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1 Introduction

Angle resolved photoemission (ARPES) and bremsstrahlung isochromat spectroscopy (ARBIS)
have developed over several decades into the experimental techniques for directly determining
the elecronic struture of any new material [1, 2]. These experimental techniques allow to mea-
sure the dispersion of occupied bands as well as unoccupied bands and therefore reveal the
electronic structure around the Fermi level with a high amount of accuracy. In particular, in
recent years many improvements on the experimental side have lead to an increase of the res-
olution of ARPES down to the meV-regime. These improvements are primarily due to the use
of synchrotron radiation, and laser sources, and to developments on the detector side (e.g. spin
resolution). More details on the foundations of ARPES can be found in the lecture of M. Sing.

On the theory side, about 50 years ago photoemission theory appeared to be an intractable
many-body problem [3–7]. The first and most simple version of a one-electron approximation
for the photocurrent was given by Berglund and Spicer [8], the so called three-step model of
photoemission. In the framework of this model the photoemission process is divided into three
independent steps: the excitation of the photoelectron, its transport through the crystal and
its escape into the vacuum. Self-energy corrections, which represent, among others, damping
processes and energetic shifts in the quasi-particle spectrum, are completely neglected. This
means that the initial and final states in the photoemission process are assumed to be Bloch-
states with an infinite lifetime. It should be mentioned that the assumption of an infinite electron
lifetime does not allow for transitions into evanescent bandgap states, e.g. states that decay
exponentially into the solid. Similarly, the assumption of an infinite lifetime for the initial state
does in practice not allow to calculate photoemission spectra that involve surface states. To
overcome the deficiencies of the three-step model, a dynamic approach has been suggested first
for the final state by Liebsch [9] and Spanjaard et al. [10]. Later-on multiple scattering effects
were properly included for both initial and final states by Pendry and coworkers [11,12] in order
to treat self-energy corrections on an equal footing. Pendry’s one-step approach to ARPES [11,
13] led to a numerically solvable scheme by replacing the retarded one-electron Green function
for the initial state by the one-particle Green function determined within density functional
theory (DFT) [14]. Within this scheme, electronic correlation effects are typically considered in
photoemission theory making use in practice of the local (spin) density approximation (L(S)DA)
[15, 16]. Life-time effects in the initial state are accounted for by an imaginary potential term
V0ii which is added to the single-particle cell potential. The final state is constructed within
the formalism for spin-polarized low-energy electron diffraction (SPLEED) as a so-called time-
reversed SPLEED state [13,17]. The finite imaginary part V0f i effectively simulates the inelastic
mean free path (IMFP). As a consquence the amplitude of the high-energy photoelectron state
inside the solid can be neglected beyond a certain distance from the surface [11].

After the one-step model had been established in the seventies, it was extended in many aspects.
For example, the quantitative analysis of spin-orbit induced dichroic phenomena was worked
out by several groups [17–24]. Furthermore, the so called full-potential formulation of photoe-
mission was developed in order to achieve an accurate description of spectroscopic data even
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for complex surface systems [17, 23, 25]. The treatment of disordered systems was worked out
by Durham et al. [26, 20]. Nowadays, the one-step model allows for photocurrent calculations
for photon energies ranging from a few eV to more than 10 keV [27–34], for finite tempera-
tures and for arbitrarily ordered [35] and disordered systems [36], and considering in addition
strong correlation effects within the dynamical mean-field theory (DMFT) [37–42]. The aim of
this lecture is to present these recent developments in the theory of photoemission. The main
emphasis will be given to its LSDA+DMFT extention and to the relativelly new techniques of
soft- and hard x-ray angle resolved photoemission (HARPES).
The LSDA+DMFT implementation within the multiple-scattering Korringa-Kohn-Rostoker
(KKR) method [37, 43] is reviewed in Sec. 2. In section 3.2, we briefly review the one-step
model of photomeission. The second part of this lecture is devoted to calculations of angle-
resolved photoemission within the one-step model including more or less all relevant spec-
troscopy issues like matrix elements and surface effects. Recent technical developments allow
one to perform calculations for ordered as well as for chemically disordered systems including
electronic correlation effects. This topic is presented in Sec. 4. Finally, several aspects of soft
and hard x-ray photoemission, which are relatively new experimental methods, are discussed in
Sec. 5.

2 Combination of the LSDA+DMFT with the KKR method

In the following section we shortly review a fully self-consistent (with respect to charge density
and self-energy) LSDA+DMFT implementation within the full-potential fully relativistic mul-
tiple scattering Korringa Kohn Rostoker method [37]. This method is used to solve the multiple
scattering formalism for semi-infinite solids which in turn is a basis of the one-step model of
photomeission as presented in next section. The KKR offers a number of advantages compared
to other band structure methods due to the fact that the KKR represents the electronic structure
by the corresponding single-particle Green’s function (For a recent review of the KKR method
see [44] and references therein). This allows one to combine the KKR method with the DMFT
straightforwardly. Another important consequence is the possible use of the Dyson equation
which relates the Green’s function of a perturbed system with the Green’s function of the cor-
responding unperturbed reference system. Using the Dyson equation allows in particular to
calculate the properties of low dimensional systems like, e.g., semi-infinite 2D-surfaces, nano-
structures or embedded 3D- or 2D- systems without using an artificial super cell construction.
Finally, the KKR Green’s function method allows one to deal with substitutional disordered
alloys in combination with the coherent potential approximation (CPA) [45].
The central idea of the KKR-based implementation of the LSDA+DMFT is to account for the
general non-local, site-diagonal, complex and energy-dependent self-energy ΣDMFT already
when calculating the basis functions, i.e., when solving the single-site Schrödinger (or Dirac)
equation. This allows one to exploit directly all advantageous features of the KKR Green’s
function method when performing LSDA+DMFT calculations and consequently to account for
correlation effects for a wide range of systems.
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There are nowadays various approaches available to combine the LSDA with the DMFT method
[46,47]. In contrast to the KKR-scheme, the corresponding LSDA problem is in general solved
variationally using a given basis set (e.g. LMTO) as a first step. The corresponding local Green’s
function is determined by the spectral representation of the Kohn-Sham Hamiltonian. Solv-
ing subsequently the DMFT problem, the resulting local self-energy ΣDMFT and local Green’s
function can in turn be used to calculate a new charge density and an effective LSDA potential.
However, in order to combine coherently the LSDA with the DMFT method (in the spirit of
spectral density functional theory [48]) one has to solve self-consistently the following Dyson
equation

G(~r, ~r ′, E) = G0(~r, ~r
′, E)

+

∫
d3r′′

∫
d3r′′′G0(~r, ~r

′′, E)
(
Veff(~r

′′)δ(~r ′′ − ~r ′′′) +Σ(~r ′′, ~r ′′′, E)
)
G(~r ′′′, ~r ′, E), (1)

where G0(~r, ~r
′′, E) is the free electron Green’s function. The potential Veff(~r) denotes the

(effective) potential. Within the relativistic version of spin DFT used here this is usually defined
as Veff(~r) = [V eff(~r) + βσBeff(~r)] where V eff(~r) denotes the spin-independent potential, and
Beff(~r) is the magnetic field [49]. Correspondingly, the matrices β and αk used below are the
standard Dirac matrices with β = σz ⊗ 12 and αk = σx ⊗ σk (k = x, y, z) in terms of the 2× 2

Pauli-matrices σk.
A very efficient way of solving Eq. (1) is offered by the multiple scattering KKR method.
Having decomposed the system into atomic regions (Wigner-Seitz-cells) and considering that
ΣDMFT is an on-site quantity, the equation can be solved using the standard KKR formalism.
This implies that one first has to solve the single-site scattering problem to obtain the wave
function Ψ(~r) and the corresponding single-site scattering t-matrix inside an atomic cell. In the
relativistic spin density functional theory [50, 51] the corresponding single-site Dirac equation
reads [

~
i
c ~α · ~∇+ βmc2 + Veff(~r) +

∫
d3r′Σ(~r, ~r ′, E)

]
Ψ(~r) = EΨ(~r) . (2)

Here, the Ψ(~r) are energy-dependent four-component spinor functions for energy E. To be able
to solve Eq. (2) one makes the following ansatz for the wave function Ψ =

∑
Λ ΨΛ, with the

combined relativistic quantum number Λ = (κ, µ), where κ and µ are the spin-orbit and mag-
netic quantum numbers, respectively. In addition, in the spirit of the DMFT one has to project
Σ(~r, ~r ′, E) onto the localized set of orbitals φnΛ(~r). The corresponding matrix ΣΛΛ′(E) is ob-
tained as an output from the DMFT solver. In practice, ΣΛΛ′(E) is used only for correlated d-
or f -orbitals. It is worth notin that even in the case of the spherical muffin-tin or atomic-sphere
approximation to the potential, the full-potential-like coupled Eqs. (2) have to be solved. This
implies that the full-potential version of the KKR has to be used. After having solved the set of
coupled equations for the wave functions Ψ(~r) one gets the corresponding single-site tmatrix by
standard matching to the Hankel and Bessel functions as free-electron solutions. When solving
the single-site problem, obviously the entire complexity of the underlying complex non-local
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potential within LSDA+DMFT is accounted for. Accordingly, the resulting regular and irreg-
ular scattering wave functions ZΛ(~r, E) and JΛ(~r, E) as well as the corresponding single-site
t-matrix carry all information of the underlying LSDA+DMFT Hamiltonian. This means that in
contrast to other LSDA+DMFT implementations, the effect of the self-energy is also reflected
in the wave functions Ψ . This becomes important, for example, in a total energy calculation and
for the photoemission matrix elements (see Sec. 3.2).
With the single-site t matrix available the next step of the KKR calculation is to solve the
multiple scattering problem. This task can be done by using the scattering path operator τ [52]
and it is independent from the DMFT. For a finite system this can be done straightforwardly
by inverting the so called KKR-matrix, τ(E) = [t(E)−1 −G

