under consideration. One then requires that,
when solving the impurity model (5), one obtains an impurity Green’s function that coincides
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Material
(crystalline solid)

Atom

Effective
Medium

Fig. 6: The Dynamical Mean-Field Theory (DMFT) concept. A solid is viewed as an array of
atoms exchanging electrons, rather than as a gas of interacting electrons moving in an periodic
potential. DMFT replaces the solid by a single atom exchanging electrons with a self-consistent
medium and takes into account local many-body correlations on each site.

withGloc. This can be achieved by a proper choice of the energy-dependent hybridisation∆(ω).
Hence, equation (7) should be viewed as a functional equation which determines the function∆
(and εd) given a knownGloc. Note that in this context, the quantum number p that appears in (3)
is merely a label for the energy shell, which is only necessary when one insists on a Hamiltonian
form such as (3) for which auxiliary degrees of freedom describing the bath explicitly must be
introduced.
At this point, all we have done is to introduce a representation of the exact local Green’s function
by that of an embedded atom (impurity model). We now introduce an approximation that allows
one to obtain a closed set of equations determining both ∆ and Gloc. To do this, we need to be
more specific about the lattice model under consideration. Let us consider the simplest case,
that of the single-band Hubbard model. This simply describes a lattice of single-level Hubbard
atoms, in which electrons hop from an atom on a given lattice site i to another one on site j with
an amplitude tij

HHubbard =
∑
i

Hat(i) −
∑
ij

tij

(
d†iσdjσ + d†jσdiσ

)
. (8)

The single-electron Green’s function of this model can be written as (assuming no translational
or spin symmetry-breaking):

G(k, iωn) =
1

iωn + µ− εk −Σ(k, iωn)
(9)

in which µ is the chemical potential (simply related to the atomic level position by µ = −εd)
and εk is the dispersion relation of the tight-binding Bloch band (lattice Fourier transform of
the hopping tij).
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In (9), Σ(k, iωn) is the single-particle self-energy, which is, in general, a function of both fre-
quency and momentum. The DMFT approximation consists in neglecting this momentum de-
pendence (i.e., ignoring all non-local terms of the self-energy, keeping the local term only) and
approximating the local component by that of the impurity model (embedded atom) introduced
above. That is, requiring that

Σij(iωn) ' Σimp(iωn) δij , Σimp ≡ G−10 −G−1imp (10)

Using G−10 (iωn) = iωn + µ−∆(iωn), this allows us to rewrite (7) in the following form:

Gimp[iωn, ∆] =
∑
k

1

Gimp[iωn;∆]−1 +∆(iωn)− εk
(11)

In a nutshell, the DMFT construction involves the solution of a self-consistent local many-body
problem: an atomic shell embedded in a self-consistent medium with which it exchanges elec-
trons. In the simplest case (Hubbard model, no symmetry breaking), the embedded atom is
defined by the effective action (5) or equivalently by the Hamiltonian (3). The impurity Green’s
function Gimp, obtained by solving this problem, and the energy-dependent hybridisation func-
tion (dynamical mean-field) ∆, which enters its definition, should obey the functional equation
(11) (self-consistency condition). These requirements provide enough constraints to determine
the two unknown functions Gimp and ∆. In practice, this is done by following an iterative
scheme, as illustrated in Fig. 7. For this purpose, efficient algorithms must be used to calculate
the impurity Green’s function, self-energy and possibly two-particle response functions of the
embedded atomic shell (impurity solvers). Remarkable progress on this front has been achieved
in the past few years, thanks to continuous-time quantum Monte Carlo techniques (see [19] for
a review). Code libraries are available on the web [20–22].

3.2 When is DMFT exact or accurate?

The single-site DMFT construction becomes exact in the following limits.

• In the atomic limit tij = 0, by construction (then, ∆ = 0).

• In the non-interacting limit U = 0. Indeed, in this case the self-energy Σ = 0, so that it
is trivially k-independent.

• Hence, both the limit of a non-interacting band and that of isolated atoms are correctly
reproduced by DMFT, which provides and interpolating scheme between these extreme
cases.

• In the limit of infinite lattice coordination (infinite number of spatial dimensions), first in-
troduced for fermions in the pioneering work of Metzner and Vollhardt [23]. The hopping
must be scaled as tij = t/

√
d for this limit to be properly defined and non-trivial.

