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scheme of the lecture

iIntroduction: what is all about

e theoretical models

e the many-body problem

e the LDA+DMFT approach
basics of linear response theory ———
e definitions & properties €
e Kramers-Kronig relations

e fluctuation-dissipation theorem

the dynamical susceptibility

e one-particle Green functions

e two-particle Green functions

e generalized susceptibility

the dynamical susceptibility in LDA+DMFT
e the bubble term

e the Bethe-Salpeter equation

e |ocal-vertex approximation

e |ocal susceptibility B
example: one-band Hubbard model & vom




theoretical models



theoretical models

what do we mean by system or material?

what is “gold”?

(figure from wikipedia)

we have in mind an idealized object: thermodynamic limit, ideal crystal, ...



what do we want to know about it?

e its general properties

e we want to understand cooperative phenomena: color, metallicity, ...

(or superconductivity, ferromagnetism, antiferromagnetism,...)
e identify elementary entities
e the latter depend on energy scale (electron vs localized spins)
 theory describing ideal object: model Hamiltonian

e gold is not iron: material-specific Hamiltonian



material-specific theory

at first sight easy, the interactions are all known ...

electronic Hamiltonian (BO first approximation)
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if crystal structure known we can concentrate on electrons



material-specific Hamiltonian

Interactions are all known ...

we choose a complete one-electron basis
for example choose atomic functions
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material-specific Hamiltonian

.. and write the Hamiltonian in second quantization
(atomic function: here neglect overlap)
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one-electron terms: hopping integrals + crystal field
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two-electron terms: Coulomb interaction tensor
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to make progress we have to solve it



the many-body problem

the problem is known, but no exact solution :(

HY=EWY

do we need it?



classical N-body problem

one body: no interactions

two-body: analytically solvable problem

three-body: chaotic behavior possible

solution very difficult



correlations

many objects with simple two-body interactions

can give rise to a very complex system




the end of the n-body problem?

The Solution of the n-body Problem*

Or papers Or learnea apout at I0rmal presentations. vve
often don’t know a reference, have no idea who proved
that result, how, and when. Usually a colleague men-
tioned it at some conference dinner, during a coffee-
break, or in a friendly discussion in our Department. It
is striking, it sticks to our mind, and after a while it is
part of our mathematical heritage—we just know it.
Then we tell it further under similar circumstances, and
so the wheel turns on. We will call this component of
our knowledge folk-mathematics.

Without denying the positive role folk-mathematics
plays in spreading information, we must admit that re-
sults gathered through it are sometimes misleading or
misunderstood. A typical example is the Cantor set.
Everybody knows that the middle-third Cantor set has
zero Lebesgue measure, and many believe that the mid-
dle-fifth analogue has positive measure. Intuitively this
sounds plausible: if we remove each time a smaller seg-
ment, the remaining quantity should be larger. Unfor-
tunately, the intuition leads us astray this time. For any

*Dedicated to Philip Holmes, for his deep mathematics, for his warm
and candid poetry, and for the immense intellectual joy he has in-
stilled in me during the time our book took shape.

Florin Diacu

Florin Diacu

Florin Diacu obtained his Diploma in Mathematics at the

University of Bucharest, got his Ph.D. in Heidelberg, taught
in Dortmund, and was a postdoctoral fellow at the Centre
de Recherches Mathématiques in Montréal. Since 1991 he
has been a professor at the University of Victoria, in British
Columbia, Canada. His main research interests are in ce-
lestial mechanics and dynamical systems. His forthcoming
book Celestial Encounters—The Origins of Chaos and Stability,
written with Philip Holmes of Princeton University, de-
scribes the historical background, the people, and the ideas
that led to the birth and development of the theory of dy-
namical systems. It will be published in 1996 by Princeton
University Press.

Sundman’s method failed to apply to the n-body
problem for n > 3. It took about 7 decades until the gen-
eral case was solved. In 1991, a Chinese student,
Quidong (Don) Wang, published a beautiful paper
[Wal, [D1], in which he provided a convergent power
series solution of the n-body problem. He omitted only
the case of solutions leading to singularities—collisions
in particular. (To understand the complications raised
by solutions with singularities, see [D2].)

