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1 Introduction

The theoretical description and understanding of strongly correlated systems is particularly
challenging since perturbation theory in terms of the Coulomb interaction is no longer pos-
sible and standard mean-field theory does not work. Also, bandstructure calculations in the
local-density approximation (LDA) [1], which had been so successful for the calculations of
many materials, do not work properly as electronic correlations are only rudimentarily taken
into account. A big step forward in this respect is dynamical mean-field theory (DMFT) [2–5],
which is a mean-field theory in the spatial coordinates but fully accounts for the local corre-
lations in time (quantum fluctuations). In comparison, standard Hartree-Fock is mean-field in
space and time. DMFT is non-perturbative since all Feynman diagrams are taken into account,
albeit only their local contribution to the self-energy. If one is dealing with well localized d- or
f -orbitals, these local DMFT correlations often provide the major part of the electronic correla-
tions, which not only give rise to mass renormalizations [3, 4], metal-insulator transitions [3, 4]
and magnetic ordering [6, 7], but also to unexpected new physics such as kinks [8, 9] or the
filling of the Mott-Hubbard gap with increasing temperature [10]. More aspects of DMFT are
discussed in other contributions to this Jülich Autumn School on DMFT at 25.

The question we would like to address here is: Can we do (or do we need to do) better than
DMFT? Indeed, going beyond DMFT is necessary since many of the most fascinating and least
understood physical phenomena such as quantum criticality and superconductivity originate
from non-local correlations – which are by construction beyond DMFT. And we can: first steps
to include non-local correlations beyond DMFT have been cluster approaches such as the dy-
namical cluster approximation (DCA) [11–13] and cluster DMFT (CDMFT) [12–14]. Here,
instead of considering a single site embedded in a mean-field (as in DMFT) one considers a
cluster of sites in a mean-field medium. Numerical limitations, however, restrict the DCA and
CDMFT calculations to about 100 sites. This allows for studying short-range correlations, par-
ticularly for two-dimensional lattices, but severely restricts the approach for three dimensions,
for multi-orbitals, and for long-range correlations.

Because of that, in recent years diagrammatic extensions of DMFT were at the focus of the
methodological development. An early such extension was the 1/d (d: dimension) approach
[15]; also, the combination of the non-local spin fermion self-energy with the local quantum
fluctuations of DMFT has been proposed [16]. Currently most actively pursued are diagram-
matic approaches based on the local two-particle vertex. The first such approach has been the
dynamical vertex approximation (DΓA) [17], followed by the dual fermion approach [18], the
one-particle irreducible approach (1PI) [19], and DMFT to functional renormalization group
(DMF2RG) [20].

The very idea of these approaches is to extend the DMFT concept of taking all (local) Feynman
diagrams for the one-particle irreducible vertex (i.e., the self-energy) to the next, i.e., two-
particle level. In these approaches, one calculates the local two-particle vertex, and from this,
non-local correlations beyond DMFT are obtained diagrammatically. Indeed, we understand
most (if not all) physical phenomena either on the one-particle level [e.g. the quasiparticle renor-
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Method Local two-particle vertex Feynman diagrams
DF [18] one-particle reducible vertex, here∗ Floc 2nd order, ladder

parquet
1PI [19] one-particle irreducible vertex Floc ladder
DMF2RG [20] one-particle irreducible vertex Floc RG flow
ladder DΓA [17] two-particle irreducible vertex in channel r Γrloc ladder
full DΓA [17] two-particle fully irreducible vertex Λloc parquet

Table 1: Summary of the different diagrammatic extensions of DMFT based on the two-particle
vertex. All methods are based on the local part of the two-particle vertex named in the table;
for a definition of the different vertex functions, see Section 2.1.
∗ Note that at the two-particle level every two-particle vertex is one-particle irreducible; third
or higher order vertices can be, however, one-particle reducible which has consequences for
the diagrammatics if truncated at the two-particle level, see [19].

