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Ø  Weak coupling CT-QMC –  Basics. 
                               –  Add ons: Retarded interactions:  

        phonon degrees of freedom.   
 

Ø  Selected applications.  Topological insulators, electron-phonon interaction.  

Ø  Conclusions. 

  Outline 

Continuous-time QMC Solvers for Electronic Systems in 
 Fermionic and Bosonic Baths  

Goal: Detailed overview of CT-INT and CT-AUX  (CT-HYB à See notes) 



I.  Weak coupling CT-QMC (CT-INT). 

Consider:  

 

H = H0 +U d↑
†d↑
n↑
!d↓

†d↓
n↑
!

We would like to compute for example:   
G σ (τ 2 ,τ1) = T dσ

† (τ 2 )dσ (τ1)

Prior knowledge:    
G0

σ (τ 2 ,τ1) = T dσ
† (τ 2 )dσ (τ1)

0

We will assume time reversal   
symmetry such that G0 is diagonal 
in spin degrees of freedom.  
  

Examples:   Single impurity Anderson model  ( à DMFT) 
 

       Magnetic impurity on the edge of a topological insulator (Important for understanding 
        spin transport) 
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FIG. 1. (Color online) The ribbon is periodic along the r -
direction and at site r = 0, n = 0 the orange box denotes the
impurity orbital which couples with a matrix element V . Sub-
lattice A is denoted by open circles and sublattice B by filled
circles. a1 and a2 denote the unit vectors of the honeycomb
lattice.

a~i� and b~i� denote fermionic operators acting on the re-
spective sublattice and, to account for edge states, we
consider this model on a slab geometry. The boundary
conditions are periodic in r-direction – the correspond-
ing number of sites is denoted by Nx – and open in n-
direction with a length ofNy sites. � is the strength of the
spin-orbit interaction and the hopping t is set to t = 1 for
everything that follows. The e↵ect of electron electron in-
teractions in graphene was studied in Ref.22–24. Although
it turned out that in graphene the spin-orbit coupling is
too small to observe the QSH state, the model can still
be used as an e↵ective Hamiltonian for this topological
state of matter. This model is related to the spinless Hal-
dane model that shows a quantum Hall e↵ect but breaks
time reversal invariance (TRI)25. The Kane-Mele model
can be understood as two copies of the Haldane model
while preserving time-reversal symmetry and exhibiting
a quantum spin-Hall e↵ect. Into this bath system we em-
bed an impurity at an edge. The impurity’s Hamiltonian
Himp is given by

Himp = H0 +HU (2)

with

H0 = ✏d
X

�

d†�d� + V
X
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Here, ✏d denotes the energy of the dot, U the Hubbard in-
teraction and V the hybridization between the first bath
site and the impurity. d� denotes fermionic operators
acting on the impurity. We have chosen a symmetric
representation of the Hubbard interaction that sets the
chemical potential to zero for the half-filled case. We
note that the impurity Hamiltonian obeys time reversal
symmetry together with the bath.

FIG. 2. Spectrum of the Kane-Mele model. Here we have
used N

x

= 512, N
y

= 80 and � = 0.1, which constitute our
“canonical values” in the following. Visible are the di↵erent
bands due to the ”orbitals” in n-direction, as well as the fa-
mous edge states crossing at the Fermi energy.

III. SUMMARY OF BATH PROPERTIES

As already mentioned, the bath model HKM exhibits
the so-called edge states which, as the name implies, are
localized at the edges. Since we attach the impurity to
a site belonging to an edge we revisit some properties of
the bath. We refer to anything outside of the impurity as
bath and everything in the bath that is not dominated by
the edge state as bulk. The edge states correspond to the
states in the energy spectrum of Fig. 2 that cross at the
Fermi energy, ✏(kx) = 0, and enable gapless electronic
excitations at the edge. These edge states constitute a
helical liquid where the spin of an electron is coupled to
the direction of propagation, hence an interaction flipping
the spin reverses its momentum. Since we will argue quite
a bit with the help of the spectral functions we point out
the general structure of An(r,!) here. It is

An(r,!) = A0
n(!) +Bn(r,!, V ) + Cn(r,!,⌃(!)) (3)

with the impurity independent background A0
n(!), a

term Bn(r,!, V ) that depends on the hybridization
V between lattice and impurity and the contribution
Cn(r,!,⌃(!)) due to the self-energy ⌃(!) of the impu-
rity. In Fig. 3 we show a site-resolved view onto the
spectral functions A0

n(!) of the bath. The bulge that is
visible in the outermost (n = 0) spectral functions is the
edge state, which has its spectral weight centered around
! = 0. Since we consider the system without an impu-
rity we have translation invariance along the r - direction.
For comparison we show in Fig. 4 a cut along r = 0 of the
same spectral functions. Further into the bulk the gap of
the insulator appears. Also we see the odd-even pattern
close to the edge. The n = 1 spectral function shows a
gap, whereas the n = 2 function shows some remains of

H0

Ud↑
†d↑d↓

†d↓

H0 is a single body Hamiltonian 

F. Goth et al. Phys. Rev. B (2013)   
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We can now see how to define the configuration space 
 
let C=:{𝜏1, 𝜏2,…, 𝜏n}, and we will carry out the sum over C with Monte Carlo  
importance sampling. 

= Sum  over all connected and disconnected diagrams at order n. 
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Weight / Sign.  