• Being an exact solution of Hubbard-like models in the limit of infinite dimensions, it is
thus guaranteed that DMFT preserves all sum-rules and conservation laws.
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EFFECTIVE LOCAL IMPURITY PROBLEM

THE

DMFT

LOOP

Effective bath

Local G.F

SELF-CONSISTENCY CONDITION

Fig. 7: The DMFT iterative loop. The following procedure is generally used in practice: start-
ing from an initial guess for G0, the impurity Green’s function Gimp is calculated by using an
appropriate solver for the impurity model (top arrow). The impurity self-energy is also calcu-
lated from Σimp = G−10 (iωn) − G−1imp(iωn). This is used in order to obtain the on-site Green’s
function of the lattice model by performing a k-summation (or integration over the free density
of states): Gloc =

∑
k[iωn+µ−εk−Σimp(iωn)]

−1. An updated Weiss function is then obtained
as G−10,new = G−1loc + Σimp, which is injected again into the impurity solver (bottom arrow). The
procedure is iterated until convergence is reached.

Besides these formal considerations, it is important to emphasize when single-site DMFT is
accurate and physically meaningful. Obviously, this is the case when inter-site correlations do
not strongly affect single-particle properties. This is true when the correlation lengths for any
kind of incipient ordering are small, i.e., sufficiently far away from critical boundaries. The
local approximation (single-site DMFT) is a good starting point when spatial correlations are
short-range, which is the case in any of the following regimes: high temperature, high energy,
high doping, large number of fluctuating degrees-of-freedom competing with each other, large
orbital degeneracy, large degree of frustration. For further considerations along these lines,
especially in relation to the high-temperature regime, see [24].

3.3 From particles to waves

As emphasized above, in strongly-correlated materials, electrons are “hesitant” entities with a
dual character. At high energy they behave as localized, and the relevant excitations are particle-
like atomic excitations. At low energy in metallic compounds, they eventually form wave-like
itinerant quasiparticles.
Having introduced the basic concept behind DMFT, we are now in a position to understand how
this theory handles this dual nature of excitations, from particle-like at high energy to wave-like
at low energy. The key point here is the energy- and temperature-dependence of the dynamical
mean-field ∆(ω).
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At high temperature, Im∆(ω) has spectral weight mostly at high energy, in the range ω ∼ −µ
and ω ∼ U − µ, corresponding to the lower and upper Hubbard bands. The value of the
hybridisation function in this energy range determines the broadening of the Hubbard bands
by the solid-state environment. In this high-temperature regime, several atomic states compete
with comparable spectral weight. Let us focus for simplicity on the half-filled case. There, the
ground-state of the isolated atom is doubly degenerate ( | ↑ 〉 or | ↓ 〉). At high temperature, the
system fluctuates between these two states, leading to a fluctuating local moment when charge
excitations are suppressed (T . U ).
As temperature is lowered (or as hopping is turned on starting from the isolated atom), the key
issue is whether this degeneracy is lifted or not. In the Mott-insulating paramagnetic phase,
it is not. The spectral density of the dynamical mean-field Im∆(ω) self-consistently vanishes
within the energy gap, and the local moment is unscreened. In contrast, in the metallic phase
U < UBR, Im∆(ω) is non-zero at low-energy, and grows as the temperature is lowered. This
allows the screening of the local moment through the Kondo effect: spin-flip processes involv-
ing exchanges of electrons between the atom and the bath become more and more frequent at
low energy and low temperature.
DMFT thus describes the formation of quasiparticles as a self-consistent Kondo effect. At
low-enough temperature, a local Fermi liquid description applies below a scale TFL, which is
the self-consistent Kondo scale. Hence, how quasiparticles form, and most importantly the
scale below which they form, depends on how the local atomic multiplet is screened by the
solid-state environment. This is why starting from a proper description of the atomic physics
and describing how this screening process takes place is essential for understanding strongly
correlated metallic phases.

