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8.2 Erik Koch

The central challenge of electronic structure theory is the solution of the many-electron Hamil-
tonian in the Born-Oppenheimer approximation (in atomic units)

H = −1

2

∑
i

~∇2
i +

∑
i

Vext(~ri) +
∑
i<j

1

|~ri − ~rj|
, (1)

where the external potential is, e.g., the Coulomb potential of the nuclei of charge ZI at position
~RI , shifted by their mutual Coulomb interaction

Vext(~r) =
∑
I

ZI

|~r − ~RI |
+
∑
I<J

ZIZJ

|~RI − ~RJ |
. (2)

Introducing a basis-set {ϕα(x)} of spin-orbitals, we can rewrite H in second quantization

H = −
∑
αβ

tαβ c
†
αcβ +

1

2

∑
αβγδ

Uαδ
βγ
c†αc
†
βcγcδ (3)

where the creation/annihilation operators fulfill the anticommutation relations {c†α, c
†
β} = 0 =

{cα, cβ} and {cα, c
†
β} = 〈α|β〉 = Sαβ , and S is the overlap matrix [1]. The matrix elements are

given by integrating over the orbital degrees of freedom x = (~r, σ)

tαβ =
∑
α′β′

(S−1)αα′

∫
dx ϕα′(x)

(
1

2
~∇2 − Vext(~r )

)
ϕβ′(x) (S−1)β′β (4)

and

Uαδ
βγ

=
∑
α′δ′
β′γ′

S−1
αα′ S

−1
ββ′

∫
dx

∫
dx′ ϕα′(x)ϕβ′(x′)

1

|~r − ~r ′|
ϕγ′(x

′)ϕδ′(x) S−1
γ′γ S

−1
δ′δ . (5)

This representation of the Hamiltonian is suited for introducing approximations. By truncating
the basis-set to only K functions, the Hilbert space H of H for a system with N electrons is
restricted to a finite variational subspaceH({ϕαn(x); |n = 1 . . . K}) of dimension

(
K
N

)
. Work-

ing with a finite basis set introduces a basis-set error. To keep it small, the basis functions are
chosen such that the eigenstates of interest are represented well onH({ϕαn(x) |n = 1 . . . K}),
using, e.g., low-energy orbitals to represent the ground state. The basis-set error can be esti-
mated by comparing results calculated with basis sets of increasing size and extrapolating to the
complete-basis-set-limit. Such calculations are computationally demanding, as the dimension
of the Hilbert space increases for K � N � 1 (using Stirling’s approximation) with a high
power, given by the (fixed) number of electrons in the system, as O(KN).
For extended systems the problem becomes even harder. To ensure size-consistency [2], mean-
ing that the basis-set error for extensive observables, e.g., the total energy, scales at most with
the number of electrons, we have to increase K along with N , leading to an exponential scal-
ing of the variational space with system size. Practical simulations are therefore restricted to
quite small clusters. These have a large fraction of surface atoms. As a simple example, for
a 10 × 10 × 10 cluster 488 of the 1000 atoms are on the surface. The surface effects can be
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removed by putting the system in a simulation cell spanned by three vectors ~Ri and assuming
that the system is periodically repeated [3]. Instead of leaving the system, an electron passing
through a face of the simulation cell continues into the neighboring cell, while one of its im-
ages enters through the opposite face. Thus, we are dealing with an extended system with an
infinite number of electrons. Still, by virtue of the periodicity, only the N electrons inside the
simulation cell are independent degrees of freedom. We can then restrict the calculation to the
simulation cell C =

{∑
i xi

~Ri

∣∣ xi ∈ [0, 1)
}

by including the periodic images of the external
potential (created inside the simulation cell) and the interaction with the electrons outside the
simulation box in the Hamiltonian [4]

Hpbc = −1

2

N∑
i=1

~∇2
i +

∑
~n∈Z3

∑
i

V Cext(~ri − ~R~n) +
1

2

∑
~n∈Z3

∑
i,j

′ 1

|~ri − ~rj − ~R~n|
. (6)

where ~R~n =
∑3

i=1 ni
~Ri and the prime on the last sum indicates that i 6= j when ~n = 0. The

eigenfunctions of (6) on the simulation cell C represent a system of average electron density
N/VC . We see that, while removing surface effects, the introduction of periodic boundary con-
ditions not only modifies interactions of ranges longer than the radius of the simulation cell
but also suppress fluctuations of the number of electrons between simulation cells. Moreover,
the average electron density can only be a multiple of 1/VC as the simulation cell must con-
tain an integer number of electrons. Obviously, these finite-size errors vanish in the limit of
infinite simulation cell volume VC → ∞. Fig. 1 shows a comparison of the finite-size scaling
for the ground-state energy with open and with periodic boundary conditions. For systems that
develop long-range correlations, care has to be taken in the finite-size extrapolation for corre-
lation functions C(~r, ~r′), as imposing periodic boundary conditions C(~r, ~r + ~Ri) = C(~r, ~r′)

can frustrate correlations that are not commensurate with the simulation cell. This becomes
particularly evident for a crystal in which the external potential of the infinite system is periodic
Vext(~r + ~ai) = Vext(~r ) with the periodicity of the lattice spanned by the vectors ~ai. Only when
the vectors ~Ri spanning C are chosen as integer linear combinations ~Ri =

∑
j nij ~aj will the

external potential in Hpbc agree with Vext:∑
~n∈Z3

V Cext(~r − ~R~n) = Vext(~r) , (7)

where V Cext is the external potential originating, e.g., from the nuclei inside C.
For such periodic systems the nature of the many-body problem becomes apparent. The inter-
action term by itself is not particularly complicated. It is diagonal in real space, so finding the
arrangement of electrons that minimizes their mutual Coulomb repulsion is a straightforward
classical optimization problem, the solution being a Wigner crystal [5]. The kinetic energy,
on the other hand, is diagonal in k-space. For a lattice-periodic potential, Vext couples only a
discrete set of k-vectors, so that the single-electron part of H can be solved in terms of Bloch
waves. Solutions of the full problem thus have to balance the extended Bloch waves (kinetic
energy) against the localized Wigner crystal (electron-electron repulsion).
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Fig. 1: Energy per site for Hubbard chains of L sites with open and periodic boundary condi-
tions. Calculations are for the non-interacting half-filled Hubbard model with nearest-neighbor
hopping t. For open boundary conditions (open squares) the energy converges linearly with 1/L
to the result for the infinite chain, ε∞ = −4t/π. For periodic boundary conditions (circles) con-
vergence is quadratic, both for open- and closed-shell chains.

1 Periodic systems

1.1 Lattices

A d-dimensional lattice is the collection of points

L =
{

rn1,...,nd =
∑
i

ni ai

∣∣∣ ni ∈ Z
}

(8)

defined by the integer linear combinations of a set of d linearly independent vectors ai. Arrang-
ing the vectors ai into a matrix A = (a1, a2, . . .), we see that the points in the lattice are given
by rn = An with n ∈ Zd; i.e., A maps the d-dimensional cubic lattice into L. Likewise, we
can write an arbitrary point r = Af . In general, the coordinates f = A−1r in the basis A will
not be integers. They are called the fractional coordinates of r. The primitive cell defined by A

is the set of all points r whose fractional coordinates lie in the unit cube f ∈ [0, 1)d. Its volume
is Vc = | det(A)|. It is convenient to arrange the vectors ai such that the determinant is positive.
The vectors ai are called the primitive vectors of the lattice L. They are not unique: we can
construct an equivalent set of primitive vectors Ã by adding to ±ai any integer multiple of the
other aj 6=i, such that | det(Ã)| = | det(A)|. Since the transformation Ã = AM is then given
by an integer matrix M with | det(M)| = 1, by Cramer’s rule, its inverse is also an integer
matrix. Thus any point in the lattice L can be written in terms of either set of primitive vectors:
An = Ãñ, with the integer indices related by ñ = M−1n. The canonical choice is to make the
primitive vectors as short as possible, ãi =

∑
j 6=i round(ai · aj/||aj||2) aj , so they provide the

notion of nearest-neighbor and give a compact unit cell.
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The reciprocal latticeRL associated with L arises naturally when considering the Fourier trans-
form of lattice periodic functions, i.e., functions V (r + An) = V (r). The Fourier expansion of
a general function V (r) is given by

V (r) =

∫
ddk V̂ (k) eik·r . (9)

When V (r) is periodic on L, we have

V (r + An) =

∫
ddk V̂ (k) eik·r eik·An = V (r) . (10)

By the linear independence of Fourier modes it follows that only terms with exp(ik ·An) = 1

for all n ∈ Zd can contribute. The k-vectors fulfilling this condition form the reciprocal lattice

RL =
{

Gm
∣∣ m ∈ Zd

}
(11)

with primitive vectors G = (2πA−1)T . Since (2πG−1)T = A, the reciprocal lattice of RL
is L. By construction, the reciprocal lattice vectors g ∈ RL define plane waves exp(ig · r)

for which all lattice points rn ∈ L fall on planes of phase = 1. The reciprocal lattice vectors,
except the gamma-point g = 0, are thus orthogonal to planes containing an infinite number of
lattice points. A given set of lattice planes can be characterized by the shortest reciprocal lattice
vector gmin = Gm perpendicular to it. The expansion coefficients m in terms of the primitive
reciprocal vectors are the Miller indices. As for the real lattice, the primitive vectors are not
unique: Ã = AM gives G̃ = (2πÃ−1)T = G(M−1)T , which also span RL. The canonical
choice for the primitive reciprocal cell is k ∈ G (−1/2, 1/2]d. A momentum k from a primitive
reciprocal cell (first Brillouin zone) is called a crystal momentum.
Transforming the single-electron Hamiltonian

Hsingle = −1

2
∇2

r + Vext(r) (12)

with lattice-periodic potential Vext(r) =
∑

m∈Zd V̂Gm eiGm·r to k-space

〈k|Hsingle|k′〉 =
k2

2
δ(k− k′) + V̂Gm δ(k− k′ −Gm) (13)

or, more elegantly,

Hsingle =
∑
k

k2

2
c†k,σ ck,σ +

∑
k

∑
m∈Zd

V̂Gm c†k+Gm,σ ck,σ , (14)

we see that the Hamiltonian only couples states whose wave-vectors differ by reciprocal lattice
vectors (for m 6= 0 they are Umklapp processes). Thus, Hsingle is block-diagonal in k-space so
that its eigenstates are of the form

