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1 Introduction

The electronic structure problem in real materials involves two sources of complexity: First, on
a single-particle level, a large Hilbert space can be required to describe how electronic wave
functions adjust to a certain arrangement of nuclei. Second, electrons interact, and the dimen-
sion of the Fock space to describe a many-electron system grows exponentially with system
size. There are two kinds of electronic structure approaches that circumvent either one of these
problems.
So-called first-principles methods – most prominently density functional theory (DFT) – map
the interacting-electron problem onto an auxiliary single-particle system but treat the full com-
plexity of the single-particle wave functions. Thereby, DFT and related approaches provide ma-
terial specific and atomistic descriptions of various extended systems (particularly sp-electron
metals). These approaches fail, however, for strongly correlated materials such as transition-
metal oxides or Kondo systems, where the electronic ground state requires a superposition of
multiple Slater determinants and where excitations are governed by dynamic self-energy effects.
The description of strongly correlated electron systems relies on model Hamiltonians, which
operate on many-body Fock spaces constructed out of a reduced set of single-particle basis
states. In this way, several correlation phenomena such as the Kondo effect, metal-insulator
transitions, magnetism or unconventional superconductivity can be addressed but at the price
that relations of models and materials are sometimes ambiguous due to a priori unknown model
parameters.
Obviously, first-principles and model Hamiltonian approaches have complementary merits and
shortcomings, so that their combination presents a promising route towards realistic, i.e., atom-
istic and material specific, descriptions of strongly correlated electron systems. The combi-
nation of density functional theory with dynamical mean field theory, termed LDA+DMFT,
is one very successful example of such hybrid approaches and is introduced in the lecture of
Alexander Lichtenstein. Generally, approaches which are based on combining DFT and model
Hamiltonian approaches to correlated systems are referred to as DFT++ [1].
In this lecture, we will discuss how the realm of first-principles theories can be brought into
model Hamiltonian approaches to strongly correlated electron systems. We will see in section
2 that a possible strategy to do so works as follows: A correlated subspace C, i.e., a subset of
single-particle states where electron correlations take place, is identified. Then, it will turn out
that projectors from the full space of Kohn-Sham eigenstates onto the subspace C provide a gen-
eral way for linking DFT and model Hamiltonian approaches. Within the correlated subspace,
the DFT band structure is augmented with interaction terms to generate the correlation effects
missed in DFT. These interactions affect only a subset of orbitals and often only local interac-
tions are considered, while clearly electrons in all orbitals and also at distant sites interact with
each other. The question of how to determine meaningful interaction parameters entering the
many-body models will be addressed in section 3. DFT includes already some (partly unknown
portion of) interaction effects in a static mean field manner, which have to be accounted for.
This leads to so-called double-counting corrections which are discussed in section 4. The inclu-



Projectors and Interactions 5.3

Fig. 1: Electronic structure of three example systems. (a) SrVO3, (b) NiO, and (c) Fe impurities
in Au. The electronic density of states (DOS) and band structures as obtained from DFT are
shown. For Fe in Au the band structure of the host is shown. The systems illustrate different
levels of complexity on the single-particle level. While for SrVO3 the block of three t2g-bands
around the Fermi level turns out to control the low energy physics, NiO is experimentally known
to be a charge transfer insulator and a description of elementary electronic excitations requires
to consider both Ni-3d and O-2p states. For Fe impurities in Au, there is a continuum of sp-like
host states together with impurity 3d-states at the Fermi level. Crystal momentum is no more
a good quantum number of single-particle states in the the impurity system, which makes its
description already involved on the single-particle level.

sion of interactions in the correlated subspace can lead to a redistribution of charges between
different orbitals of the system, which would in turn modify the mean field interaction terms
contained in DFT and thereby included in the single-particle part of the DFT++ models. Re-
sulting issues of charge self-consistency between the DFT and the many-body parts will finally
be considered in section 4.

2 Correlated subspaces and projectors

We start our discussion with SrVO3, NiO, and magnetic Fe impurities in Au, which are exam-
ples of, respectively, correlated metals, charge transfer insulators and Kondo systems. Band
structures and density of states as derived from DFT calculations are summarized in Fig. 1.
SrVO3 has a block of three bands, the so-called t2g bands, in the vicinity of the Fermi level.
These bands have mainly V 3d character and it turns out that the low energy electronic structure
can be understood in terms of these bands. In other words, a many-body Hamiltonian for the
description of correlation effects in SrVO3 could be obtained from these t2g bands alone.
NiO is a so-called charge transfer insulator [2]. In contrast to Mott-Hubbard insulators, where
the Hubbard U opens a charge gap within the transition-metal d bands, in charge-transfer sys-
tems the gap typically opens between ligand p bands and the upper Hubbard bands derived from
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the transition-metal d states. Thus, the so-called charge transfer energy |εp− εd| determines the
size of the gap. Quite often, ligand p bands and transition-metal d states mix through hybridiza-
tion and it is thus the interplay of transition-metal d states and oxygen 2p states that defines
the fundamental electronic excitations. Paramagnetic DFT fails to reproduce this behavior; it
predicts NiO to be metallic with Ni-eg bands close to the Fermi level, EF = 0, and O 2p-states
more than 3eV below EF . It reveals, nevertheless, hybridization between Ni and O-derived
bands. A description of the electronic excitations of NiO should involve the intermixed O 2p

and Ni 3d-bands, while we expect that electronic correlation effects result mostly from the par-
tially filled transition-metal 3d states. A natural many-body model would thus involve 8 bands,
i.e., 3 carrying mainly O 2p-weight and 5 bands derived from the Ni 3d states. We would then
end up with a correlated subspace of dimension 5 embedded into larger 8 dimensional space of
single-particle Bloch states.
Finally, Fe in Au is an impurity problem, and there are no well defined bands since the crystal
momentum k is not a good quantum number of the single-particle states any more. In practice,
impurity problems are often modeled using supercells containing the transition-metal impurity
atom and on the order of hundred atoms to mimic the host. Assuming that electron correlations
mainly take place in the impurity d-orbitals one still has a correlated subspace of dimension 5
but embedded into single-particle Hilbert space spanned by a few hundred supercell bands. We
will below see that coupling between the correlated and uncorrelated parts of the single-particle
Hilbert space can be elegantly formulated based on projection operators. The discussion follows
mainly Refs. [3–8].
The first step of any DFT++ approach is to identify a correlated subspace {|m〉}, where the
Kohn-Sham Hamiltonian HK is augmented by interactions HU and a double-counting correc-
tion HDC . One thus arrives at a Hamiltonian