4 How good metals turn bad: quasiparticles beyond Landau
theory and spectral weight transfers

Because DMFT is able to describe both the atomic-like excitations and the low-energy quasi-
particles, it is also able to describe the full crossover between the Fermi-liquid regime at low
temperature and the regime of bad-metallic transport at high temperature. This question has
been the subject of several recent works [25, 26].
For T . TFL, long-lived quasiparticles excitations exist and obey a local version of Landau’s
Fermi-liquid theory. They give rise to the central peak of the spectral function (Fig. 3), of
spectral weight ∼ Z and width ∼ ZD. The quasiparticle spectral weight Z vanishes at the
Brinkman-Rice critical point. Because the self-energy is momentum-independent, the quasipar-
ticle effective mass is large ∝ 1/Z, corresponding to a low-energy Fermi velocity suppressed
by Z. The inverse quasiparticle lifetime obeys Z ImΣ ∝ T 2, ω2.
A key observation is that the Fermi-liquid scale TFL is actually much smaller than the width of
the quasiparticle peak, i.e., the Brinkman-Rice scale associated with the reduced quasiparticle
bandwidth ∼ ZD. This point was clarified in recent studies [25] and also explained from the
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Fig. 8: Left: Temperature-dependence of the resistivity for the single-band Hubbard model
(U/D = 4), as obtained from DMFT for several values of the hole-doping δ. The plain arrows
indicate the temperature at which the Mott-Ioffe-Regel (MIR) value is reached, indicating bad-
metal behaviour. Inset: resistivity at low temperatures vs. T/δD: Fermi liquid T 2 behavior
applies up to TFL ' 0.05 δD, indicated by the empty arrow. Right: The different regimes:
Fermi liquid (blue), bad metal (red) and intermediate regime with resilient quasiparticles. The
crossover into the bad metal is gradual: the onset of red shading corresponds to the optical
spectroscopy signatures, while the red points indicate where the MIR value is reached. Repro-
duced from Ref. [25].
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Fig. 9: Optical conductivity of the single-band Hubbard model with δ = 20% hole-doping,
as obtained from DMFT. Inset: optical spectral weight integrated up to Ω, normalized to the
kinetic energy. Reproduced from Ref. [25].

point of view of local Kondo screening, the self-consistent Kondo scale being much smaller than
the width of the effective Kondo resonance [27]. This separation of scale leads to three distinct
regimes, summarized in Fig. 8: a Fermi-liquid regime with Landau quasiparticles for T < TFL,
an intermediate regime in which well-defined resilient quasiparticle excitations exist for TFL .

T . ZD, and a bad metal regime for T & ZD. Accordingly, the optical conductivity, Fig. 9,
displays transfers of spectral-weight that involve the Drude and mid-infrared regions only in the
resilient quasiparticle regime, and a much broader energy range in the bad metal regime.



3.16 Antoine Georges

5 Atomic physics in the solid-state: Hund’s metals

One of the most striking illustration of the relevance of atomic physics to strongly correlated
but quite itinerant metals is to be found in the notion of Hund’s metals. Indeed, it has been
recently recognized through the work of several groups (see e.g. [28–32] and see [33] for a
review) that materials that are not directly close to the Mott transition display strong electronic
correlations because of the Hund’s rule coupling (Fig. 10). The basic mechanism behind this
observation is illustrated on Fig. 11, which displays the quasiparticle weight of a multi-orbital
Kanamori-Hubbard model. It is seen that (i) the Mott critical coupling is increased by the
Hund’s coupling and that (ii) in the metallic phase, the Fermi-liquid (Kondo screening) scale is
drastically suppressed by the Hund’s coupling. These observations apply to a generic integer
filling, except when the shell is half-filled or occupied by a single electron or hole. In the Hund’s
metal or Janus regime, the local atomic multiplet is difficult to screen, resulting in a low value
of TFL and a distinctive non Fermi-liquid behavior for T > TFL. This regime has relevance to
transition-metal oxides of the 4d series, as well as to iron superconductors.

Fig. 10: Colour intensity map of the degree-of-correlation (as measured by the quasiparti-
cle weight Z; right scale) for a Hubbard-Kanamori model with 3 orbitals appropriate to the
description of early transition-metal oxides with a partially occupied t2g shell (bare DOS in in-
set). The vertical axis is the interaction strength U normalized to the half-bandwidth D; a finite
Hund’s coupling J = 0.15U is taken into account. The horizontal axis is the number of elec-
trons per site, from 0 (empty shell) to 6 (full shell). Darker regions correspond to good metals,
lighter to correlated metals. The black bars signal the Mott-insulating phases for U > Uc. The
arrows indicate the evolution of Uc upon further increasing J , and emphasize the opposite trend
between half-filling and a generic filling. Crosses denote the values of Uc for J = 0. One notes
that, among integer fillings, the case of 2 electrons (2 holes) displays correlated behaviour in
an extended range of coupling, with “spin-freezing” above some low coherence scale. Specific
materials are schematically placed on the diagram. Adapted from Refs. [32, 33]
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Fig. 11: Quasiparticle weight Z vs. U/D for 2 (or 4) electrons for a three-orbital Hubbard-
Kanamori model. The grey arrows indicate the influence of an increasing Hund’s rule coupling
J/U and emphasize the Janus effect (see text). From Ref. [32]