Did this mean the end of the n-body problem? Was
this old question—unsuccessfully attacked by the great-
est mathematicians of the last 3 centuries—merely
solved by a student in a moment of rare inspiration?
Though he provided a solution as defined in sophomore
textbooks, does this imply that we know everything
about gravitating bodies, about the motion of planets
and stars? Paradoxically, we do not; in fact we know
nothing more than before having this solution.

THE MATHEMATICAL INTELLIGENCER VOL. 18, NO. 3, 1996 69

K.F. Sundman
Q. Wang

(n=3)

(generalization)



exact solution does not help

The following section deals with this apparent para-
dox.

The Foundations of Mathematics

What Sundman and Wang did is in accord with the way
solutions of initial value problems are defined; every-
thing is apparently all right; but there is a problem, a
big one: these series solutions, though convergent on the
whole real axis, have very slow convergence. One
would have to sum up millions of terms to determine
the motion of the particles for insignificantly short in-
tervals of time. The round-off errors make these series
unusable in numerical work. From the theoretical point
of view, these solutions add nothing to what was pre-
viously known about the n-body problem.

ing the fundamentals of differential equations theory,
the structure on which a significant part of modern sci-
ence and technology is based. Do we have an answer to
this last challenge?
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emergent behavior

(from NASA website)



a single iron atom

26 electrons, 78 arguments,
1078 values
10 X 10 X 10 grid

\Ifo(l’l, Vo, ..., r26)

(from NASA website)



do we need the exact solution?

no.
too many detaills.
we need answers to interesting questions

e its general properties

e we want to understand cooperative phenomena: color, metallicity, ...

(or superconductivity, ferromagnetism, antiferromagnetism,...)
e identify elementary entities
e the latter depend on energy scale (electron vs localized spins)
 theory describing ideal object: model Hamiltonian

e gold is not iron: material-specific Hamiltonian



a solid-state example: antiferromagnetism

prediction: Néel (1932)

from mean-field theory

+T341T 3

experiment: Shull and Smart (1949)
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but the theory was wrong...

Bethe: ground state of linear Heisenberg chain has S=0
static mean-field ground state is wrong

T3ttt

Anderson: broken symmetry & quantum fluctuations



after we understood the mechanism everything is simpler...

simple (wrong) method sufficient

T31313

static mean-field solution



the standard model



density-functional theory

state-of the art approach; works for a large class of systems

shifts the focus from the wavefunction to the electronic density

Wo(ri, ¥, ..., rg) — n(r)

exact (T=0) in principle, but only approximate functionals in practice

(LDA,GGA....)



density-functional theory

A 1
H=- 52 Z|rz—rz/ Z|r, R, | ZWVQ Z|R Ra/

) z;éz oz;éoz

Kohn-Sham Hamiltonian

(in practice: LDA,GGA,...)

Walter Kohn understand and predict properties
of solids, molecules, biological
Nobel Prize in Chemistry (1998) systems, geological systems...

Kohn-Sham equations




strongly correlated systems

....those for which DFT (LDA) fails....

....LDA effective potential not enough....

....Coulomb average effects not enough....



strongly correlated systems

Mott insulators
heavy-Fermions

how do we recognize them?
anomalous phenomena

unconventional superconductivity

©
OXC
OXD
ONORC
ONORO
©006

Transition metals oxides

QOOVOOOO
WOO - -OVOOO
DOOO®OOO

OQO® ¥ » 9 v v w oo ww

spin-charge separation ®

QOO

QOOOOO

©WOOOOO®O
ONONONONCNON®)
ONONCRONONON®)

g,

w@@@@@@@

DO » » 9 ® 9 & wwmo v



localized electrons

partiallty filled localized d and f shell; atomic physics plays important role

(hydrogen-like atom: Appendix B)

i = () St () s () A soucn

FORSCHUNGSZENTRUM




metal-insulator transition
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G. Koltiar and D. Vollhardt, Physics Today 57, 53 (2004)

not explained by mean-field, Hartree-Fock,
perturbation theory, Fermi-liquid, DFT, etc....



a Mott insulator

an example: KCuFs3

LDA or GGA, or simple functional calculation
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(odd number of electrons)

in real life: large gap orbitally orderded insulator
magnetic only below 40 K

it not a quantitative failure, but qualitative one



we can start from LDA, however

correlation effects can be see as correction of DFT (LDA)

we can build one-electron basis from DFT

for example localized Wannier functions
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ab-initio Wannier functions



realistic models from DFT(LDA)

basis functions

_iR;k localized Wannier functions
ine )= 2. i lt) from LDA (GGA....)