H =
∑
k

εkc
†
kck︸ ︷︷ ︸

HK

−µDC
∑
m

d†mdm︸ ︷︷ ︸
HDC

+
1

2

∑
m...m′′′

Um...m′′′d
†
md
†
m′dm′′dm′′′︸ ︷︷ ︸

HU

, (1)

where the Kohn-Sham energies εk and the Kohn-Sham eigenstates |k〉 obtained from DFT de-
fine the non-interacting starting point. To make calculations feasible one often assumes local
interactions that couple only the correlated orbitals at the same site. In the general form of
Eq. (1), H could be a multiband Hubbard or a multiorbital Anderson Impurity Model (AIM).

2.1 Quantum impurity problems

We start with the discussion of an impurity problem, as for instance realized by ad-atoms on
surfaces or by magnetic dopants in bulk metals. We will show that projections 〈k|m〉 of the
Kohn-Sham states onto the states of the correlated subspace are sufficient to connect the DFT
real material simulations with the multi-orbital AIM. In general, states |k〉 and |m〉 have a
finite overlap 〈k|m〉 6= 0. i.e., they are non-orthogonal. If one constructs an orthonormalized
basis of single-particle states which includes the states |m〉 and an orthogonal set {|k̃〉} with
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corresponding Fermi operators ck̃ one could rewrite the Hamiltonian in the form

HAIM =
∑
k̃

εk̃c
†
k̃
ck̃+
∑
k̃,m

(Vk̃mc
†
k̃
dm+h.c.)+

∑
m

(εm−µDC)d†mdm+
1

2

∑
m...m′

Um...m′′′d
†
md
†
m′dm′′dm′′′ .

(2)
Equivalently, the problem can be characterized through the corresponding action

SAIM(c∗, c, d∗, d) =

∫ β

0

dτ
∑
k̃

c∗
k̃
(τ)∂τck̃(τ) +

∑
m

d∗m(τ)∂τdm(τ) +HAIM(c∗, c, d∗, d)(τ), (3)

where the Fermi operators are replaced by Grassmann numbers, which leads to the partition
function Z via the imaginary time path integral

Z =

∫
D[c∗, c, d∗, d]e−SAIM(c∗,c,d∗,d). (4)

This integral is Gaussian in the Grassmann numbers c∗
k̃

and ck̃, i.e., the bath parts can be inte-
grated out and we arrive at an effective action

Seff(d∗, d) = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
m,m′

d∗m(τ)(G−1
0 (τ − τ ′))dm(τ ′) +

∫ β

0

dτ HU(d∗, d)(τ), (5)

which specifies all local electronic properties of the AIM. The bath enters indirectly through
the non-interacting Green function G0 of the correlated orbitals. G0 can be easily obtained from
our first-principles calculations: As the Kohn-Sham eigenvalues and eigenstates define the non-
interacting starting point of our DFT++ impurity treatment, the Kohn-Sham Green function

GKS(iωn) =
∑
k

|k〉〈k|
iωn + µ− εk

(6)

plays the role of the non-interacting Green function and the matrix elements entering Eq. (5)
read

G0(iωn)mm′ = 〈m|GKS(iωn)|m′〉 =
∑
k

〈m|k〉〈k|m′〉
iωn + µ− εk

. (7)

The single-particle part of the AIM is thus fully defined, once the DFT Kohn-Sham problem of
the system of interest is solved and the projections 〈k|m〉 of the Kohn-Sham eigenstates onto
the basis states of the correlated subspace are known.
Defining the projector PC =

∑
m |m〉〈m| onto the correlated subspace C, G0(iωn) from Eq. (7)

can be represented in a compact matrix notation

G0(iωn) = PCGKS(iωn)PC. (8)

In this way, the single-particle terms entering the DFT++ quantum impurity model for a com-
plex system like a magnetic impurity in a metal or metal-organic molecules on metal surfaces
are defined from first-principles. Once the interaction (see section 3) and double-counting terms
(see section 4) are also specified, the impurity model, Eq. (5), can be solved, e.g., by quantum
Monte Carlo methods as explained in the lecture by Fakher Assaad.
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Fig. 2: DFT+DMFT self-consistency cycle. The algorithm starts with a DFT calculation, which
yields the Kohn-Sham Hamiltonian and Kohn-Sham eigenstates |k〉 ≡ |ψkν〉. Then, the KS
Green function and from it the starting value for the bath Green function G0 are constructed and
passed on to the DMFT loop. The DMFT loop involves upfolding of the self-energy, Eq. (15),
and downfolding of the full Green function to the correlated subspace, Eq. (17). Both can be
accomplished using projectors. A potential self-consistency over the charge density n(r) is also
indicated. From Ref. [8].

2.2 Projector formalism in LDA+DMFT

Dynamical mean field theory maps correlated lattice models such as the Hubbard model onto
Anderson impurity models with a self-consistency condition, as explained in the lecture by
Antoine Georges. In DMFT, the auxiliary impurity problems involve the correlated orbitals
with local interaction, coupled to a self-consistent energy-dependent bath. In the effective action
formulation, this takes again the form of Eq. (5), where only the meaning of G0 changes. It is
no longer the bare (i.e. non-interacting) local Green function of the DFT++ Hamiltonian (1),
but rather the dynamical mean-field, which is determined self-consistently and which encodes
the coupling of the embedded atom to the effective bath. In other words, G0 is the analogue of
the Weiss field in the mean field theory of classical magnets. Due to the self-consistency cycle
of DMFT, G0 depends on many-body effects in the material under consideration.
The central quantity in the DMFT formalism is the local Green function Gloc

R (iωn), which con-
tains simply those matrix elements of the full Green functionG(iωn) which belong to correlated
orbitals from the same site R. We can thus use the projection operators PCR =

∑
m |Rm〉〈Rm|

to correlated orbitals |Rm〉 at site R to write the local Green function

Gloc
R (iωn) = PCRG(iωn)PCR. (9)