malization and the Mott-Hubbard transition] or on the two-particle level [e.g. (para)magnons
and (quantum) critical fluctuations]. Non-local correlations and associated physics on this two-
particle level are included in these diagrammatic extensions of DMFT, which however still
include the local DMFT one-particle physics such as the formation of Hubbard bands and the
metal-insulator transition or, more precisely, a renormalized version thereof. The concept of
all these approaches is similar, but they differ in which two-particle vertex is taken and which
diagrams are constructed, see Table 1. Depending on the approach, Feynman diagrams are con-
structed from full Green function lines G(ν,k) or from the difference between G(ν,k) and the
local Green function Gloc(ν) [ν: (Matsubara) frequency; k: wave vector]. The DF, 1PI and
DMF2RG approach are also based on a generating functional integral.
In these lecture notes, we will concentrate on DΓA. Section 2.1 recapitulates the concept of
reducible and irreducible diagrams as well as the parquet and Bethe-Salpeter equation. On this
basis, we introduce in Section 2.2 the DΓA approach. In Section 3 we have chosen two ex-
emplary highlights that demonstrate what can be calculated by DΓA and related approaches.
These are the calculation of the critical exponents for the three dimensional Hubbard model
(Section 3.1) and the effect of long-range correlations on the Mott-Hubbard transition for the
two dimensional Hubbard model (Section 3.2): at zero temperature antiferromagnetic fluctua-
tions always open a gap at any interaction U > 0.

2 Feynman diagrammatics

2.1 Parquet equations

The very idea of DΓA is a resummation of Feynman diagrams, not in orders of the interaction
U as in perturbation theory but in terms of the locality of diagrams. In this sense, DMFT is the
first, one-particle level since it approximates the one-particle fully irreducible vertex, i.e., the
self-energy Σ, to be local, see Table 2.
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n = 1 DMFT: local self-energy
n = 2 DΓA: local fully irreducible two-particle vertex

⇒ non-local self-energy/correlations
· · ·
n→∞ exact solution

Table 2: DΓA generalizes the DMFT concept of the local self-energy (i.e., the local fully irre-
ducible one-particle vertex) to the fully irreducible n-particle vertex. It is hence a resummation
of Feynman diagrams in terms of their locality. On the right-hand side, the different levels of
approximation are indicated.

U

G0
G

Fig. 1: Basic objects of Feynman diagrams: from the non-interacting Green function G0 (left)
and the bare interaction U (middle) we construct all topologically distinct diagrams for calcu-
lating the interacting Green function G (right) .

For a better understanding of reducibility and irreducibility as well as of DΓA later on, let us
recall that in quantum field theory we calculate the interacting Green function G by drawing all
topologically distinct Feynman diagrams that consist of n interactions U and that are connected
by non-interacting Green function lines G0, keeping one incoming and one outgoing G0 line,
see Fig. 1. Each G0 line contributes a factor G0(ν,k) = 1/(ν + µ − εk) [where ν denotes the
(Matsubara) frequency, µ the chemical potential and εk the energy-momentum dispersion rela-
tion of the non-interacting problem] and each interaction (wiggled line) contributes a factor U .1

Here and in the following, we assume a one-band model for the sake of simplicity. For an intro-
duction to Feynman diagrams, more details, and how to evaluate Feynman diagrams including
the proper prefactor, we refer the reader to textbooks of quantum field theory such as [21]; a
more detailed presentation including DΓA can also be found in [22].

Dyson equation and self-energy

Instead of focusing on the Green function, we can consider a more compact object, the self-
energy Σ, which is related to G through the Dyson equation, see Fig. 2. The Dyson equation

1For a k-dependent, i.e. non-local interaction the factor U(k,k′,k′′,k′′′ = k+k′−k′′) would be k-dependent.
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Σ

Σ Σ Σ+= +

Σ ΣΣ+ +  ...
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Fig. 2: Dyson equation connecting the Green function and self-energy. The pair of scissors
indicates that these diagrams are one-particle reducible (i.e., cutting one G0 line separates the
Feynman diagram into two parts)

can be resolved for the interacting Green function:

G(ν,k) = [1/G0(ν,k)−Σ(ν,k)]−1. (1)

Since the geometric series of the the Dyson equation generates a series of Feynman diagrams,
we can only include a reduced subset of Feynman diagrams when evaluating the self-energy.
One obvious point is that the two outer “legs” (incoming and outgoing G0 lines) are explicitly
added when going from the self-energy to the Green function, see Fig. 2. Hence we have to “am-
putate” (omit) these outer “legs” for self-energy diagrams. More importantly, the self-energy
can only include one-particle irreducible diagrams. Here, one-particle (ir)reducible means that
by cutting one Green function line one can(not) separate the diagram into two parts. This is
since, otherwise, we would generate Feynman diagrams twice: any one-particle reducible dia-
gram can be constructed from two (or more) irreducible building blocks connected by one (or
more) single G0 lines. This is exactly what the Dyson equation does, see Fig. 2. For exam-
ple, in the last line, we have three irreducible self-energy blocks connected by two single G0

lines. This shows that, by construction, the self-energy has to include all one-particle irreducible
Feynman diagrams and no one-particle reducible diagrams. Since the self-energy has one (am-
putated) incoming leg, it is a one particle vertex. It is also one-particle irreducible as explained
above. Hence, the self-energy is the one-particle irreducible one-particle vertex. In Fig. 3 we
show some diagrams that are part of the self-energy, i.e., cutting one-line does not separate the
diagram into two parts, and some diagrams that are not.