Hamiltonian

ﬁe:f{LDA—I—Uv—ﬁDC

TLDA _ E : E :
H tnn zna Cirn'o

g znzn

LDA Hamiltonian

b = = [ AT )5V + oo (1)



Coulomb and double counting

H, = H*PA + U — Hpc
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bare Coulomb integrals

1 .
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long range Hartree and mean-field exchange-correlation
already are well described by LDA (GGA,..)

difference U-Hpc short range!

iIf it would be long range perhaps not so strongly correlated...



light and heavy electrons

electrons
light (weakly correlated): LDA (GGA,..)
02. o
Q5o ° 0
0 O% o ‘ Q0 ®
o O 00. O
heavy(strongly correlated): U ¢ e
ﬁezﬁLDA+ﬁl_ﬁ]l:)C
eg. | shell
Ul - ﬁ]l;)c short-range correction to LDA

local or almost local

for a I shell, the local Coulomb interaction is
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screening? cRPA, cLDA, .... various approximations to be put to a test



from LDA to minimal models

energy scales

10° eV quarks
proton
8
~
107 eV . \/\y\ K S CU S
4 4
nucleus < /
g _ Cu d
10°eV atom & 2
4 - — |
6 — — :
molecule 8 e e F p
4 r X P N
103 eV
crystal

simple low-energy models




typical model

generalized Hubbard model

oA A s
H. = H"P* + H{; — Hp ¢
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one-band Hubbard model

IA{Hubbard — = Z Z ti Zlcjo' Ci'o + €4 Z Nioc + U Z UZA A
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t=0: Ns atoms, insulator
half filling

U=0: half-filled band, metal

model for high-temperature superconducting cuprates



high-T¢ superconducting cuprates

Hg=2-CuO4 CuO2 planes



high-T¢ superconducting cuprates

VOLUME 87, NUMBER 4 PHYSICAL REVIEW LETTERS 23 Jury 2001

Band-Structure Trend in Hole-Doped Cuprates and Correlation with 7' .«

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,” O. Jepsen, and O. K. Andersen
Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany
(Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped high-
temperature superconductors, we have identified the range of the intralayer hopping as the essential,
material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s,
apical-oxygen 2p,, and farther orbitals. Materials with higher T, nax have larger hopping ranges and
axial orbitals more localized in the CuO, layers.
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parameters for high-Tc superconductors

VOLUME 87, NUMBER 4 PHYSICAL REVIEW LETTERS 23 Jury 2001

Band-Structure Trend in Hole-Doped Cuprates and Correlation with 7' .«

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,” O. Jepsen, and O. K. Andersen
Max-Planck-Institut fiir Festkorperforschung, D-70506 Stuttgart, Germany
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we still need a solution method

... Should describe at least Mott physics ..
... should be flexible, work for all models of Hubbard type ..

NB: flexible alone is not enough
e.g.: very flexible: HF, or LDA; however, no Mott transition



DMFT

stat-of-the art approach for Hubbard-like models

- . .

¢ N

- - -

Go_l — G_l — Z(w)

dynamics captured self-energy local
exact in infinite dimensions

Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992)



LDA+DMFT




KCuF3: various types of solutions
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early successes: details matter

mechanism of Mott transition in the series explained

week ending
VOLUME 92, NUMBER 17 PHYSICAL REVIEW LETTERS 30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d! Perovskites

E. Pavarini,' S. Biermann,> A. Poteryaev,3 A.L Lichtenstein,® A. Georges,2 and O. K. Andersen*

A=200-300 meV

LDA+DMFT 770 K

a small crystal field plays a key role



spectral functions

(one-electron Green function)

VOLUME 92, NUMBER 17

PHYSICAL REVIEW LETTERS

week ending
30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d! Perovskites

E. Pavarini,' S. Biermann,? A. Poteryaev,3 A. L Lichtenstein,® A. Georges,2 and O. K. Andersen*

DOS states/evispinband

DOS/states/eV/ispin/band

06
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J=0.68 eV
U=5eV

StVO3

J=068 eV
U=5eV

Cavo3

J=0.64 eV

U=5eV

LaTiO3

J=0.64 eV

U=5eV

YTiO3




what about linear response functions?