0
(E)]−1 with the double underline

indicating matrices with respect to site and spin-angular (Λ) character. Dealing with a three-
dimensional periodic system this equation can also be solved exactly by Fourier transformation.
As a result the retarded site-diagonal Green’s function G(~r, ~r ′, E) can be written as [53, 45]

G(~r, ~r ′, E) =
∑
Λ,Λ′

ZΛ(~r, E)τ
nn
Λ,Λ′(E)Z

×
Λ′(~r

′, E)

−
∑
Λ

{ZΛ(~r, E)J×Λ (~r
′, E)Θ(~r ′ − ~r)

+ JΛ(~r, E)Z
×
Λ (~r

′, E)Θ(~r − ~r ′)} , (3)

where ~r (~r ′) lies in the atomic cell n representing cell-centered coordinates and × indicates
a so-called left-hand side solution [54]. With the Green’s function G(~r, ~r ′, E) available all
properties of interest, e.g., the charge density, can be calculated straightforwardly and in this
way the calculated Green’s function G includes all effects of the self-energy ΣDMFT.
The definition of the Green’s function and the expressions given above are not restricted to
real energies E but also hold for arbitrary complex energies z. The fact that G(~r, ~r ′, E) is
analytical [55] allows, in particular, to perform the energy integration for the charge density on
a contour in the complex energy plane [56] with typically around 30 energy mesh points. On
the other hand the self-energy ΣDMFT is often calculated for a mesh of Matsubara frequencies.
This implies that it is necessary to use analytical continuation techniques to transform ΣDMFT

from Matsubara frequencies ω onto the KKR complex energy contour. It is worth noting that in
general ΣDMFT is not Hermitian and for low-symmetry systems one has to consider right- and
left-handed solutions of (2) when constructing the Green’s function G(~r, ~r ′, E) [54].
In order to construct the bath Green’s function needed as the input of the DMFT solver, the
localized Green’s function is calculated by projecting the Green’s function given by Eq. (3)
onto the correlated atomic orbitals φΛ(~r)

GΛΛ′(E) =

∫
d3r

∫
d3r ′φΛ(~r)G(~r, ~r

′, E)φΛ′(~r
′) . (4)

A natural choice for the projection functions φΛ(~r) are the regular single-site solutions of the
Kohn-Sham-Dirac equations that are normalized to 1 and also are used to represent the self
energy Σ. For transition-metal systems, only the d-d sub-block of the Gnn(E) is considered,
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Fig. 1: Left: Schematic overview of the KKR-based LSDA+DMFT scheme. Right: Illustration
of the energy paths involved. The blue semicircle is the complex energy path (with complex
energies z) used by KKR to calculate the charge density. After the bath Green’s function G
is obtained, it is analytically continued onto the imaginary axis (red) to calculate the self-
energy ΣDMFT via the DMFT impurity solver. The latter is analytically extrapolated back to
the semicircle. Figure taken from [43].

using φΛ(~r) wave functions with l = 2. In principle, the choice of the φΛ(~r) is arbitrary as long
as φΛ(~r) is a complete set of functions. This implies that a localized basis set is calculated at a
given reference energy Eref (set to be the center of gravity of the occupied d- or f -band) with
the magnetic field set to zero in the relativistic case. In the full-potential case couplings to the
other l-channels as a consequence of crystal symmetry have to be suppressed.

A flow diagram describing the resulting KKR-based self-consistent LSDA+DMFT scheme is
presented in Fig. 1. Eq. (2) provides the set of regular (Z) and irregular (J) solutions of the
single-site problem accounting for the LSDA potential as well as the DMFT self-energy Σ.
Together with the t-matrix and the scattering-path operator τ the KKR Green’s function is
constructed from Eq. (3). To solve the many-body problem, the projected Green’s function
matrix is constructed according to Eq. (4). The LSDA Green’s function GΛΛ′(E) is calculated
on the complex contour which encloses the valence band one-electron energy poles. The Padé
analytical continuation scheme is used to map the complex local Green’s functionGΛΛ′(E) onto
the set of Matsubara frequencies or the real axis, which is used when dealing with the many-
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body problem. In the current fully relativistic implementation, the perturbative SPTF (spin-
polarized T -matrix + FLEX) [57] as well as T = 0K spin-polarized T -matrix [58] solvers of
the DMFT problem are used. In fact any DMFT solver could be included which supplies the
self-energy Σ(E) when solving of the many-body problem. The Padé analytical continuation is
used once more to map the self-energy from the Matsubara axis back onto the complex plane,
where the new KKR Green’s function is calculated. As was described in the previous sections,
the key role is played by the scattering path operator τnnΛΛ′(E), which allows us to calculate the
charge in each SCF iteration and the new potentials that are used to generate the new single
particle Green’s function.
Finally, the double-counting corrections HDC have to be considered. This problem is definitely
one of the main challenges towards first-principles calculations within LSDA+DMFT. Until
now various schemes for double-counting correction have been suggested [47]. The simplest
choice, i.e., the idea of the static LSDA+U scheme has been used here. We apply the double-
counting corrections to the self-energy when solving the many-body problem. First of all we
remove the static part of the self-energy coming from the SPTF solver and add the mean-field
(AMF) LSDA+U like static part [59]. In the case of pure transition metals, as well as their
metallic compounds and alloys, the so-called AMF double-counting correction seems to be
most appropriate [59,38,40,60]. It is worth noting here that currently an exact analytical equa-
tion for the double-counting correction is not known. Alternatively, it might be possible to get
an exact solution of the double-counting problem on the level of the GW+DMFT scheme [61].
Therefore, it is important to perform direct comparisons, for example, to ARPES experiments
as a stringent test for the choice of the optimal HDC . However, to be able to make a deci-
sion between various suggestions for HDC it is helpful not only to calculate the bare spectral
function, i.e. ImG, but also to perform a complete calculation of photoemission spectra (for
example with the one-step model of photoemission, see Sec. 3.2). In fact, using the one-step
model of photoemission, one can clearly see that the AMFHDC is an appropriate choice at least
for transition-metal systems [38, 40, 60].

2.1 LSDA+DMFT treatment of disordered alloys

It is an outstanding feature of the KKR method that it supplies the one-electron Green’s function
of the considered system directly without relying on Bloch’s theorem. Because of this property,
the KKR Green’s function method allows one to deal with substitutional disorder including both
diluted impurities and concentrated alloys in the framework of the CPA [62, 63]. Within this
approach (KKR-CPA) the propagation of an electron in an alloy is regarded as a succession of
elementary scattering processes due to random atomic scatterers, with an average taken over
all configurations of the atoms. This problem can be solved assuming that a given scattering
center is embedded in an effective medium whose choice is open and can be determined in a
self-consistent way. The physical condition corresponding to the CPA is simply that a single
scatterer embedded in the effective CPA medium should produce no further scattering on the
average as illustrated by Fig. 2.
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x
A + x

B =

Fig. 2: The major ideas of the CPA: The configurational average over all configurations of a
disordered alloy AxB1−x is represented by an auxiliary CPA medium. Embedding of an A or B
atom should not give rise to additional scattering with respect to the CPA medium.

A similar philosophy is applied also when dealing with many-body problems for crystals in the
framework of DMFT. Thus it is rather straightforward to combine the DMFT and KKR-CPA
method as both schemes are used on a single-site level, i.e., any correlation in the occupation
(e.g. short range order) is ignored and the DMFT self-energy Σ is taken to be on-site only. In
fact, the combination of the KKR-CPA for disordered alloys and the DMFT scheme is based on
the same arguments as used by Drchal et al. [64] when combining the LMTO Green’s function
method for alloys [65] with the DMFT.
The combination of the CPA and LSDA+DMFT turned out to be a rather powerful technique
for calculating electronic structure properties of substitutionally disordered correlated materi-
als [37, 59, 66, 36]. As mentioned, within the CPA the configurationally averaged properties
of a disordered alloy are represented by a hypothetical ordered CPA-medium, which in turn
may be described by a corresponding site-diagonal scattering path operator τCPA, which in turn
is closely connected with the electronic Green’s function. For example for a binary system
AxB1−x composed of components A and B with relative concentrations x and 1 − x the corre-
sponding single-site t-matrix tCPA and the multiple scattering path operator τCPA are determined
by the so called CPA-condition:

xτA + (1− x)τB = τCPA. (5)

The CPA equation represents the requirement that substitutionally embedding an atom (of type
A or B) into the CPA medium should not cause additional scattering. The scattering properties
of an A atom embedded in the CPA medium are represented by the site-diagonal component-
projected scattering path operator τA (angular momentum index omitted here)

τA = τCPA
[
1 +

(
t−1
A − t

−1
CPA

)
τCPA

]−1
= τCPADA , (6)

where tA and tCPA are the single-site matrices of the A component and of the CPA effective
medium; the factor DA = [1 + (t−1

A − τ−1
CPA)]

−1 in Eq. (6) is called the CPA-projector. A
corresponding equation holds also for the B component in the CPA medium. The coupled set
of equations for τCPA and tCPA has to be solved iteratively within the CPA cycle. For example
when a binary system AxB1−x composed of components A and B with relative concentrations
xA = x and xB = (1 − x) is considered, the above equation represents the requirement that
embedding substitutionally an atom (of type A or B) into the CPA medium should not cause
additional scattering.
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The above scheme can straightforwardly be extended to include many-body correlation effects
for disordered alloys [37]. Within the KKR approach the local multi-orbital and energy de-
pendent self-energies (ΣDMFT

A (E) and ΣDMFT
B (E)) are directly included into the single-site

matrices tA and tB, respectively when solving the corresponding Dirac equation (2). Conse-
quently, all the relevant physical quantities connected with the Green’s function, for example
the charge density, contain the electronic correlations beyond the LSDA scheme.