Two-particle irreducibility

Let us now turn to the two-particle level. As illustrated in Fig. 4, the Feynman diagrams for
the susceptibility χ (or similarly for the two-particle Green function) [21] consist of (i) an
unconnected part (two G lines, as in the non-interacting case) and (ii) all connected Feynman
diagrams (coined vertex corrections). Mathematically this yields [β: inverse temperature; σ:
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Fig. 3: Left: some examples of (one-particle irreducible) self-energy diagrams. Right: Dia-
grams that do not contribute to the self-energy since they are one-particle reducible (cutting the
line indicated by the pair of scissors separates the diagram into two pieces).

spin]

χσσ′(νν ′ω; k,k′,q) =− β G(ν,k)G(ν + ω,k + q)δνν′ δ(k− k′) δσσ′ (2)

+G(ν,k)G(ν+ω,k+q)Fσσ′(νν ′ω; k,k′,q)G(ν ′,k′)G(ν ′+ω,k′+q).

Here F denotes the full, reducible vertex. In the following, let us introduce a short-hand notation
for the sake of simplicity, where 1 represents a momentum-frequency-spin coordinate 1 ≡
(k, ν, σ), 2 ≡ (k + q, ν + ω, σ), 3 ≡ (k′ + q, ν ′ + ω, σ′), and 4 ≡ (k′, ν ′, σ′). In this notation
we have

χ(1234) = −G(14)G(23)−G(11′)G(22′)F (1′2′3′4′)G(33′)G(4′4) , (3)

as visualized in Fig. 4. Since the Green function is diagonal in spin, momentum, and frequency,
i.e., G(11′) = G(11′) δ11′ , some indices are the same, which yields Eq. (2).
Let us now again introduce the concept of irreducibility, this time for the two-particle vertex.
In this case, we consider two-particle irreducibility.2 In analogy to the self-energy, we define
the fully irreducible vertex Λ, defined as the set of all Feynman diagrams that do not split into
two parts by cutting two G lines. Let us remark that here and in the following, we construct
the Feynman diagrams in terms of G instead of G0. This means that we have to exclude all
diagrams that contain a structure as generated by the Dyson equation in Fig. 2 since otherwise
these diagrams would be counted twice. The diagrams belonging to this reduced set with G
instead of G0 are called skeleton diagrams, see [21].
The reducible diagrams of F can be further classified according to how the Feynman diagram
separates when cutting two internal Green functions. Since F has four (“amputated”) legs to
the outside, there are actually three possibilities to split F into two parts by cutting two G lines.

2Note, that one-particle irreducibility is somehow trivial since one can show that there are no one-particle
irreducible diagrams for the two-particle vertex (in terms of the interacting G/skeleton diagrams).
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F−χ
2

1

3

4

2 2

1 1

3 3

4 4

2

1 4’

’ ’3

’
=  − 

Fig. 4: The susceptibility χ consists of two unconnected Green function G lines (aka “bubble”)
and vertex corrections F .
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Λ
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Fig. 5: The full (reducible) vertex F consists of the fully irreducible vertex Λ and two-particle
reducible diagrams. These can be classified into three channels depending on which parts are
disconnected by cutting two Green function lines. These are commonly denoted as the particle-
hole reducible channel Φph separating 12 from 34, the transversal particle-hole reducible chan-
nel Φ ph separating 14 from 23, and the particle-particle reducible channel Φpp separating 13
from 24. Each two-particle reducible diagram is reducible in one (and only one) of these three
channels. The hatched blocks themselves can be irreducible, reducible in the same channel,∗ or
reducible in the other two channels (in this last case the full diagram remains however reducible
only in the scissors-indicated channel).
∗ Note, this is only possible for one hatched side, since otherwise the same diagram might be
counted twice.

That is, an external leg, say 1, stays connected with one out of the three remaining external legs
but is disconnected from the other two, see Fig. 5 for an illustration. One can show by means of
the diagrammatic topology that each diagram is either fully irreducible or reducible in exactly
one channel, so that

F (1234) = Λ(1234) + Φph(1234) + Φph(1234) + Φpp(1234). (4)

Bethe-Salpeter equation

We have defined the reducible diagrams Φr in channel r ∈ {ph, ph, pp} as a subset of Feynman
diagrams for F . The rest, i.e., F − Φr, is called the vertex Γr irreducible in r so that

F (1234) = Γr(1234) + Φr(1234) . (5)
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Fig. 6: Bethe-Salpeter equation for the particle-hole channel (ph, top) the transversal particle-
hole channel (ph, middle) and the particle-particle channel (pp, bottom).

