
Quantum Cluster Methods
Erik Koch

German Research School for Simulation Sciences, Jülich



Übungsaufgabe

gegeben 
Ne Elektronen, Ni Atomkerne der Masse Mα und Kernladungszahl Zα,

lösen Sie:

The underlying laws necessary for the mathematical theory of a 
large part of physics and the whole of chemistry are thus 
completely known, and the difficulty is only that exact 
applications of these laws lead to equations which are too 
complicated to be soluble. It therefore becomes desirable that 
approximate practical methods of applying quantum mechanics 
should be developed, which can lead to an explanation of the 
main features of complex atomic systems without too much 
computation. 
P.M.A Dirac, Proceedings of the Royal Society A123, 714 (1929)
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We discuss recent developments in our understanding of matter,
broadly construed, and their implications for contemporary re-
search in fundamental physics.

The Theory of Everything is a term for the ultimate theory of
the universe—a set of equations capable of describing all

phenomena that have been observed, or that will ever be
observed (1). It is the modern incarnation of the reductionist
ideal of the ancient Greeks, an approach to the natural world that
has been fabulously successful in bettering the lot of mankind
and continues in many people’s minds to be the central paradigm
of physics. A special case of this idea, and also a beautiful
instance of it, is the equation of conventional nonrelativistic
quantum mechanics, which describes the everyday world of
human beings—air, water, rocks, fire, people, and so forth. The
details of this equation are less important than the fact that it can
be written down simply and is completely specified by a handful
of known quantities: the charge and mass of the electron, the
charges and masses of the atomic nuclei, and Planck’s constant.
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The symbols Z% and M% are the atomic number and mass of the
%th nucleus, R% is the location of this nucleus, e and m are the
electron charge and mass, rj is the location of the jth electron, and
! is Planck’s constant.

Less immediate things in the universe, such as the planet
Jupiter, nuclear fission, the sun, or isotopic abundances of
elements in space are not described by this equation, because
important elements such as gravity and nuclear interactions are
missing. But except for light, which is easily included, and
possibly gravity, these missing parts are irrelevant to people-
scale phenomena. Eqs. 1 and 2 are, for all practical purposes, the
Theory of Everything for our everyday world.

However, it is obvious glancing through this list that the
Theory of Everything is not even remotely a theory of every
thing (2). We know this equation is correct because it has been
solved accurately for small numbers of particles (isolated atoms
and small molecules) and found to agree in minute detail with
experiment (3–5). However, it cannot be solved accurately when
the number of particles exceeds about 10. No computer existing,
or that will ever exist, can break this barrier because it is a
catastrophe of dimension. If the amount of computer memory
required to represent the quantum wavefunction of one particle
is N then the amount required to represent the wavefunction of
k particles is Nk. It is possible to perform approximate calcula-
tions for larger systems, and it is through such calculations that

we have learned why atoms have the size they do, why chemical
bonds have the length and strength they do, why solid matter has
the elastic properties it does, why some things are transparent
while others reflect or absorb light (6). With a little more
experimental input for guidance it is even possible to predict
atomic conformations of small molecules, simple chemical re-
action rates, structural phase transitions, ferromagnetism, and
sometimes even superconducting transition temperatures (7).
But the schemes for approximating are not first-principles
deductions but are rather art keyed to experiment, and thus tend
to be the least reliable precisely when reliability is most needed,
i.e., when experimental information is scarce, the physical be-
havior has no precedent, and the key questions have not yet been
identified. There are many notorious failures of alleged ab initio
computation methods, including the phase diagram of liquid 3He
and the entire phenomenonology of high-temperature super-
conductors (8–10). Predicting protein functionality or the be-
havior of the human brain from these equations is patently
absurd. So the triumph of the reductionism of the Greeks is a
pyrrhic victory: We have succeeded in reducing all of ordinary
physical behavior to a simple, correct Theory of Everything only
to discover that it has revealed exactly nothing about many things
of great importance.