à   New dynamical variable s.  Exact mapping onto CT-AUX  (K. Mikelsons  et al. PRE 09)  
                                                   (Rombouts et al. PRL 99, Gull et. al EPL 08)        
  
 
 
à Sign problem behaves as in Hirsch-Fye, and auxiliary field methods 
  (Absent for one-dimensional chains, particle-hole symmetry, impurity models)  
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δ = 0 Particle-Hole symmetry              and  only even powers of n occur in expansion. 
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Importance sampling (See notes Appendix A) 

Configuration C: set of n-vertices at imaginary times                τ1,s1⎡⎣ ⎤⎦ τ 2 ,s2⎡⎣ ⎤⎦, τ n ,sn⎡⎣ ⎤⎦

  τ1,s1⎡⎣ ⎤⎦ τ 2 ,s2⎡⎣ ⎤⎦ τ 3,s3⎡⎣ ⎤⎦
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such that detM↑ = (−1)n detM↓. A glimpse at Eq. (9)
will confirm the absence of sign problem for this special
case. The above results is independent on the choice of
δ introduced in Eq. (2). As we will see in Sec. II C
the algorithm is optimal at δ = 0. In this special case,
detM↑ = detM↓ = (−1)n detM↓ such that only even
values of n occur in the sampling. We note that this
vanishing of the weight for odd values of n can be avoided
by choosing a small value of δ.

In one dimension and in the absence of frustrating
interactions, there is no negative sign problem [15].
The diagrammatic approach also satisfies this property,
provided that we choose δ = 1/2 + 0+. The quantity
∏

σ detMσ(Cn) in Eq. (9) is nothing but

Tr
[

e−βĤ0

∏

σ

[n̂i1,σ(τ1) − ασ(s1)]

· · · [n̂in,σ(τn) − ασ(sn)]
]/

Tr
[

e−βĤ0

]

, (15)

which we can compute within the real-space world-line
approach [10, 11]. Here, each world line configuration
has a positive weight. Let us consider an arbitrary
world-line configuration, and a site (i, τ) in the space-
time lattice. Irrespective if this site is empty, singly or
doubly occupied the expectation value of the operator
∏

σ [n̂i,σ(τ) − ασ(s)] will take a negative value. Recall
that we have set δ = 1/2 + 0+. Hence, for each world
line configuration the expectation value of the opera-
tor

∏

σ [(n̂i,σ(τ) − ασ(s1)) · · · (n̂in,σ(τn) − ασ(sn))] has a
sign equal to (−1)n. Summation over all world line con-
figurations yields the expression in Eq. (15) which in
turn has a sign (−1)n. This cancels the sign of the fac-
tor (−U/2)n in Eq. (9), thus yielding an overall positive
weight.

In the rewriting of the Hubbard term (see Eq. (2)) we
have introduced a new dynamical Ising field so as to avoid
the negative sign problem at least for the one-dimensional
Hubbard model. Alternatively, one can choose a static
Ising field and compensate for it by a redefinition of Ĥ0.
Such a static procedure is introduced in [1]. For the class
of models considered, we have not noticed substantial
differences in performance between static and dynamical
choices of Ising fields. We however favor the dynamical
version since it allows one to keep the SU(2) spin invari-
ant form of the non-interacting Hamiltonian Ĥ0.

B. Monte Carlo Sampling

In principle two moves, the addition and removal of
Hubbard vertices, are sufficient [16]. In the Metropolis
scheme, the acceptance ratio for a given move reads

PC→C′ = min

(
T 0

C′→CW (C′)

T 0
C→C′W (C)

, 1

)

. (16)

where T 0
C′→C corresponds to the probability of propos-

ing a move from configuration C′ to configuration C and

W (C) corresponds to the weight of the configuration. To
add a vertex T 0

Cn→Cn+1
= 1

2Nβ
which corresponds to the

fact that one has to pick at random an imaginary time in
the range [0, β], a site i in the range 1 . . .N (with N the
number of sites) as well as an Ising spin. The proposal
probability to remove a vertex T 0

Cn+1→Cn
= 1

n+1 corre-
sponds to the fact that one will choose at random one of
the n + 1 vertices present in configuration Cn+1, hence

PCn→Cn+1
= min

(

−
UβN

(n + 1)

∏

σ detMσ(Cn+1)
∏

σ detMσ(Cn)
, 1
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(

−
(n + 1)

UβN

∏

σ detMσ(Cn)
∏

σ detMσ(Cn+1)
, 1

)

.

(17)

Apart from the above addition and removal of vertices,
we have implemented moves which flip the Ising spins at
constant order n as well as updates which move Hubbard
vertices both in space and time.

C. Tests

The efficiency of the approach relies on the autocorre-
lation time, which has to be analyzed on a case to case
basis, as well as on the average expansion order param-
eter. For a general interaction term Ĥ1 the average ex-
pansion parameter is given by

⟨n⟩ =
1
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For the Hubbard model and replacing Ĥ1 by the form of
Eq. (2) we obtain:

⟨n⟩ = −βU
∑

i

[

⟨(n̂i,↑ − 1/2)(n̂i,↓ − 1/2)⟩ − δ2
]

. (19)

Using the same techniques as in auxiliary field QMC
methods [9] the CPU costs for the calculation of the
acceptance probability and the update for the addition
or removal of a vertex scales as n2. As apparent from
Eq. (19) a sweep consisting of updating all n vertices
results in an effort of n3. Even though in this method
M−1

σ is far better conditioned than in the classic deter-
minantal methods [4, 9, 12], it has to be recalculated
from scratch after several updates which involves an ef-
fort of the order n3 [17]. Hence, because of these two
limiting factors the CPU time scales as (β UN)3 which

Importance sampling (See notes Appendix A) 

Importance sampling produces a (Monte Carlo) time series of configurations.  