3 One-step model of photoemission

Spectroscopy is an extremely important experimental tool providing information on the elec-
tronic structure of the probed system that has to be seen as a stringent benchmark for the suc-
cess of any electron structure theory. Photoemission spectroscopy (PES) or its inverse – the
Bremsstrahlung isochromate spectroscopy (BIS) – in their angle-integrated form should reflect
the density of states (DOS) rather directly, in particular in the high photon-energy regime (XPS).
For that reason it is quite common to check the DMFT-based calculations by comparing the cal-
culated DOS directly to the PES spectra (see the reviews [67, 46, 47] for example).
However, this approach ignores the influence of the specific PES matrix elements that in general
will introduce an element- and energy-dependent weight to the partial DOS. In ARPES, the situ-
ation is even move severe as the surface as well as dipole selection rules may have a pronounced
impact on the spectra [68] demanding a coherent description on the basis of the one-step model
of photoemission [17]. To achieve a reliable interpretation of experiments it is inevitable to deal
with so-called matrix-element effects that considerably modify the raw spectrum. In particular,
the wave-vector and energy dependence of the transition-matrix elements has to be accounted
for. These issues are known to be important and cannot be neglected. They arise from strong
multiple-scattering processes in the final PES state that dominate the electron dynamics in the
low-energy regime of typically 1-200 eV [13]. The transition-matrix elements also include the
effects of selection rules which are not accounted for in the raw spectrum. Loosely speaking, it
can be said that the main task of a theory of photoemission is to close the gap between the raw
spectrum obtained by LSDA+DMFT electronic-structure calculations and the experiment. The
most successful theoretical approach concerning this is the one-step model of photoemission as
originally proposed by Pendry and co-workers [11–13]. In the following a short overview will
be given on the recent extensions of this model which are connected with correlation effects and
disordered alloys.
The main idea of the one-step model is to describe the actual excitation process, the transport
of the photoelectron to the crystal surface as well as the escape into the vacuum [8] as a single
quantum-mechanically coherent process including all multiple-scattering events. Within this
model self-energy corrections, which give rise to damping in the quasi-particle spectrum, are
properly included in both the initial and the final states. This, for example, allows for transitions
into evanescent band gap states decaying exponentially into the solid. Similarly, the assump-
tion of a finite lifetime for the initial states gives the opportunity to calculate photoemission
intensities from surface states and resonances. Treating the initial and final states within the
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Fig. 3: Left: Schematic overview of the one-step model of photoemission. The whole photoe-
mission process is solved within the multiple scattering theory for a semi-infinite surface. Right:
Electron from initial state φi at energy Ei is exited to the final state φf (time-reversed SPLEED)
which decays into the solid due to the inelastic processes (modeled by imaginary part of poten-
tial). By increasing the inelastic mean free path of the time-reversed SPLEED state (E ′f ) the
photoemission process becomes more bulk sensitive (See Sec. 5).

fully relativistic layer version of the KKR [69, 70], it is a straightforward task to describe the
photoemission from complex layered structures like thin films and multilayers. Furthermore,
the surface described by a barrier potential can be easily included into the multiple-scattering
formalism as an additional layer. A realistic surface barrier model that shows the correct asymp-
totic behavior has been introduced, for example, by Rundgren and Malmström [71].

3.1 General theory of photoemission

In this section, the main features of general photoemission theory will be elucidated. The calcu-
lation of the photocurrent starts from first order time-dependent perturbation theory. Assuming
a small perturbation ∆, the transition probability per unit time w between two N -electron states
|ΨF > and |ΨI > of the same Hamiltonian H, is given by Fermi’s golden rule:

w =
2π

~
| < ΨF |∆|ΨI > |2δ(EF − EI − ~ω) , (7)

where EF and EI denote the energies of the N -electron states and ~ω the excitation energy.
This equation can be also derived within the Keldysh Green’s function approach and can be
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represented in the lowest order as a triangular like skeleton diagrams (See e.g. Fujikawa and
Arai [72, 73]). In second quantization the interaction operator ∆ is defined as follows

∆ =
∑
k,m

∆k,m a†kam , (8)

where ∆k,m denotes a one-particle matrix element between two single-particle states φk and
φm. The initial and final states are then defined as |ΨI > = |Ψ 0

N > and |ΨF > = a†f |Ψ sN−1 >

where |Ψ sN−1 > denotes an excited N − 1 particle state and |Ψ 0
N > defines the ground state of

the many-particle system. For the explicit formulation of the initial state the so called sudden
approximation is used. This means the photoelectron is described by a single-particle state and
the interaction with the excited N − 1 state |Ψ sN−1 > has been completely neglected. In other
words af |Ψ 0

N > = 0. Using these approaches for the initial and final states the transition
probability is given by

ws =
2π

~
| < Ψ sN−1|

∑
k,m

∆k,mafakam|Ψ 0
N > |2δ(EN − EN−1 − ~ω) , (9)

where the delta-function describes the energy conservation in the photo-excitation process gen-
erated by a certain photon energy ~ω. Performing some standard manipulations on Eq. (9) it
follows for w =

∑
s ws

w =
2π

~
∑
m,m′

∆†f,m Am,m′(En)∆f,m′ , (10)

where

Am,m′(En)
2

~
∑
s

< Ψ 0
N |a†m|Ψ sN−1 > δ(EN − EN−1 − ~ω) < Ψ sN−1|am′|Ψ 0

N >, (11)

represents the one-electron spectral function of the initial state. Using further the relation

Am,m′(En) = −
1

π
ImGR

m,m′(En) (12)

between the spectral function and the one-electron retarded Green’s function, the intensity of
the photocurrent follows

I(~ω) = − 1

π
Im
∑
m,m′

< φf |∆†|φm > GR
m,m′(En) < φm|∆|φf > . (13)

With the help of the operator representation for GR

GR(En) =
∑
m,m′

|φm > GR
m,m′(En) < φm′ | (14)

we arrive at the final expression

I(~ω) = − 1

π
Im < φf |∆†GR(En)∆|φf > (15)

for the photocurrent I(~ω). Replacing the retarded one-electron Green’s function by the one-
particle Green function and reformulating Eq. (15) in the space representation one arrives at the
one-step model description of the photocurrent as derived among others by Pendry [11] (see
Eq. (16) and [74]).
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3.2 Fully relativistic one-step model of photoemission for alloys

In this section we will show some basic ideas concerning the implementation of Eq. (15) as
derived in Sec. 3.1. As a detailed description of the one-step model of photoemission can be
found in various reviews (e.g. [17]), here we would like to show only the main steps with an
emphasis on the calculations of the photomeission for correlated alloys.
An implementation of the one-step model of PES can be based on Pendry’s expression for the
photocurrent [11], which is nothing but the space representation of Eq. (15)

IPES ∝ Im 〈εf , ~k‖|G+
2 ∆G

+
1 ∆
†G−2 |εf , ~k||〉 . (16)