As before, we interpret the Green functions as operators acting on the space of single-particle
states.
By definition of the self-energy Σ(iωn), the full Green function of the lattice problem is given
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by
G(iωn)−1 = GKS(iωn)−1 −Σ(iωn). (10)

Since the interaction terms of the DFT++ Hamiltonian are restricted to the correlated subspace,
the self-energy can be non-zero only within C. In the DMFT approximation, Σ(iωn) is local
and obtained from the auxiliary impurity problem according to

Σ(iωn) = G−1
0 (iωn)−G−1

imp(iωn), (11)

where is Gimp(iωn) is the Green function of the auxiliary impurity problem defined through
Seff . From the DMFT self-consistency condition

Gimp(iωn) = Gloc
R (iωn), (12)

we obtain a prescription on how to construct the bath Green function:

G−1
0 (iωn) = Σ(iωn) + (Gloc

R )−1(iωn). (13)

Eqs. (11) and (13) define the DMFT self-consistency cycle in a basis-independent way as il-
lustrated in Fig. 2. For actual computations, a basis {|Bkα〉} (often referred to as Bloch basis)
has to be chosen to represent the Green functions explicitly as matrices. There are two natural
choices: one could either use the Kohn-Sham eigenstates or any basis set (e.g. plane waves,
projector augmented plane waves, or full potential linearized augmented plane waves) which is
implemented in the DFT-code used.
To translate the equations defining the self-consistency cycle (Eqs. (9–13)) to this basis set
dependent notation, we need the matrix-representations of the Kohn-Sham Hamiltonian

HKS(k)αα′ =
∑
k

〈Bkα|k〉εk〈k|Bkα〉 (14)

and of the self-energy operator

Σαα′(k, iωn) = 〈Bkα|Σ(iωn)|Bkα′〉 = 〈Bkα|m〉Σmm′(iωn)〈m′|Bkα′〉. (15)

These lead directly to the full Green function

Gαα′(k, iωn) = {iωn + µ−HKS(k)−Σ(k, iωn)}−1
αα′ (16)

in the Bloch basis. Eq. (15) obviously upfolds the self-energy, which is obtained from the
solution of the impurity problem in the localized basis of C, to the full space of Bloch basis
functions. Although Σ(iωn) is purely local when expressed in the set of correlated orbitals, it
acquires in general momentum dependence when expressed in an arbitrary basis set.
The bath Green function is provided to the impurity solver in the localized basis and thus re-
quires (cf. Eq. (13)) the local Green function in the localized basis

Gloc
R (iωn)mm′ =

∑
k,α,α′

〈Rm|Bkα〉Gαα′(k, iωn)〈Bkα′|Rm′〉. (17)
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That is indeed all we need to implement the DFT+DMFT cycle as depicted in Fig. 2. The
projections 〈Rm|Bkα〉 facilitate both the upfolding of the self-energy to the Bloch basis and
downfolding of the full Green function to the local Green function on the correlated subspace.
To summarize, DFT+DMFT requires decisions on the following two issues [4]:

1. The local orbitals |Rm〉 spanning the correlated subspace C have to be chosen. Different
definitions of C can lead to different results and the quality of the DMFT approximation
will in general depend on the choice of C. One might want to define C such that the
DMFT approximation is best justified, which is intuitively associated with well-localized
orbitals.

2. To keep the DFT+DMFT computationally tractable, the basis of Bloch states {|Bkα〉}
should be chosen in such a way that the number of states that have non-zero overlap with
the correlated subspace 〈Bkα|PCR|Bkα〉 > 0 remains sufficiently small. Taking {|Bkα〉}
to be the Kohn-Sham eigenstates is often a good choice in this respect while simple plane
waves typically lead to too large Bloch spaces.

There are indeed several possibilities for the construction of local orbitals including different
flavors of Wannier functions such as maximally localized Wannier functions or so-called N th
order Muffin Tin Orbitals (NMTO). A very practical way to construct a basis for C is to use
entities that are already existing in most of the common band-structure codes, namely, the de-
composition of local atomic-like orbitals |R̃m〉 in terms of Bloch basis functions [5]. Indeed,
if the set of Bloch states (e.g. the Kohn-Sham eigenstates generated by the DFT code) were
complete, we could simply take the set {|R̃m〉} as basis of the correlated subspace C.
However, independently of the particular Bloch basis set which is chosen, one has to restrict
practical DFT+DMFT calculations always to a finite space of NB Bloch states. Those states
span a finite subspaceW of the total Hilbert space. The local atomic-like states |R̃m〉 will, in
general, have a decomposition involving all Bloch bands. Projections of {|R̃m〉} ontoW can
thus lead to a non-orthonormal set of localized states. The obvious way out is to reorthonormal-
ize, which is easiest done in the following way:
We consider the Bloch transform of the local atomic-like orbitals, |k̃m〉 = 1√

N

∑
R e

ikR|R̃m〉,
where N is the number of atoms in the crystal. The projections of |k̃m〉 ontoW reads

|˜̃km〉 =
∑
α∈W

|Bkα〉〈Bkα|k̃m〉. (18)

The {|˜̃km〉} are not true Wannier functions as they are not orthonormal, i.e., their overlap matrix

Omm′(k) = 〈˜̃km|˜̃km′〉 is not the unit matrix. We arrive however at an orthonomal basis set of
the correlated subspace by orthonormalizing according to