ϕn,k(r) =
∑
m∈Zd

cn,m ei(k+Gm)·r , (15)
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where k, now restricted to the primitive reciprocal cell, is the cryrstal momentum of the state
and n its band index. Under translations by a lattice vector An they transform as

ϕn,k(r + An) = eik·An ϕn,k(r) , (16)

i.e., as irreducible representations of the abelian translation group. This is the Bloch theorem.
Transforming back to real space, we could determine the eigenfunctions ϕn,k(r) by solving the
eigenvalue problem for Hsingle(

1

2
∇2

r + Vext(r)

)
ϕn,k(r) = εn,k ϕn,k(r) (17)

not on the entire space Rd, but on a single primitive lattice cell imposing k-boundary conditions
ϕn,k(ai) = eik·ai ϕn,k(0). It is, however, more common to rewrite (15) as

ϕn,k(r) = eik·r
∑
m

cn,m eiGm·r = eik·r un,k(r) . (18)

with the lattice-periodic Bloch function un,k(r). Using this form as an ansatz in (17), we see
that the Bloch functions can be obtained from the eigenvalue problem(

1

2

(
− i∇r + k

)2
+ V (r)

)
un,k(r) = εn,k un,k(r) , (19)

on a primitive cell of Lwith periodic boundary conditions. We note that in this equation k plays
the role of a constant vector potential.
For a general time-reversal-symmetric Hamiltonian, every eigenfunction ϕα(r) is degenerate
with its complex conjugate, so that we can choose real eigenfunctions. Taking the complex
conjugate of (19) shows that for a real potential we can choose un,k(r) = un,−k(r). When the
potential is inversion-symmetric, V (−r) = V (r), then ϕα(−r) is degenerate with ϕα(r). For
(19) it implies un,k(−r) = un,−k(r). In the presence of both symmetries we obtain un,k(r) =

un,−k(r) = un,k(−r).
A Bloch theorem also holds for the eigenstates of a many-body Hamiltonian that is invariant
under lattice translations. Translating all electrons by the same lattice vector An will multiply
the wave-function by a phase eiktot·An, where ktot is the total crystal momentum of the many-
body state. Thus, in k-space the Hamiltonian block-diagonalizes into sectors with a given total
crystal momentum. Writing H in k-space

H =
∑
k,σ

(
k2

2
c†k,σ ck,σ +

∑
m

V̂Gm c†k+Gm,σck,σ +
1

2

∑
k′,σ′;q

c†k+q,σc
†
k′−q,σ′

1

|q |2
ck′,σ′ck,σ

)
(20)

we see that acting on a Slater determinant of plane waves with momenta ki (or Bloch waves of
crystal momenta ki), the Hamiltonian does not change total crystal momentum ktot =

∑
ki.

However, while the kinetic energy is diagonal and the external potential scatters only between
plane waves differing by a reciprocal lattice vector, the electron-electron interaction scatters
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plane waves of arbitrary single-electron momentum. Thus, for the eigenvalue problem we have
to consider Slater determinants of plane waves with arbitrary wave-vectors ki.
As the simplest example, let us consider the Slater determinant of two plane waves

Φk1,k2(r1, r2) =
1√
2

(
1

(2π)d/2

)2
∣∣∣∣∣ eik1·r1 eik2·r1

eik1·r2 eik2·r2

∣∣∣∣∣ ∝ ei(k1·r1+k2·r2) − ei(k2·r1+k1·r2) (21)

By construction it transforms as desired under a shift of all electrons by a lattice vector

Φk1,k2(r1 + An, r2 + An) = e(k1+k2)·An Φk1,k2(r1, r2) . (22)

The situation is, however, markedly different from the single-electron case (15): there, we can
always translate a single electron coordinate into a primitive cell, allowing us to consider the
single-electron Bloch functions on a finite volume. For more electrons, however, their relative
distance is unchanged under the collective translation, so that we cannot bring all coordinates
into a finite volume. To make this possible, we would need a Bloch-type theorem for translations
of individual electrons:

Φk1,k2(r1 + c, r2) = eik̃·c Φk1,k2(r1, r2) (23)

(the equivalent equation for translations of r2 follows from the antisymmetry). Inserting (21) we
see that such an individual-electron Bloch-condition puts constraints on the allowed momenta:
exp(i(ki− k̃) ·c) = 1. Thus, to be able to restrict the many-electron wavefunction to a primitive
cell spanned by three vectors C with boundary conditions

Φk1,k2(ci, r2, . . .) = eik̃·ci Φk1,k2(0, r2, . . .) , (24)

we can only allow Slater determinants constructed from plane waves with wave vectors ki such
that the ki − k̃ are reciprocal lattice vectors of C. For k̃ = 0 we obtain the simulation cell
with periodic boundary conditions discussed in the introduction. The eigenfunctions of H with
boundary conditions (24) can be written in the Bloch-like form

ΨC
n,k̃

(r1, r2, . . .) = eik̃·
∑
i ri UC

n,k̃
(r1, r2, . . .) , (25)

where UC
n,k̃

(r1, r2, . . .) is invariant under translations of a single electron by a vector from C and
antisymmetric under particle exchange. While UC

n,k̃
apparently is the many-body generalization

of the single-electron Bloch function un,k(r), we have to keep in mind that its construction is
based on the artificial boundary conditions (24), which depend on the choice of the volume C.
When the volume is chosen small, calculations are simple but the wave functions ΨC

n,k̃
will give

poor approximations to the actual ground state, while increasing the cell improves the accuracy
but also makes calculations increasingly difficult.
Physically, as in the single-electron case (19), the twisted boundary conditions (24) correspond
to a constant vector potential. The dependence of the ground state energy EC

0 (k̃) can be used
to distinguish metallic from (Mott) insulating systems: the second derivative at k̃ = 0 of the
energy with respect to the current driving vector potential gives the static response. For metals
it stays finite while for insulators it vanishes in the thermodynamic limit [6].
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1.2 Superlattices

For a system with lattice periodicity the single- and many-electron boundary conditions (16) and
(24) should be consistent. This implies, in particular, that the vectors spanning the cell should be
integer linear-combinations of the primitive lattice vectors, ci =

∑
ai lij , or, in matrix notation,

C = AL, where the columns of L are the primitive cell vectors in units of the primitive lattice
vectors. The vectors C span a lattice S ⊆ L, called a superlattice. The volume of the primitive
unit cell of C is | det(L)| times the volume of the primitive lattice cell. Since L is an integer
matrix, its determinant is also an integer.
As the choice of the primitive lattice vectors A for a given latticeL is not unique, so is the choice
of L for a given superlattice S. We can, however, easily check whether, for given primitive
lattice vectors A, two integer matrices span the same superlattice by reducing them to their
Hermite normal form [7] and checking if they agree. The reduction of a non-singular integer
matrix L to its Hermite normal form (HNF)

Λ =


λ11 0 0 · · ·
λ21 λ22 0

λ31 λ32 λ33

... . . .

 (26)

with λii ≥ 1, and λii > λij ≥ 0 can be done recursively. Allowed operations that leave the
superlattice spanned by the transformed matrix unchanged are (i) multiplying a column by ±1,
(ii) exchanging columns, and (iii) adding an integer multiple of another column. The reduction
algorithm [8] is based on the Euclidean algorithm for finding the greatest common divisor

gcd(a, b) =


|a| if b = 0 (operation of type (i))
gcd(b, a) if |a| < |b| (operation of type (ii))
gcd(a− ba/bcb, b) otherwise (operation of type (iii))

(27)

where a and b are the matrix elements in a given row of the matrix, and we perform the op-
erations not just on these matrix elements but on their entire column vectors. To reduce the
first row of L to the required form, we apply the Euclidean algorithm on the last two columns,
reducing the coefficient in the last column to zero. In this way we reduce all matrix elements
except the first to zero, obtaining λ11 = gcd(l11, . . . , l1d). We iterate this procedure for the sub-
matrix obtained by removing the first row and column to bring the matrix to lower triangular
form. Finally, we use column operations to replace the off-diagonal elements in a row by their
remainders on division by the corresponding diagonal element.
Besides giving a criterion for determining equivalent primitive cell vectors, the Hermite normal
form gives a prescription for enumerating all non-equivalent periodic clusters of a given size.
We have to be careful, however, when the lattice L spanned by A has point symmetries besides
simple inversion. Since the construction of Λ contains no information on the underlying lattice,
such additional symmetries can render superlattices with different HNF equivalent.
Fig. 2 gives an example of how different equivalent primitive cells can appear. For the square
lattice with point-symmetry C4v, we see that primitive vectors spanning the same superlattice



Quantum Cluster Methods 8.9

L :

(
2 0
4 8

)
HNF

(
4 2
0 4

) (
0 4
−4 −2

) (
4 8
−2 0

) (
4 0
2 4

)
HNF

Fig. 2: Primitive superlattice cells on a square lattice. All primitive superlattice vectors span
the same superlattice, i.e., calculations for any of the shown cells will give the same results.
The primitive superlattice vectors L are shown below the plot. The first two plots show a set
of primitive vectors and the corresponding Hermite normal form. The next two are obtained by
rotating the vectors by −π/2, (x, y) → (−y, x). Because of the point-symmetry of the under-
lying square lattice, they span equivalent superlattices. Their Hermite normal form, shown on
the far right, is, however, different from the unrotated HNF on the far left.

can have different Hermite normal form when they are related by a non-trivial point-symmetry
operation. This happens when the primitive cells break the point symmetry of the lattice. It
is often advantageous to work with cells that retain symmetries of the underlying lattice. Well
known examples are the conventional cells of cubic lattices, e.g., the face-centered cubic lattice

A =
a

2

 0 1 1

1 0 1

1 1 0

 C = a

 1 0 0

0 1 0

0 0 1

 L =

 −1 1 1

1 −1 1

1 1 −1

 . (28)

While the primitive lattice vectors A do not exhibit the cubic symmetry of the lattice, the vectors
of the conventional unit cell C do. Symmetry is one of the criteria used for selecting cells that
best represent the infinite system [9].
The reciprocal lattice RS of S is spanned by the primitive vectors Ks = (2πC−1)T . They can
be written in terms of the reciprocal lattice vectors of L as

Ks =
(
2πC−1

)T
= K

(
L−1

)T (29)

The primitive cell spanned by Ks is smaller than that spanned by K by a factor of 1/| det(L|.
The Slater determinants in a simulation on the primitive cell spanned by C with periodic bound-
ary conditions can then contain Bloch waves of wave vector k = KSm with m ∈ Zd that fall
in the Brillouin zone of the original lattice. With twisted boundary conditions (24), the allowed
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wave vectors are shifted by k̃. The choice k̃ = ki/2 corresponds to a sign-change under a
translation by ci, i.e., antiperiodic boundary conditions in that direction.
When the primitive superlattice vectors are chosen as integer multiples of the primitive lattice
vectors, ci = ni ai, the reciprocal lattice shifted by k̃ =

∑
i(ni − 1)ki/2ni forms a Monkhorst-

Pack grid of special k-points that are popular for Brillouin-zone integrations [10].