à CN, CN-1, ……, C2, C1      

In this time series,  the configuration C occurs with probability:     P(C) =
W (C)
W (C)

C
∑

O =
W (C)O(C)

C
∑

W (C)
C
∑ = 1

N
O(Cn )

n=1

N

∑ ±
O − O( )2

N

Assumptions   
1)  The moves  are ergodic 
2)  The configurations Ci are statistically independent 
3)  The variance exits 
 
à  Irrespective on the  dimension of the configuration 
     space the precision scales as  
 
See notes, Appendix A 

Configuration C: set of n-vertices at imaginary times                τ1,s1⎡⎣ ⎤⎦ τ 2 ,s2⎡⎣ ⎤⎦, τ n ,sn⎡⎣ ⎤⎦

Transition Prob. 

1/ CPU
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W (C)O(C)
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W (C)
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∑ ±
O − O( )2

N

Assumptions   
1)  The moves  are ergodic 
2)  The configurations Ci are statistically independent 
3)  The variance exits 
 
See notes, Appendix A 

à Importance of high precision tests. L=2, βt=10, U/t=2 

 Double occupancy:   0.378765  +/-  0.000050,    Exact: 0.378732  

Importance sampling (See notes Appendix A) 

Double occupancy:   0.378564  +/-  0.000027 

(Bad random number generator!) 
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such that detM↑ = (−1)n detM↓. A glimpse at Eq. (9)
will confirm the absence of sign problem for this special
case. The above results is independent on the choice of
δ introduced in Eq. (2). As we will see in Sec. II C
the algorithm is optimal at δ = 0. In this special case,
detM↑ = detM↓ = (−1)n detM↓ such that only even
values of n occur in the sampling. We note that this
vanishing of the weight for odd values of n can be avoided
by choosing a small value of δ.

In one dimension and in the absence of frustrating
interactions, there is no negative sign problem [15].
The diagrammatic approach also satisfies this property,
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which we can compute within the real-space world-line
approach [10, 11]. Here, each world line configuration
has a positive weight. Let us consider an arbitrary
world-line configuration, and a site (i, τ) in the space-
time lattice. Irrespective if this site is empty, singly or
doubly occupied the expectation value of the operator
∏

σ [n̂i,σ(τ) − ασ(s)] will take a negative value. Recall
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sign equal to (−1)n. Summation over all world line con-
figurations yields the expression in Eq. (15) which in
turn has a sign (−1)n. This cancels the sign of the fac-
tor (−U/2)n in Eq. (9), thus yielding an overall positive
weight.

In the rewriting of the Hubbard term (see Eq. (2)) we
have introduced a new dynamical Ising field so as to avoid
the negative sign problem at least for the one-dimensional
Hubbard model. Alternatively, one can choose a static
Ising field and compensate for it by a redefinition of Ĥ0.
Such a static procedure is introduced in [1]. For the class
of models considered, we have not noticed substantial
differences in performance between static and dynamical
choices of Ising fields. We however favor the dynamical
version since it allows one to keep the SU(2) spin invari-
ant form of the non-interacting Hamiltonian Ĥ0.

B. Monte Carlo Sampling

In principle two moves, the addition and removal of
Hubbard vertices, are sufficient [16]. In the Metropolis
scheme, the acceptance ratio for a given move reads

PC→C′ = min
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C′→CW (C′)

T 0
C→C′W (C)
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)
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where T 0
C′→C corresponds to the probability of propos-

ing a move from configuration C′ to configuration C and

W (C) corresponds to the weight of the configuration. To
add a vertex T 0

Cn→Cn+1
= 1

2Nβ
which corresponds to the

fact that one has to pick at random an imaginary time in
the range [0, β], a site i in the range 1 . . .N (with N the
number of sites) as well as an Ising spin. The proposal
probability to remove a vertex T 0

Cn+1→Cn
= 1

n+1 corre-
sponds to the fact that one will choose at random one of
the n + 1 vertices present in configuration Cn+1, hence
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Apart from the above addition and removal of vertices,
we have implemented moves which flip the Ising spins at
constant order n as well as updates which move Hubbard
vertices both in space and time.

C. Tests

The efficiency of the approach relies on the autocorre-
lation time, which has to be analyzed on a case to case
basis, as well as on the average expansion order param-
eter. For a general interaction term Ĥ1 the average ex-
pansion parameter is given by
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For the Hubbard model and replacing Ĥ1 by the form of
Eq. (2) we obtain:

⟨n⟩ = −βU
∑
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[

⟨(n̂i,↑ − 1/2)(n̂i,↓ − 1/2)⟩ − δ2
]
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Using the same techniques as in auxiliary field QMC
methods [9] the CPU costs for the calculation of the
acceptance probability and the update for the addition
or removal of a vertex scales as n2. As apparent from
Eq. (19) a sweep consisting of updating all n vertices
results in an effort of n3. Even though in this method
M−1

σ is far better conditioned than in the classic deter-
minantal methods [4, 9, 12], it has to be recalculated
from scratch after several updates which involves an ef-
fort of the order n3 [17]. Hence, because of these two
limiting factors the CPU time scales as (β UN)3 which
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such that detM↑ = (−1)n detM↓. A glimpse at Eq. (9)
will confirm the absence of sign problem for this special
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Using the same techniques as in auxiliary field QMC
methods [9] the CPU costs for the calculation of the
acceptance probability and the update for the addition
or removal of a vertex scales as n2. As apparent from
Eq. (19) a sweep consisting of updating all n vertices
results in an effort of n3. Even though in this method
M−1

σ is far better conditioned than in the classic deter-
minantal methods [4, 9, 12], it has to be recalculated
from scratch after several updates which involves an ef-
fort of the order n3 [17]. Hence, because of these two
limiting factors the CPU time scales as (β UN)3 which

Thus, to accept or remove a move we have to compute the ratio of two 
determinants.  
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which corresponds to the probability of choosing vertex i under the assumption that each vertex
is equally probable. As shown in Appendix A (see Eq. (132) ), the Metropolis acceptance reads
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Note that in our formulation the ordering of the vertices is important since we have defined the
integration without time-ordering
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d⌧n. The reader is encouraged to show that both formulations lead to
the same acceptance/rejection ratios. In practical implementations one will also include a move
that keeps the vertex number constant but flips the value of the Ising spin. Strictly speaking,
this move is not necessary but has the potential of improving the autocorrelation time. For
repulsive interactions, this statement follows from the notion that summing over the Ising fields
will restore the broken SU(2) spin-symmetry.