In analogy to the Dyson equation, Fig. 2, the reducible vertices Φr in turn can be constructed
from Γr. One Γr can be connected by two G’s with another Γr (which makes this diagram
two-particle reducible in the channel r). This can be connected again by two G’s with a third
Γr, etc. (allowing us to cut the two G’s at two or more different positions). This gives rise to a
geometric ladder series, the so-called Bethe-Salpeter equation, see Fig. 6. Mathematically, these
Bethe-Salpeter equations read in the three channels (with Einstein’s summation convention):

F (1234) = Γph(1234) + F (122′1′)G(3′2′)G(1′4′)Γph(4′3′34) (6)

= Γph(1234) + F (2′233′)G(2′1′)G(3′4′)Γph(11′4′4) (7)

= Γpp(1234) + F (4′22′4)G(2′3′)G(1′4′)Γpp(13′31′). (8)

Parquet equations

Since an irreducible Γr diagram in a channel r is either fully irreducible (Λ) or reducible in one
of the two other channels r′ 6= r (Φr′), we can express Γr as [this also follows directly from
Eqs. (4) and (5)]:

Γr(1234) = Λ(1234) +
∑
r′ 6=r

Φr′(1234) . (9)

We can use this Eq. (9) to substitute the last Γr’s in Eq. (6) [or the Γr box in Fig. 6] by Λ and
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Fig. 7: Parquet equations. From the Bethe-Salpeter equations in the three channels we obtain
three corresponding equations connecting the reducible vertex F , the fully irreducible vertex Λ
and the reducible vertices Φr in the three channels r (first three lines). Together with the clas-
sification of F into Λ and the three Φr (last line) we have the four so-called parquet equations.

Φr’s. Bringing the first Γr on the left hand side, then yields

Φph(1234) = F (1234)− Γph(1234) (10)

= F (122′1′)G(3′2′)G(1′4′)Λ(4′3′34)+
∑
r′ 6=ph

F (122′1′)G(3′2′)G(1′4′)Φr′(4
′3′34)

and corresponding equations for the other two channels. The corresponding Feynman diagrams
are shown in Fig. 7. If the fully irreducible vertex Λ is known, these three equations together
with Eq. (4) allow us to calculate the four unknown vertex functions Φr and F , see Fig. 7.
This set of equations is called the parquet equations.3 The solution can be done numerically
by iterating these four parquet equations. Reflecting how we arrived at the parquet equations,
the reader will realize that the parquet equations are nothing but a classification of Feynman
diagrams into fully irreducible diagrams and diagrams reducible in the three channels r.

3Sometimes, only Eq. (5) is called the parquet equation and the equations of type Eq. (10) remain under the
name Bethe-Salpeter equations.
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Σ F +=   − −

Fig. 8: Equation of motion (Schwinger-Dyson equation) for calculating the self-energy Σ from
the bare interaction U , the reducible vertex F and the Green function lines G. The second and
third diagram on the right-hand side are the Hartree and Fock diagrams, respectively, which
are not included in the first term.

The thoughtful reader will have also noticed that the interacting Green function enters Eq. (10).
This G can be calculated by one additional layer of self consistency. If the reducible vertex F is
known, the self-energy follows from the Heisenberg equation of motion (also called Schwinger-
Dyson equation in this context). This is illustrated in Fig. 8 and mathematically reads

Σ(14) = −U(12′3′1′)G(1′4′)G(23′)G(2′3)F (4′234) +U(1234)G(23)−U(1432)G(23) (11)

That is, the numerical solution of the four parquet equations has to be supplemented by the
Schwinger-Dyson Eq. (11) and the Dyson Eq. (1), so that also G and Σ are calculated self-
consistently.
Let us also note that these general equations, while having a simple structure in the 1234

notation, can be further reduced for practical calculations: the Green functions are diagonal
G(3′2′) = G(3′3′) δ2′3′ , there is a severe restriction in spin, there is SU(2) symmetry and one
can decouple the equations into charge(spin) channels Γph↑↑ + (−)Γph↑↓. A detailed discussion
is beyond the scope of these lecture notes. For more details on the parquet equations see [23],
for a derivation of the equation of motion also see [24].