2 Variational methods

Conceptually, the variational approach is straightforward: to find the ground state of a Hamil-
tonian H, just minimize the energy expectation value

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (30)

The practical problem is, of course, the choice of a suitable variational space. The system-
atic approach is to write the trial wave function as a linear combination of Slater determi-
nants Ψ(r) =

∑
α cα Φα(r) and allow all amplitudes cα to vary. For a finite system with N

electrons and a finite basis set of K orbitals there will be
(
K
N

)
Slater determinants. Mini-

mizing E[Ψ ] = E(c1, c2, . . .) amounts then to a high-dimensional optimization problem. As
E(c1, c2, . . .) has no local minima, this can be done using a steepest descent method, e.g., the
Lanczos method [11]. It involves the repeated application of the Hamiltonian to the trial func-
tion. When working with a basis set, a Hamiltonian (2) with pair interaction only couples
Slater determinants that differ in at most two orbitals. Thus, the matrix representation of H in
Slater-determinant space is reasonably sparse so that the matrix-vector product can be efficiently
calculated. Nevertheless this method, called configuration interaction (CI) as it describes the in-
terplay of Slater determinants (electron configurations), is limited to quite small systems by the
sheer number of Slater determinants spanning the Hilbert space, or, equivalently, by the number
of parameters cα that need to be simultaneously optimized: For a system with 25 electrons and
just 50 basis functions, the number of parameter is already above 1014, i.e., requiring a peta byte
of memory just for storing the parameters cα. A way out might be to consider only “important”
Slater determinants. It turns out that the variational energy converges, however, only slowly
with the number of determinants included in the calculation. Moreover, when we want to study
systems of increasing size a truncated CI easily leads to size-consistency problems [2].
An alternative to the full-CI ansatz are wave functions that capture the strongest effects of elec-
tron correlation with only a small number of parameters. To identify the major effect of electron
correlation on the wave function, we return to the energy expectation value (30). Considered as
a wave function functional, the stationarity condition

0 =
δE

δΨ
=
H|Ψ〉
〈Ψ |Ψ〉

− 〈Ψ |H|Ψ〉
〈Ψ |Ψ〉2

|Ψ〉 (31)

is equivalent to the Schrödinger equation H Ψ(r) = E Ψ(r). Dividing by the wave function we
obtain the local energy

Eloc(r) =
H Ψ(r)

Ψ(r)
, (32)
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which is constant for eigenstates ofH , i.e., its variance is zero (zero variance property). We can
thus find eigenstates by minimizing the variance of the local energy (variance minimization)

σ2[Ψ ] =

∫
|Eloc(r)|2 |Ψ(r)|2 dr−

(∫
Eloc(r) |Ψ(r)|2 dr

)2

= 〈Ψ |H2|Ψ〉 − 〈Ψ |H|Ψ〉2. (33)

This approach can also be employed for constructing good trial wave functions.
We might think that, as the solution of a second-order differential equation, wave functions
are smooth with continuous first derivative. This is, however, not true at singularities in the
potential. A well-known example is the hydrogen atom. Its ground state fulfills

Hϕ1s(~r) = −1

2
~∇2ϕ1s(~r)−

1

r
ϕ1s(~r) = E1s ϕ1s(~r) . (34)

For r → 0, the potential energy diverges while Hϕ1s(~r) remains finite. For this reason, the 1s

function goes to a finite value at the position of the nucleus, producing a cusp , i.e., a discon-
tinuity in the first derivative, which gives rise to the canceling divergence in the kinetic energy.
The cancelation condition determining the cusp in the wave function, in the case of hydrogen
ϕ1s ∼ exp(−

√
x2 + y2 + z2), is called the cusp condition [12]. Removing divergences in the

local energy by implementing the cusp condition is the most important step towards reducing
the variance of Eloc(r), i.e., constructing good variational wave functions.
The cusps at the position of the nuclei are built into the single-particle orbitals obtained from
a mean-field solution of (1). The many-body eigenstates will, however, also have cusps when
two electrons meet (~ri → ~rj). These cusps are, of course, not easily reproduced by a linear
combination of Slater determinants, which explains the slow convergence of CI expansions.
To derive the cusp conditions, we start with the electron-nucleus cusp. Following the example
of hydrogen, we write the wave function close to a nucleus of charge Z as exp(−uZ(r)), where
r is the distance of the electron from the nucleus. For r close to zero the local energy is

Eloc(r) = −1

2

(
d2

dr2
+ 2

r
d
dr

)
e−uZ(r)

e−uZ(r)
− Z

r
= −
−u′′Z(r) + u′Z

2(r)− 2u′Z(r)

r

2
− Z

r
. (35)

Thus, it stays finite for r → 0 when

duZ
dr

∣∣∣∣
r=0

= +Z . (36)

For electrons, the cusp condition will depend on their relative spin orientation. Electrons with
opposite spin need not be antisymmetrized so that we can write the wave function when the
electrons are close to each other as exp(−uσ,−σ(r)) with r = |r1 − r2|. The situation is almost
the same as for the electron-nucleon cusp, except that (i) electrons repel each other and (ii) we
now have two electronic degrees of freedom, i.e., we get contributions from the kinetic energy
operator for both electrons, resulting in

duσ,−σ
dr

∣∣∣∣
r=0

= −1

2
. (37)
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For electrons with parallel spin, the wave function must be antisymmetric in the electron co-
ordinates, i.e., there must be a nodal surface separating the region where the wave function is
positive from that where it is negative. For r1 ≈ r2 we can approximate the nodal surface by
a · r = 0, which is a plane when we keep one of the electron coordinates fixed. We can then
write the antisymmetric wave function close to r = 0 as a · r exp(−uσ,σ(r)). Removing the
singularity in the local energy now requires [4]

duσ,σ
dr

∣∣∣∣
r=0

= −1

4
. (38)

Thus, the correlation cusp for opposite-spin electrons affects the wave function more than
that for parallel spins since electrons with the same spin already tend to avoid each other as
a consequence of exchange.
The cusp conditions just tell us the form of the wave function right at the singularity. To put this
information into a usable wave function, we have to parametrize the electron-electron functions
uσ,σ′(r) for finite r. This is typically done by writing u(r) as a rational function that fulfills
the cusp condition for r → 0 and goes to a constant for r → ∞. To ensure antisymmetry
and the electron-nucleus cusps, the electron-electron correlators are multiplied onto a Slater
determinant. This gives the Jastrow wave function [14]

ΨJ(r1, σ1; . . . ; rN , σN) = Φ(r1, σ1; . . . ; rN , σN)
∏
i<j

e−uσi,σj (rij) . (39)

The product of pair functions is called the Jastrow factor. It will tend to reduce the amplitude of
the Slater determinant when electrons come close to each other, i.e., it introduces a correlation
hole. For systems with inhomogeneous charge density this means that the Jastrow factor pushes
electrons away from regions of high charge-density, where the probability of two electrons
approaching each other is largest. This can be compensated by introducing single-electron
terms in the Jastrow factor [15]. That is particularly important when the Slater determinant
used in (39) accurately describes the charge density of the system, e.g., from density-functional
theory.
Having chosen parametrizations for uσ,σ′(r) and the single-electron term, the variational ap-
proach looks straightforward: just minimize the energy expectation value 〈ΨJ |H|ΨJ〉/〈ΨJ |ΨJ〉
with respect to the (relatively few) Jastrow parameters. The pair functions, however, make it
impossible to evaluate the expectation value other than by integrating over all electron configu-
rations

〈ΨJ |H|ΨJ〉
〈ΨJ |ΨJ〉

=

∫
dr1 · · · drN ΨJ(r1, σ1; . . . ; rN , σN)H ΨJ(r1, σ1; . . . ; rN , σN)∫

dr1 · · · drN |ΨJ(r1, σ1; . . . ; rN , σN)|2
(40)

This 3N -dimensional integral is best done using stochastic sampling – variational Monte Carlo.
What improvements in energy can we expect? Typically, optimizing a good trial function will
lower the energy expectation value by only a few percent of the energy calculated with just the
mean-field Slater determinant. This might seem little reward for the considerable effort. We
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Fig. 3: Weight of configurations with given number D of double occupancies for Gutzwiller
wave functions ΨT (R) = gD(R) Φ(R). Reducing the Gutzwiller factor g suppresses configura-
tions with high Coulomb energy ECoul(R) = U D(R) at the expense of increasing the kinetic
energy. The results shown are for a Hubbard model on a square lattice of 16 × 16 sites with
periodic boundary conditions and 101 electrons of each spin. For the uncorrelated Slater de-
terminant (g = 1) the distribution is centered around D = Nsite n↑n↓ = 162 (101/162)2 ≈ 40.

have, however, to keep in mind that the effects of correlation, essentially the integral over the
correlation-hole, are very small compared to the Coulomb energy of the uncorrelated charge
density (Hartree energy) and the kinetic term. So correlation effects are barely noticeable on
the scale of the total energy. The dominating role of the Hartree energy also becomes appar-
ent when comparing the charge density of a solid to a simple superposition of atomic charge
densities: the bonding induces barely noticable changes, see, e.g., Fig. 1 in [16]. A more sensi-
ble benchmark than the change in total energy is how much of the correlation energy, i.e., the
difference between the Hartree-Fock and the exact energy, is captured. On this count, varia-
tional wave functions fare much better: they typically recover roughly 90% of the correlation
energy. Still, correlations are a subtle effect also on this energy scale, and variational methods
are usually not sufficient for reaching chemical accuracy.
When working in second quantization with a finite (and therefore incomplete) basis set, we can-
not describe two electrons coming arbitrarily close to each other. So there are no cusp conditions
here. Still, we can correlate the electrons in the orbitals of the basis set by introducing correla-
tion factors of the form exp(−ηD), where D is a two-body operator. Such trial wave functions,
with D =