|km〉 =
∑
m′

O
−1/2
mm′ (k)|˜̃km′〉. (19)
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Eqs. (18) and (19) indeed define a proper Wannier construction. We call the resulting Wannier
functions ”projector guided Wannier functions” (PWF). PWFs often serve as starting point of
an MLWF localization procedure. The extent to which PWFs differ form MLWFs is system-
specific. For rather localized states, like in transition-metal oxides, the differences are indeed
small [6], while they are larger in materials with highly extended electronic states like pz elec-
trons in graphene.
More severe than differences between PWFs and MLWFs are differences associated with dif-
ferent choices of the Bloch space W . This shall be illustrated with the example of SrVO3,
which is a metal with one electron in the t2g bands and empty eg bands (see Fig. 1). SrVO3 is
a good test-case for DFT+DMFT calculations because excitation spectra and thermodynamic
properties hint at correlation effects taking place: First, direct comparison of the photoemis-
sion spectra with the one-particle band-structures, e.g. from DFT-LDA, yields poor agreement.
Moreover, the linear coefficient in the temperature-dependent specific heat is twice larger than
estimated from DFT-LDA, which suggests correlation induced mass enhancement [4].
For an DFT+DMFT description of SrVO3, one could make two rather different choices ofW:
First, we could focus on a very limited set of low-energy Bloch bands, such as the three t2g bands
in the vicinity of the Fermi level (cf. Fig. 1) and generateW just from the three corresponding
Bloch functions. In this case, we would have W = C. Since now the Bloch bands span a
narrow energy window, the Wannier functions defining C will be rather spatially extended: As
Fig. 3b shows, they are centered on vanadium atoms but also have sizable weight on neighboring
oxygen atoms, which reflects the hybrid character of the low energy t2g-type states. This first
choice ofW = C is of course appealing since it involves a minimal number of bands but comes
at the expense that the investigation of the indirect effects of correlations on bands other than
the t2g ones are out of scope.
Alternatively, we could define W from a larger energy window of Bloch bands including all
bands associated with the O 2p and all V 3d states. Then, the indirect impact of electron
correlations on largely O 2p-derived bands can also be addressed. Having an enlarged Bloch
spaceW means also that the basis orbitals |Rm〉 of the correlated subspace can involve Bloch
states from a correspondingly wider energy range (cf. Eq. (19)) and will be more spatially
localized. As Fig. 3c shows, they are now indeed much closer to vanadium atomic-like orbitals.
A comparison of k-resolved spectral functions as obtained from DFT+DMFT simulations of
SrVO3 with a Bloch space made up by the t2g bands only and involving additionally the oxygen
2p states is given in Fig. 3. In both cases, we find a narrowing of the t2g-like quasi-particle
states close to the Fermi level with renormalization factors Z ≈ 0.6, which is in line with
experimentally found band narrowing [6]. Also, independently of the choice of W , we see
spectral weight being transferred from the t2g bands to lower and upper Hubbard bands. The
major effect of different choices ofW concerns, as expected, the oxygen 2p derived states. For
the larger Bloch space, hybridization with the correlated subspace leads to lifetime broadening
of the oxygen 2p bands. While for SrVO3 both models yield a reasonable description of the
low energy physics, there are many materials for which the inclusion of bands beyond the
correlated subspace is absolutely required. For example, in charge-transfer insulators like NiO



5.10 Tim Wehling

Fig. 3: (a) SrVO3 structure with Sr large (blue), V (red), and O small (yellow). (b,c) Perspective
view of Maximally Localized Wannier functions of the t2g states as obtained from the three t2g-
like bands around the Fermi level (b) and from a 14 band calculation, i.e., involving three
2p-like states from three oxygen ions and five 3d-like states from the vanadium ion. From Ref.
[4]. Momentum resolved spectral functions as calculated within DFT+DMFT using models
involving three Bloch bands only (d) and a Bloch space involving also the oxygen derived states
(e). The DFT bands are indicated as white lines. From Ref. [6].

(see section 4), the inclusion of oxygen 2p states in the DFT+DMFT procedure is necessary to
describe the fundamental electronic excitations.
Using the projector formalism outlined so far, we can in principle fix all terms entering the
DFT++ Hamiltonian, Eq. (1), apart from the double-counting shifts and the interaction matrices.
We will discuss these terms in the following two sections.

3 Interaction terms: Hubbard U and beyond

Correlation effects are generated by the interaction terms in the DFT++ Hamiltonian, Eq. (1).
What are these interaction terms? Naively, one might guess that they could be obtained as
matrix elements of the bare Coulomb interaction

Um...m′′′
?
= 〈Rm|〈Rm′| e2

r̂− r̂′
|Rm′′〉|Rm′′′〉.

Indeed, that is not the case, since the DFT++ Hamiltonian restricts interactions to the correlated
subspace C and also assumes that interactions are local. The Gedankenexperiment depicted in
Fig. (4) illustrates the problem.
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(a) full model

U

energy gain: U-V

V

(b) effective model

U*

energy gain: U*

Fig. 4: Interaction energies in models with non-local (a) and purely on-site interactions (b).
Wavy lines illustrate Coulomb interactions. (a) An electron in the extended Hubbard model
hopping from a doubly occupied site to an empty one, gains an energy U − V . (b) The same
situation in the model with purely local interactions leads to an energy gain of U∗. From
Ref. [9].

In a model with on-site repulsion U and nearest neighbor interaction V, an electron hopping
from a doubly occupied site to a neighboring empty site gains interaction energy U − V, while
in a model with purely local Hubbard repulsion U∗ the corresponding energy gain is U∗. A
similar argument applies for electrons moving from a correlated orbital of an atom, e.g., the
3d-orbital of a transition-metal atom like Fe or Ni, to an uncorrelated 4p-orbital at the same
site. Here, one would have to account for neglecting the repulsion Upd between p and d electron
when determining some Hubbard interaction which is restricted to the space of d-orbitals. Thus
far, our discussion involved only two electrons. Obviously in a real solid, all surrounding elec-
trons rearrange in response to the Coulomb potential generated by a charge moving through the
material and Coulomb interactions will be screened. The DFT++ model Hamiltonian involves
explicitly a limited set of Coulomb processes and associated screening effects. It thus accounts
for some amount of electronic screening but many screening channels are indeed neglected.
The Coulomb matrix elements entering the DFT++ model should therefore be derived from an
appropriately partially screened interaction.

One approach to this problem is the so-called constrained local-density approximation (cLDA)
[10]: The Hubbard interaction U , e.g. between 3d-electrons at the same site, contributes to the
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Fig. 5: Screened interaction in the random phase approximation (a). (From Ref. [12]) The
constrained random phase approximation (cRPA) excludes bubbles which are entirely within
the correlated subspace C as illustrated here with the example of SrVO3. If we choose C to
be the t2g block around EF , the bubbles (dashed) involving t2g to t2g transitions are excluded
(b). Frequency dependent effective interactions in SrVO3 (c) (from Ref. [13]) and graphene (d)
(from Ref. [14]) as obtained from cRPA.

total energy a term of the form E = 1
2
Un3d(n3d − 1). The second derivative of E with respect

to the occupancy thus yields the Hubbard interaction

U =
∂2E

∂n2
3d

. (20)

This approach is within the DFT reasoning and has been implemented in several DFT codes.