VOLUME 69, NUMBER | PHYSICAL REVIEW LETTERS 6 JULY 1992

Hubbard Model in Infinite Dimensions: A Quantum Monte Carlo Study

M. Jarrell
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
(Received 5 December 1991)

An essentially exact solution of the infinite-dimensional Hubbard model is made possible by a new
self-consistent Monte Carlo procedure. Near half filling antiferromagnetism and a pseudogap in the
single-particle density of states are found for sufficiently large values of the intrasite Coulomb interac-
tion. At half filling the antiferromagnetic transition temperature obtains its largest value when the in-

trasite Coulomb interaction U = 3.

PACS numbers: 75.10.Jm, 71.10.+x, 75.10.Lp, 75.30.Kz
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problem:
§%iw,) =Gii(iw,)
=G0 +2 G4 o) Eil0)Giliwn) , @)
where
0, ifi=k,
Ziliw,) = {}:(iwn), otherwise. ®

The prime indicates that the self-energy is set to zero on
site i. This spatial dependence of X; is necessary to avoid
overcounting of diagrams, since the Green’s function § is
calculated to all orders in U by the QMC process. The
diagrammatic equation shown in Fig. 2 is the same as
that needed to solve the Anderson impurity problem.
Thus, given €% I may solve for & with the QMC algo-
rithm of Hirsch and Fye [7]. The Green’s function calcu-
lated in this process may then be inverted to yield a new
estimate for Z(iw,),

9Gw,) '=9% w,) '-2(io,). 4

Thus the QMC procedure and Egs. (2) and (4) constitute
a set of self-consistent equations for the lattice self-
energy X which essentially reduce the problem to a self-
consistently embedded Anderson impurity problem [8].

A variety of two-particle properties may also be calcu-
lated with this procedure [9], since, using similar argu-
ments applied to the self-energy, one may argue that the

irreducible vertex function is also local. For example, the
static magnetic susceptibility matrix

P

where w, =(2n+1)xT. This is related to the static sus-
ceptibilities by

=37 Z e _iq.lelij(iwn,iwm) . (6)
The noninteracting part is

20iw,) = —#%Gk(iwn)GHq(iwn) : )

where Gy(iw,) =1/lio, — ¢ — e, — Z(iw,)]. Equation (7)
may readily be evaluated in the ferromagnetic [q
=(0,0,0,...)] and antiferromagnetic [q={(x,x,x,...)]
limits, in which it may be reexpressed as an integral over
the Gaussian density of states. The function I is the local
irreducible vertex function which may be calculated in
the QMC procedure by solving

2i((0n,i0m) =8(i0) 28pm — T 2 S (i0,) T iy iw),)
P
X yi(iwp,ion) . (8)

Here yx;; is the opposite-spin two-particle Green’s func-

| tion,

2i (i@ iwp) = — sz;pdr I _I:,ﬂdtzj;pdtaﬁ,pdue BRI ¢ o A T C ToRTC2To AN CID M ¢



non-interacting case

Wick’s theorem holds

k+q k'+q 1Gk+qya’ (ivn + twm)
Vn+Wm Vn4Wm
a 4
X 0 — X o
a Vv
Vn Vn’
k k’
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generalized susceptibility in LDA+DMFT

replace non-interacting G with GPMFT

GPMFT is the Green function obtained via DMFT

1
N

> G (ks ivn ) GO (K + g vy + iw,)
k

[XO(q; iwm)]LaaL’y = —B0nn/



Bethe-Salpeter equation

Vn+Wm

Vn+Wm




local-vertex approximation

vertex in BS equation local in infinite dimensions
approximation for real materials