IPES denotes the elastic part of the photocurrent with vertex renormalizations being neglected.
This excludes inelastic energy losses and corresponding quantum-mechanical interference terms
[11,74,6]. Furthermore, the interaction of the outgoing photoelectron with the rest of the system
is not taken into account. This sudden approximation is expected to be justified for not too small
photon energies. Considering an energy-, angle- and spin-resolved photoemission experiment
the state of the photoelectron at the detector is written as |εf , ~k‖〉, where ~k‖ is the component of
the wave vector parallel to the surface, and εf is the kinetic energy of the photoelectron. The
spin character of the photoelectron is implicitly included in |εf , ~k‖〉 which is understood as a
four-component Dirac spinor. The advanced Green’s function G−2 in Eq. (16) characterizes the
scattering properties of the material at the final-state energy E2 ≡ εf . Via |Ψf〉 = G−2 |εf , ~k‖〉
all multiple-scattering corrections are formally included. For an appropriate description of the
photoemission process we must ensure the correct asymptotic behavior of Ψf (~r) beyond the
crystal surface, i.e., a single outgoing plane wave characterized by εf and ~k‖. Furthermore,
the damping of the final state due to the imaginary part of the inner potential iV0i(E2) must be
taken into account. We thus construct the final state within spin-polarized low-energy electron
diffraction (SPLEED) theory considering a single plane wave |εf , ~k‖〉 advancing onto the crys-
tal surface. Using the standard layer-KKR method generalized for the relativistic case [17, 75],
we first obtain the SPLEED state −TΨf (~r). The final state is then given as the time-reversed
SPLEED state (T = −iσyK is the relativistic time inversion operator). Many-body effects
are included phenomenologically in the SPLEED calculation by using a parametrized weakly
energy-dependent and complex inner potential V0(E2) = V0r(E2) + iV0i(E2) [13]. This gen-
eralized inner potential takes into account inelastic corrections to the elastic photocurrent [74]
as well as the actual (real) inner potential, which serves as a reference energy inside the solid
with respect to the vacuum level [76]. Due to the finite imaginary part iV0i(E2), the flux of elas-
tically scattered electrons is continuously reduced, and thus the amplitude of the high-energy
wave field Ψf (~r) can be neglected beyond a certain distance from the surface (see right panel of
Fig. 3).
In the last part of this section we would like to explicitelly evaluate Eq. (16) for the CPA pho-
tocurrent. A more detailed description of the generalized one-step model for disordered mag-
netic alloys can be found in Braun et al. and Durham et al. [36, 26, 20]. The first step in an
explicit calculation of the photocurrent consists in the setup of the relativistic spin-polarized
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low energy electron diffraction (SPLEED)-formalism within the CPA theory. The coherent
scattering matrix tCPAn for the nth atomic site together with the crystal geometry determines the
scattering matrix M for a certain layer of the semi-infinite half-space

M ττ ′ss′

gg′ = δττ
′ss′

gg′ (17)

+
8π2

kk+
gz

∑
nn′

ΛΛ′Λ′′

i−lCms
Λ Y µ−ms

l (k̂τg) t
CPA
n

ΛΛ′′
(1−X)−1

Λ′′Λ′i
l′C

m′s
Λ′ Y

µ′−m′s
l′ (k̂τ

′

g′) e
−i(kτgRn+kτ

′
g′Rn′ ),

where the X-matrix represents the Kambe lattice sum, which in turn is directly connected with
the multiple scattering path operator τ = tX . All quantities are indexed by the reciprocal lattice
vectors of the 2D layer g, relativistic quantum numbers Λ and site index n and index τ = ±
(+ for transmission, and − for reflection). C and Y are standard Clebsch-Gordan coefficients
and the spherical harmonics, respectively. By means of the layer-doubling technique the so
called bulk-reflection matrix can be calculated, which gives the scattering properties of a semi-
infinite stack of layers. Finally, applying SPLEED theory [44, 77] we are able to derive the
final state for the semi-infinite crystal. The quantity ∆ in Eq. (16) is the dipole operator in the
electric dipole approximation. It mediates the coupling of the high-energy final state with the
low-energy initial states. In a fully relativistic theory the dipole interaction of an electron with
the electromagnetic field is given by the dipole operator ∆ = −αA0 where A0 is the spatially
constant vector potential inside the crystal. The three components αk of the vectorα are defined
through the tensor product αk = σ1 ⊗ σk, k = z, y, z, where σk denote the Pauli spin matrices.
Dealing with the matrix element 〈Ψf |∆|Ψi〉 between eigenspinors |Ψf〉 and |Ψi〉 of the Dirac
Hamiltonian with energies Ef and Ei, respectively, it is numerically more stable to transform
∆ in the so called ∇V form of matrix elements. This is derived by making use of commutator
and anticommutator rules analogously to the nonrelativistic case in Ref. [78, 79].
According to Pendry [11] the calculation of G+

1 , and in consequence the calculation of the pho-
tocurrent, can be divided into four different steps. The first contribution Iat, the so called atomic
contribution results from the replacement of G+

1 in Eq. (16) by G+
1,a. The second contribution

Ims, describes the multiple scattering of the initial state. The third contribution Is to the pho-
tocurrent takes care of the surface. When dealing with the disorder in the alloys, an additional
I inc, the so called incoherent term, appears. Following Durham et al. [26,20] the configurational
average can be written as

< IAR−PES > =
1

π
Im
∑
ij

< Miτ
ijM∗

j >=
1

π
Im
∑
i

< Ma
i > + < Is > . (18)

Herein τ ij denotes the scattering path operator between the sites i and j. Ma
i represents an

atomic-type matrix element containing the irregular solutions which appear as a part of the
retarded Green function G+

1,a. Mi indicates a conventional matrix element between regular
solutions of the initial and final states. The first term can be decomposed in on-site and off-site
contributions ∑

ij

< Miτ
ijM∗

j >=
∑
ij,i6=j

< Miτ
ijM∗

j > +
∑
i

< Miτ
iiM∗

i > . (19)
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The on-site term is called incoherent part of the photocurrent since this term reveals density-of-
states (DOS)-like behavior by definition. The off-site contribution which contains all dispersing
features represents the so called coherent part of the photocurrent. Together with the surface
part that remains unchanged by the averaging procedure < Is >= Is the total one-step current
can be written as

< IAR−PES > = − 1

π
Im
∑
i

< Ma
i > + Is

+
1

π
Im
∑
ij,i6=j

< Miτ
ijM∗

j >

+
1

π
Im
∑
i

< Miτ
iiM∗

i > . (20)

Using Pendry’s notation it follows

<IAR−PES(εf ,k)> = <Iat(εf ,k)> + <Ims(εf ,k)> + <I inc(εf ,k)> + Is(εf ,k) , (21)

where Ims can be identified with the coherent contribution that describes all band-like features
of the initial state and I inc with the incoherent contribution that describes the corresponding
DOS-like features. Because of this clear-cut separation in contributions that describe dispersing
or non-dispersing features one may easily define the angle-integrated photocurrent by use of the
CPA-formalism. The ordered case is then defined by a binary alloy with two identical species
at each atomic site. Therefore, it follows

< IAI−PES(εf ,k) > = < Iat(εf ,k) > + < I inc(εf ,k) > + Is(εf ,k) . (22)

For the atomic contribution the averaging procedure is trivial, since < Iat(εf ,k) > is a single-
site quantity. In detail, the atomic contribution is build up by a product between the matrix
Zat
jnαn and the coherent multiple scattering coefficients AcjnΛ of the final state. Herein n denotes

the nth cell of the jth layer and Λ denotes the combined relativistic quantum numbers (κ, µ). It
follows

< Iat(εf ,k) > ∝ Im
∑
jnαn
ΛΛ′

xjnαnA
c
jnΛZat

jnαn
ΛΛ′

Ac∗jnΛ′ , (23)

where αn denotes the different atomic species located at a given atomic site n of the jth layer.
The corresponding concentration is given by xjnαn .
For an explicit calculation Zat must be separated into angular matrix elements and radial dou-
ble matrix elements. A detailed description of the matrix Zat and of the multiple scattering
coefficients AcjnΛ for the different atomic species is given in Refs. [17, 75].
The intra(inter)-layer contributions < Ims(εf ,k) > to the photocurrent describe the multiple
scattering corrections of the initial state G+

1 between and within the layers of the single crystal.
They can be written in a similar form

< Ims(εf ,k) > ∝ Im
∑
jn
ΛΛ′

AcjnΛ Z
c(2)
jn
ΛΛ′

CB,G
jnΛ′ . (24)
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In analogy to the atomic contribution, the coherent matrix Zc(2) can be separated into angular-
and radial parts. The difference to the atomic contribution is that the radial part of the matrix
Zc(2) consists of radial single matrix elements instead of radial double integrals. In the alloy
case this matrix results in the following expression

Zc(2)
jn
ΛΛ′

=
∑
αn

Λ1Λ2Λ3

xjnαnDΛ1Λ2R
(2)
jnαn

Λ1ΛΛ2Λ3

Djnαn
Λ3Λ′

. (25)

The radial and angular parts of the matrix element are denoted byR(2) andD. The CPA-average
procedure explicitly is represented in terms of the CPA-projector Djnαn representing the α-
species at site n for layer j. CB and CG denote the coherent multiple scattering coefficients of
the initial state within a layer and between different layers. They have the form

CB
jnΛ =

∑
n′Λ′Λ′′

B
(o)c
jn′Λ′(t

CPA)−1
jn′

Λ′Λ′′

(
(1−X)−1

jnn′

Λ′′Λ

− δ nn′
Λ′′Λ

)
,

(26)

with the coherent bare amplitudes B(o)c
jn′Λ′

B
(o)c
jn′Λ′ =

∑
Λ′′

Zc(1)

jn′

Λ′Λ′′
Ac∗jn′Λ′′ . (27)

and

Zc(1)
jn
ΛΛ′

=
∑
αn

Λ1Λ2Λ3

xjnαnD
†
jnαn
ΛΛ3

R
(1)
jnαn

Λ1Λ3Λ2Λ′
D†Λ1Λ2

. (28)

Finally, the coherent scattering coefficients CG for the inter-layer contribution take the form

CG
jnΛ =

∑
n′Λ′

G
(o)c
jn′Λ′(1−X)−1

jn′n
Λ′Λ

(29)

and the coherent bare amplitudes G(o)c
jn′Λ′ are given by

G
(o)c
jn′Λ′ =

∑
gms

4πil
′
(−)µ′−sCms

Λ′

(
d+
jgms

Y ms−µ′
l′ (k̂+

1g)e
ik+

1g·rn′+d−jgmsY
ms−µ′
l′ (k̂−1g)e

ik−1g·rn′
)
. (30)