3.1 The constrained random phase approximation

More recently, a method implementing the idea of partial screening in a diagrammatic language
– the so-called constrained random phase approximation (cRPA) – has been proposed [11] and is
widely used to date. Let us assume that we have a solid with a well-defined correlated subspace
of flat bands near the Fermi level, e.g. transition-metal 3d bands, with the remainder including,
for instance, 4s or 4p bands. For simplicity, we assume that there is no hybridization between
3d and 4sp states, i.e., we can span our Bloch space by Kohn-Sham eigenstates |ψd〉 and |ψr〉
referring to 3d-states and the rest, respectively.
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The idea is now to construct a partially screened interaction, which accounts for all screening
processes except for those involving 3d-to-3d-transitions since the latter processes will be con-
tained in our DFT++ Hamiltonian and should not be counted twice. We can implement this
idea within the random phase approximation if we include all bubble diagrams except for those
involving 3d-to-3d-transitions in the expansion of the polarization function (cf. Fig. 5). The
sum of bubble diagrams leads to the polarization operator

P̂ (iΩm) = − 1

β

∑
iωn

Ĝ(iωn + iΩm)Ĝ(iωn). (21)

The screened interaction W in RPA is given by

Ŵ = v̂ + v̂P̂ v̂ + v̂P̂ v̂P̂ v̂ + · · · =
[
1− v̂P̂

]−1

v̂. (22)

Taking G to be the Kohn-Sham Green function, the evaluation of the Matsubara sum, (21),
leads to a sum over transitions between occupied and empty states which reads in position
space representation as

P (r, r′; iΩm) =
occ∑
i

empty∑
j

ψi(r)ψ
∗
i (r
′)ψj(r

′)ψ∗j (r)

{
1

iΩn + εi − εj
− 1

iΩn + εj − εi

}
. (23)

We split P̂ into P̂ = P̂d + P̂r, where P̂d includes only 3d to 3d transitions (i.e, restricting the
sums in Eq. (23) to i, j ∈ C), and Pr be the rest of the polarization. The screened interaction in
RPA can then be expressed as

Ŵ =
[
1− v̂P̂r − v̂P̂d

]−1

v̂

=
[
(1− v̂P̂r){1− (1− v̂P̂r)−1v̂P̂d}

]−1

v̂

=
[
1− (1− v̂P̂r)−1v̂P̂d

]−1

(1− v̂P̂r)−1v̂

=
[
1− ŴrP̂d

]−1

Ŵr, (24)

where
Ŵr(iΩn) = (1− v̂P̂r(iΩn))−1v̂ (25)

is the partially screened interaction we were searching for [11]. It describes the interaction
between the electrons of the correlated subspace and accounts for screening by the rest of the
system in RPA. The matrix elements of Ŵr can therefore be used obtain the interaction terms
entering the DFT++ model from first principles

Um...m′′′(iΩn) = 〈Rm|〈Rm′|Ŵr(iΩn)|Rm′′〉|Rm′′′〉. (26)

From Eq. (25) we see that, the frequency dependence in the polarization function leads to a
frequency dependent, i.e. retarded, interaction which in general carries a real and an imaginary
part. This effective DFT++ theory will thus not take a Hamiltonian form and the interaction
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Ŵr(iΩn) is, in general non-local. We analyze two example cases, SrVO3 and graphene, to
illustrate this point.
For SrVO3, cRPA yields in the static limit a value of U = 3.5 eV [13], which is indeed close to
the value of U ≈ 4 eV used in many DFT+DMFT calculations which include only the t2g bands
in the Bloch space and the correlated subspace (cf. Refs. [4–6]). With this value, DFT+DMFT
yields quasi-particle weights and the location of the Hubbard bands in reasonable agreement
with experiments [4]. The interpretation of the static limit of the cRPA interaction as the in-
teraction to include in the DFT++ Hamiltonian thus seems to be a reasonable approximation
and that is indeed what is often done in practice. It should, however, be noted that this ap-
proximation neglects several physical processes that affect electronic excitation spectra in real
materials. Plasmons, manifesting for instance as poles/resonances in the screened interaction,
i.e., dynamic plasmon effects associated with the uncorrelated states, will not enter the DFT++
model if the static limit of the RPA interaction is chosen. For Ni, it has been shown that these
high-energy plasmons can affect the low-energy spectra by spectral weight transfer to higher-
energy plasmon satellites and a concomitant reduction of the quasi particle weight [13]. It has
been suggested that this spectral weight transfer can be accounted for through a renormalization
of the hopping and hybridization parameters [15].

3.2 Non-local Coulomb interactions

So far, we considered only local interaction terms. One reasoning behind this is that in transition-
metals like Fe or Ni, the uncorrelated sp-electron bands provide efficient screening such that
the non-local terms are small [16]. This is not necessarily always the case, as can be seen from
the the partially screened interaction Ŵr of the pz-electrons in graphene and graphite in Fig. 5.
We see that graphene hosts both sizable on-site repulsion U00 = 9.3 eV ≈ 3.3 t and nearest
neighbor interaction U01 = 5.5 eV ≈ 2 t, which exceed the nearest neighbor hopping t and are
both on the order of the electronic band width D = 6 t [14]. This coexistence of local- and non-
local interaction terms is typical for effective models of low dimensional materials and has also
been found for two-dimensional superstructures of ad-atoms on semiconductor surfaces [17].
We will therefore discuss the example of graphene a bit closer.
Quantum Monte Carlo simulations of the Hubbard model on the honeycomb lattice have in-
dicated many-body instabilities from a Dirac material towards gapped phases for interaction
strengths U & 3.5 t. At large interactions U > 4.5 t the formation of an antiferromagnetic
insulator appears well established, while there is controversy about intermediate interaction
strengths 3.5 t < U < 4.5 t, where Ref. [18] argues for the presence of a spin-liquid phase.
More recent calculations question this formation of a spin-liquid but find an antiferromagnetic
insulator for U > 3.9 t [19]. Thus, taking the cRPA local Coulomb interaction U00 ≈ 3.3 t

and neglecting all other terms would put graphene close to an instability towards an insulating
phase driven by local correlations. This appears surprising, since graphene is indeed one of the
best known electric conductors and electrons in graphene are generally assumed to be rather
delocalized.
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So, what is wrong, here? Obviously, the non-local interaction terms have been neglected or
equivalently have been only included on a Hartree level.1 From the illustration of Fig. 4, it is
however clear that non-local terms could indeed weaken the effective local interactions. If we
are interested in thermodynamic instabilities (e.g. transitions between a Dirac material and an
antiferromagnetic insulator), the following variational approach provides a connection between
models with strictly local and non-local interactions [9]:
The starting point is the extended Hubbard model