∑
i ni↑ni↓ the number of doubly occupied sites, were introduced by Gutzwiller [17]

as variational states for the Hubbard model

H = −t
∑
ij,σ

c†jσciσ + U
∑
i

ni↑ni↓ . (41)

The Gutzwiller wave function (GWF), with |Φ〉 a mean-field solution of H , can be written as

|ΨT 〉 = e−η
∑
i ni↑ni↓ |Φ〉 = g

∑
i ni↑ni↓ |Φ〉 =

∏
i

(
1− (1− g)ni↑ni↓

)
|Φ〉 , (42)

where g = exp(−η) and the final equality arises from the fact that ni↑ni↓ can only take the
values 0 or 1. The role of the Gutzwiller parameter g ∈ [0, 1] is to reduce the number of doubly
occupied sites relative to the mean-field solution |Φ〉, thus reducing the Coulomb repulsion at
the expense of increasing the kinetic energy. This is illustrated in Fig. 3. Introducing more
general two-body operators D, Gutzwiller wave functions can be devised for realistic multi-
band models. See [18] for a nice introduction.
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2.1 Variational Monte Carlo

As seen in (40), evaluating the energy expectation value for a Jastrow wave function involves
the integration over the 3N -dimensional configuration space of the electrons. The key for doing
this using stochastic sampling is again the local energy, which allows us to rewrite (40) as

〈ΨJ |H|ΨJ〉
〈ΨJ |ΨJ〉

=

∫
dr1 · · · drN Eloc(r1, σ1; . . . ; rN , σN) |ΨJ(r1, σ1; . . . ; rN , σN)|2∫

dr1 · · · drN |ΨJ(r1, σ1; . . . ; rN , σN)|2
. (43)

As it is non-negative and normalized,

p(r1, σ1; . . . ; rN , σN) =
|ΨJ(r1, σ1; . . . ; rN , σN)|2∫

dr1 · · · drN |ΨJ(r1, σ1; . . . ; rN , σN)|2
(44)

is a probability distribution function on the configuration space, so that we can evaluate (43)
by sampling configurations R = (r1, σ1; . . . ; rN , σN) with probability p(R) and average the
corresponding local energy Eloc(R).
The same approach works for Hamiltonians written in second quantization, the main difference
being that in this case the electron configurations are discrete, specifying the occupation of
the orbitals used in second quantization. In the following, we specialize to the case of the
simple Hubbard model (41) with one orbital per site. Denoting by R an electron configuration,
specifying on which site the electrons are located as well as their spin, we can write the energy
expectation value of a trial function ΨT as

ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

=

∑
REloc(R) Ψ 2

T (R)∑
R Ψ

2
T (R)

, (45)

with the local energy

Eloc(R) =
∑
R′

〈ΨT |R′〉 〈R′|H|R〉
〈ΨT |R〉

=
∑
R′ 6=R

t
ΨT (R′)

ΨT (R)
+ U D(R). (46)

If the Hamiltonian allows only hopping to near neighbors, the sum over R′ in the local energy
scales with the number of near neighbors times the number of electrons in the system. In
contrast, the sum over R in (45) is over all configurations, i.e., of the order of the dimension of
the Hilbert space. With increasing system size this rapidly becomes extremely large. To give an
impression, the dimension of the Hilbert space for the model shown in Fig. 3 is

(
162

101

)
×
(

162

101

)
,

which is larger than 10146. So it seems quite impossible to do the sum in (45). Even generating
configurations at a rate of 3.3 GHz, we could visit just 1017 configurations per year. It is the
magic of stochastic methods that sums over such spaces can still be done to an astonishing
accuracy.
The idea of variational Monte Carlo [19, 20] is to perform a random walk in the space of
configurations, with transition probabilities p(R → R′) chosen such that the configurations
RVMC in the random walk have the probability distribution function Ψ 2

T (R). Then

EVMC =

∑
RVMC

Eloc(RVMC)∑
RVMC

1
≈
∑

REloc(R) Ψ 2
T (R)∑

R Ψ
2
T (R)

= ET . (47)
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Fig. 4: Illustration of the random walk in configuration space.

The transition probabilities can be determined from detailed balance

Ψ 2
T (R) p(R→ R′) = Ψ 2

T (R′) p(R′ → R) , (48)

which gives p(R → R′) = 1/N min
(
1, Ψ 2

T (R′)/Ψ 2
T (R)

)
, with N being the maximum number

of possible transitions. It is sufficient to consider only transitions between configurations that
are connected by the Hamiltonian, i.e., transitions in which one electron hops to a neighboring
site. The standard prescription is then to propose a transition R → R′ with probability 1/N

and accept it with probability min
(
1, Ψ 2

T (R′)/Ψ 2
T (R)

)
. This works well when U is not too

large. For strongly correlated systems, however, the random walk will stay for long times in
configurations with a small number of double occupancies D(R), since most of the proposed
moves will increase D and hence be rejected with probability ≈ 1− gD(R′)−D(R).
Fortunately, there is a way to integrate-out the time the walk stays in a given configuration [21].
To see how, we first observe that for the local energy (46) the ratio of the wave functions for
all transitions induced by the Hamiltonian have to be calculated. This in turn means that we
also know all transition probabilities p(R→ R′). We can therefore eliminate any rejection, i.e.,
accept with probability one, by proposing moves R→ R′, (R′ 6= R), with probabilities

p̃(R→ R′) =
p(R→ R′)∑
R′ p(R→ R′)

=
p(R→ R′)

1− pstay(R)
. (49)

Checking detailed balance (48) we find that now we are sampling configurations R̃VMC from
the probability distribution function Ψ 2

T (R) (1− pstay(R)). To compensate for this, we assign a
weight w(R) = 1/(1− pstay(R)) to each configuration R. The energy expectation value is then
given by

ET ≈
∑

R̃VMC
w(R̃VMC)Eloc(R̃VMC)∑
R̃VMC

w(R̃VMC)
. (50)

The above method is very efficient since it ensures that in every Monte Carlo step a new con-
figuration is created. Instead of staying in a configuration where ΨT is large, this configuration
is weighted with the expectation value of the number of steps the simple Metropolis algorithm
would stay there. This is particularly convenient for simulations of systems with strong cor-
relations: instead of having to do longer and longer runs as U is increased, the above method
produces, for a fixed number of Monte Carlo steps, results with comparable error estimates.
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2.2 Correlated sampling

The essence of the variational method is the minimization of the energy expectation value (45)
as a function of the variational parameters in the trial function. To this end, we could simply
perform independent VMC calculations for a set of different parameters. It is, however, difficult
to compare the energies from independent calculations since each VMC result comes with its
own statistical errors. This problem can be avoided with correlated sampling [19,22]. The idea
is to use the same random walk in calculating the expectation value for different trial functions.
This reduces the relative errors and hence makes it easier to find the minimum.
Let us assume that we have generated a random walk {RVMC} for the trial function ΨT . Using
the same random walk, we can also estimate the energy expectation value (47) for a different
trial function Ψ̃T . To do so we have to compensate for the fact that the configurations have the
probability distribution Ψ 2

T instead of Ψ̃ 2
T by introducing reweighting factors

ẼT ≈
∑

RVMC
Ẽloc(R) Ψ̃ 2

T (R)/Ψ 2
T (R)∑

RVMC
Ψ̃ 2
T (R)/Ψ 2

T (R)
. (51)

Likewise, (50) is reweighted into

ẼT ≈
∑

R̄VMC
w(R̄) Ẽloc(R̄) Ψ̃ 2

T (R̄)/Ψ 2
T (R̄)∑

R̄VMC
w(R̄) Ψ̃ 2

T (R̄)/Ψ 2
T (R̄)

. (52)

Also, the local energy Ẽloc(R) can be rewritten such that the new trial function appears only
in ratios with the old one. For Gutzwiller functions this implies a drastic simplification. Since
they differ only in the Gutzwiller factor, the Slater determinants cancel, leaving only powers
(g̃/g)D(R)

ET (g̃) ≈
∑

RVMC
Ẽloc(R) (g̃/g)2D(R)∑
RVMC

(g̃/g)2D(R)
(53)

and

Ẽloc(R) = −t
∑
R′ 6=R

(g̃/g)D(R′)−D(R) ΨT (R′)

ΨT (R)
+ U D(R). (54)

As the number of doubly occupied sites D(R) for a configuration R is an integer, we can
rearrange the sums in (53) and (54) into polynomials in g̃/g. The energy expectation value for
any Gutzwiller parameter g̃ is then given by a rational function in the variable g̃/g, where the
coefficients only depend on the fixed trial function |Ψ(g)〉.
It is then clear how we proceed to optimize the Gutzwiller parameter in variational Monte
Carlo [21]: we first pick a reasonable g and perform a VMC run for |Ψ(g)〉 during which we
also estimate the coefficients of the above polynomials. We can then easily calculate ET (g̃) by
evaluating the rational function in g̃/g. Since the number of non-vanishing coefficients typically
is only of the order of a few tens (see the distribution of weights shown in Figure 3), this is a
very efficient process.
Figure 5 shows how the method works in practice. Although we deliberately picked a bad
starting point, we still find the correct minimum. Of course, this will not be true for the whole
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Fig. 5: Optimizing the Gutzwiller parameter g: The left-hand panel shows the straightforward
approach of calculating the variational energy for a number of different values of g in separate
VMC runs. The curve in the right-hand panel shows the result of a single correlated sampling
run, calculated at g = 0.4. The predicted minimum is indicated by the dotted line and cor-
responds to the actual minimum. The calculations are for a cluster of 32 C60 molecules with
48+48 electrons (half-filling) and U = 1.0 eV [23].

range of Gutzwiller parameters. When g̃ differs too much from g, the method breaks down. To
understand this we again turn to Figure 3. We see that most configurations in a random walk
generated with, say, g = 0.50 will have about 20 doubly occupied sites. In the Monte Carlo
run we therefore sample the coefficients for (g̃/g)2×20 best, while the statistics for much larger
or smaller powers is poor. But it is exactly these poorly sampled coefficients that we need for
calculating the energy expectation value of trial functions with g̃ much different from g. We
can thus use the overlap of the wave functions 〈Ψ(g̃)|Ψ(g)〉 as a measure of the reliability of the
calculated energy ET (g̃). Like the energy expectation value itself, it can be recast in the form
of polynomials, the coefficients of which can be sampled during the VMC run