In light of this fact it strikes a thinking person as odd that the
parameters e, !, and m appearing in these equations may be
measured accurately in laboratory experiments involving large
numbers of particles. The electron charge, for example, may be
accurately measured by passing current through an electrochem-
ical cell, plating out metal atoms, and measuring the mass
deposited, the separation of the atoms in the crystal being known
from x-ray diffraction (11). Simple electrical measurements
performed on superconducting rings determine to high accuracy
the quantity the quantum of magnetic f lux hc#2e (11). A version
of this phenomenon also is seen in superfluid helium, where
coupling to electromagnetism is irrelevant (12). Four-point
conductance measurements on semiconductors in the quantum
Hall regime accurately determine the quantity e2#h (13). The
magnetic field generated by a superconductor that is mechani-
cally rotated measures e#mc (14, 15). These things are clearly
true, yet they cannot be deduced by direct calculation from the
Theory of Everything, for exact results cannot be predicted by
approximate calculations. This point is still not understood by
many professional physicists, who find it easier to believe that a
deductive link exists and has only to be discovered than to face
the truth that there is no link. But it is true nonetheless.
Experiments of this kind work because there are higher orga-
nizing principles in nature that make them work. The Josephson
quantum is exact because of the principle of continuous sym-
metry breaking (16). The quantum Hall effect is exact because
of localization (17). Neither of these things can be deduced from
microscopics, and both are transcendent, in that they would
continue to be true and to lead to exact results even if the Theory
of Everything were changed. Thus the existence of these effects
is profoundly important, for it shows us that for at least some

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

28–31 ! PNAS ! January 4, 2000 ! vol. 97 ! no. 1

PNAS 97, 28 (2000) 



most important question
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simpler question

electronic Hamiltonian in Born-Oppenheimer approximation
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given a material { Zα, Rα }
solve

HΨ(x1, ..., xN) = EΨ(x1, ..., xN)

antisymmetrize wavefunction



antisymmetric wave-functions

(anti)symmetrization of N-body wave-function: N! operations

S±  (x1, . . . , xN) :=
1p
N!

X

P

(±1)P 
�
xp(1), . . . , xp(N)

�

antisymmetrization of products of single-particle states

S� '↵1(x1) · · ·'↵N (xN) =
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N!
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'↵1(x1) '↵2(x1) · · · '↵N (x1)
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much more efficient: scales only polynomially in N

Slater determinant: �↵1···↵N (x1, . . . , xN)



Slater determinants

simple examples
N=1:

N=2:

�↵1(x1) = '↵1(x1)

�↵1···↵N (x) =
1p
N!
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'↵1(xN) '↵2(xN) · · · '↵N (xN)
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expectation values need only one antisymmetrized wave-function:

remember: M(x1, ..., xN) 
symmetric in arguments 

corollary: overlap of Slater determinants:
Z
dx1 · · · dxN �↵1···↵N (x1, . . . , xN)��1···�N (x1, . . . , xN) = det
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basis of Slater determinants
Z
dx1 · · · dxN �↵1···↵N (x1, . . . , xN)��1···�N (x1, . . . , xN) = det

⇣
h'↵n |'�mi

⌘

Slater determinants of ortho-normal orbitals φa(x) are normalized

a Slater determinant with two identical orbital indices vanishes (Pauli principle)

Slater determinants that only differ in the order of the orbital indices 
are (up to a sign) identical

define convention for ordering indices, e.g. α1 < α2 < ... < αN

given K (ortho-normal orbitals)  { φa(x) | α ∈ {1, ..., K} }
the K! / N! (K−N)! Slater determinants

are an (ortho-normal) basis of the N-electron Hilbert space
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second quantization: motivation

keeping track of all these signs...