H = −
∑
i,j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ +
1

2

∑
i6=j

σ,σ′

Vijniσnjσ′ , (27)

where tij are the hopping matrix elements and U and Vij are the local and nonlocal Coulomb
matrix elements, respectively. The goal is to map the Hamiltonian (27) onto the effective model

H∗ = −
∑
i,j,σ

tijc
†
iσcjσ + U∗

∑
i

ni↑ni↓. (28)

The effective on-site interaction U∗ shall be chosen such that the canonical density operator
ρ∗ = 1/Z∗e−βH

∗ of the auxiliary system, where Z∗ = Tr
{
e−βH

∗} is the partition function,
approximates the exact density operator ρ derived fromH as close as possible. This requirement
leads to the Peierls-Feynman-Bogoliubov variational principle [20–22] for the functional

Φ̃[ρ∗] = Φ∗ + 〈H −H∗〉∗, (29)

where Φ∗ = − 1
β

lnZ∗ is the free energy of the auxiliary system. 〈. . . 〉∗ denotes thermodynamic
expectation values with respect to the auxiliary system: 〈H −H∗〉∗ = Tr ρ∗(H −H∗). In the
case of ρ∗ = ρ the functional Φ̃[ρ∗] becomes minimal and coincides with the free energy. The
optimal U∗ is thus obtained for minimal Φ̃[ρ∗] = Φ̃[U∗]:

∂U∗Φ̃[U∗] = 0. (30)

By evaluating Eq. (30) one finds

U∗ = U +
1

2

∑
i6=j

σ,σ′

Vij
∂U∗〈niσnjσ′〉∗∑
l ∂U∗〈nl↑nl↓〉∗

. (31)

This rule quite closely resembles the Gedankenexperiment depicted in Fig. 4: Increasing the on-
site term U∗ reduces the double occupancy 〈ni↑ni↓〉∗ and pushes away electrons approaching
an already occupied site i = 0 to neighboring sites. In the case of purely local Coulomb
interactions, there is a Coulomb energy gain of U∗ upon suppressing the double occupancy
(Fig. 4b). However, when there are nonlocal Coulomb interactions with thesurrounding lattice
sites j, the displaced electrons raise the energy of the system by terms proportional to V0j . This

1Neglecting the non-local interactions or inclusion on a Hartree level are equivalent in the model of Eq. (27)
if translation invariance is assumed due to cancellation of Hartree terms with the positive charge background
stemming from the nuclei.
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process is depicted in Fig. 4a for the simple case of two electrons on one site. In this case, it
is obvious that the Coulomb energy gain due to the electron displacement in the full and the
auxiliary model become energetically equivalent for U∗ = U − V . In general, this energy gain
depends both on the sites to which the charge density is displaced due to the local Coulomb
interaction and on how strong the nonlocal Coulomb terms are.

For a translationally invariant system, the local part of the interaction U is reduced according to
U∗ = U − V̄ , where

V̄ = −
∑
j 6=0

σ′

V0j
∂U∗〈n0↑njσ′〉∗

∂U∗〈n0↑n0↓〉∗
. (32)

The conservation of the total electron number N leads to the sum rules
∑

jσ〈n0↑njσ〉∗ = const.
and ∂U∗〈n0↑n0↓〉∗ = −

∑
j 6=0,σ ∂U∗〈n0↑njσ〉∗. Thus, V̄ is a weighted average of the nonlocal

Coulomb interactions. Under the assumption that an increasing U∗ displaces electrons only to
next neighbors, we find ∂U∗〈n0↑n0↓〉∗ = −Nn∂U∗

∑
σ〈n0↑n1σ′〉∗, where Nn is the coordination

number. Equation (31) then yields

U∗ = U − V01, (33)

which is exactly the situation depicted in Fig. 4.

It is reasonable that V̄ is positive (repulsive) in most situations that correspond to real materials.
Then, the nonlocal Coulomb interaction reduces the effective on-site interaction and therefore
stabilizes the Fermi sea against transitions e.g. to a Mott insulator. This is indeed what hap-
pens also in graphene where an evalution of Eq. (32) using correlation functions ∂U∗〈n0↑njσ′〉∗

obtained by means of lattice QMC calculations yields U∗ ≈ 1.6t [9]. The effective local in-
teraction is thus reduced due to the non-local Coulomb terms by more than a factor of two and
the Dirac electron phase in graphene is correspondingly stabilized against transitions into an
antiferromagnetic insulating phase. The example of graphene thus shows that treatments of
non-local interactions beyond the Hartree approximation can be very important to assess phase
transitions in strongly correlated electron systems.