2.5 Fast updates

The Monte Carlo dynamics relies on the calculation of ratios of determinants. Such ratios can
be computed using the determinant identities of Eq. (21). For instance, under vertex addition
we will have to compute for each spin sector
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2.2 Observables and Wick’s theorem

Observables ˆO(⌧) can now be computed with

h ˆO(⌧)i =
P
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We will compute the single-particle Green function and then show that any many-particle Green
function can be expressed in terms of this quantity. This statement corresponds to Wick’s theo-
rem, which holds when expanding around a Gaussian theory.
Using the determinant identity given by Eq. (10), one will readily see that the single-particle
Green function is given by the ratio of two determinants:
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To compute the ratio of the two determinants, we use the determinant identity
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where the outer product is given by (u⌦ v)i,j = uivj and the scalar product by u·v =

P
i uivi.

Eq. (20) can be formally derived by Taylor-expanding (1 +A
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�1. Eq. (19) can equally
be formally demonstrated by using the fact that det(A) = exp Tr log (A).
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which corresponds to the probability of choosing vertex i under the assumption that each vertex
is equally probable. As shown in Appendix A (see Eq. (132) ), the Metropolis acceptance reads

PC!C0
= min

✓
T 0

C0!CW (C 0
)

T 0

C!C0W (C)

, 1

◆
. (44)

Thus

PCn!Cn+1 = min

✓
� U�

(n+ 1)

Q
� detM�(Cn+1

)Q
� detM�(Cn)

, 1

◆

PCn+1!Cn = min

✓
�(n+ 1)

U�

Q
� detM�(Cn)Q

� detM�(Cn+1

)

, 1

◆
.

Note that in our formulation the ordering of the vertices is important since we have defined the
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the same acceptance/rejection ratios. In practical implementations one will also include a move
that keeps the vertex number constant but flips the value of the Ising spin. Strictly speaking,
this move is not necessary but has the potential of improving the autocorrelation time. For
repulsive interactions, this statement follows from the notion that summing over the Ising fields
will restore the broken SU(2) spin-symmetry.
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which corresponds to the probability of choosing vertex i under the assumption that each vertex
is equally probable. As shown in Appendix A (see Eq. (132) ), the Metropolis acceptance reads
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✓
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Note that in our formulation the ordering of the vertices is important since we have defined the
integration without time-ordering
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d⌧n. The reader is encouraged to show that both formulations lead to
the same acceptance/rejection ratios. In practical implementations one will also include a move
that keeps the vertex number constant but flips the value of the Ising spin. Strictly speaking,
this move is not necessary but has the potential of improving the autocorrelation time. For
repulsive interactions, this statement follows from the notion that summing over the Ising fields
will restore the broken SU(2) spin-symmetry.

2.5 Fast updates

The Monte Carlo dynamics relies on the calculation of ratios of determinants. Such ratios can
be computed using the determinant identities of Eq. (21). For instance, under vertex addition
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Carrying out the calculation yields
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Hence, provided that the matrix M

�1

� (Cn) is known, computing the ratio involves n2 operations.
The vertex removal takes a very simple form. Assume that we remove the nth vertex of the
configuration Cn. Then for a given spin sector, we will have to compute
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Evaluating the above gives
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Again, provided that we have the matrix M

�1

� (Cn) at hand, the computational cost for comput-
ing the ratio for vertex removal is negligible.
Having computed the ratio of determinants, we can compute the acceptance probability, draw
a pseudo-random number, and accept or reject the move. If accepted, we will have to upgrade
the matrix M

�1

� (Cn). This is readily done with the use of the Sherman-Morrison formula of
Eq. (20) and involves n2 operations.
In some cases, it is desirable to add more than one vertex at a time. For this purpose, it is more
useful to use the Woodbury formula

(A+ UCV )

�1

= A�1 � A�1U
�
C�1

+ V A�1U
��1

V A�1 (48)

with A 2 Cn⇥n, U 2 Cn⇥k, C 2 Ck⇥k and V 2 Ck⇥n. The Woodbury identity reduces to the
Sherman-Morrison formula of Eq. (20) at k = 1 and C = 1. A discussion of block updates as
well as a demonstration of various matrix identities can be found in Ref. [39].
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Hence, provided that the matrix M
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� (Cn) is known, computing the ratio involves n2 operations.
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configuration Cn. Then for a given spin sector, we will have to compute
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Again, provided that we have the matrix M

�1

� (Cn) at hand, the computational cost for comput-
ing the ratio for vertex removal is negligible.
Having computed the ratio of determinants, we can compute the acceptance probability, draw
a pseudo-random number, and accept or reject the move. If accepted, we will have to upgrade
the matrix M

�1

� (Cn). This is readily done with the use of the Sherman-Morrison formula of
Eq. (20) and involves n2 operations.
In some cases, it is desirable to add more than one vertex at a time. For this purpose, it is more
useful to use the Woodbury formula
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with A 2 Cn⇥n, U 2 Cn⇥k, C 2 Ck⇥k and V 2 Ck⇥n. The Woodbury identity reduces to the
Sherman-Morrison formula of Eq. (20) at k = 1 and C = 1. A discussion of block updates as
well as a demonstration of various matrix identities can be found in Ref. [39].