〈Ψ(g̃)|Ψ(g)〉 =

∑
R Ψ̃(R)Ψ(R)√∑

R Ψ̃
2(R)

∑
R Ψ

2(R)
=

∑
RVMC

(g̃/g)D(R)√∑
RVMC

(g̃/g)2D(R)
∑

RVMC
1
. (55)

Figure 6 shows how the reliability of correlated sampling results depends on the overlap of with
the trial function that is used in the VMC run.
There are some straightforward modifications of the scheme we have described above. Often,
it is more appropriate to minimize the variance in the local energy σ2(g) rather than the energy
E(g) [22]. Since the variance can also be rewritten in terms of a rational function in g̃/g,
variance minimization can be implemented in much the same way as the energy minimization
that we have described here. Furthermore, it is clear that the method is not restricted to the
plain Gutzwiller wave function but can be generalized to trial functions with more correlation
factors of the type rc(R). As long as the correlation function c(R) is integer-valued on the space
of configurations, expectation values for such trial functions can still be rewritten as rational
functions. The only difference to the simpler case described above is that now the rational
function is multivariate, reflecting the fact that there is more than one variational parameter.
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Fig. 6: The reliability of a correlated sampling run depends on the overlap of the trial function
with the wave function at the predicted minimum. Left: inefficient sampling for small overlap.
Right: reliable sampling for sufficiently large overlap. The thin line gives the energy curve
obtained from the correlated sampling run, the thick line shows the overlap. The calculations
are for the same system as in Figure 5.

2.3 Gutzwiller approximation

In Fig. 3 we found that we can estimate the number of doubly occupied sites in a non-interacting
Slater determinant by simply assuming that the electrons of different spins are distributed uni-
formly over the lattice: D ≈ Nsite n↑ n↓. In terms of electron configurations, this can be
rephrased: all electron configurations R have the same weight in Φ〉, i.e., |Φ〉 =

∑
R cR|R〉 with

|cR|2 = const. This is the basic assumption of the Gutzwiller approximation (GA) [17, 24]. It
provides surprisingly reliable estimates of the properties of the Gutzwiller wave function using
simple combinatorics.
As electron correlation in the Hubbard model arises from the doubly occupied sites, it is rea-
sonable to use the number of doubly occupied sites to characterize an electron configuration R.
More specifically, we introduce the notation

M : number of lattice sites (= Nsite)
Nσ : number of electrons with spin σ

E : number of empty sites
Lσ : number of sites with a single electron of spin σ
D : number of doubly occupied sites

While the number of lattice sites and electrons is fixed for a given system, the other quantities
have to fulfill physical constraints. A site is either empty, singly, or doubly occupied, i.e., M =

E +L↑ +L↓ +D, and the electrons are on singly or doubly occupied sites, i.e., Nσ = Lσ +D.
Given this notation, the number of configurations with a given D is obtained by distributing the
empty, singly, and double occupied sites over the lattice

G(D) =

(
M

E

)(
M − E
L↑

)(
M − E − L↑

L↓

)(
M − E − L↑ − L↓

D

)
=

M !

E!L↑!L↓!D!
. (56)
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Fig. 7: Comparison of the weight of doubly occupied configurations for Gutzwiller wave
functions (histograms) and as calculated in the Gutzwiller approximation (curves). The system
is the same as in Figure 3.

Figure 7 shows that the distribution (56) matches that calculated for an uncorrelated Slater
determinant almost perfectly. For a Gutzwiller wave function, the Gutzwiller parameter changes
the GA-weights to

∑
R withD double occs |cR|2 ∝ G(D) g2D. Even for quite large correlation, i.e., small

g, the agreement with the actual weights is surprisingly good. As we are dealing with quite large
factorials, we can use Stirling’s approximationN ! ∼

√
2πN exp(N ln(N)−N) to simplify (56)

G(D)

Gtot

g2D =

√
n↑ (1− n↑) n↓ (1− n↓)

2πM e l↑ l↓ d

(
n
n↑
↑ (1− n↑)1−n↑ n

n↓
↓ (1− n↓)1−n↓

e
e
l
l↑
↑ l

l↓
↓ d

d

)M

(57)

where nσ = Nσ/M and d = D/M , etc. From this we see that the distribution of double
occupancies, as a function of d, narrows with increasing M . Thus, for general g ∈ [0, 1],
the density of double occupancies in the thermodynamic limit is given by the position of the
maximum of the distribution. Using the asymptotics of the derivative of the gamma function
Γ (z)′ = Γ (z)Ψ0(z) ∼ Γ (z) ln(z), we find g2 = e d/(l↑ l↓), or, explicitly.

d(n↑, n↓; g) = −1

2

(
1

1− g2
− n↑ − n↓

)
+

√
1

4

(
1

1− g2
− n↑ − n↓

)2

+
n↑ n↓ g2

1− g2
, (58)

i.e., in the thermodynamic limit the Gutzwiller parameter determines d. In the uncorrelated case
it gives the familiar d(g = 1) = n↑ n↓ from Fig. 3, while in the opposite limit there are only
double occupancies above half-filling: d(g = 0) = max(0, n− 1).
Similarly, we can estimate the overlap of wave functions with different Gutzwiller parameters,
which is a measure of the efficiency of correlated sampling,

〈Ψ(g̃)|Ψ(g)〉 ∼
∑
D

M !

E!L↑!L↓!D!
(gg̃)D . (59)

Expanding around g̃ = g we find that the overlap looks like a Gaussian: exp[−M (g̃− g)2/σ2
0],

with M the number of lattice sites. As expected, for fixed g̃ 6= g, the overlap goes to zero
exponentially with system size (orthogonality catastrophe). σ0 is a function of g and the filling
and generally decreases with g. This can be seen in Figure 7: for small g the weights are peaked
more sharply than for larger Gutzwiller parameters. For half-filling, σ0 =

√
2g 2(1 + g).

The relation between the overlap and the reliability of correlated sampling (53) is illustrated in
Figure 6.
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For the energy expectation value

E(g) =
〈Ψ(g)|H|Ψ(g)〉
〈Ψ(g)|Ψ(g)〉

= −2t
∑
ij,σ

〈Ψ(g)|c†jσciσ|Ψ(g)〉
〈Ψ(g)|Ψ(g)〉

+ U D(g) (60)

in the Gutzwiller approximation, the Hubbard energy is explicitly given through the relation (58)
between g and the density of doubly occupied sites. For estimating the kinetic energy, we first
observe that 〈Ψ(g)|c†jσciσ|Ψ(g)〉/〈Ψ(g)|Ψ(g)〉 is the probability for an electron of spin σ to
hop from site i to site j. The probability for a hop being allowed by the Pauli principle is
nσ (1− nσ). In the Gutzwiller approximation there are more severe constraints on the hopping
processes coming from the condition that the density of doubly occupied sites is fixed at (58).
Thus, only hops from a singly occupied to an empty site (probability lσ e) or from a doubly to
a singly occupied site (probability d l−σ) are allowed. Thus, replacing the Pauli constraint with
the more severe Gutzwiller constraints reduces the hopping matrix elements of the uncorrelated
Slater determinant by the hopping reduction factor

γσ(nσ, g) =

(√
lσ e+

√
d l−σ

)2

nσ (1− nσ)
, (61)

where we have added the amplitudes for the two allowed hopping processes. Using again the
basic assumption of the Gutzwiller approximation that all configurations contribute the same,
we find for the energy per site

εGA(g) =
∑
σ

γσ(nσ, g) ε(0)
σ (nσ) + U d(n↑, n↓; g) , (62)

where ε0
σ(nσ) is the kinetic energy for the Slater determinant of the Gutzwiller wave functions.

Optimizing the Gutzwiller parameter g thus means finding the best trade-off between lowering
the Hubbard energy by reducing the density of double occupancies and the simultaneous in-
crease in the (negative) kinetic energy due to the band narrowing proportional to the hopping
reduction γσ. Because of the relation (58) between g and d we actually need not consider g but
can minimize the energy using d as the parameter.

2.4 Brinkman-Rice transition

At half-filling (nσ = 1/2) the expressions from the Gutzwiller approximation simplify signifi-
cantly. The hopping reduction factor becomes γ = 16d(1/2 − d), so we can write the energy
expectation value per site as

ε(d) = 16 d (1/2− d) ε(0) + U d , (63)

where ε(0) is the kinetic energy density of the uncorrelated system (both spins). Minimizing
gives

dmin(U) =
1

4
+

U

32ε(0)
. (64)
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Fig. 8: Gap calculated by variational Monte Carlo for the Gutzwiller wave function on the finite
one-dimensional Hubbard model with periodic boundary conditions (Hubbard rings). For 30-
site rings a gap appears to open at U ≈ 6. For larger rings the gap opens at slightly increasing
values of U , and it looks as if the result of the Gutzwiller approximation is reached for large
enough systems. But actually the opening of a gap is a pure finite-size effect, as a Gutwiller
wave function with metallic Slater determinant is always metallic, unless g = 0.