6 Growing correlations: superexchange, pseudogap, and
cluster extensions of DMFT

In spin-1/2 one-band systems with a large nearest-neighbour superexchange, inter-site magnetic
correlations are particularly significant, because no orbital fluctuations or frustration compete
with spin correlations. As a result, a strong momentum dependence is expected at low doping
δ . J/t. This is indeed what is observed in the normal state of cuprates, in the temperature
range Tc < T < T ∗ where a pseudogap opens up in the antinodal region of the Brillouin zone,
while reasonably well-defined quasiparticles survive in the nodal region. As doping is reduced
towards the insulator, an increasingly large fraction of the Fermi surface is eaten up by the
pseudogap. This is a quite different route to the Mott transition than the uniform reduction of
quasiparticle weight following from local theories, and one clearly needs to go beyond single-
site DMFT to describe it.

Cluster extensions of DMFT have been quite successful at addressing this problem (for re-
views of these approaches, and of the numerous works in the field over the past ten years, see
e.g., [14–16]). As for single-site DMFT, those approaches should be viewed as approaching
the problem from the high-energy/high-temperature/high-doping side. Very low energies or
small doping levels require very good momentum resolution which is hard to reach currently
within those approaches. Nevertheless, robust qualitative trends can be established which do
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Fig. 12: From weak momentum dependence at high doping to strong momentum selectivity
close to half-filling: the various doping regimes of the two-dimensional single-band Hubbard
model, as found in cluster extensions of DMFT (reproduced from [34]).

not depend strongly on the specific scheme or cluster size. In [34], a comparative study of
different clusters was performed in order to establish these robust qualitative trends which are
summarized in Fig.12. At large doping levels, the momentum dependence is weak and single-
site DMFT is quite accurate. At intermediate doping, momentum differentiation emerges: on
the hole-doped side, antinodal quasiparticles acquire a shorter lifetime than nodal ones. Fi-
nally, on the hole doped side, these approaches produce a transition at a critical doping below
which the antinodal quasiparticles become gapped. This momentum-selective gapping is the
cluster-DMFT description of the pseudogap. It is clearly associated with the physics of the
antiferromagnetic superexchange and the formation of inter-site singlets, as can be checked by
investigating the statistical weights of the different local states. Hence, at a qualitative level,
those approaches seem to support some of the resonating-valence-bond ideas, while extending
them considerably by providing a theoretical framework in which the consequence of singlet
formation can be studied in an energy- and momentum-dependent way.

7 Hiking down the energy trail: DMFT as a compass

In closing, let me comment on the title of this chapter. A well established and very successful
way of thinking about condensed matter is to start from an understanding of the ground-state
and, most importantly, of the low-energy excitations built on this ground-state. Crossovers
encountered as temperature or energy are increased are then described as fluctuations of the
T = 0 long-range order and proliferation of low-energy excitations.



DMFT: Materials from an Atomic Viewpoint 3.19

DMFT, to a large extent, reverses this perspective, in a manner which is closer in spirit to
the renormalization-group approach. The starting point is high-energy: atomic physics. The
formation of long-lived coherent excitations is described as an emerging phenomenon as the
energy scale is reduced. Crossovers between high-temperature incoherent regimes and low-
temperature coherent ones, so important to the physics of strongly correlated materials, are
encountered and described along the way.
While hiking down the energy trail, some correlation lengths may grow. Single-site DMFT
then becomes insufficient, and cluster extensions of DMFT must be used in order to describe
these tendancies to short-range ordering and their effect on quasiparticles. Other techniques
may prove necessary as long-wavelength physics becomes relevant. DMFT can in this sense be
viewed as a compass when hiking down the energy trail.
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