Adding a Vertex 

If  M-1(Cn)  is known then computing  the ratio involves n2 operations. 
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Hence, provided that the matrix M

�1

� (Cn) is known, computing the ratio involves n2 operations.
The vertex removal takes a very simple form. Assume that we remove the nth vertex of the
configuration Cn. Then for a given spin sector, we will have to compute
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Again, provided that we have the matrix M

�1

� (Cn) at hand, the computational cost for comput-
ing the ratio for vertex removal is negligible.
Having computed the ratio of determinants, we can compute the acceptance probability, draw
a pseudo-random number, and accept or reject the move. If accepted, we will have to upgrade
the matrix M

�1

� (Cn). This is readily done with the use of the Sherman-Morrison formula of
Eq. (20) and involves n2 operations.
In some cases, it is desirable to add more than one vertex at a time. For this purpose, it is more
useful to use the Woodbury formula
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with A 2 Cn⇥n, U 2 Cn⇥k, C 2 Ck⇥k and V 2 Ck⇥n. The Woodbury identity reduces to the
Sherman-Morrison formula of Eq. (20) at k = 1 and C = 1. A discussion of block updates as
well as a demonstration of various matrix identities can be found in Ref. [39].

7.12 Fakher F. Assaad

and
(u

2

)i = �i,n+1

, v

2

= (g
0

(⌧ 0, ⌧
1

), . . . , g
0

(⌧ 0, ⌧n), 0).

Carrying out the calculation yields

detM�(Cn+1

)

detM�(Cn)
= g

0

(⌧ 0, ⌧ 0)� ↵�(s
0
)�

nX

i,j=1

g
0

(⌧ 0, ⌧i)
⇥
M�1

� (Cn)
⇤
i,j
g
0

(⌧j, ⌧
0
) . (45)

Hence, provided that the matrix M

�1

� (Cn) is known, computing the ratio involves n2 operations.
The vertex removal takes a very simple form. Assume that we remove the nth vertex of the
configuration Cn. Then for a given spin sector, we will have to compute
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Evaluating the above gives
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Again, provided that we have the matrix M

�1

� (Cn) at hand, the computational cost for comput-
ing the ratio for vertex removal is negligible.
Having computed the ratio of determinants, we can compute the acceptance probability, draw
a pseudo-random number, and accept or reject the move. If accepted, we will have to upgrade
the matrix M

�1

� (Cn). This is readily done with the use of the Sherman-Morrison formula of
Eq. (20) and involves n2 operations.
In some cases, it is desirable to add more than one vertex at a time. For this purpose, it is more
useful to use the Woodbury formula

(A+ UCV )

�1

= A�1 � A�1U
�
C�1

+ V A�1U
��1

V A�1 (48)

with A 2 Cn⇥n, U 2 Cn⇥k, C 2 Ck⇥k and V 2 Ck⇥n. The Woodbury identity reduces to the
Sherman-Morrison formula of Eq. (20) at k = 1 and C = 1. A discussion of block updates as
well as a demonstration of various matrix identities can be found in Ref. [39].

If  M-1(Cn)  is known then computing the ratio is negligible.  
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2.2 Observables and Wick’s theorem

Observables ˆO(⌧) can now be computed with

h ˆO(⌧)i =
P

Cn
W (Cn)hh ˆO(⌧)iiCnP
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, (15)
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�
ˆO�(⌧) we have

hh ˆO(⌧)iiCn =

Q
�hT [n̂�(⌧1)� ↵�(s1)] · · · [n̂�(⌧n)� ↵�(sn)] ˆO�(⌧)i0Q

�hT [n̂�(⌧1)� ↵�(s1)] · · · [n̂�(⌧n)� ↵�(sn)]i0 . (16)

We will compute the single-particle Green function and then show that any many-particle Green
function can be expressed in terms of this quantity. This statement corresponds to Wick’s theo-
rem, which holds when expanding around a Gaussian theory.
Using the determinant identity given by Eq. (10), one will readily see that the single-particle
Green function is given by the ratio of two determinants:
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0
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To compute the ratio of the two determinants, we use the determinant identity

det(A+ u⌦ v) = det(A)

�
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as well as the Sherman-Morrison formula
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where the outer product is given by (u⌦ v)i,j = uivj and the scalar product by u·v =

P
i uivi.

Eq. (20) can be formally derived by Taylor-expanding (1 +A

�1

u⌦ v)

�1. Eq. (19) can equally
be formally demonstrated by using the fact that det(A) = exp Tr log (A).
Decomposing the B�(Cn) matrix as
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Mσ
−1(Cn±1)

Mσ (Cn±1) = Mσ (Cn ) +u1
± ⊗ v1

± +u2
± ⊗ v2

±

and                    is present in memory.       Mσ
−1(Cn )

But 

Mσ
−1(Cn±1)

à  Use                                                                      recursively to carry out 
 
the update.  

à Required number of operations n2  
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2.6 Average expansion parameter

A crucial issue concerns the average expansion parameter hni since it will determine the average
size of the matrix M�(Cn). The computational effort to visit each vertex – a sweep – will then
scale as hni3. For a general interaction term ˆH

1

, the average expansion parameter is [6]
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For the Hubbard model, replacing ˆH
1

by the form of Eq. (7), we obtain

hni = ��U
⇥h(n̂" � 1/2)(n̂# � 1/2)i � �2

⇤
, (50)

where we have set ⇢ = 1/2. Thus, the computational time for a sweep scales as in the Hirsch-
Fye approach, namely as (�U)

3. The algorithm can be used for lattice models with N correlated
sites. In this case, the computational time for a sweep scales as (N�U)

3, which is more expen-
sive than the auxiliary-field approach, which scales as �UN3. As mentioned in the introduction,
the advantage of the CT-INT method lies in the fact that it is action-based such that fermionic
and bosonic baths can be easily implemented.