�↵�(x1, x2) =
1p
2
('↵(x1)'�(x2)� '�(x1)'↵(x2))Slater determinant

|↵,�i =
1p
2
(|↵i|�i � |�i|↵i)corresponding Dirac state

use operators |↵,�i = c†�c
†
↵|0i

position of operators encodes signs

product of operators changes sign when commuted: anti-commutation

c†�c
†
↵|0i = |↵,�i = �|�,↵i = �c†↵c

†
� |0i

anti-commutator {A,B} := AB + BA



second quantization: motivation

specify N-electron states using operators

N=0: |0i (vacuum state)

normalization: h0|0i = 1

N=1: |↵i = c†↵|0i (creation operator adds one electron)

overlap:

normalization: h↵|↵i = h0|c↵c†↵|0i

h↵|�i = h0|c↵c
†
� |0i

adjoint of creation operator removes one electron: 
annihilation operator

c↵|0i = 0 and c↵c†� = ±c
†
�c↵ + h↵|�i

N=2: |↵,�i = c†�c
†
↵|0i

antisymmetry: c†↵c
†
� = �c

†
�c
†
↵



second quantization: formalism

vacuum state |0⟩
and

set of operators cα related to single-electron states φα(x)
defined by:

c↵|0i = 0
�
c↵, c�

 
= 0 =

�
c†↵, c

†
�

 

h0|0i = 1
�
c↵, c

†
�

 
= h↵|�i

see also
www.cond-mat.de/events/correl13/manuscripts/koch.pdf

http://www.cond-mat.de/events/correl13/manuscripts/koch.pdf
http://www.cond-mat.de/events/correl13/manuscripts/koch.pdf


second quantization: field operators

creation/annihilation operators in real-space basis

creates electron of spin σ at position r ̂

†(x) with x = (r,�)

then c

†
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complete orthonormal set{'↵n(x)}
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amplitude  φa(x)
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they fulfill the standard anti-commutation relations



second quantization: Slater determinants
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second quantization: Slater determinants

general N: commute Ψ(xN) to the right

Laplace expansion in terms of N-1 dim determinants wrt last row of
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second quantization: Dirac notation

product state c

†
↵N · · · c

†
↵2c

†
↵1 |0i

corresponds to

Slater determinant �↵1↵2...↵N (x1, x2, . . . , xN)

as

Dirac state |↵i
corresponds to

wave-function '↵(x)



second quantization: expectation values

Z
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expectation value of N-body operator wrt N-electron Slater determinants
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apparently dependent on number N of electrons!
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|0ih0| = 1 on 0-electron space



result independent of N

second quantization: zero-body operator

M̂0 =
1

N!

Z
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only(!) when operating on N-electron state

zero-body operator M0(x1,...xN)=1 independent of particle coordinates

second quantized form for operating on N-electron states:



second quantization: one-body operators

result independent of N

M̂1 =
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expand in complete orthonormal set of orbitals
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second quantization: two-body operators

two-body operator M(x1, . . . , xN) =
P
i<j M2(xi , xj)

result independent of N

expand in complete orthonormal set of orbitals
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BO Hamiltonian

electronic Hamiltonian in Born-Oppenheimer approximation

solve  HΨ(x1, ..., xN) = EΨ(x1, ..., xN) and antisymmetrize
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approximation: restrict basis set

formulations in 1st and 2nd quantization equivalent,
as long as basis set complete

restrict basis set to K functions φα
N-electron Hilbert space restricted to

binom(K,N)-dimensional variational space

all-electron approach:
increase K until convergence

pseudized approach:
variational space only for interesting electrons

how?
perturbation theory

renormalization
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perturbation theory: atomic multiplets

H =
X

j
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H1 should be small perturbation
Uscf must describe electron-electron repulsion well

accurate density gives accurate Hartree term
DFT orbitals!

open shell - degenerate perturbation theory



atomic multiplets

Q. Zhang:
Calculations of Atomic Multiplets across the Periodic Table 
MSc thesis, RWTH Aachen 2014
www.cond-mat.de/sims/multiplet