The coefficients d±jgms in Eq. (30) represent the plane-wave expansion of the initial state between
the different layers of the semi-infinite stack of layers. For a detailed description of the matrices
Zat, Z(1) and Z(2) and of the multiple scattering coefficients d±jgms the reader again is referred
to Refs. [17, 75].
The last contribution to the alloy photocurrent is the so called incoherent part < I inc(εf ,k) >,
which appears because the spectral function of an disordered alloy [45] is defined as a non
single-site quantity. In fact this contribution is closely connected with the presence of the ir-
regular wave functions well-known from the spherical representation of the Green function G+

1 .
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The incoherent term is defined as

< I inc(εf ,k) > ∝ Im
∑
jnαn
ΛΛ′Λ′′

xjnαnA
c
jnΛZ

(1)
jnαn
ΛΛ′

(
τ 00
jnαn − tjnαn

)
Λ′Λ′′
Z(2)
jnαn
Λ′′Λ′′′

Ac∗jnΛ′′′

+ Im
∑
jn
ΛΛ′

AcjnΛZ
c(1)
jn
ΛΛ′

τ 00
c jn
Λ′Λ′′
Zc(2)

jn
Λ′′Λ′′′

Ac∗jnΛ′′′ , (31)

where τ 00
jnαn denotes the one-site restricted average CPA-matrix for species αn at atomic site n

for layer j. τ 00
c jn represents the corresponding matrix for the coherent medium. This completes

the CPA-averaged photocurrent within the fully-relativistic one-step model.

4 LSDA+DMFT for calculations of spectroscopic properties

In the following section we would like to show a couple of recent applications of the formalism
presented in Secs. 2 and 3. The propose of the detailed discussion at each example is to show
which additional information one can gain from the one-step model calculations in contrast to
the standard interpretation of ARPES-spectra-based comparisons between ground state spectral
functions or densities of states with experimental data.

4.1 Angle-integrated valence band photoemission: Fano effect

Spin-orbit coupling gives rise to many interesting phenomena in the electron spectroscopy of
magnetic solids. A rather straightforward access to the understanding of these phenomena is
provided by the study of the Fano effect. This effect was predicted by Fano at the end of the
sixties and denotes the fact that one obtains a spin-polarized photoelectron current even for
non-magnetic systems if the excitation is done using circularly polarized light [80]. Reversing
the helicity in non-magnetic samples reverses the spin polarization of the photocurrent. This
symmetry is in general broken for magnetically ordered systems leading to magnetic circular
dichroism. As a consequence, in the case of magnetic materials, the spin polarization is usually
due to the interplay between spin-orbit coupling and exchange splitting. Recently, we demon-
strated by investigations on Fe, Co and Ni that the pure Fano effect can also be observed in
angle-integrated valence band XPS (VB-XPS) for ferromagnets if circularly polarized light im-
pinges perpendicular to the magnetization direction and if a subsequent spin analysis is done
with respect to the direction of the photon beam [81]. This is demonstrated in Fig. 4 where
the VB-XPS of Fe, Co and Ni at a photon energy of 600 eV is shown. The photon energy of
600 eV has been used in order to increase the bulk sensitivity of the photoemission process.
In the upper panel of Fig. 4 we compare experimental data with corresponding LSDA and
LSDA+DMFT VB-XPS data based on the one-step model of photoemission. In all three cases
the LSDA+DMFT considerably improves the agreement with experiment. In particular, in the
case of Ni LSDA+DMFT leads to a shrinking of the d band width and to a pronounced increase
of the intensity in the regime of the 6 eV satellite. Also, for the total intensity of the Fe and
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Fig. 4: Top panel: The experimental (dots), LSDA (green line) and LSDA+DMFT (blue line)
angle integrated valence band XPS spectra of bcc Fe, hcp Co and fcc Ni for a photon energy of
600 eV . Lower panel: Spin difference ∆I+ = I+

↑ − I
+
↓ of the photocurrent for excitation with

left circularly polarized light. Figure reproduced from [81].

Co spectra we observed a pronounced improvement in the energy region from −2 to −8 eV. A
decomposition of the theoretical spectrum according to the angular momentum character of the
initial state shows that the d-contribution is by far dominating and that the spectrum essentially
maps the corresponding DOS. This, in some sense, supports the common practice of comparing
experimental XPS directly with the DOS. In the lower panel of Fig. 4 the corresponding spin
difference ∆I+ = I+

↑ − I
+
↓ (i.e., the difference of the currents of photoelectrons with spin-up

and spin-down electrons, for excitation with left circularly polarized radiation) is shown. The
occurrence of this spin current is a pure matrix element effect induced by spin-orbit coupling.
In fact, one finds that the shape of the∆I+ curves are very similar to those that can be found for
non-magnetic noble metals [82, 83]. In fact, the amplitudes scale with the spin-orbit coupling
parameter of the Fe, Co and Ni d-states. To achieve this rather good agreement with the experi-
mental data for the ∆I+ intensity distribution the fully self-consistent LSDA+DMFT approach
is obviously needed.

4.2 ARPES: Correlation effects in transition-metals and their surfaces

In the previous section, we showed angle-integrated XPS spectra which can be directly com-
pared to the DOS ignoring to some extent matrix element effects (upper part of Fig. 4). How-
ever, the most detailed mapping of the band structure of correlated materials can be obtained
by spin- and angle-resolved valence band photoemission. In the following section we present
various examples of angle-resolved photoemission calculations done within the one-step model.
These examples clearly demonstrate the need to include matrix-elements in corresponding cal-
culations in order to obtain a quantitative understanding of the experimental data.
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Fig. 5: Spin-integrated ARPES spectra from Ni(011) along ΓY for three different angles of
emission. Upper row: comparison between LSDA-based calculation and experiment [68]; mid-
dle row: comparison between experiment and non self-consistent quasi-particle calculations
neglecting matrix element and surface effects [68]; lower row: spin-integrated LSDA+DMFT
spectra including photoemission matrix elements (this work). Theory: solid red line, experi-
ment: black dots. Figure reproduced from [38].

The following examples concern the ferromagnetic transition-metal systems Ni and Fe as pro-
totype materials to study electronic correlations and magnetism beyond the LSDA scheme. In
particular, the electronic structure of fcc Ni has been subject of numerous experimental [84–90]
and theoretical studies [91–93] as a prototype of an itinerant electron ferromagnet, since short-
comings of simple one-electron theory are obvious. LSDA calculations for fcc Ni cannot repro-
duce various features of the electronic structure of Ni which had been observed experimentally.
Besides the fact that valence band photoemission spectra of Ni [94–96] show a reduced 3d
band width compared to LSDA calculations [97] the spectra show a dispersionless feature at a
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binding energy (BE) of about 6 eV, the so-called 6 eV satellite [84, 85, 98–101], which is not
reproducible within the LSDA approach. On the other hand, an improved description of corre-
lation effects for the 3d electrons using many-body techniques [91,92,102] or in a more modern
view applying the LSDA+DMFT scheme [43,38] results more or less in the experimental width
of the 3d-band complex and furthermore is able to reproduce the 6 eV satellite structure in the
valence band region.

In Fig. 5 we present a comparison between experimental photoemission data [68] and calculated
spectra using different theoretical approaches [38]. In the upper row spin-integrated ARPES
spectra from Ni(011) along ΓY for different angles of emission are shown. The dotted lines
represent the experimental data, whereas the solid lines denote a single-particle representation
of the measured spectral function. Obviously, the LSDA-based calculation completely fails to
describe the experimental data. The energetic positions of the theoretical peaks deviate strongly
from the measured ones. Furthermore, the complicated intensity distributions that appear for
higher emission angles are not accounted for by the LSDA-based calculations. In contrast,
the non self consistent quasi-particle 3BS calculation provides a significant improvement when
compared to the measured spectra. For the complete range of emission angles the energetic
peak positions coincide with the experiment within about 0.1 eV. Only the overall shape of
the measured spectral intensities deviate from the calculations because of the neglect of mul-
tiple scattering and surface-related as well as matrix-element effects. In the experiment the
various peaks seem to be more broadened and the spectral weight especially for nearly normal
emission is shifted by about 0.1 eV to higher binding energies. In addition it seems that for
very high emission angles like 60◦ an even more complicated peak structure is hidden due to
limited experimental resolution. The intensity distributions resulting from the corresponding
photoemission calculation are shown in the lower row of Fig. 5. A first inspection reveals a
very satisfying quantitative agreement between experiment and theory for all emission angles.
Let us concentrate first on the excitation spectrum calculated for the emission angle Θ = 5◦.
The spin-integrated spectrum exhibits a pronounced double-peak structure with binding ener-
gies of 0.1 eV and 0.3 eV. The second peak is slightly reduced in intensity which is also in
accordance with the experimental findings. Furthermore, the width of the spectral distribution
is quantitatively reproduced. The calculated binding energies are related to the real part of the
self-energy that corrects the peak positions due to a dynamical renormalization of the quasi-
particles which is missing in a typical LSDA-based calculation. The relative intensities of the
different peaks, on the other hand, must be attributed to the matrix-element effects which enter
our calculations coherently via the one-step model of photoemission. The observed double-peak
structure originates from excitation of the spin-split d-bands in combination with a significant
amount of surface-state emission [103]. The two spectra calculated for high emission angles
show the spectral distributions more broadened than observed in experiment. An explanation
can be given in terms of matrix-element effects, due to the dominating dipole selection rules.
The spin-resolved spectra reveal a variety of d-band excitations in both spin channels, which in
consequence lead to the complicated shape of the spectral distributions hardly to be identified
in the spin-integrated mode.
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Fig. 6: (a) Experimental XPS-spectrum taken at hν=150 eV. The “Ni 6 eV satellite” structure
appears at about 6.3 eV binding energy. (c) Spin- and angle-resolved photoemission spectra
taken in normal emission at hν=66 eV with s-polarized light. Open black squares: majority
spin states, open red squares: minority spin states, solid black and red lines serve as guides
for the eyes. Spin-integrated intensity: green thick dotted line. (b) LSDA+DMFT calculation
of the spin-integrated DOS. The satellite feature appears at about 7.2 eV binding energy. (d)
LSDA+DMFT spin-resolved photoemission calculation in normal emission at hν=66 eV for a
U value of 3.0 eV: solid black and red lines indicate majority and minority spin states, green
line shows the spin-integrated intensity. Figure reproduced from [42].