3 CT-HYB

In this section we will provide a very succinct overview of the basic formulation of the CT-
HYB. For a detailed discussion of the algorithm, the reader is referred to the review article [1]
and references therein.

3.1 The partition function

In contrast to the CT-INT, the CT-HYB carries out the expansion in the hybridization matrix
�(⌧ � ⌧ 0). The action of the SIAM is decomposed into local
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and hybridization
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�(⌧)�(⌧ � ⌧ 0) f�(⌧ 0) (52)

(m=n-1) 



What is the average expansion parameter? 

Consider H = H0 + H1 

CT-QMC 7.13

2.6 Average expansion parameter

A crucial issue concerns the average expansion parameter hni since it will determine the average
size of the matrix M�(Cn). The computational effort to visit each vertex – a sweep – will then
scale as hni3. For a general interaction term ˆH

1

, the average expansion parameter is [6]

hni = 1

Z

X

n

(�1)

nn

n!

Z �

0

d⌧
1

· · ·
Z �

0

d⌧n hT ˆH
1

(⌧
1

) · · · ˆH
1

(⌧n)i0

= � 1

Z

X

m

(�1)

m

m!

Z �

0

d⌧
1

· · ·
Z �

0

d⌧m

Z �

0

d⌧ hT ˆH
1

(⌧
1

) · · · ˆH
1

(⌧m) ˆH1

(⌧)i
0

= �
Z �

0

d⌧h ˆH
1

(⌧)i . (49)

For the Hubbard model, replacing ˆH
1

by the form of Eq. (7), we obtain

hni = ��U
⇥h(n̂" � 1/2)(n̂# � 1/2)i � �2

⇤
, (50)

where we have set ⇢ = 1/2. Thus, the computational time for a sweep scales as in the Hirsch-
Fye approach, namely as (�U)

3. The algorithm can be used for lattice models with N correlated
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3, which is more expen-
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HYB. For a detailed discussion of the algorithm, the reader is referred to the review article [1]
and references therein.

3.1 The partition function

In contrast to the CT-INT, the CT-HYB carries out the expansion in the hybridization matrix
�(⌧ � ⌧ 0). The action of the SIAM is decomposed into local

Sloc(f
†, f) =

Z �

0

d⌧
X

�

f †
�(⌧)


@

@⌧
+ ✏f

�
f�(⌧) + U

Z �

0

d⌧ f †
"(⌧)f"(⌧)f

†
#(⌧)f#(⌧) (51)

and hybridization

Shyb(f
†, f) = �

Z �

0

d⌧d⌧ 0
X

�

f †
�(⌧)�(⌧ � ⌧ 0) f�(⌧ 0) (52)

CT-QMC 7.13

2.6 Average expansion parameter

A crucial issue concerns the average expansion parameter hni since it will determine the average
size of the matrix M�(Cn). The computational effort to visit each vertex – a sweep – will then
scale as hni3. For a general interaction term ˆH

1

, the average expansion parameter is [6]

hni = 1

Z

X

n

(�1)

nn

n!

Z �

0

d⌧
1

· · ·
Z �

0

d⌧n hT ˆH
1

(⌧
1

) · · · ˆH
1

(⌧n)i0

= � 1

Z

X

m

(�1)

m

m!

Z �

0

d⌧
1

· · ·
Z �

0

d⌧m

Z �

0

d⌧ hT ˆH
1

(⌧
1

) · · · ˆH
1

(⌧m) ˆH1

(⌧)i
0

= �
Z �

0

d⌧h ˆH
1

(⌧)i . (49)

For the Hubbard model, replacing ˆH
1

by the form of Eq. (7), we obtain

hni = ��U
⇥h(n̂" � 1/2)(n̂# � 1/2)i � �2

⇤
, (50)

where we have set ⇢ = 1/2. Thus, the computational time for a sweep scales as in the Hirsch-
Fye approach, namely as (�U)

3. The algorithm can be used for lattice models with N correlated
sites. In this case, the computational time for a sweep scales as (N�U)

3, which is more expen-
sive than the auxiliary-field approach, which scales as �UN3. As mentioned in the introduction,
the advantage of the CT-INT method lies in the fact that it is action-based such that fermionic
and bosonic baths can be easily implemented.

3 CT-HYB

In this section we will provide a very succinct overview of the basic formulation of the CT-
HYB. For a detailed discussion of the algorithm, the reader is referred to the review article [1]
and references therein.

3.1 The partition function

In contrast to the CT-INT, the CT-HYB carries out the expansion in the hybridization matrix
�(⌧ � ⌧ 0). The action of the SIAM is decomposed into local

Sloc(f
†, f) =

Z �

0

d⌧
X

�

f †
�(⌧)


@

@⌧
+ ✏f

�
f�(⌧) + U

Z �

0

d⌧ f †
"(⌧)f"(⌧)f

†
#(⌧)f#(⌧) (51)

and hybridization

Shyb(f
†, f) = �

Z �

0

d⌧d⌧ 0
X

�

f †
�(⌧)�(⌧ � ⌧ 0) f�(⌧ 0) (52)

  
H

1
= H

U
= U

2 s=±1
∑ n↑

d − 1/ 2 − sδ⎡⎣ ⎤⎦( ) n↓
d − 1/ 2 + sδ⎡⎣ ⎤⎦( )

(m=n-1) 

For 

à Time to  update each vertex  (a sweep)   ~  n3  ~ (𝛽U)3 



What is the average expansion parameter? 