The approach discussed here is variantional and comes with the simplicity that the auxiliary
system (which we solve numerically) involves only local interactions and can thus be treated
e.g. by standard DMFT. It is also possible to account for non-local interactions diagrammati-
cally, as for instance in the GW+DMFT approach [23]. In GW+DMFT non-local interactions
and related electronic correlation effects are included on an RPA level. Regarding the effect
of non-local interactions on boundaries between metallic and Mott insulating phases in low
dimensional correlated materials, GW+DMFT also predicts that non-local interactions can sta-
bilize the metallic phase [17]. The pictures emerging from GW+DMFT and the above explained
variational approach are thus consistent.
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4 Double-counting and charge self-consistency

The central idea of the DFT++ Hamiltonian, Eq. (1), is to introduce interaction terms Um...m′′′
within the correlated subspace to account for dynamic correlation effects. However, the Kohn-
Sham energies from DFT already include interaction effects through the Hartree and exchange-
correlation terms. Without correction, some interaction contributions would thus be counted
twice in DFT++. Thus, some double-counting correction HDC has to be included. One often
assumes a form like

HDC = µDC
∑
m

d†mdm. (34)

The major problem is that widely used exchange-correlation functionals such as LDA or GGA
are non-linear, do not have a diagrammatic representation, and most-importantly do not allow
one to judge which portion of exchange- and correlation entering the Kohn-Sham eigenvalues
is associated with the interactions added in DFT++ within the correlated subspace. Double-
counting problems are typical for electronic structure methods where semilocal approximate
DFT functionals are augmented with additional interaction terms and also occur in approaches
like LDA+U. There is no universal solution to this problem, and the following discussion of
practical ways to deal with double-counting will be quite empirical.
Several schemes to fix the double-counting terms have been put forward. All of them are based
on some assumption either on how exchange and correlation effects within the correlated sub-
space are included in a functional like LDA or on some quantity which is assumed to be cor-
rectly obtained already from the DFT and which should not change when adding correlations
within DFT++.
Since the double-counting correction is intrinsically an impurity quantity and not a global quan-
tity (like the chemical potential µ) it appears natural to use intrinsic quantities of the impurity
like the impurity self-energy or the impurity Green function to fix it. One physically intuitive as-
sumption is to require that the electronic charge computed from the local noninteracting Green
function and the one computed from the interacting impurity Green function are identical [5]

Tr Gimp
mm′(β)

!
= Tr G0,loc

mm′(β). (35)

Alternatively one can also use the Weiss field Gmm′ instead of the local noninteracting Green
function in the above equation. Both versions of the method give very similar results and work
very well in metallic systems [5], since in a metal the total particle number of the system N and
of the impurity nimp are both very sensitive to small variations in µ and µdc.
One possible ansatz using the impurity self-energy Σimp

mm′ is to constraint the high energy tails
in the real part of the self-energy to sum up to zero

Re Tr (Σimp
mm′(iωN))

!
= 0. (36)

Here, ωN is the highest Matsubara frequency included in the computation. Physically this
amounts to the requirement that the shift in the centroid of the impurity orbitals contains no
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static component, i.e., that static mean field components of the self-energy are correctly pro-
vided by LDA. This criterion is sometimes used in insulating materials [24]. In metals it is
otherwise reasonable to assume that the exchange correlation potential yields a good approxi-
mation of the self-energy at the Fermi level and thus to require that Re Tr (Σimp

mm′(i2π/β))
!

= 0.
The criteria (35) and (36) define the double-counting correction implicitly. There are also two
widely used schemes on how to fix the double-counting explicitly from occupation numbers
termed “around mean field” (AMF) [25] and “fully localized limit” (FLL) [26]. AMF bases on
the idea that exchange and correlation effects are included in LDA but only in a spherically and
thus orbitally averaged mean field manner. The resulting double-counting potential is

µAMF
dc =

∑
m′

Umm′n
0 +

∑
m′,m′ 6=m

(Umm′ − Jmm′)n0, (37)

where n0 = 1
2(2l+1)

∑
m,σ nmσ is the average occupancy. FLL is based on essentially the op-

posite idea. It assumes that total energies for fully localized atomic systems are rather well
represented in functionals like LDA, i.e., that LDA (or LSDA) total energies are reliable if or-
bital occupation numbers nmσ are either 1 or 0. While the LDA total energies are assumed
to be appropriate in this fully localized case, for non-integer occupations LDA is known to
be problematic since it does not correctly reproduce the derivative discontinuity of the exact
density functional: it is known that the Kohn-Sham energies (which are derivatives of the total
energy with respect to orbital occupations) in LDA do not jump discontinuously as they should
for the exact density functional. One can combine the observation of good total energies at
integer occupancy but lacking derivative discontinuity into the following prescription for the
double-counting potential:

µFLLdc = U(Nimp − 1/2) + J(Nσ
imp − 1/2), (38)

withNσ
imp =

∑
m nmσ being the total occupancy of the spin σ-component andNimp =

∑
σN

σ
imp

being the total occupancy.
Indeed, different prescriptions for the double-counting can lead to different predictions re-
garding material properties like excitation spectra, as can be seen for the example system of
NiO. The double-counting potential µdc has profound impact on the density of states Ni(ω) =

− 1
π
Im Gi(ω) shown in Fig. 6. In the LDA+DMFT study of Ref. [24], the double-counting

potential has been treated as an adjustable parameter and has been varied between 21 eV and
26 eV.2 The most prominent effects of the double-counting on the spectral properties are the
shift of the oxygen p bands with respect to the nickel d bands, as well as the variation in gap
size. Plainly speaking, the double-counting correction allows for a tuning of the spectral prop-
erties from a large gap Mott-Hubbard insulator to a metal. The regime of the charge trans-
fer insulator, the expected physical state of NiO, lies somewhere in between. The calculated
LDA+DMFT(QMC) spectral functions shown in Fig. 6 reveal basically the two different phys-
ical situations of a Mott-Hubbard, Fig. 6a, and a charge-transfer insulator, Fig. 6b, mentioned

2These values already contain the intrinsic shift due to the energy of the particle-hole symmetry in the Hirsch-
Fye QMC method that amounts to 34 eV with our values of U and J .
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Fig. 6: (a,b) Spectral functions of NiO obtained with LDA+DMFT (QMC) at inverse temper-
ature β = 5eV−1 for different values of the double-counting µdc. (c) Number of particles N
per unit cell (color coded) as function of the chemical potential µ and the double-counting
potential µdc as obtained with LDA+DMFT (QMC). Ni-d and O-p states are included in the
calculation, which yields N = 14 electrons per unit cell. The green plateau corresponds to
a particle number very close to the desired value of N = 14. Values below are encoded in
blue, values above in red. Additionally the results produced by different prescriptions to fix
the double-counting are indicated. For the AMF and FLL functionals SC or F in parentheses
indicates, that the occupancies from the DMFT or the formal occupancies have been used, re-
spectively. INS refers to the double correction of µDC = 25 eV, where best agreement of ARPES
spectra and LDA+DMFT simulations is achieved. From Ref. [24].

above, which are realized depending on the double-counting correction µDC . The characteris-
tic feature of a charge-transfer system, the strongly hybridized ligand p and transition-metal d
character of the low-energy charge excitations, is only present in the spectrum in Fig. 6b. The
spectrum in Fig. 6a is missing this feature almost completely and shows Mott-Hubbard behav-
ior. This difference underscores the importance of the double-counting correction. A detailed
comparison of calculated bandstructures with experiments shows that the choice of µdc = 25 eV

yields best agreement of LDA+DMFT and the experimental data [24].