The second example within this section concerns a spectroscopic study of the 6 eV satellite of
Ni. As was shown by earlier calculations [102] and confirmed by photoemission experiments
[87], the 6 eV satellite is spin-polarized. In a recent experimental study the XPS intensity at
hν=150 eV as well as the spin- and angle-resolved photoemission spectra at hν=66 eV have
been measured. Results for the second experiment are shown in Fig. 6(a) and Fig. 6(c).

The satellite feature is clearly visible at a BE of about 6.3 eV, fully in agreement with all for-
mer investigations. Furthermore, Fig. 6(c) shows the non-zero spin-polarization of the satellite
in the spin-resolved experiment, again in full agreement with earlier studies [87]. After back-
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ground substraction, the spin polarization amounts to about 15%. In Fig. 6(b) we compare the
experimental results with a DOS-calculation which is based on the LSDA+DMFT approach.
The parametrization for U=2.8 eV and J=0.9 eV is identical with values that we used for the
spin- and angle-resolved photoemission calculations. The satellite appears at a binding energy
(BE) of ∼7.2 eV. This is about 1 eV higher in BE than the experimental result. The explanation
for this is found in terms of the many-body solver. The so called FLEX-solver [57] is based
on pertrubation theory while a more accurate quantum Monte Carlo solver is able to consider
the complete diagramatic expansion of the self-energy in a statistical way. As a consequence
the energy dependence of the self-energy is less pronounced and this causes the observed shift
of about 1 eV in the BE. Nevertheless, the satellite is observable in the calculated DOS and
therefore one would expect its appearance in the theoretical photoemission intensity as well.
The corresponding spin- and angle-resolved photoemission calculation is shown in Fig. 6(d). A
weak intensity distribution in the vicinity of the sp band transition is present at a BE of∼7.2 eV.
The green curve shows the spin-integrated intensity, whereas the black and red lines indicate
the majority and minority spin related intensities. The calculated spin-polarization amounts to
about 10% slightly smaller than the experimental one. Besides these small deviations between
experiment and theory the agreement is very satisfying. Thus we show the first angle-resolved
photoemission calculation for Ni metal in which this spectral feature appears.

In conclusion, we have presented a spectroscopical analysis for ferromagnetic Ni and Co, which
coherently combine an improved description of electronic correlations with multiple-scattering,
surface emission, dipole selection rules and other matrix-element related effects that lead to a
modification of the relative photoemission intensities. As has been demonstrated, this approach
allows on the one hand side a detailed and reliable interpretation of angle-resolved photoemis-
sion spectra of 3d-ferromagnets. On the other hand, it also allows for a very stringent test of
new developments in the field of DMFT and similar many-body techniques.

The third example within this section concerns a spectroscopic study of ferromagnetic Fe [40].
In the left panel of Fig. 7 we compare the experimental peak positions from bulk-like transi-
tions with spin-resolved LSDA+DMFT spectral functions. In addition to these investigations
correlation effects were also accounted for within the 3BS approach [104]. Within the 3BS
approach the self-energy is calculated using a configuration interaction-like expansion. In par-
ticular three-particle configurations like one hole plus one electron-hole pair are explicitly taken
into account within 3BS-based calculations. The corresponding output can be directly related
to the photoemission process and allows for a detailed analysis of various contributions to the
self-energy (e.g., electron-hole lifetime). A more detailed quantitative comparison is shown
in right panel of Fig. 7. Here we display a comparison between spin-integrated ARPES data
and theoretical LSDA+DMFT based one-step photoemission calculations of Fe(110) along the
ΓN direction of the bulk Brillouin zone (BZ) with p-polarized radiation. In our LSDA+DMFT
investigation underlying the ARPES calculations we use for the averaged on-site Coulomb in-
teraction U a value U=1.5 eV which lies between U ≈ 1 eV deduced from experiment [105]
and the value U ≈ 2 eV obtained within other theoretical studies [106,59]. From an analysis of
the spectra, the k values associated with the observed transitions were determined using photon
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Fig. 7: Left panel: Spin resolved Bloch spectral functions calculated within LSDA+DMFT and
3BS formalism . Corresponding experimental data points have been deduced from the normal
emission spectra along the ΓN direction. Right panel: (a) Experimental spin-integrated photoe-
mission spectra of the Fe(110) surface measured with p-polarization in normal emission along
the ΓN direction of the bulk Brillouin zone. The curves are labeled by the wave vectors in units
of ΓN=1.55 Å−1. (b) Corresponding one-step model calculations based on the LSDA+DMFT
method which include correlations, matrix elements and surface effects. Figure reproduced
from [40].

energies ranging from 25 to 100 eV. Near the Γ point (k∼0.06 ΓN), the intense peak close to the
Fermi level corresponds to a Σ↓1,3 minority surface resonance, as indicated in the top of Fig. 7.
Experimentally, its Σ↓3 bulk component crosses the Fermi level at k ∼0.33 ΓN, leading to a
reversal of the measured spin-polarization and to a strong reduction of the intensity at k =0.68
ΓN in the minority channel. The peak at the binding energy BE∼0.7 eV, visible mainly for
p-polarization in a large range of wave vectors between Γ and N, can be assigned to almost
degenerate Σ↑1,4 bulk-like majority states. A Σ↑3 feature at BE∼1.1 eV dominates the spectrum
close to the Γ -point. Depending on the polarization the degenerate Σ↑1 states form a shoulder
around the same BE. The broad feature around 2.2 eV, visible at various k-points, but not at the
N-point, is related to a majority Σ↑1,3 surface state. Around the N-point (0.76≤ k ≤1.0) and
at BE ≥ 3 eV we observe a Σ↓1 band having strong sp character. The pronounced difference
between its theoretical and experimental intensity distributions can be attributed to the fact that
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in the present calculations only the local Coulomb repulsion between d electrons is considered,
without additional lifetime effects for the sp bands. Finally, we notice that the background in-
tensity of the spectrum at k=0.66 ΓN, corresponding to a photon energy of 55 eV, is strongly
increased due to the appearance of the Fe 3p resonance. The direct comparison of the calculated
and experimental spectra turned out to be a very stringent check for the Coulomb parameter U
used in the calculations. This also applies to the DMFT self-energy, which was compared to its
counterpart deduced from the experimental band dispersion and line width.
In summary, spectral function calculations for ferromagnetic Ni and Fe could be performed
that coherently combine an improved description of electronic correlations, multiple-scattering,
surface emission, dipole selection rules and other matrix-element related effects that lead to
a modification of the relative photoemission intensities. A similar study has been performed
recently for hcp Co(0001) [60] and fcc Co(001) [107]. The combined approach allows on the
one hand side a detailed and reliable interpretation of high-resolution angle-resolved photoe-
mission spectra of 3d-ferromagnets. On the other hand, it also allows for a stringent test of new
developments in the field of DMFT and related many-body techniques.

4.3 ARPES of disordered correlated alloays: NixPd1−x (001)

In this section, alloying effects in combination with electronic correlations are considered [36].
Fig. 8 shows a series of spectra of NixPd1−x as a function of the concentration x calculated for a
photon energy hν = 40 eV with linearly polarized light. The experimental data are shown in the
left panel and the corresponding LSDA+DMFT-based photoemission calculations are presented
in the right one. Our theoretical analysis shows that starting from the pure Ni, the agreement is
fully quantitative with deviations less than 0.1 eV binding energy, as expected on the basis of
the studies presented above. Going to the Ni0.80Pd0.20 alloy the agreement is comparably good
for binding energies between the Fermi energy and 2 eV. Inspecting the density of states (DOS)
for the Ni0.80Pd0.20 alloy this fact becomes explainable, because this energy interval represents
the Ni-dominated region. The Pd derived states start to appear at about 2 eV below EF next
to the small dip at the Fermi level. For higher binding energies the agreement is also very
good, although a bit more structure is observable in the theoretical spectra especially around
3.5 eV. An explanation for this behavior can be found in terms of lifetime effects. However,
it should be mentioned here that the background in the experimental spectra due to secondary
electrons was not considered for the theoretical spectra. From the results for Ni0.70Pd0.30 it
becomes clearly visible that an increasing deviation between theory and experiment occurs with
increasing Pd concentration. This can be seen from the spectra for Ni0.50Pd0.50 and Ni0.30Pd0.70

alloys shown next in the series. This is caused by the Pd d-states that seem to be slightly shifted
to higher binding energies. This is well known from other paramagnetic metals like Ag and
can be explained in terms of static correlations in the Pd-states not explicitly considered here.
In addition, the spectra of Ni0.30Pd0.70 reveal some deviations near the Fermi level. Also, the
spectral intensity of the Ni surface resonance, that appears at about 0.5 eV binding energy is
underestimated in the calculation when compared to experiment.
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Fig. 8: ARPES spectra taken from the NixPd1−x(001) alloy surfaces as a function of the concen-
tration x for a fixed photon energy of hν = 40.0 eV along ΓX in normal emission. Experimental
data shown in the left panel calculated spectra presented in the right panel. Depending on the
concentration x a pronounced shift in spectral weight towards the Fermi level is visible. Figure
reproduced from [36].

