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1. Introduction
Interaction between (valence) electrons in solids =

e Spontaneous symmetry breaking (magnetic order, superconductivity)

e Correlation gaps without symmetry-breaking
(e.g. Mott metal-insulator transition)

e Kondo effect
e Exotic liquids (Luttinger liquids, quantum critical systems)

The most striking phenomena involve electronic correlations beyond

conventional mean-field theories (Hartree-Fock, LDA etc.).



Scale problem:

Very different behavior on different energy scales

Collective phenomena, coherence, and composite objects often emerge at

scales far below bare energy scales of microscopic Hamiltonian

—> PROBLEM
e for straightforward numerical treatments of microscopic systems

e for conventional many-body methods which treat all scales at once and
within the same approximation (e.g. summing subsets of Feynman diagrams)



Example: High temperature superconductors
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Renormalization group idea

Strategy to deal with hierarchy of energy scales?

Main idea (Wilson):
Treat degrees of freedom with different energy scales successively,
descending step by step from the highest scale.

In practice, using functional integral representation:
Integrate degrees of freedom (bosonic or fermionic fields) successively,

following a suitable hierarchy of energy scales.

= One-parameter family of effective actions I'*, interpolating smoothly
between bare action and final effective action (for A — 0) from which all

physical properties can be extracted.

Advantage:
Small steps from scale A to A’ < A easier to control than going from
highest scale Ag to A = 0 in one shot.



Effective actions I'* can be defined for example by integrating only fields
with momenta satisfying |ex — | > A, which excludes a momentum shell

around the Fermi surface.

Momentum space region around
the Fermi surface excluded by a
sharp momentum cutoff in a 2D

lattice model




History of RG for Fermi systems:

Long tradition in 1D systems, starting in 1970s (Solyom, ...);
mostly field-theoretical RG with few couplings.

RG work for 2D or 3D Fermi systems with renormalization of interaction

functions started in 1990s and can be classified as

® rigorous:
Feldman, Trubowitz, Knérrer, Magnen, Rivasseau, Salmhofer;
Benfatto, Gallavotti; ...

e pedagogical:
Shankar: Polchinski: ...

e computational (using “functional RG"):
Zanchi, Schulz; Halboth, Metzner; Honerkamp, Salmhofer, Rice; ...



2. Functional RG for Fermi systems

A natural way of dealing with many energy scales in interacting electron systems

and a powerful source of new approximations.

e applicable to microscopic models (not only field theory)
e RG treatment of infrared singularities built in

e consistent fusion of distinct scale-dependent approximations

2.1. Effective action
2.2. Exact flow equations

2.3. Truncations



. . Textbook: Negele & Orland,
2.1 EfFeCtlve action Quantum Many-Particle Systems

Interacting Fermi system with bare action

Sl ] = = (¥, Gy '¥) + V[¢, ¥
Y, Yy Grassmann variables, K = quantum numbers + Matsubara frequency

Spin-3 fermions with momentum k and spin orientation o: K = (ko,k, o)

Bare propagator in case of translation and spin-rotation invariance:
1

Go(K; K') = 0 g Go(ko, k), where Go(ko, k) = iko — (ex — )

Two-particle interaction:

Vv, ] = Y Y V(KL Ky Ky Ko) Y b,
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Generating functional for connected Green functions
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Connected m-particle Green function

G(Qm)(Kl, o Ko Ky, K

_ _ o™ o™
— .. m /... 'e —— _ _ g ) Il
Sle ¢K ime le >J anKi o anK{n anKm o 877K1 [77 77] .
connected average ==
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generates one-particle irreducible vertex functions T2



2.2. Exact flow equations

Impose infrared cutoff at energy scale A > 0, e.g. a momentum cutoff

k
y 0" (k)
GA k 7]:( —_ - , p— —
| o (Ko, k) — k= e — [
0% (k) = O(|&| — A)
T (I) ky T

Cutoff regularizes divergence of Go(ko, k) in kg =0, &k = 0 (Fermi surface)

Other choices: smooth cutoff, frequency cutoff

Cutoff excludes integration variables below scale A from functional integral
= A-dependent functionals G*[n, 7] and T[4, 1)].

Functionals G and I recovered for A — 0.



Exact flow equation for I':
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Wetterich 1993; Salmhofer & Honerkamp 2001

Derivation: simple, see lecture notes!
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Expansion in fields:

DA, ] = (GM) 7 = B2y, o]

_ -1 G 0
where G* = (F<2>A[¢,w]}¢:@=o) - < ISK -G4 >
K'K

>A4p, 1] contains all contributions to T'?A[4), )] which are at least
quadratic in the fields.
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Expand T[4/, 4] and 3[¢), 4] in powers of ¥ and 1, compare coefficients =



Flow equations for self-energy X" = Q) — I'®4 | two-particle vertex I'()4,
and many-particle vertices (02 T(®A etc.
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Hierarchy of 1-loop diagrams; all one-particle irreducible



Initial conditions:

>40 = bare single-particle potential (if any)
I'#)%0 = antisymmetrized bare two-particle interaction

r@mAio — (0 for m >3

I'Map, 9] interpolates between regularized bare action S0y, )] for A = Ag
and generating functional for vertex functions I'[+), 9] for A = 0.