For the uncorrelated system this gives the familiar dmin(U = 0) = n↑n↓. With increasing U ,
double occupancies are reduced until they vanish entirely at Uc = 8|ε(0)|. From that point on,
the system has no doubly occupied sites; the hopping reduction becomes γ = 0 suppressing
all hopping, i.e., making the system an insulator. This is the Brinkman-Rice scenario for a
half-filled band turning insulating [25].
We might wonder if we could see the metal-insulator transition in VMC calculations. The
insulating state can be determined by calculating the gap

Eg(M) = E(N + 1)− 2E(N) + E(N − 1) (65)

=
ε(n+ 1/M)− ε(n)

1/M
− ε(n)− ε(n− 1/M)

1/M
(66)

→ dE(n)

dn

∣∣∣∣
n+

− dE(n)

dn

∣∣∣∣
n−

= µ+ − µ− . (67)

Opening of the gap Eg > 0 indicates a jump in the chemical potential, i.e., an insulator. For
an insulating half-filled system N = M at large U we would expect Eg ∼ U , since the system
cannot avoid double occupancy with M + 1 electrons. Results for a simple Hubbard chain
are shown in Figure 8. It appears that around Uc = 32t/π ≈ 10 t, the value predicted by the
Gutzwiller approximation for the one-dimensional Hubbard model, the gap indeed starts to open
proportionally to U . As the size of the Hubbard chain used in the simulation increases, the gap is
slightly reduced, seemingly approaching the value predicted by the Gutzwiller approximation.
This is, however, a pure finite-size effect.
For the one-dimensional Hubbard model, the ground state properties were actually calculated
analytically by Metzner and Vollhardt [26]. For any finite U , the ground state energy εGWF (n)
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has a continuous derivative at half-filling. So the Gutzwiller wave function always describes a
metal, except for g = 0. This example should serve as a warning that finite-size extrapolations
can be quite tricky. Here, even though the energy per site converges quickly to the exact result,
having to take finite differences instead of derivatives in the evaluation of the gap for finite
systems can create the appearance of a gapped system.
There is an elegant argument using the response of the energy to twisted boundary conditions
that shows that, quite generally, Gutzwiller-type wave functions with a metallic Slater determi-
nant are always metallic [27]. Consider a variational wave function

|Ψ〉 =
∏
α

gCαα |Φ〉 , (68)

where |Φ〉 is a Slater determinant and Cα a set of correlation functions (the simple Gutzwiller
function uses only one correlation function,

∑
i ni↑ni↓). For twisted boundary conditions in

direction c on a finite simulation cell, moving an electron by the cell vector c = An introduces
a phase exp(ik · c). This phase can be absorbed into the Hamiltonian by transforming the cre-
ation/annihilation operators at site Aj into cjσ → eik·Aj cjσ and introducing periodic boundary
conditions. The Hamiltonian thus becomes dependent on k with the hopping terms picking up a
phase from the twisted boundary conditions, while in the Hubbard interaction the phases cancel

H(k) = −t
∑
ij,σ

eik·A(i−j) c†jσciσ + U
∑
i

ni↑ ni↓ . (69)

The energy expectation value for the Gutzwiller wave function depends on k and the gα, where
the Gutzwiller parameters change with the boundary conditions as

EG(k+dk, {gα(k+dk)}) = EG(k, {gα(k)})+

(
∂EG
∂k

+
∑
α

∂EG
∂gα

dgα
dk

)
dk+O(dk2). (70)

The Gutzwiller parameters minimize EG, i.e., the variations of the energy expectation value
with respect to the gα vanish. Solving the resulting linear system for the first-order term gives
the dependence of the Gutzwiller parameters on the boundary conditions

dgα
dk

= −
∑
β

(
∂2EG
∂gβ ∂gα

)−1(
∂2EG
∂gβ ∂k

)
, (71)

while the second derivative of the energy with respect to the boundary conditions is

d2EG
dk2

=
d

dk

(
∂EG
∂k

+
∑
α

∂EG
∂gα

dgα
dk

)
=
∂2EG
∂k2

+
∑
α

∂2EG
∂k ∂gα

dgα
dk

. (72)

When the Gutzwiller factors in (68) are independent of the boundary conditions, e.g., the Ci are
density or spin correlation functions, the explicit dependence of EG on the boundary conditions
k is only through the kinetic energy T . For a metallic Slater determinant the first term will then
produce a non-vanishing conductivity for any U , except in the atomic limit U →∞.
The Brinkman-Rice transition is thus produced by the Gutzwiller approximation, although it is
not present in the underlying Gutzwiller wave function, except in the limit d → ∞, where the
Gutzwiller approximation becomes exact [26].
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3 Projection techniques

We can systematically improve on the variational results by using projection techniques [28].
The basic idea is surprisingly simple: when we operate with exp(−τH) on a wave function
|ΨT 〉 then, for large τ , the ground state |ψ0〉 will dominate in the projected function, provided
that the initial function had non-zero overlap with it. For a finite-dimensional Hamiltonian,
where the spectrum is bounded not only from below but also from above, this imaginary-time
propagation can be simplified to a matrix vector product

|Ψ (n+1)〉 = [1− τ(H − Ē(n))] |Ψ (n)〉 ; |Ψ (0)〉 = |ΨT 〉, (73)

where τ has to be small enough and Ē(n) is chosen to ensure normalization of the projected
functions. To see under what conditions this converges to the ground state, we expand the
starting function |ΨT 〉 =

∑
i ci|Ψi〉 in eigenstates H|Ψi〉 = Ei|Ψi〉. Then

|Ψ (n)〉 =
∑

ci
∏
n

[1− τ(Ei − Ē(n))]|Ψi〉 . (74)

Convergence to |Ψ0〉, up to normalization, is ensured if ci 6= 0 and

|1− τ(E0 − Ē(n))| > |1− τ(Ei − Ē(n))| ∀i 6= 0 . (75)

For τ > 0 we distinguish two cases

• 1− τ(E0 − Ē(n)) > 1− τ(Ei − Ē(n)), which leads to the trivial E0 < Ei, and

• 1−τ(E0−Ē(n)) > −[1−τ(Ei−Ē(n))], from which follows that 2 > τ(Ei+E0−2Ē(n)).

Thus, to secure convergence, one has to choose

0 < τ <
2

Emax + E0 − 2Ē(n)
(76)

which implies that Ē(n) ∈ [E0, Emax] must lie inside the spectrum of H . In fact, for large n it
will approach the ground state energy.
Because of the prohibitively large dimension of the many-body Hilbert space, the matrix vector
product in (73) cannot be done exactly. Instead, we rewrite the equation in configuration space∑

R′

|R′〉〈R′|Ψ (n+1)〉 =
∑
R,R′

|R′〉 〈R′|1− τ(H − E0)|R〉︸ ︷︷ ︸
=:F (R′,R)

〈R|Ψ (n)〉 (77)

and perform the propagation in a stochastic sense: |Ψ (n)〉 is represented by an ensemble of
configurations R with weights w(R). The transition matrix element F (R′, R) is rewritten as
a transition probability p(R → R′) times a normalization factor m(R′, R). The iteration (77)
is then stochastically performed as follows: for each R we pick, out of the set of all allowed
configurations, one new configurationR′ with probability p(R→ R′) and multiply its weight by
m(R′, R). Then the new ensemble of configurations R′ with their respective weights represents
the new function |Ψ (n+1)〉.
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3.1 Importance sampling

Importance sampling introduces a guiding function |ΨG〉 to decisively improve the efficiency of
the stochastic projection by enhancing transitions from configurations where the trial function is
small to configurations with large trial function, i.e., by replacing the transition matrix element
F (R′, R) with G(R′, R) = 〈R′|ΨG〉F (R′, R)/〈R|ΨG〉. The propagation is then given by∑

R′

|R′〉〈R′|ΨG〉〈R′|Ψ (n+1)〉 =
∑
R,R′

|R′〉G(R′, R) 〈R|ΨG〉 〈R|Ψ (n)〉 (78)

and the ensemble of configurations now represents the product ΨG Ψ (n). This means that the
probability distribution function P (n)(w,R) dw of configurations R with weight w is such that

ΨG(R)Ψ (n)(R) =

∫
wP (n)(w,R) dw . (79)

To see this, we rewrite the matrix element of the propagation as

G(R′, R) = p(R→ R′)m(R′, R) , (80)

where p(R → R′) is the probability for the random walk to move from configuration R to
R′ and the weight m(R′, R) takes care of the normalization. For the probability distribution
function this implies

P (n+1)(w′, R′) dw′ =
∑
R

p(R→ R′) P (n)

(
w′

m(R′, R)
, R

)
dw′

m(R′, R)
(81)

and hence∫
w′ P (n+1)(w′, R′) dw′ =

∑
R

p(R→ R′)

∫
w′ P (n)

(
w′

m(R′, R)
, R

)
dw′

m(R′R)

=
∑
R

p(R→ R′)m(R′, R)

∫
wP (n)(w,R) dw

=
∑
R

G(R′, R) ΨG(R)Ψ (n)(R)

= ΨG(R′)Ψ (n+1)(R′) .

After a large number n of iterations, the ground-state energy is given by the mixed estimator

E
(n)
0 =

〈ΨG|H|Ψ (n)〉
〈ΨG|Ψ (n)〉

≈
∑

REloc(R) w(n)(R)∑
R w

(n)(R)
. (82)

When we start the iteration from the guiding function, we can generate the configurations for the
initial state ΨG(R)Ψ (0)(R) by a variational Monte Carlo run for ΨG. For this practical reason
one usually choses the guiding function to be the VMC trial function. In the following we
therefore use ΨG and ΨT synonymously.
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Hilbert space
Hamiltonian full restricted system
H −1.2238 −1.2203 4× 4-Hubbard model, 5 + 5 electrons
Heff −1.2236 −1.2201 U = 4 t, free electron nodes

H 8.46487 8.46490 4 C60 molecules, 5 + 6 electrons
Heff 8.46557 8.46728 U = 1.0 eV, U0 = 0.1 eV
H 10.69937 10.69937 4 C60 molecules, 6 + 6 electrons
Heff 10.70045 10.70045 U = 1.0 eV, U0 = 0.1 eV
H 19.50941 19.54933 4 C60 molecules, 7 + 8 electrons
Heff 19.51073 19.55372 U = 1.0 eV, U0 = 0 eV
H 19.50941 19.50941 4 C60 molecules, 7 + 8 electrons
Heff 19.50941 19.51068 U = 1.0 eV, U0 = 0.1 eV

Table 1: Approximations in FNMC: results of exact diagonalization of the true/effective
Hamiltonian on the full/restricted Hilbert space for the Hubbard model and a model of solid
K3C60 [23]. For the meaning of U0 see section 3.3.2.