CT-QMC 7.13

2.6 Average expansion parameter

A crucial issue concerns the average expansion parameter hni since it will determine the average
size of the matrix M�(Cn). The computational effort to visit each vertex – a sweep – will then
scale as hni3. For a general interaction term ˆH

1

, the average expansion parameter is [6]

hni = 1

Z

X

n

(�1)

nn

n!

Z �

0

d⌧
1

· · ·
Z �

0

d⌧n hT ˆH
1

(⌧
1

) · · · ˆH
1

(⌧n)i0

= � 1

Z

X

m

(�1)

m

m!

Z �

0

d⌧
1

· · ·
Z �

0

d⌧m

Z �

0

d⌧ hT ˆH
1

(⌧
1

) · · · ˆH
1

(⌧m) ˆH1

(⌧)i
0

= �
Z �

0

d⌧h ˆH
1

(⌧)i . (49)

For the Hubbard model, replacing ˆH
1

by the form of Eq. (7), we obtain

hni = ��U
⇥h(n̂" � 1/2)(n̂# � 1/2)i � �2

⇤
, (50)

where we have set ⇢ = 1/2. Thus, the computational time for a sweep scales as in the Hirsch-
Fye approach, namely as (�U)

3. The algorithm can be used for lattice models with N correlated
sites. In this case, the computational time for a sweep scales as (N�U)

3, which is more expen-
sive than the auxiliary-field approach, which scales as �UN3. As mentioned in the introduction,
the advantage of the CT-INT method lies in the fact that it is action-based such that fermionic
and bosonic baths can be easily implemented.

3 CT-HYB

In this section we will provide a very succinct overview of the basic formulation of the CT-
HYB. For a detailed discussion of the algorithm, the reader is referred to the review article [1]
and references therein.

3.1 The partition function

In contrast to the CT-INT, the CT-HYB carries out the expansion in the hybridization matrix
�(⌧ � ⌧ 0). The action of the SIAM is decomposed into local

Sloc(f
†, f) =

Z �

0

d⌧
X

�

f †
�(⌧)


@

@⌧
+ ✏f

�
f�(⌧) + U

Z �

0

d⌧ f †
"(⌧)f"(⌧)f

†
#(⌧)f#(⌧) (51)

and hybridization

Shyb(f
†, f) = �

Z �

0

d⌧d⌧ 0
X

�

f †
�(⌧)�(⌧ � ⌧ 0) f�(⌧ 0) (52)

  
H

1
= H

U
= U

2 s=±1
∑ n↑

d − 1/ 2 − sδ⎡⎣ ⎤⎦( ) n↓
d − 1/ 2 + sδ⎡⎣ ⎤⎦( )

For 

à Time to  update each vertex  (a sweep)   ~  n3  ~ (𝛽U)3 

Histogram of expansion parameter.  



Measurements.  

   

Tr e
−βH⎡⎣ ⎤⎦

Tr e
−βH0⎡

⎣
⎤
⎦
=

n

∑ dτ
1

s1

∑
0

β

∫ ! dτ
n

0

τ
n−1

∫ (−1)n T H
U

τ
1
,s

1
⎡⎣ ⎤⎦!H

U
τ

n
,s

n
⎡⎣ ⎤⎦ 0

s
n

∑

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ≡W(C)
 
≡

C
∑

   

Gσ (τ ,τ ') ≡ T d̂ +
σ (τ )d̂σ (τ ') =

(−1)n T HU τ1,s1⎡⎣ ⎤⎦!HU τ n ,sn⎡⎣ ⎤⎦ d̂ +
σ (τ )d̂σ (τ ')

0C
∑

W (C)
C
∑ =

W (C) GC
σ (τ ,τ ')

C
∑

W (C)
C
∑

  
H

U
τ

1
,s

1
⎡⎣ ⎤⎦ =

U

2
n↑(τ1

)− α↑(s1
)⎡⎣ ⎤⎦ n↓(τ1

)− α↓(s1
)⎡⎣ ⎤⎦

   
Gσ

C (τ ,τ ') ≡
T HU τ1,s1⎡⎣ ⎤⎦!HU τ n ,sn⎡⎣ ⎤⎦ d̂ +

σ (τ )d̂σ (τ ')
0

T HU τ1,s1⎡⎣ ⎤⎦!HU τ n ,sn⎡⎣ ⎤⎦ 0

= Gσ
0(τ ,τ ') − Gσ

0(τ ,τα ) Mσ
n
−1( ) α β Gσ

0(τ β ,τ ')
α ,β=1

n

∑



   
Gσ

C (τ ,τ ') ≡
T HU τ1,s1⎡⎣ ⎤⎦!HU τ n ,sn⎡⎣ ⎤⎦ d̂ +

σ (τ )d̂σ (τ ')
0

T HU τ1,s1⎡⎣ ⎤⎦!HU τ n ,sn⎡⎣ ⎤⎦ 0

= Gσ
0(τ ,τ ') − Gσ

0(τ ,τα ) Mσ
n
−1( ) α β Gσ

0(τ β ,τ ')
α ,β=1

n

∑

Follows from: 

   

T HU τ1,s1⎡⎣ ⎤⎦!HU τ n ,sn⎡⎣ ⎤⎦ d̂ +
σ (τ )d̂σ (τ ')

0

T HU τ1,s1⎡⎣ ⎤⎦!HU τ n ,sn⎡⎣ ⎤⎦ 0

=

det

Mσ (Cn ) ! G0
σ (τ1,τ ')