2.3. Truncations
Infinite hierarchy of flow equations usually unsolvable.

Two types of approximation:
e Truncation of hierarchy at finite order

e Simplified parametrization of effective interactions
Truncations can be justified for weak coupling or small phase space.

For bosonic fields (e.g. order parameter fluctuations) non-perturbative
truncations, including all powers in fields, are possible.

See, for example, Jakubczyk et al., PRL 103, 220602 (2009)



Simple truncations:

o Set ™A = 0 for m > 2, neglect self-energy feedback in flow of ' = ¥4,

diAGg Unbiased stability analysis
d ) at weak coupling;
dA / \ d-wave superconductivity

Gi in 2D Hubbard model

e Compute flow of self-energy with bare interaction (neglecting flow of I'*):

sh Captures properties

d of isolated impurities
A ;\/ . . L

qA 2 b \F() in 1D Luttinger liquid

Rev. Mod. Phys. 84, 299 (2012)



3. Two-dimensional Hubbard model

Effective single-band model for CuOs-planes in HTSC:
(Anderson '87, Zhang & Rice '88)

* +. * +. * Hamiltonian H = Hy;,, + Hy
o+ o +o+ ° +0+ U kam _ ZZtijCLCja:ZEknko
ij o k,o
y Hy = U) nymy
J

Antiferromagnetism at/near half-filling for sufficiently large U

d-wave superconductivity away from half-filling
(perturbation theory, RG, cluster DMFT, variational MC, some QMC)



Superconductivity from spin fluctuations:

Spin correlation
function xs(q)
near half-filling:

maximum near (7, )

Effective BCS interaction
from exchange of

spin fluctuations

peaked for k' — k = (7, m)

Xy
0.0) @ g
k K’
V — spin
kk> — fluct.
-k - K

Miyake, Schmitt-Rink, Varma '86
Scalapino, Loh, Hirsch '86



2

T
= Gap equation k, 7% k
Ay
A== Vi g < B
k/
has solution with d-wave symmetry

What about other (than AF spin) fluctuations?
Treat all particle-particle and particle-hole channels on equal footing

= Summation of parquet diagrams (hard) or RG



3.1. Stability analysis at weak coupling

Effective 2-particle interaction I'* at 1-loop level:

3 B bare propagators

G and 9,GA

All channels (particle-particle, particle-hole) captured on equal footing.

Contributions of order (I'*)? neglected.



Explicitly:

0 A / / _ A
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Spin structure: For a spin-rotation invariant system
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Carry out spin sum =
aAFA(k/b k/27 kla k2> —
_ Z OPP PP k/1, ké, kl, kg) + CPH PH(kll, k',27 kla k2) T nglj PH (kllv ké? kla kQ)]
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where OFY etc. are simple coefficients and
aij
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Translation invariance: I'2 (k! kb; ki, ko) # 0 only for ky + ko = ki + kb



Parametrization of vertex:

One-loop flow given by non-linear integro-differential equation.
I'M has three independent momentum and frequency variables.
Brute force discretization doesn't work =

Use approximate parametrization of I'* with a tractable number of variables.

Standard approach:
o Neglect energy dependence: T'2 (K, kb ki, ko) ~ T2 (k) kb: ki, ko)
e Neglect momentum dependence perpendicular to Fermi surface

(irrelevant in powercounting)



Projection on Fermi surface:

e Neglect momentum dependence perpendicular to Fermi surface

e Keep tangential momentum dependence

= Tk,

Ky, ...

hiki, ko) ~ T4

— projection of

ky,... on Fermi surface.

Tangential momentum dependence

discretized for numerical

solution of flow equations

Equivalent to discretization via partition

/
F1>

ki1 + kra — ks kri, ko)

of Brillouin zone in " patches’
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Tentative ground state phase diagram near half-filling, for ¢’ = O:
(from largest susceptibilities)
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Tentative ground state phase diagram near half-filling, for ¢/ = —0.01¢:
(from largest susceptibilities)
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Lessons from 1-loop flow (obtained by 2000):

e Strong antiferromagnetic correlations near half-filling

e Antiferromagnetic correlations drive d-wave pairing instability
e Other pairing correlations suppressed

e Conventional charge density waves suppressed

e d-wave charge correlations generated



3.2. Spontaneous symmetry breaking

Divergence of effective interactions at scale A. signals
spontaneous symmetry breaking