3.2 Fixed-node Monte Carlo

As long as the evolution operator has only non-negative matrix elements G(R′, R), all weights
w(R) will be positive. If, however, G has negative matrix elements there will be configurations
with negative as well as positive weight. Their contributions to the estimator (82) tend to cancel
so that eventually the statistical error dominates, rendering the simulation useless. This is the
infamous sign problem. A straightforward way to get rid of the sign problem is to remove the
offending matrix elements from the Hamiltonian, thus defining a new Hamiltonian Heff by

〈R′|Heff |R〉 =

{
0 if G(R′, R) < 0

〈R′|H|R〉 else
(83)

for R′ 6= R. For each off-diagonal element 〈R′|H|R〉 that has been removed, a term is added to
the diagonal

〈R|Heff |R〉 = 〈R|H|R〉+
∑
R′

ΨG(R′)〈R′|H|R〉/ΨG(R) . (84)

This is the fixed-node approximation for lattice Hamiltonians [29]. By construction, Heff is free
of the sign-problem, and it gives a variational energy, i.e. Eeff

0 ≥ E0. The exact ground-state
energy is obtained if ΨG(R′)/ΨG(R) = Ψ0(R′)/Ψ0(R) for all R, R′ with G(R′, R) < 0.
It is important to realize that fixed-node Monte Carlo involves two distinct approximations.
The obvious approximation is replacing the true Hamiltonian by the effective Hamiltonian Heff .
Somewhat less obvious is the fact that importance sampling amounts to restricting the acces-
sible region of the Hilbert space to configurations where ΨG(R) 6= 0. For small systems these
two approximations can be considered separately by performing exact diagonalization for the
effective Hamiltonian on the full Hilbert space and by diagonalizing the true Hamiltonian on
the restricted Hilbert space. Finally, the fixed-node Monte Carlo energy can be determined by
diagonalizing Heff on the restricted Hilbert space. Examples are given in Table 1.
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Fig. 9: Optimizing the Gutzwiller parameter g in fixed-node Monte Carlo: the left-hand panel
shows how the correlated sampling approach for the Gutzwiller parameter g works for FNMC.
The error bars give the results of independent Monte Carlo calculations, while the curves show
the results of different correlated sampling runs. The right-hand panel compares variational
and fixed-node Monte Carlo. The calculations are for the same system as in Figure 5.

Fixed-node Monte Carlo for a lattice Hamiltonian thus means that we choose a guiding/trial
function from which we construct an effective Hamiltonian and determine its ground-state by
Monte Carlo. Because of the variational property, we want to pick the ΨT such that Eeff

0 is
minimized; i.e., we want to optimize the trial function or, equivalently, the effective Hamil-
tonian. As in variational Monte Carlo we can use the concept of correlated sampling [21].
For optimizing the Gutzwiller parameter g we can even exploit the idea of rewriting the cor-
related sampling sums into polynomials in g̃/g. There is, however, a problem arising from
the fact that the weight of a given configuration R(n) in iteration n is given by the product
w(R(n)) =

∏n
i=1m(R(i), R(i−1)): each individual normalization factor m(R′, R) can be written

as a finite polynomial, but the order of the polynomial for w(R(n)) keeps increasing with the
number of iterations. It is therefore not practical to try to calculate the ever-increasing number
of coefficients for the correlated sampling function E(n)(g̃). But since we still can easily calcu-
late the coefficients for the m(R′, R), we may use them to evaluate E(n)(g̃) in each iteration on
a set of predefined values g̃i of the Gutzwiller parameter. Figure 9 shows an example. We find
that the FNMC energy depends much less on the trial function than in VMC. This is not un-
expected: while in variational Monte Carlo the whole trial function is fixed, only the values of
the trial function next to a node enter the fixed-node Hamiltonian Heff , which in FNMC is then
treated exactly. To realize the higher accuracy of the FNMC method, it is nevertheless important
to carefully optimize the trial function. Finally, it is interesting to note that the Gutzwiller factor
that minimizes EVMC is usually not quite the optimum Gutzwiller factor for fixed-node MC.

3.3 Optimization of the trial function

As mentioned before, typical trial functions for quantum Monte Carlo calculations are of the
type ΨT (R) = gD(R) Φ(R), with g the Gutzwiller parameter and Φ a Slater determinant. Along
with explaining the Monte Carlo approaches, we have already described how g can be opti-
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mized. The fundamental idea was that, for the reweighting in correlated sampling, only ratios
of the new and old trial functions are needed so that the weights and energies appearing in the
Monte Carlo calculation can be recast in the form of polynomials in the ratio of the Gutzwiller
parameters. In the following, we discuss generalizations of this approach to trial functions
with several Gutzwiller parameters. After that, we address the optimization of the other part
of a Gutzwiller wave function: the Slater determinant. In particular, we demonstrate how the
character of the Slater determinant affects the result of the Monte Carlo calculation.

3.3.1 More Gutzwiller parameters

To study the static dielectric screening [30], we have to determine the response of the charge
density to the introduction of a test charge q placed on molecule iq. To describe the test charge,
the term

H1(q) = qU
∑
mσ

niqmσ (85)

is added to the Hamiltonian. In the spirit of the Gutzwiller ansatz, we correspondingly add a
second Gutzwiller factor to the wave function that reflects the additional interaction term qUNiq

|ΨT (g, h)〉 = gDhNiq |Φ〉. (86)

Finding the best Gutzwiller parameters is now a two-dimensional optimization problem. Deal-
ing with polynomials in the two variables g and h, the method of correlated sampling works as
straightforwardly as described above for the case of a plain Gutzwiller wave function. As an ex-
ample, Fig. 10 shows the result of the optimization, both in variational and in fixed-node Monte
Carlo, for a cluster of 64 C60 molecules in an fcc arrangement (periodic boundary conditions)
resembling K3C60 with a test charge q = 1/4. In practice, we first optimize the parameters in
variational Monte Carlo. We then use the optimum VMC parameters as starting points for the
optimization in the more time-consuming fixed-node Monte Carlo calculations.

3.3.2 Variation of the Slater determinant

In the traditional Gutzwiller ansatz, the Slater determinant Φ is the ground-state wave func-
tion of the non-interacting Hamiltonian. This is, however, not necessarily the best choice. An
alternative would be to use the Slater determinant Φ(U) obtained by solving the interacting
problem in the Hartree-Fock approximation. We can even interpolate between the two extremes
by doing a Hartree-Fock calculation with a fictitious Hubbard interaction U0 to obtain Slater
determinants Φ(U0). Yet another family of Slater determinants Φ(Hstag) can be obtained from
solving the non-interacting Hamiltonian with an added staggered magnetic field, which lets us
control the antiferromagnetic character of the trial function. Although optimizing parameters
in the Slater determinant is not possible with the method described in the preceding sections,
an efficient optimization of the Gutzwiller factors makes it possible to optimize the overall trial
function without too much effort.
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Fig. 10: Correlated sampling for the parameters g and h of the generalized Gutzwiller wave
function |ΨT 〉 = gDhNc |Φ〉, in variational (left) and fixed-node Monte Carlo (right). The plots
show the energy as a function of the Gutzwiller parameters g and h, both as surfaces and
contours. The calculations are for an fcc cluster of 64 molecules with 96 + 96 electrons (half-
filled t1u-band), an on-site Hubbard interaction U = 1.25 eV , and a test charge of q = 1/4 (in
units of the electron charge).

Staggered magnetic field Introducing a staggered magnetic field, we can construct Slater
determinants by solving the non-interacting Hamiltonian with an added Zeeman term. To be
specific, we consider K3C60, which has a half-filled t1u-band. Since K3C60 crystallizes in an fcc
lattice, antiferromagnetism is frustrated and the definition of a staggered magnetic field is not
unique. We split the fcc lattice into two sublattices A and B such that frustration is minimized.
The Zeeman term is then given by

Hm = Hstag

∑
i

sign(i) [ni↑ − ni↓] (87)

with sign(i) = +1 if i ∈ A and −1 if i ∈ B. It effectively introduces an on-site energy that has
opposite sign for the two spin orientations on the same site, and for the same spin orientation,
has opposite sign on the two sublattices. Therefore, hopping to neighboring sites on different
sublattices involves an energy cost of twice the Zeeman energy. The staggered magnetic field
thus not only induces antiferromagnetic order in the Slater determinant but also serves to local-
ize the electrons. This is reflected in the fact that the optimum Gutzwiller parameter is much
larger for Slater determinants constructed from a Hamiltonian with large Hstag than for para-
magnetic Slater determinants. Varying Hstag then interpolates between paramagnetic/itinerant
and antiferromagnetic/localized wave functions.
The energy expectation values for such trial functions as calculated in variational Monte Carlo
are shown in Fig. 11. It shows EVMC as a function of the antiferromagnetic correlation

〈sisi+1〉 =
1

N

∑
〈ij〉

(ni↑ − ni↓) (nj↑ − nj↓), (88)

where the sum is over the N nearest neighbors. 〈sisi+1〉 is a monotonic function of Hstag.
For each different value of the Hubbard interaction U we find a curve with two minima. One
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Fig. 11: Variational energy EVMC for trial functions with different character. Plotted are the
energies (error bars, lines are to guide the eye) for a Hamiltonian describing K3C60 (periodic
fcc cluster of 32 molecules) with Hubbard interaction U = 1.0, 1.1 . . . 1.9, 2.0 eV (U = 1.0 eV
corresponding to the lowest curve). Instead of the total energies Etot, we plot the difference of
Etot and the energy in the atomic limit (each site occupied by three electrons) so that the results
for different U can be readily compared. The trial functions are of the Gutzwiller type. The
Slater determinants were determined from diagonalizing the non-interacting Hamiltonian (i.e.
setting U = 0) with a staggered magnetic field Hstag. This field gives rise to an antiferromag-
netic correlation of neighboring spins, which is plotted on the abscissa. For U = 1.5 eV (dotted
curve) the minima in the paramagnetic and the antiferromagnetic regions have about the same
energy.

minimum is realized for the non-magnetic (Hstag = 0) trial function. The energy as a function of
U scales roughly likeEpara ∝ −(1−U/Uc)2, as predicted by the Gutzwiller approximation. The
second minimum is in the antiferromagnetic/localized region and scales roughly like EAF ∝
−t2/U , as expected. For small U , the non-magnetic state is more favorable, while for large
U the localized Slater determinant gives lower variational energies. The crossover is at Uc ≈
1.50 eV (dotted line) and resembles a first-order phase transition.