" #
G0

σ (τ n ,τ ')

G0
σ (τ ,τ1) ! G0

σ (τ ,τ n ) G0
σ (τ ,τ ')

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

det Mσ (Cn )( )

   
=

det

Mσ (Cn ) ! 0

" #
0

0 ! 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ u1 ⊗ v1 + u2 ⊗ v2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

det Mσ (Cn )( )

7.6 Fakher F. Assaad

2.2 Observables and Wick’s theorem

Observables ˆO(⌧) can now be computed with
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We will compute the single-particle Green function and then show that any many-particle Green
function can be expressed in terms of this quantity. This statement corresponds to Wick’s theo-
rem, which holds when expanding around a Gaussian theory.
Using the determinant identity given by Eq. (10), one will readily see that the single-particle
Green function is given by the ratio of two determinants:
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To compute the ratio of the two determinants, we use the determinant identity
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where the outer product is given by (u⌦ v)i,j = uivj and the scalar product by u·v =

P
i uivi.

Eq. (20) can be formally derived by Taylor-expanding (1 +A
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Note: Ø  Had we formulated everything in  Fourier space........ 
 
Ø  Hamiltonian H with t1>0 and t2<0 and hard core bosons yields a sign problem. This 
    corresponds essentially to a frustrated spin chain. Thus the sign problem is not     
    limited to  fermionic systems. 
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Figure 1. Static correlation functions for different values of the phonon frequency
ω0/t at λ = 0.35, and for a quarter-filled band (n = 0.5). The panels show (a) the
charge structure factor, (b) the pairing correlator, (c) the spin structure factor, and
(d) the momentum distribution function. Here L = 28 and βt = 40.

upon increasing the phonon frequency, signalling competing ordering mechanisms as

well as enhanced lattice fluctuations. The linear form of the charge structure factor

at long wavelengths [see figure 1(a)] indicates a 1/r2 power-law decay of the real-space
charge correlations and hence a metallic state.

In figure 1(b), we present the pair correlation function in the onsite s-wave channel,

P (r) = ⟨∆̂†
r∆̂0⟩ , ∆̂†

r = ĉ†r↑ĉ
†
r↓ . (8)

In contrast to the density correlator which picks up diagonal order, P (r) detects off-
diagonal order characteristic of a superconducting state. In the Peierls state obtained

for classical phonons, diagonal long-range charge order leads to an exponential decay of

pairing correlations at long distances. The fluctuations resulting from a finite phonon

frequency close the charge gap, and render the pairing correlations critical. Comparing

figures 1(a) and 1(b), we see that the suppression of the 2kF charge correlations is

accompanied by an increase of the pairing correlations, especially at large distances.
A possible interpretation is that with increasing phonon frequency, the trapping of

bipolarons in the 2kF lattice modulation gives way to a “condensation” (in the usual

sense of superfluidity in one dimension) of those preformed pairs.

The above interpretation relies on the electron pairs remaining bound upon

increasing the phonon frequency. Evidence for the existence of bound pairs is provided

Peierls to superfluid crossover in the one-dimensional quarter filled Holstein model  @ g2/Wk=0.35 

M. Hohenadler,  FFA. J. Phys.: Condens. Matter 25, 014005 (2013) 

L=28, 𝛽t=40  Charge correlation s-wave pairing correlations 

   
ω0 << t     Pairs of electrons  form a commensurate CDW (diagonal LRO) à Peierls instability  

ω0 >> t     Pairs condense to form an s-wave superconductor  (off diagonal LRO). 

Bosonic Baths   à  Electron-phonon problems  
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Figure 1. Static correlation functions for different values of the phonon frequency
ω0/t at λ = 0.35, and for a quarter-filled band (n = 0.5). The panels show (a) the
charge structure factor, (b) the pairing correlator, (c) the spin structure factor, and
(d) the momentum distribution function. Here L = 28 and βt = 40.

upon increasing the phonon frequency, signalling competing ordering mechanisms as

well as enhanced lattice fluctuations. The linear form of the charge structure factor

at long wavelengths [see figure 1(a)] indicates a 1/r2 power-law decay of the real-space
charge correlations and hence a metallic state.

In figure 1(b), we present the pair correlation function in the onsite s-wave channel,

P (r) = ⟨∆̂†
r∆̂0⟩ , ∆̂†

r = ĉ†r↑ĉ
†
r↓ . (8)

In contrast to the density correlator which picks up diagonal order, P (r) detects off-
diagonal order characteristic of a superconducting state. In the Peierls state obtained

for classical phonons, diagonal long-range charge order leads to an exponential decay of

pairing correlations at long distances. The fluctuations resulting from a finite phonon

frequency close the charge gap, and render the pairing correlations critical. Comparing

figures 1(a) and 1(b), we see that the suppression of the 2kF charge correlations is

accompanied by an increase of the pairing correlations, especially at large distances.
A possible interpretation is that with increasing phonon frequency, the trapping of

bipolarons in the 2kF lattice modulation gives way to a “condensation” (in the usual

sense of superfluidity in one dimension) of those preformed pairs.

The above interpretation relies on the electron pairs remaining bound upon

increasing the phonon frequency. Evidence for the existence of bound pairs is provided
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Outline 

Continuous-time QMC Solvers for Electronic Systems in 
 Fermionic and Bosonic Baths  

Goal: Detailed overview of CT-INT and CT-AUX  (CT-HYB à See notes) 

CT-INT is a very flexible action based QMC method which allows  to tackle 
correlated electron problems embedded in fermionic and bosonic baths. In the 
absence of negative sign problem, it scales polynomially in the number of 
interacting degrees of freedom. 