= Order parameter generated

Routes to symmetry breaking in fRG:
e Fermionic flow with order parameter  (Salmhofer, Honerkamp, wm, Lauscher 2004)

e Bosonization (Hubbard-Stratonovich)  (Baier, Bick, Wetterich 2004)

Flow into symmetry broken phase complicated, especially in case of

two or more order parameters

Cheaper: fRG + mean field theory



Functional RG + mean-field treatment: Wang, Eberlein, wm 2014
Example for fusion of distinct approximations at high and low energy scales

e Stop fRG flow at scale Ayp > A, : effective interaction T MF

e Treat flow for A < Ayrp in mean-field theory with TAMF as input
(previous work with Wick ordered fRG: Reiss, Rohe, wm '07)

e k-dependence of order parameter(s) computed, not fixed by ansatz

Application to 2D Hubbard:
Commensurate AF and d-wave SC (coexistence allowed!)



Order parameters (gaps) as a function of density:

0.4 I I | | |
| > SC
= AF
- o only 5C ' ¢/t = —0.15
o | A~ only AF | '
ﬁ-"\ 02 B 7 T — O
< Ty < B ©-..
A , S C R o i
____________ §
Wang et al. '14
0 “—EE=HaH L '
0.85 0.9 0.95 1

Coexistence of antiferromagnetism and superconductivity



Momentum dependence of gap functions:

AM(¢), AZC(¢)

—— SC, n =0.85
—— SC, n = 0.87

0.5

/21

—— SC, n=10.91
—— AF, n=0.91

—— AF, n=1

t’/t = —0.15
Ut =3
T=0

Wang et al. '14



4. Leap to strong coupling: DMFT as a booster rocket

Truncation of exact flow equation hierarchy justified only for weak interactions

Mott insulator physics in strongly interacting Hubbard model not captured
by weak coupling expansion

Leap to strong coupling:

Taranto, Andergassen, Bauer, Held,

— |
Start flow from DMFT (d OO) ' Katanin, wm, Rohringer, Toschi, PRL 2014

4.1. Dynamical mean-field theory

4.2. From infinite to finite dimensions

4.3. Application to 2D Hubbard model



wm & Vollhardt 1989

4.1. Dynamical mean-field theory |
Georges & Kotliar 1992

DMFT = Jocal approximation for self-energy (and other vertex functions):
All vertices in skeleton expansion collapsed to the same lattice site.

Exact in infinite dimensions

Self-energy (ko) = 355(ko) functional of local propagator Gioc(ko) = /G(ko,k)
k

Collapsed skeleton expansion of lattice self-energy same as that for
local auxiliary action («+ single-impurity Anderson model)

B
Sioclt, 0] = = 3 DGy (Ko + U [ Gy (o) ()1 () (7

ko,o

with Weiss field G, * (ko)

Self-consistency condition: G (ko) = Gy ' (ko) — X (ko)



4.2. From infinite to finite dimensions

Idea: Construct fRG flow that Ainitial [0 I Aginal

interpolates smoothly between

DMFT action and exact action % ﬁ

of d-dimensional system.

Wetterich's flow equation holds for any modification of quadratic

part of action

Simple interpolation:  [G{ (ko k)] = A Gy (ko) + (1 — A)Gy (Ko, k)
Weiss field bare lattice propagator

Initial condition: YA = Y pvpT [(2m)Ao — Fgﬁ%T
Alternative interpolation: dimensional flow
Start from infinite dimensional lattice and smoothly switch off

hopping amplitudes in extra dimensions.



4.3. Application to 2D Hubbard model

Non-local correlations expected to be weaker than local correlations

= Keep only 2" and two-particle vertex I'’* in flow equations:

Frequency dependence of vertex approximated by channel decomposition
[ = U + Dpp (K}, kb; ki, ko; wpp)
+F%H( 1 ko ki, koywpn) + FQH/( 1 kS ka, kos wpr)
(valid only at weak to moderate U; improvements in progress)

Momentum dependence discretized with few patches



Result for self-energy at half-filling:

0

-0.05 ¢
—~ pure nearest-neighbor
3 h ing
o -0.1f opping
AN
= U = 4t

-0.15 ¢

T = 0.4t
025 ) 1 6 S 10

Pronounced momentum dependence at low frequency

Saddle points (7,0) and (0, 7) more "insulating” than other k
— pseudo gap



Conclusion

The fRG framework is a powerful source of new approximations, dealing
efficiently with the hierarchy of energy scales in interacting electron systems.

e applicable to microscopic models (not only field theory)
e RG treatment of infrared singularities built in
e consistent fusion of distinct scale-dependent approximations

e applicable to strongly interacting electrons with DMFT as a booster rocket