The pronounced impact of the double-counting correction can be further seen form the plot of
the total number of electrons per unit cell on the chemical potential µ and the double-counting
correction µDC in Fig. 6c. µDC directly affects the pd-charge transfer energy and controls
thereby the gap of the system which can be inferred from the N = 14 plateau region. Where
would the above explained prescriptions for fixing the double-counting correction lead to? Both
the AMF and the self-energy criterion, Eq. (36), would lead to µDC ≈ 21 eV and thus predict
NiO to be basically a Mott-Hubbard but not a charge transfer system. I.e., these criteria are
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not in agreement with experiments. FLL yields µDC ≈ 24 eV, which comes closer to the
experimental situation of a charge transfer insulator. Finally, criteria trying to fix the occupa-
tion of the correlated subspace to some value provided by LDA or the bath Green function,
cf. Eq. (35), drives the system towards a metallic state at double-counting µDC = 26.5 eV in-
dicated by the arrow pointing out of Fig. 6c. Here, FLL appears to describe the system best,
which turns out to be often the case for insulators. On the other hand, metals are often well
described by double-counting corrections based on traces of the Green function as in Eq. (35).
So, the choice of an appropriate double-counting is rather empirical. It is sometimes beneficial
to treat the double-counting correction as adjustable parameter and to study the dependence of
LDA+DMFT prediction on the choice of the double-counting correction.
A promising way to circumvent double-counting issues are fully diagrammatic approaches like
GW+DMFT [23]. These are currently being under development and first GW+DMFT studies
of example materials like SrVO3 [27–29] have been reported. GW+DMFT comes, however, at
the expense of considerably higher computational demands than DFT+DMFT.
The DFT++ Hamiltonian in the form of Eq. (1) implicitly includes interactions between elec-
trons in the correlated subspace and the rest of the system through the Hartree as well as the
exchange correlation potential from DFT. As soon as the many-body part of DFT++ redis-
tributes electrons between correlated and uncorrelated orbitals or also between different sites
there will be associated Hartree (as well as possible exchange or correlation) energies and the
DFT++ Hamiltonian should be correspondingly updated. In general, it is obviously problematic
to obtain the update of the DFT++ Hamiltonian simply from a double-counting correction ap-
plied to the correlated subspace only. This can be better achieved by including self-consistency
over the charge-density in the DFT++ approach.
To this end, one calculates the electron density of the DFT++ system,

n(r) =
1

β

∑
k,α,α′,n

〈r|Bkα〉Gαα′(k, iωn)〈Bkα′|r〉 , (39)

which includes corrections due to dynamic self-energy effects within the correlated subspace.
With this density n(r) one can recalculate the DFT potential and solve the resulting Kohn-Sham
Hamiltonian, which then reenters the non-interacting part of the DFT++ Hamiltonian, Eq. (1).
In this way, a charge self-consistent DFT++ scheme is obtained, see Fig. 2, which includes
interactions between electrons of the correlated subspace and the rest in a fully self-consistent
static mean-field manner. Several implementations of charge self-consistent of DFT+DMFT
have been reported, e.g. Refs. [30–32], based on projector formalisms similar to Sec. 2.
It is intuitively clear that the Hartree terms occurring within DFT++ charge self-consistency
counteract large charge redistributions. In other words, ambiguities stemming for instance
from the unknown double-counting potential can be expected to be less severe in charge self-
consistent DFT++ calculations as compared to one-shot calculations. This has been explic-
itly demonstrated, e.g., for the Matsubara self-energies in the iron pnictide superconductor
LaFeAsO, where the discrepancy between FLL and AMF approaches is significantly reduced
in the fully charge self-consistent scheme [30].
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5 Conclusions

The combination of first-principles and model Hamiltonian approaches termed DFT++ presents
a promising route towards realistic and material specific descriptions of strongly correlated
electron systems. The number of adjustable parameters normally present in models of strongly
correlated materials like transition-metal compounds or impurities on surfaces can be indeed
largely reduced by deriving them from ab-initio calculations. Thereby, realistic studies of ever
more complex correlated electron systems are coming into reach. At the same time, the model
Hamiltonian level involved in DFT++ offers the chance to study how material properties de-
pend, e.g., on the strength of Coulomb interactions by deliberately treating them as adjustable
parameters. With the projector formalism, DFT++ can in principle be applied to arbitrarily com-
plex systems. Many developments in this direction are being pursued throughout the last few
years. Naturally, this lecture covered only a very limited amount of these activities, as readers
familiar with the subject of DFT++ will have noticed and as becomes clear from a deeper look
into the literature referenced here. As has already become clear in the discussions of double-
counting issues or frequency dependent and non-local interactions a lot of method development
at the interface of first-principles and model based approaches remains still to be done. This
includes both the further development of, e.g., DFT+DMFT to a point where it can be as widely
and routinely applied as LDA+U, developments in the combination of diagrammatic ab-initio
approaches with model based approaches such as GW+DMFT, descriptions of non-local corre-
lation effects or also the coupling of correlated electrons and bosonic modes such as plasmons,
phonons or magnons.
The DFT++ model Hamiltonians discussed in this lecture have put an emphasis on correla-
tion effects due to local Coulomb interactions, which are indeed essential for various magnetic
phenomena or Mott metal insulator transitions. Other many-body phenomena can rely on dif-
ferent kinds of interactions. Wigner crystallization of electrons, exciton binding, or plasmon
modes are often controlled by non-local Coulomb interaction terms, and appropriate models
for such phenomena will naturally have to include different interaction terms. In other words:
any DFT++ modeling requires an idea on which interactions form the basis of the many-body
problem to be described. It can of course be very challenging to identify the essential interac-
tions responsible for an unknown phenomenon or to determine whether some observed effect is
a many-body phenomenon or not.
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