Hartree-Fock An alternative method for constructing Slater determinants is to use the inter-
acting Hamiltonian with the physical Hubbard interaction U replaced by a parameter U0 and
solve it in the Hartree-Fock approximation. In practice this is done simply by means of an unre-
stricted self-consistent calculation for the finite, periodic clusters under consideration, starting
from some charge and spin density that breaks the symmetry of the Hamiltonian. It is well
known that Hartree-Fock favors the antiferromagnetic Mott insulator, predicting a Mott transi-
tion at much too small values UHF

c . It is therefore not surprising that good trial functions are
obtained for values of U0 considerably smaller than U . For U0 close to zero, the Slater determi-
nant has metallic character, while for somewhat larger U0 there is a metal-insulator transition.
Figure 12 shows the energy as a function of U0 for the model of K3C60. We find that the re-
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Fig. 12: Optimizing U0: Dependence of variational (VMC) and fixed-node Monte Carlo
(FNMC) on the trial function. U0 is the Hubbard interaction that was used for the Slater deter-
minant in the Gutzwiller wave function ΨT (R) = gD(R) Φ(U0). The Gutzwiller parameter has
always been optimized. The results shown here are the energies (relative to the atomic limit)
for a Hamiltonian that describes K3C60 (32 molecules), with U being varied from 1.25 (lowest
curve) to 2.00 eV (highest curve).

sults of variational Monte Carlo depend quite strongly on the parameter U0. As expected, for a
given Hubbard interaction U there is a transition from the paramagnetic region for small U0 to
a region where the trial function is antiferromagnetic. In fixed-node Monte Carlo, energies are
consistently lowered and the dependence on the trial function is weaker. It seems that here it
is mainly the character (paramagnetic/antiferromagnetic) of the trial function that matters. For
small U , trial functions with small U0 give lower energy, while for large U trial functions with
larger U0 are favorable. The crossover coincides with the Mott transition, which takes place
between U = 1.50 and 1.75 eV .

3.4 Quasi-particle energies

As discussed above, the sign-problem in quantum Monte Carlo simulations for fermions makes
it necessary to introduce an approximation. Such an approximation is of course undesirable
when we are interested in the ground state. Surprisingly, however, we can use the fixed-node
approximation to our advantage to calculate excited states and quasi-particle energies. The basic
idea is that by the proper choice of the trial function, an excited state can be stabilized in the
Monte Carlo simulation that otherwise would decay to a state with lower energy.
The fundamental concept for understanding this is what we call the nodal sets, defined as the
sets of configurations where the trial function is positive/negative:

N±Ψ :=
{
R
∣∣∣ 〈R | Ψ〉 ≷ 0

}
. (89)
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Fig. 13: C60 bands: Full symbols show the k-states that are present in a 4-molecule cluster
with periodic boundary conditions: 3 (degenerate states) with k = 0 (Γ -point) and 9 states [3
band states with k = (2π/a, 0, 0), (0, 2π/a, 0), and (0, 0, 2π/a)] (X-point).

The first observation we make is that under the importance-sampled FNMC iterations (78) (with
H replaced by Heff) the nodal sets do not change. To see this, we write |Ψ (n)〉 in terms of the
trial function

〈R|Ψ (n)〉 = α(n)(R) 〈R|ΨT 〉 . (90)

Then the iterations (78) take the form

〈ΨT |R′〉 〈R′|Ψ (n)〉 =
∑
R

GFN(R′, R) 〈ΨT |R〉 〈R|Ψ (n−1)〉

= α(n)(R′) |ΨT (R′)|2︸ ︷︷ ︸
>0

=
∑
R

GFN(R′, R)︸ ︷︷ ︸
≥0

|ΨT (R)|2︸ ︷︷ ︸
>0

α(n−1)(R) .

Since α(0)(R) = 1 and never changes sign, α(n)(R) ≥ 0 for all n.
On the other hand, each eigenstate Ψn of H is characterized by its nodal sets. If there were two
eigenstates with the same nodal sets, then

〈Ψn|Ψm〉 =
∑
R∈N+

Ψn(R)Ψm(R) +
∑
R∈N−

Ψn(R)Ψm(R) > 0 (91)

in contradiction to the orthogonality of the eigenstates.
It thus seems reasonable to try to calculate excited-state energies with fixed-node Monte Carlo,
where the trial function is chosen such as to have nodal sets similar to that of the desired state.
As we have seen above, the most straightforward guess for the ground-state is to use the non-
interacting Slater determinant |Φ0〉 (remember that the Gutzwiller factors do not change the sign
of the wave function). Then the simplest trial functions for the nodes of excited states are the
non-interacting wave functions

• quasi-electron: c†k |Φ0〉

• quasi-hole: ck |Φ0〉.
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Fig. 14: Quasi-particle energies for the half-filled, 4-molecule C60 cluster: The left-hand
panel shows the fixed-node energies (εn = EN+1

n −EN
0 for quasi-electrons in states X3 and Γ ,

εn = EN
0 − EN−1

n for quasi-holes in X1 and X2). For comparison, the open squares give the
position of the peak in the corresponding spectral function calculated by exact diagonalization,
as shown in Figure 15. The right-hand panel shows the result of Lanczos calculations starting
from the quasi-particle trial functions used in fixed-node Monte Carlo. It is clear that for U > 0
the quasi-hole at X1 is not stable.

To see how this simple approach works, we consider the model for describing the t1u-electrons
in C60 (cf. Table 1) and compare to results of exact diagonalization for a cluster of 4 molecules.
The t1u-bands are reproduced in Figure 13, where the filled squares represent the reciprocal
lattice vectors of the 4-molecule simulation cell: three degenerate states at the Γ point, and
three different levels at the X point, each of which is three-fold degenerate. For the half-filled
system, the lower two levels at the X point are filled (below we will refer to them as X1 and
X2), while the highest level at X (referred to as X3) and Γ are empty. To calculate the quasi-
particle energies, we first perform a calculation for the ground-state energy of the half-filled
system EN

0 using a Gutzwiller wave function based on the non-interacting Slater determinant
|Φ0〉. Then, we calculate the fixed-node energy for the system with an extra electron/hole with a
trial function based on c†k |Φ0〉 or ck |Φ0〉, respectively. To keep the wave functions real we make
use of the inversion symmetry, setting ck = cos(k ri) ci. The resulting quasi-particle energies
are plotted in Figure 14. To compare to the true quasi-particle energies, we have calculated the
corresponding spectral functions

A(k, ω) =


∑

n

∣∣∣〈ΨN+1
n

∣∣ c†k ∣∣ΨN0 〉∣∣∣2 δ(ω − (EN+1
n − EN

0 )) (quasi-electron)∑
n

∣∣〈ΨN−1
n

∣∣ ck ∣∣ΨN0 〉∣∣2 δ(ω − (EN
0 − EN−1

n )) (quasi-hole)

by exact diagonalization (see Figure 15). The position of the peak in A(k, ω) is plotted in
Figure 14. We find a remarkable agreement between fixed-node and exact energies. This is not
too unexpected. Looking again at the band-structure, we see that the quasi-electron at X3 is the
lowest energy state with that k-vector, while the quasi-electron at Γ is the lowest with k = 0. So
these states are ground-states in their respective symmetry sectors and should thus be accessible
by a ground-state method like fixed-node Monte Carlo. The same is true for the quasi-hole at
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Fig. 15: Spectral function for a 4 C60 molecule cluster calculated by exact diagonalization.
From back to front the curves show the spectral function for U from 0 to 2 eV in steps of 0.2 eV.

X2. The quasi-hole at X1, however, has the same k as the one at X2 and thus cannot be the
ground-state in that symmetry sector. To check this, we have performed Lanczos runs starting
from the determinants used in the respective fixed-node calculations. The results are shown in
the right panel of Figure 14. We indeed find that all states are stable, except for X1, which for
U > 0 decays into a lower-energy quasi-hole. This decay is induced by the interaction term.
This can be understood by writing it in k-space

U

M

∑
k,k′,q

c†k↑ck−q↑c
†
k′↓ck′+q↓ .

What happens for the X1 state is visualized in Figure 16: The lower-energy quasi-hole is ob-
tained by filling the X1 hole with an X2 electron, while exciting another X2 electron into Γ .

To verify that this picture is indeed correct, we have calculated the spectral function for the
decayed state

A =
∑∣∣∣〈ΨN−1

n

∣∣ cX2
c†Γ cX2

∣∣ΨN0 〉∣∣∣2 δ(ω − (EN
0 − EN−1

n )) , (92)
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Fig. 17: Three-body quasi-hole cX2
c†Γ cX2

: spectral function and fixed-node energies.

shown in Figure 17. As expected, the position of the peak corresponds closely to the energy of
the decayed state found in the Lanczos calculation of Figure 14. Moreover, performing a fixed-
node calculation with the trial function cX2

c†Γ cX2
|Φ0〉 again gives excellent agreement with the

exact quasi-particle energy (see right panel of Figure 17). Working with such more complex
quasi-particles, we could extract quasi-particle interactions. A more straightforward application
is to look at how the quasi-particle dispersion changes with U , as shown in Figure 18. This can
be related to the effective mass m∗ defined as

kF
m∗

=
dεk
dk

∣∣∣∣
kF

. (93)

Rewriting the derivative as a finite difference, for the ratio of the effective mass to the bare mass
at U = 0 we obtain

m∗

m0

≈ ∆ε0

∆ε
. (94)

The ratio on the right-hand side is also plotted in Figure 18. Even though the k-points for the
four molecule cluster are quite far apart, so that the finite difference is not a good approximation
to the derivative, we get consistent results when comparing the results derived from the quasi-
electron and the quasi-hole states.
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Fig. 18: Change in quasi-particle dispersion with U . The left-hand panel shows the energy
difference between the two quasi-electron (filled circles) and the two simple quasi-hole (open
circles) states. The full line connects the exact results, the full dashed line the fixed-node results.
The right-hand panel shows the inverse of the energy difference normalized by its value atU=0.

4 Conclusion

Practical many-body calculations need to be done on finite systems. A standard approach for
reducing a solid to a finite system is to introduce periodic boundary conditions on finite clusters.
How well such a periodic cluster represents the infinite solid depends on its shape. We have
seen how we can use the Hermite normal form to systematically enumerate all distinct clusters.
Introducing more general twisted boundary conditions, we can study the dependence of the
system on the boundary conditions, providing an elegant criterion for distinguishing metals
from (Mott) insulators.
We have demonstrated how to use the local energy to derive compact variational wave functions
that incorporate a correlation-hole based on the cusp conditions. In contrast to a CI-expansion,
such Jastrow/Gutzwiller functions need only few parameters to efficiently describe correlation
effects. Still, simple correlation factors are usually not sufficient to describe a metal-insulator
transition. To improve on the wave function, we can use projection techniques. In princi-
ple, they converge to the ground state, in practice their stochastic implementation is, however,
hampered by the appearance of negative matrix elements – the fermion sign problem. The fixed-
node approximation is a practical way for eliminating the sign problem without compromising
accuracy. Moreover, fixing the nodes can be used to stabilize quasiparticle states.
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