2.2 Dynamical vertex approximation (DΓA)

Hitherto, everything has been exact. If we know the exact fully irreducible vertex Λ, we can
calculate through the parquet equations, Fig. 7 [Eqs. (5) and (10)], the full vertex F ; from
this, through the Schwinger-Dyson equation of motion (11), the self-energy Σ; and through
the Dyson Eq. (1), the Green function G. With a new G we can (at fixed Λ) recalculate F ,
etc. until convergence. Likewise, if we know the exact irreducible vertex Γr in one channel
r, we can calculate F through the corresponding Bethe-Salpeter Eq. (6-8) and from this (self
consistently) obtain Σ and G.
But Λ (or Γr) still consists of an infinite set of Feynman diagrams that we usually do not know.
Since the parquet (or Bethe-Salpeter) equations generate many additional diagrams, there are,
however, many fewer (albeit still infinitely many) diagrams for Λ (or Γr) than for F . In the case
of Λ, the bare interaction U is included but the next term is already a diagram of fourth(!) order
in U (the so-called envelope diagram), see Fig. 9. There are no two-particle fully irreducible
diagrams of second or third order in U .
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Fig. 9: Lowest order Feynman diagrams for the fully irreducible vertex Λ.

One approach is hence to approximate Λ by the bare interaction U only, i.e., the first two terms
in Fig. 9. This is the so-called parquet approximation [23]. For strongly correlated electrons
this will not be enough. A deficiency is, for example, that the parquet approximation does not
yield Hubbard bands.

In DΓA, we hence take instead all Feynman diagrams for Λ but restrict ourselves to their local
contribution, Λloc. This approach is non-perturbative in the local interaction U . It is putting the
DMFT concept of locality to the next, i.e., to the two-particle, level. We can extend this con-
cept to the n-particle fully irreducible vertex, so that by increasing n systematically more and
more Feynman diagrammatic contributions are generated; and for n→∞ the exact solution is
recovered, see Table 2 above.

In practice, one has to truncate this scheme at some n, hitherto at the two-particle-vertex level
(n = 2). The local fully irreducible two-particle vertex Λ can be calculated by solving an
Anderson impurity model that has the same local U and the same Green function G. This is
because such an Anderson impurity model yields exactly the same (local) Feynman diagrams
Λloc. It is important to note that the locality for Λ is much better fulfilled than that for Σ. Even
in two dimensions, Λ is essentially k-independent, i.e., local. This has been demonstrated by
numerical calculations for the two-band Hubbard model, see [25]. In contrast, for the same set
of parameters Σ is strongly k-dependent, i.e., non-local. Also Γr and F are much less local
than Λ, see [25]. There might be parameter regions in two dimensions or one-dimensional
models where Λ also exhibits a sizable non-local contribution. One should keep in mind that
DΓA at the n = 2 level is still an approximation. This approximation includes however not
only DMFT but on top of that also non-local correlations on all length scales so that important
physical phenomena can be described, and even in two dimensions substituting Λ by its local
contribution Λloc is a good approximation, better than replacing Σ by its local contribution Σloc

as in DMFT.
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Fig. 10: Top: Local full vertex F in the magnetic (m) and charge or density (d) channel, i.e.,
F↑↑ ± F↑↓, as a function of the two incoming fermionic frequencies ν = (2n + 1)πT and
ν ′ = (2n′ + 1)πT at transferred bosonic frequency ω = 0 for the three dimensional Hubbard
model at U = 0.5, T = 1/26 (in units of nearest neighbor hopping 2

√
6t ≡ 1). Middle:

Corresponding particle-hole irreducible vertex Γph (two left panels) and particle-particle vertex
in the singlet (s) and triplet (t) spin combination. The transversal particle-hole channel follows
from Γph by (crossing) symmetry. Bottom: Fully irreducible vertex Λm(d) for the two spin
combinations. For all figures, the bare interaction U has been subtracted from the vertices
(reproduced from [26]).

When solving the Anderson impurity model numerically, one does not obtain Λloc directly but
first the local susceptibilities χloc (or the two-particle Green function). Going from here to Λloc

is possible as follows: from χloc and Gloc, we obtain the local reducible vertex Floc [via the
local version of Eq. (2)], from this in turn we get Γrloc [via inverting the local version of the
Bethe-Salpeter Eqs. (6-8)], Φrloc [via the local version of Eq. (5)], and finally Λloc [via the local
version of Eq. (4)].