Hund’s rule: d5 ground state 6S

|0, 0, 5/2, 5/2i = c†�2"c
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Slater integrals

Spin-Orbit coupling
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LS coupling: Co 4+



LS coupling: Co 4+

6S character



non-LS coupling: Ir 4+



non-LS coupling: Ir 4+

6S character



non-LS coupling: Ir atom



modeling correlated electrons: renormalization

H = �
1

2

Ne�

j=1

⇤2j �
Ne�

j=1

Ni�

�=1

Z�
|rj � R�|

+
Ne�

j<k

1

|rj � rk |

complete orbital basis φn,i

distinguish two types of electrons/orbitals: correlated and uncorrelated

assume no hybridization between them: product ansatz
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instant-screening approx.: slow correlated, fast other electrons
H|⇥⇤ = E|⇥⇤ � ⇥�|H|�⇤|�⇤ = E|�⇤



simple example: 3-band Hubbard cluster

U11 = 1.5
U22 = 0.6
U33 = .2

U12 = 0.7
U23 = 0.05

t22 = 0.1
t13 = 0.5

Δ = 0.5



spectral function: projected vs. 1-band
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screening U

instantaneous screening approximation



spectral function: projected vs. 1-band
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hopping reduction

overlap between different screening states reduces hopping: teff



spectral function: projected vs. 1-band
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screening reduces U and t

could justify that constrained calculations tend to give  “too small U”

t/U not as sensitive to screening as one might think

C. Adolphs:
Renormalization of the Coulomb Interaction in the Hubbard Model

Diploma Thesis, RWTH Aachen 2010



surface effects

10×10×10 cluster 83=29=512 atoms inside
 

almost 50% of atoms
on surface...

how to simulate bulk?

periodic boundary conditions



finite size scaling
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periodic boundary conditions

additional interaction with periodic images
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Hartree term

exchange-correlation hole

electron density: Γ(x; x) = n(x)

conditional electron density: 2Γ(x, x’; x, x’) = n(x, x’) electron density at x’ given 
that an electron is at x

Coulomb repulsion hUi =
Z
dx dx

0 �
(2)(x, x 0; x, x 0)

|r � r 0| =
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2

Z
dx dx

0 n(x, x
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|r � r 0|

rewrite in terms of Hartree energy
(how ⟨U⟩ differs from mean-field)

n(x, x 0) = n(x)n(x 0) g(x, x 0) = n(x)n(x 0) + n(x)n(x 0) (g(x, x 0)� 1)

pair correlation function exchange-correlation hole

sum rule
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exchange-correlation holes from QMC
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G. Ortiz, M. Harris, P. Ballone, Phys. Rev. Lett. 82, 5317 (1999)
P. Gori-Giorgi, F. Sacchetti, G.B. Bachelet, Phys. Rev. B 61, 7353 (2000)
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lattices

A = (a1, a2, . . . , ad)
LA =

n

X

i

ni ai

�
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ni 2 Z
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primitive lattice vectors

not unique

Vc =
��det(A)

��

canonical choice:
vectors to nearest neighbors

(LLL algorithm)

allowed transformations of A:
•exchange vectors
•change sign of vector
•add int multiple of other vector

LA =
�
An

�� n 2 Zd
 



d → ∞ applications to cryptography

SVP
find shortest vector

in lattice



lattice periodic functions

Fourier transform

V (r) =

Z
dk V̂ (k) e ik·r

lattice periodicity

only modes that contribute

V (r + An) =

Z
dk V̂ (k) e ik·r e ik·An| {z }

=1

= V (r)

k 2
�
Gm

�� m 2 Zd
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Gm · An = mT GTA|{z }
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Bloch theorem
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many-electron Bloch theorem
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couples all states with given total crystal momentum
(invariance under translation of all electrons by lattice vector)

to move all electrons into a simulation cell C, need to postulate
Bloch-like theorem
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k enters eigenvalue equation for UC as a vector potential

susceptibility                      distinguish metals from (Mott) insulators

Kohn, Phys. Rev. 133, A171 (1964)
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supercells