Our spectroscopic analysis clearly demonstrates that the electronic properties of the NixPd1−x

alloy system depend very sensitively on the interplay of alloying and electronic correlation.
A description within the LSDA approach in combination with the CPA results in a quantita-
tive description of the electronic structure of NixPd1−x [36]. This example may illustrate that
the use of the CPA alloy theory self-consistently combined with the LSDA+DMFT approach
serves as a powerful tool for electronic structure calculations, whereas the application of the
fully relativistic one-step model of photoemission, which takes into account chemical disorder
and electronic correlation on equal footing, guarantees a quantitative analysis of corresponding
experimental spectroscopic data.

5 Angle resolved soft and hard X-ray photomemission

It has always been realized, that the results obtained in UV ARPES are restricted in sensitivity to
the near-surface region of the systems studied due to the short inelastic mean free paths (IMFPs)
of ∼ 5-10 Å of the low energy photoelectrons, which are typically in the range from 10-150 eV
[108]. To overcome this limitation of surface sensitivity, there is now considerable interest in us-
ing x-rays in the soft x-ray sub-keV or even hard x-ray multi-keV regime to access deeper-lying
layers in a sample, thus sampling more bulk-like properties [109–119, 27, 29, 30, 32]. One can
thus think of soft x-ray or hard x-ray ARPES (HARPES), respectively. These techniques have
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a) b)

c) d)

Fig. 9: Photoemission spectra calculated for clean Fe(001) (upper panel, a and b). Left
side shows the intensity distribution obtained for 1 keV, right side represents the correspond-
ing spectrum at 6 keV. The lower panels show theoretical spectra for the overlayer system
8MgO/Fe(001) at 1 keV (left side, c) and 6 keV (right side, d). Figure reproduced from [120].

to date been applied to a wide variety of materials, including free-electron like and transition-
metals [109, 116], strongly correlated oxides and high TC materials [111, 112], heavy fermion
systems [111], mixed-valent Ce compounds [114], dilute magnetic semiconductors [29,30,121],
layered transition-metal dichalcogenides [119]. Additional advantages in such experiments in-
clude being able to tune to core-level resonances so as to identify the atomic-orbital makeup of
ARPES features [121], to map three-dimensional Fermi surfaces [119], and to take advantage of
the longer IMFPs, which translate into less smearing of dispersive features along the emission
direction (usually near the surface normal) [118]. Increasing the photon energy means increas-
ing the bulk sensitivity of the corresponding photo emission data. We demonstrate this effect by
comparing spectra obtained by photoelectron excitation with 1 keV and 6 keV radiation from
the clean Fe(001) surface and from the overlayer system MgO/Fe(100) with 8 ML MgO on Fe.
Fig. 9a presents the spectrum for the clean Fe(001) surface and a photon energy of 1 keV. As
expected for this photon energy regime, the bulk sensitivity is enhanced and the surface emis-
sion is reduced to a negligible extent. Also the relative intensity fraction of the sp-bands is
obviously increased. Going to a much higher photon energy of 6 keV the d-band intensity is
strongly reduced when compared with sp-band related features. This is shown in Fig. 9b. In
a next step we put 8 ML of MgO on the Fe(001) surface and repeat our calculations for both
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photon energies. This is shown in the lower panel of Fig. 9. At 1 keV mostly the MgO bulk
band-structure is visible in Fig. 9c. This is due to the thickness of the MgO film which consists
of 8 ML. Increasing the photon energy to 6 keV we expect due to the much larger mean free
path length of the photo-electron that Fe-related features will reappear, namely the Fe sp-states.
This is clearly demonstrated by Fig. 9d which represents the corresponding photo emission
spectrum calculated for the 8ML MgO/Fe(001) system at a photon energy of 6 keV. Besides the
effect that more than one Brillouin zone is visible for a fixed escape angle regime due to the
very high photon energy it is undoubtly observable that nearly all MgO related features have
vanished in the intensity plot. This, for example, should give access to buried interfaces.
Going higher in energy, however, comes with some additional challenges for interpretation of
the data [109,115,118]. Deviations from the dipole approximation in photoelectron excitations
mean that the momentum of the photon can result in a non-negligible shift of the position of the
initial-state wave vector in the reduced Brillouin zone (BZ) [116]. Also, phonon creation and
annihilation during photoemission hinders the unambiguous identification of the initial state in
the BZ via wave vector conservation [109, 110, 115, 116, 27, 118, 29].

5.1 Photon momentum effects: Ag(001)

Here we want to discuss the effect of the photon momentum q on the intensity distribution of
the photocurrent. The impact of the photon momentum on the initial state k-vector is expressed
by the following equation

ki =
(
k|| − q|| + g,

√
2(E − iVi1)− |k|| − q|| + g|2

)
, (32)

where Vi1 denotes the imaginary part of the intial state energy E. Due to the relatively high
photon energies the role played by the photon momentum is no longer negligible, with the im-
portance of its influence depending on the chosen experimental geometry. Considering as an
example photo emission from Ag(001), for φph = 45o the photon momentum has no compo-
nent along the [110] crystallographic direction. However, the effect of the photon momentum
along the [110] direction is to kick the photo-electron in a direction that is perpendicular to the
probed high symmetry direction. This effect can experimentally be corrected for by rotating
the crystal surface by a small amount, Θ = 0.7o, with respect to the entrance plane of the elec-
tron analyzer, thereby minimizing the effect of the photon momentum transfer along the [110]
direction. However, one has to pay the price that the high symmetry plane, in this case the
ΓXUL plane, is no longer the plane from which the emission takes place. A careful analysis
reveals that an angle Θ = 0.7o corresponds, for photon energies in the 500 eV to 600 eV range,
to an effective variation of the angle±7o for the given range of the emission angle θ (q|| effect).
Fortunately, the largest deviation appears for nearly normal emission and for higher emission
angles it approaches zero. Therefore, the total average deviation from the high symmetry plane
is small and the experiment mainly represents emission from the ΓLUX plane with the added
advantage of a minimized q|| effect. Fig. 10 shows the effect of both the correction angle Θ
and the photon momentum q||. In Fig. 10(a) the intensity distribution has been calculated for
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Fig. 10: Theoretical photo emission intensities for the Γ -K high symmetry direction Σ calcu-
lated for hν=552 eV, φ = 45o. To allow for a one-to-one comparison between experimental and
theoretical data, all the theoretical data have been shifted by 1.2 eV. (a) Intensity distribution
calculated for q|| = 0 and Θ=0o. (b) Intensity distribution calculated for a nonzero q|| vector
and Θ = 0o. (c) Intensity distribution calculated for q|| = 0 and Θ = 0.7o. (d) Intensity distri-
bution calculated for a nonzero value of q|| and Θ = 0.7o. This corresponds to the experimental
geometry setup. Figures taken from [116].

Θ = |q||| = 0, whereas in Figs. 10(b) and 10(c) nonzero values for q|| and Θ have been used.
It is observable that in both panels 1(b) and 1(c) the band dispersion is more pronounced than
in Fig. 10(a), where the bands appear. This effect, together with an additional asymmetric in-
tensity distribution around Γ , is caused by the small deviation from the desired high symmetry
plane mentioned above.
Fig. 10(d) represents the experimental situation with Θ = 0.7o and a nonzero q|| value. Ob-
servable is the similarity between panels 10(a) and 10(d). Therefore, we can conclude that the
experimental procedure works in a satisfactory way. The measurements performed by Venturini
et al. [116] were taken at T = 20 K for a photon energy of hν = 552 eV, that corresponds to the
Γ and the X symmetry points along the direction that is perpendicular to the samples surface.
The data sets are measured with right circularly polarized light. The results are shown in the left
panels of Fig. 11 for φ = 0o and φ = 45o, respectively. For φ = 0o, the parallel component of the
initial-state wave vector k|| varies along the ∆ direction, whereas for φ = 45o the Σ direction is
probed. The BZ boundaries along these two directions are found at k|| ≈ 1.54 Å−1 and k|| ≈
1.63 Å−1, respectively, and a photon beam of energy hν = 552 eV allows to probe almost the
entire BZ along these directions. The experimental results presented in Fig. 11 are in good qual-
itative agreement with our fully relativistic one-step model photo emission calculations shown
in the right panels of the respective figures.
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Fig. 11: Γ -X high symmetry direction ∆ probed with hν = 552,eV, φ = 0o (top) and 45o

(bottom), at T = 20 K. The energy refers to the Fermi level EF . Left: experimental data. Right:
theoretical results. Figures taken from [116].