Fig. 10 shows the reducible vertex F , the irreducible vertex in the particle-hole channel Γph
and the fully irreducible vertex Λ for the three-dimensional Hubbard model on a simple cubic
lattice. For more details on the calculation of Λloc, see [26] and [22]. Also note that Γrloc
diverges at an interaction strength U below the Mott-Hubbard metal-insulator transition, which
signals the breakdown of perturbation theory [27].
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Fig. 11: Flow diagram of the DΓA approach. Starting from a test Green function G (e.g.,
that of DMFT), the local susceptibility and local full vertex Floc is calculated by solving an
Anderson impurity model. To this end, the non-local Green function G0 of an Anderson impurity
is adjusted by Eq. (12) until this G0 impurity model has the given interacting G. From Floc in
turn, the inversion of the parquet and Bethe-Salpeter equations allow the calculation of the
local fully irreducible vertex Λloc. This is the input of the parquet equations for calculating the
non-local vertex F and through the equation of motion and the Dyson equation, the DΓA self-
energyΣ and Green functionG. In a self-consistent calculation a new local vertex is calculated
from G etc. until convergence.

2.2.1 Self consistency

After calculating Λloc, we can calculate the full vertex F through the parquet equations, Fig. 7;
and through the Schwinger-Dyson equation, Fig. 8, the non-local self-energy Σ and Green
function G, as discussed in Section 2.1. Hitherto, all DΓA calculations have stopped at this
point. That is, F and G are determined self-consistently but Λloc is not recalculated.

However, in principle, one can self-consistently iterate the approach. From the new G we can
calculate a new Gloc. From this and U we obtain a new vertex, etc. until convergence, see
Fig. 11. This self-consistency cycle is similar to that of the DMFT but now includes self-
consistency on the two-particle (Λ) level.

Please note that the Anderson impurity model has now to be calculated with the interacting
Gloc from DΓA, which is different from the Gloc of DMFT. As numerical approaches solve the
Anderson impurity model for a given non-interacting Green function G0, we need to adjust this
G0 until the Anderson impurity model’s Green function G agrees with the DΓA Gloc. This is
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Fig. 12: Self-energy Σii+1 between neighboring sites on a six-site Hubbard ring (see inset),
comparing DMFT (zero non-local Σii+1), DΓA and the exact solution. Parameters: U = 2t,
T = 0.1t with t being the nearest-neighbor hopping on the ring (reproduced from [29]).

possible by iterating G0 as follows:

[Gnew0 (ν)]−1 =
[
Gold0 (ν)

]−1
+ [Gloc(ν)]−1 −

[
Gold(ν)

]−1
, (12)

until convergence. Here, Gold0 and Gold denote the non-interacting and interacting Green func-
tion of the Anderson impurity model from the previous iteration. This G0-adjustment is indi-
cated in Fig. 11 by the secondary cycle.
Fig. 12 compares the DΓA self energies calculated this way, i.e., the DΓA full parquet solution,
with DMFT and the exact solution. The results are for a simple one-dimensional Hubbard
model with nearest neighbor hopping, six sites and periodic boundary conditions so that the
exact solution is still possible by an exact diagonalization of the Hamiltonian. This can be
considered as a simple model for a benzene molecule. The DΓA results have been obtained in a
“one-shot” calculation with the DMFTG as a starting point. The good agreement between DΓA
and the exact solution shows that DΓA can be employed for quantum chemistry calculations of
correlations in molecules, at least if there is a gap [HOMO-LUMO gap between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)].
For molecules with degenerate ground states (i.e., a peak in the spectral function at the Fermi
level), the agreement is somewhat less impressive; note that one dimension is the worst possible
case for DΓA.
In Fig. 12, the first parquet DΓA results have been shown. However, most DΓA calculations
hitherto employed a simplified scheme based on ladder diagrams, see Fig. 13. These calcula-
tions neglect one of the three channels in the parquet equations: the particle-particle channel.
Both the particle-hole (ph) and the transversal particle-hole channel (ph) are taken into account.
These channels decouple for the spin and charge vertex and can hence be calculated by solving
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Fig. 13: Flow diagram of the DΓA ladder approach. Same as Fig. 11 but solving the Bethe-
Salpeter equation(s) with the local irreducible vertex Γrloc in (two) channel(s) r instead of the
parquet equations with the fully irreducible vertex Λ. Instead of the self-consistency, it is better
to employ a so-called Moriya λ-correction in this case.