C = AL V =
��det(C)
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Hermite normal form
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Hermite normal form
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supercell: k-point sampling

KS = (2⇡C
�1)T = G(L�1)T

supercell Brillouin zone



supercell: k-point sampling

KS = (2⇡C
�1)T = G(L�1)T

supercell Brillouin zone



Monkhorst-Pack grid

particularly suited for Brillouin-zone integrals
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Special points for Brillonin-zone integrations*

Hendrik J. Monkhorst and James D. Pack
Department of Physics, University of Utah, Salt Lake City, Utah 84112

(Received 21 January 1976)
A method is given for generating sets of special points in the Brillouin zone which provides an efficient means
of integrating periodic functions of the wave vector. The integration can be over the entire Brillouin zone or
over specified portions thereof. This method also has applications in spectral and density-of-state calculations.
The relationships to the Chadi-Cohen and Gilat-Raubenheimer methods are indicated.

I. INTRODUCTION

Many calculations in crystals involve integrating
periodic functions of a Bloch wave vector over
either the entire Brillouin zone (BZ) or over
specified portions. The latter case arises, for
example, in averages over states within the Fermi
surface, and the calculation of the dielectric con-
stant and generalized susceptibilities. To optimize
the calculations it is helpful only to compute these
functions at a carefully selected set of points in
the BZ. This becomes more urgent in sophisti-
cated calculations where the computational effort
for each BZ point is substantial.
Methods for finding such sets of "special" points

have been discussed by Chadi and Cohen' (here-
after referred to as CC). This paper presents an
alternate approach which yields sets of points
identical to those given by CC and additional sets
with the same properties. It will be shown that
the use of such points simply generates an expan-
sion of the periodic function in reciprocal-space
functions with the proper symmetries. This sug-
gests an obvious, and rather accurate, interpola-
tion of the function between the special points
which is intrinsically more satisfactory than linear
or quadratic methods. The relation to Gilat-
Raubenheimer methods will be pointed out.

k~„, =u~b, +u„5, +u, b, . (4)

This gives q' distinct points uniformly spaced in
the BZ. Let A (k} be given by

A (k) Iq-)h Q e(k R

I Rl = c
(5)

where the sum is taken over all R vectors related
by the operations of the lattice point group. This
set of vectors is usually called a star. The C
are in ascending order, starting with C, =0. N
is the number of members in the mth star of R
[or the number of terms in the sum in Eq. (5}].
Note that A (k) is totally symmetric under all
point-group operations.
Let us now consider the quantity S „(q) given by

v is the unit cell volume, and 5,-5, span the re-
ciprocal lattice with BZ volume 8v'/v.
Let us define the sequence of numbers

u, =(2r —q —1)/2q ( r1, 2, 3, . . . , q),
where q is an integer that determines the number
of special points in the set. With the above u„'s
we now define

II. DERIVATION S „(q) =—Q A (k „,)A„(k „,).
p.r.s=i (6)

In this section we will prove the existence of a
set of periodic functions which are orthonormal
on a uniformly spaced set of special points in
the BZ.
Consider a lattice defined by the primitive trans-

lation vectors ti, t„ts. A general lattice point is
given by

R =R,t, +R272+R3t, ,
where R,-R, are integers.
The associated primitive reciprocal-lattice

vectors are given by

Substituting Eq. (5}for A „and A„we can reduce
S „(q) to

(7)

where

1~+('(q) — ~ e(&(/c)(2r-a-()( - s))s)
q ~ (8}

In Eq. (7) the a and b sums are over the members
in the stars m and n, respectively. It can now
easily be seen that the 8'&bean assume the follow-
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