Along the∆ andΣ high symmetry directions, direct transitions originating from all the allowed
initial states are visible close to the BZ center, except for the two deeper lying bands along
both directions. In particular, for both investigated orientations the Γ ′25 → Γ+

8 + Γ+
7 spin-

orbit splitting is observed at Γ . The agreement between our calculated binding energies of
the high symmetry points along the Γ -X direction [116] and results previously determined in
Ref. [122] is very good. Also the agreement with the corresponding experimental values found
in literature [123, 122, 124] is good, with a maximum deviation of 0.22 eV for the most tightly
bound X+

6 energy level. The spin-orbit split level with X+
7 symmetry is barely visible at the

BZ boundary along the ∆ direction (Fig. 11). Its binding energy along this direction is about
4.3 eV (see Ref. [116]). The ARPES data presented so far show evidence of the fact that, for
well-defined combinations of hν and temperature, direct transitions in the soft x-ray regime
can indeed be observed. If compared to the low energy ARPES, the combination of a larger
k-space sampling and a reduced curvature of the investigated path, together with the use of a
two-dimensional position sensitive detection system, allow measuring the band structure along
specific high symmetry directions with a single measurement. This has been done by Venturini
et al. [116] for four different high symmetry directions in the BZ of fcc Ag. The corresponding
results, which were obtained for T = 20 K, are also in good agreement with our fully relativistic
one-step model photo emission calculations.
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Fig. 12: (i) Plots of measured intensity versus angle of emission for 870 eV excitation from
the valence bands of W(110) approximately along the Γ -N direction for four temperatures of
(a) 300 K, (b) 470 K, (c) 607 K, and (d) 870 K (from [115]), where 90 deg corresponds to nor-
mal emission. (ii) Corresponding intensity distributions calculated from temperature-dependent
one-step theory based on the CPA formulation. (iii) Conventional ARPES calculations of the
direct contribution IDT(E,k) by use of complex scattering phase shifts and the Debye-Waller
model). Figure reproduced from [35].

5.2 Thermal effects and XPS limit

Going higher in energy, however, comes with some additional challenges for the interpretation
of the data [109, 115, 118]. Deviations from the dipole approximation in photoelectron excita-
tion mean that the momentum of the photon can result in a non-negligible shift of the position of
the initial-state wave vector in the reduced Brillouin zone (BZ), as first pointed out some time
ago. Phonon creation and annihilation during photoemission also hinders the unambiguous
specification of the initial state in the BZ via wave vector conservation [118, 115, 116, 27, 29].
Following Shevchik [125], the photoemission intensities at a given energy E and vector k can
be approximately divided into zero-phonon direct transitions IDT(E,k) and phonon-assisted
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non-direct transitions INDT(E,k). As a rough guide to the degree of direct-transition behavior
expected in an ARPES experiment, one can use a temperature-dependent Debye-Waller factor
W (T ) which qualitatively represents the fraction of direct transitions [118]. As a first approach
that aimed to go beyond this simple scheme for temperature-dependent ARPES, Larsson and
Pendry [126] introduced a model called Debye-Waller model later on that incorporates the effect
of lattice vibrations on the photoemission matrix elements. More than 15 years later Zampieri
et al. [127] introduced a cluster approach to model the temperature-dependent excitation of va-
lence band electrons for photon energies of about 1 keV. More recently Fujikawa and Arai [73]
discussed phonon effects on ARPES spectra on the basis of nonequilibrium Green’s function
theory. Recently, we presented a new approach which accurately models phonon effects over the
full energy range from normal low-energy ARPES to HARPES. More importantly it converges
for high temperatures and/or photon energies to the so called XPS-limit in photoemission, in
particular the development of matrix-element weighted density-of-states (MEW-DOS)-like fea-
tures in the intensity distribution [27, 28]. Our alloy analogy model includes vibrational atomic
displacements via the coherent potential approximation (CPA), where vibrations of different
lattice sites are assumed to be uncorrelated and averaged in the sense of CPA over various pos-
sible displacements which are calculated within Debye theory. Using the CPA-formulation of
the one-step model [26, 20, 36] provides a self-consistent temperature-dependent averaging of
the photoemission matrix elements. In other words, we describe in a quantitative sense the
breakdown of the k-conserving rules due to phonon-assisted transitions, the driving mechanism
that leads finally to the XPS-limit. In order to demonstrate this effect bellow we present an
example of soft-x-ray ARPES calculations for W(110). In Fig. 12, we compare results of our
calculations directly to experimental data for W(110) with soft x-ray excitation at 870 eV [115].
W has a Debye temperature of 400 K and a atomic mass of 183.84 u, close to Au and Pt. In
Fig. 12(i), we show experimental results for four different sample temperatures: (a) 300 K, (b)
470 K, (c) 607 K and (d) 780 K [115]. For all four temperatures, dispersive features are clearly
seen but with significant smearing and an increase of MEW-DOS-like intensity features as tem-
perature is raised. Also shown in Fig. 13(a), (b) are vertical and horizonal cuts, respectively,
through the 2D data of Fig. 12(i). These cuts yield Fig. 13(a): energy distribution curves (EDCs)
and Fig. 13(b): momentum distribution curves (MDCs) to illustrate more directly the changes in
both types of distributions with temperature. Also, various spectral features are labeled by the
numbers 1-6 in these figures. Fig. 12(ii) again presents fully relativistic one-step calculations
which are done with our new alloy analogy model, whereas Fig. 12(iii) shows conventional
one-step calculations in which phonon excitations are considered in a simplified way through
a temperature-dependent single-site scattering matrix [77]. Although at the lowest temperature
of 300 K the two different theoretical approaches yield very similar results, as expected for
a Debye-Waller factor of 0.70, the temperature dependence of the experimental data is much
better described by our temperature-dependent one-step calculations. The simpler calculation
based on the single-site scattering matrix predicts neither the smearing of dispersing features
nor the growth of MEW-DOS features for higher binding energies, but shows instead only the
monotonous decrease of direct transition intensities with increasing temperature [115].
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Fig. 13: (a) Measured temperature-dependent energy distribution curves (EDCs). A compar-
ison to the W DOS (the topmost curve) is also given. (b) Measured temperature-dependent
momentum distribution curves (MDCs). (c), (d) Corresponding theoretical results for (c) EDCs
and (d) MDCs. Dashed lines indicate conventional one-step calculations, solid lines indicate
calculations within the new alloy analogy model. Figure reproduced from [35].

Phonon induced smearing only appears via temperature-dependent matrix elements which cause
a decrease of the direct part of the photocurrent due to a redistribution of spectral weight. Al-
though for 780 K and a photon energy of 870 eV the XPS-limit is not fully established for W,
the indirect contribution of the temperature-dependent CPA-like photocurrent dominates the
corresponding angle-resolved soft x-ray spectra. This is clearly observable from both the ex-
perimental and theoretical data, which are nearly in quantitative agreement.
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Figs. 13(a) and (c) compare in more detail the temperature dependence of experimental and
theoretical spectra in the form of EDCs for a fixed angle of ≈ 104 deg which is 14 deg from the
surface normal. Figs. 13(b) and (d) present the same comparison for MDCs at a fixed binding
energy of ≈ 2 eV. The points labeled 1, 2, 4, 5 and 6 denote d-like electronic states, whereas
point 3 labels bands that are more free-electron like and a mixture of s and d states. The experi-
mental and theoretical data in Fig. 12 show pronounced smearing of features in both EDCs and
MDCs as the temperature is raised, but some remnant direct-transition behavior is clearly still
present, even at 780 K. The dashed lines shown in Fig. 13(c) and (d) indicate conventional one-
step calculations using the one-site scattering matrix approach. As expected, only slight changes
appear in the form of the EDCs and MDCs as a function of temperature. In contrast, the EDCs
and MDCs strongly depend on temperature when using the alloy analogy approach, although in
general the MDCs in experiment and those of the conventional and CPA approaches change less
than the EDCs. Significant broadening of spectral features and shift of spectral weight, not at
all present in the conventional one-site scattering matrix approach, can be observed. The EDC
at the highest temperature has not converged to a MEW-DOS-like curve and the corresponding
MDC still has structure in it. In the XPS-limit all MDCs would exhibit only x-ray photoelec-
tron diffraction (XPD), with a different type of angular distribution [115,29,32,127,28]. This is
obviously not the case. This is expected, because the Debye-Waller factor of 0.41 at 780 K in-
dicates that a certain number of transitions should still be direct. Our calculations thus correctly
predict a diminuation of the features expected due to direct transitions, and also a significant
broadening of features in the EDCs or MDCs. The additional weak and smooth background
observed in the experimental data thus must be ascribed to additional phonon effects, perhaps
through multiple phonon excitations.

6 Summary

The implementation of the LSDA+DMFT on the basis of the KKR method has been described
in some detail. The appealing feature of this approach is that the KKR delivers the one-electron
Green’s function directly. It therefore allows to combine the treatment of correlations via the
DMFT with calculation of a great variety of physical properties for, in principle, any type of
system. Within the one-step model of photoemisssion, this method can be applied to directly
calculate ARPES in the wide photon energy range. As was demonstrated by results for photo
emission spectra of various transition-metal systems, this allows in particular a direct compari-
son with experiment.
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