the simpler Bethe-Salpeter equations instead of the full parquet equations. If one neglects non-
local contributions in one of the channels, it is better to restrict oneself to non-self-consistent
calculations since part of the neglected diagrams cancel with diagrams generated by the self
consistency. Instead one better does a “one shot” calculation mimicking the self-consistency by
a so-called λ correction, see [30] for details. Physically, neglecting the particle-particle chan-
nel is justified if non-local fluctuations of particle-particle type are not relevant. Whether this
is the case or not depends on the model and parameter range studied. Such particle-particle
fluctuations are, e.g., relevant in the vicinity of superconducting instabilities, where they need
to be considered. In the vicinity of antiferromagnetic order on the other hand, the two particle-
hole channels are the relevant ones (and only their magnetic spin combination). These describe
antiferromagnetic fluctuations, coined paramagnons in the paramagnetic phase above the an-
tiferromagnetic transition temperature. The DΓA results in the next section are for the half-
filled Hubbard model. Here we are not only away from any superconducting instability, but at
half-filling the interaction also suppresses particle-particle fluctuations. Hence, for the results
presented below using the ladder instead of the full parquet approximation is most reasonable.
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Fig. 14: Phase diagram of the Hubbard model on a cubic lattice with nearest neighbor hopping
2
√

6t ≡ 1. The dashed black lines show the DMFT Néel temperature TN and the DMFT
crossover region from a paramagnetic metal (PM) to a paramagnetic insulator (PI). Non-local
correlations reduce TN with good agreement between DΓA [31], DCA [32], lattice quantum
Monte Carlo (QMC) [33], as well as determinantal diagrammatic Monte Carlo (DDMC) before
[34] and after [35] our DΓA results. Note, for the lowest U value, Ref. [35] could only give
an upper bound for TN which according to DDMC could be much smaller as indicated by the
arrow.

3 Two highlights

3.1 Critical exponents of the Hubbard model

The Hubbard model is the prototypical model for strong electronic correlations. At half fill-
ing it shows an antiferromagnetic ordering at low enough temperatures T – for all interaction
strengths U > 0 if the lattice has perfect nesting. Fig. 14 shows the phase diagram of the half-
filled three-dimensional Hubbard model (all energies are in units of D = 2

√
6t ≡ 1, which

has the same standard deviation as a Bethe lattice with half bandwidth D). At weak interac-
tion strength, we have a Slater antiferromagnet which can be described by Hartree-Fock theory
yielding an exponential increase of the Néel temperature with U . At strong interactions, we
have preformed spins with a Heisenberg interaction J = 4t2/U yielding a Heisenberg antifer-
romagnet with TN ∼ J . In-between these limits, TN is maximal.
All of this can be described by DMFT. However, since the DMFT is mean-field with respect
to the spatial dimensions, it overestimates TN . This can be overcome by including non-local
correlations, i.e., spatial (here antiferromagnetic) fluctuations. These reduce TN . In this respect,
there is a good agreement between DΓA, DCA and lattice QMC, see Fig. 14. The biggest
deviations are observed for the smaller interaction strength. In principle, these differences might
originate from the fact that the DΓA calculations are not yet self-consistent and only use the
Bethe-Salpeter Eqs. (6) and (7) in the two particle-hole channels instead of the full parquet
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Fig. 15: Inverse antiferromagnetic spin susceptibility as a function of T for different interac-
tions U as obtained by DΓA (lower inset: DMFT), showing in the vicinity of the phase transi-
tion a χAF ∼ (T − TN)−2ν behavior, with a critical exponent ν ∼ 0.7 in agreement with the
three dimensional Heisenberg model [36]. (reproduced from [31] c© by the American Physical
Society).

equations (5) and (10). On the other hand, however, we observe that long-range correlations are
particularly important at weak coupling, cf. Section 3.2. Such long-ranged correlations cannot
be captured by the cluster extensions of DMFT or lattice QMC since these are restricted to
maximally ∼ 10 sites in all three directions. More recent and accurate DDMC calculations on
larger clusters [35] indeed show a smaller TN and, in contrast to DCA and lattice QMC, better
agree with DΓA, see Fig. 14.

Even more important are long-range correlations in the immediate vicinity of the phase tran-
sition and for calculating the critical exponents. Each finite cluster will eventually show a
mean-field exponent. In this respect, we could calculate for the first time the critical exponents
of the Hubbard model [31]. In Fig. 15 we show the antiferromagnetic spin susceptibility, which
shows a mean-field-like behavior χAF ∼ (T − TN)−1 at high temperature (and in DMFT).
In the vicinity of the phase transition, however, long-range correlations become important and
yield another critical exponent χAF ∼ (T − TN)−2×0.7, which agrees with that of the three
dimensional Heisenberg model [36] (as is to be expected from universality). In contrast, for
the Falikov-Kimball model, the critical exponents calculated by the related Dual-Fermion ap-
proach [37] agree with those of the Ising model.

Except for the immediate vicinity of the phase transition, DMFT nonetheless yields a reliable
description of the paramagnetic phase, at least for one-particle quantities such as the self-energy
and spectral function. The susceptibility [31] and entropy [34] show deviations in a larger T -
interval above TN .
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Fig. 16: Temperature T vs. interaction U phase diagram of the two dimensional Hubbard model
on a square lattice with nearest-neighbor hopping (all energies are in units of D = 4t ≡ 1,
yielding the same standard deviation as for the 3D phase diagram). From local correlations
(DMFT [39]), via short-range correlations (CDMFT [40] and variational cluster approxima-
tion (VCA) [38]), to long-range correlations (DΓA [38] and BSSQMC [38]), the critical in-
teraction strength for the metal-insulator transition is reduced to Uc = 0. The light gray lines
denote the DMFT [32] and DΓA [31] TN (reproduced from [38]).

3.2 Fate of the false Mott-Hubbard transition in two dimensions

As a second example, we review results for the interplay between antiferromagnetic fluctuations
and the Mott-Hubbard transition in two dimensions. Even though the Hubbard model has been
studied for 50 years, astonishingly little is known exactly. In one dimension it can be solved by
the Bethe ansatz, and there is no Mott-Hubbard transition for the half-filled Hubbard model: for
any finite interaction it is insulating. In infinite dimensions, on the other hand, DMFT provides
for an exact (numerical) solution. It has been one of the big achievements of DMFT to clarify the
nature of the Mott-Hubbard transition, which is of first order at a finite interaction strength [3,4],
see Fig. 16. From cluster extensions of DMFT, it has been concluded that the Mott-Hubbard
transition is actually at somewhat smaller U values and the coexistence region where two so-
lutions can be stabilized is smaller, see Fig. 16. However, again, these cluster extensions are
restricted to short-range correlations. In particular at low temperatures, there are strong long-
range antiferromagnetic spin fluctuations, which for example at U = 0.5 and T = 0.01 exceed
300 lattice sites [38]. The physical origin are antiferromagnetic fluctuations emerging above
the antiferromagnetically ordered phase. In two dimensions, this antiferromagnetic phase is re-
stricted to T = 0 due to the Memin-Wagner theorem, but antiferromagnetic fluctuations remain
strong even beyond the immediate vicinity of the ordered phase (at T = 0). These long-range
antiferromagnetic spin fluctuations (paramagnons) give rise to pseudogap physics, where first
only part of the Fermi surface becomes gapped but at lower temperatures the entire Fermi sur-
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face is gapped so that we have an insulating phase for any U > 0. Fig. 16 shows the devel-
opment from local correlations (which only yield an insulating phase for relatively large U ) to
additional short-range correlations (which reduce the critical Uc for the Mott-Hubbard transi-
tion) to long-range correlations (which reduce Uc to zero). At large U , we have localized spins
that can be described by a spin model or the Mott-insulating phase of DMFT. At smaller U ,
we also have an insulator caused by antiferromagnetic spin fluctuations. These smoothly go
over into the T = 0 antiferromagnetic phase, which is of Slater type for small U . Since the
correlations are exceedingly long-ranged, the nature of the low-temperature gap is the same as
the Slater antiferromagnetic gap, even though there is no true antiferromagnetic order yet.

4 Conclusion and outlook

In recent years, we have seen the emergence of diagrammatic extensions of DMFT. All these
approaches have in common that they calculate a local vertex and construct diagrammatically
non-local correlations from this vertex. In regions of the phase diagram where non-local corre-
lations are short-range, results are similar as for cluster extensions of DMFT. However, the dia-
grammatic extensions also offer the opportunity to include long-range correlations on an equal
footing. This allowed us to study critical phenomena and to resign the Mott-Hubbard transition
in the two-dimensional Hubbard model to its fate (there is no Mott-Hubbard transition).
These were just the first steps. Indeed, the diagrammatic extensions offer a new opportunity
to address the hard problems of solid state physics, from superconductivity and quantum crit-
icality to quantum phenomena in nano- and heterostructures. Besides a better physical un-
derstanding by means of model systems, also realistic materials calculations are possible – by
AbinitioDΓA [41]. Taking the bare Coulomb interaction and all local vertex corrections as a
starting point, AbinitioDΓA includes DMFT, GW and non-local correlations beyond within a
common underlying framework. Both on the model level and for realistic materials calcula-
tions, there is plenty of physics to explore.
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and A. Toschi, arXiv:1405.7250
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