x(@s twm)lp, 1, = [xo(@;wm) + xo(g; iwm-x(q; wm)lr,. 1,

define local susceptibilities

. 1 ,
xo(iwm )] pie pie = N, Z Xo(gs iwm)] e pie s

X (iwm)| Ll L — AT Z (q; twm) L“,Lff



local-vertex approximation

assume that local BS equation
is also valid for the local susceptibility

TG - o), ),

local susceptibility: from quantum impurity solver

insert vertex in BS equation

X(@; iwm)l 1 = [xo(g;wm) + Xxo(q; Z'wm)-x(q; twm)]r, 1

/Y

q-dependence here from non-interacting part



VOLUME 69, NUMBER | PHYSICAL REVIEW LETTERS 6 JULY 1992

Hubbard Model in Infinite Dimensions: A Quantum Monte Carlo Study

M. Jarrell

Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
(Received 5 December 1991)

An essentially exact solution of the infinite-dimensional Hubbard model is made possible by a new
self-consistent Monte Carlo procedure. Near half filling antiferromagnetism and a pseudogap in the
single-particle density of states are found for sufficiently large values of the intrasite Coulomb interac-
tion. At half filling the antiferromagnetic transition temperature obtains its largest value when the in-
trasite Coulomb interaction U = 3.

PACS numbers: 75.10.Jm, 71.10.+x, 75.10.Lp, 75.30.Kz
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FIG. 3. Antiferromagnetic susceptibility yar(7T) vs tempera-
ture T when U=1.5 and ¢=0.0. The logarithmic scaling be-
havior is shown in the inset. The data close to the transition
fit the form yarx|7T—T.|" with 7.=0.0866 * 0.0003 and
v=—0.99+0.05. The points at U=0 reflect exactly known
limits.



Li2VOSIO4 vs VOMOo0O4

poster Amin Kiani




poster Amin Kiani
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FIG. 3. Ferromagnetic spin polarization as a function of temper-
ature in YTiO;3. The plot shows a transition at the critical temperature
Tc ~ 50 K, slightly overestimating the experimental value 7¢ ~
30 K, as one might expect from a mean-field calculations.



linear-response theory



we need some definitions

a small space- and time-dependent perturbation H-

A

H — H+ [dr Hi(r;t) + ...

ﬁfl(TQ t) =->, év("°3 t)-»

A

O, (r;t) = H—1NIO, (p)e= {H-pN)L

7 — Ty 6-,3(15{—,LN) <A>O _ %Tr [G—B(I‘Af—uN)A}
partition function expectation value

B=1/ksT

AA(r;t) = A(rit) — (A(r))o

difference wrt unperturbed equilibrium case



linear response theory

a small space- and time-dependent perturbation H+

A

H —>H—|—fdrH1'rt

) .

property of the system external field

linear effect on some property P

(6B, (r:1))0 = —i / i [ ([AB(rse), AL G 1])

— 0

term to calculate

0



linear response function

replacing H+ with its expression

t
SP,(r:t)) =i dr' dt’ { |AP,(r:t), AO, (v":t)| ) hy(v's ¢
< w»oz;/rﬁw ([AP(r:1), A0, (3] ) hurlas )
linear response

linear response function

Xp o, (rritt) = z‘<{Aﬁy(r;t),AOA,ﬂ(r’;t’)}> ot —t)

5 A "ttt = 1 :
xpo, (Tt t) = I

now recognize the correlation function

A A

(AP, (r;t) A0, (r";t"))q

Sp o / ('r,'r’;t,t’)



.and it I1s retarded...

a perturbation has only effects after it has been switched on

effect perturbation

v 1 %4 O

effect only after perturbation

1 if t—t' >0
@(t_tl):{ 0 if t—t <0



Fourier transform

often it is better to work in Fourier space

for system with time and space translation invariance

<5p1/(q; w)>0 — Z-h’l//(q; w)



ideal crystal

rewrite operators in second quantization

A A

AP, (r) = &T(r)AP, &(r)

operator
Z Z wza ¢z "o ’T’ C:;ra/ [Apu]aa’ Ci'ay = Z Z
1’ aa Dy 1’ aa’
pa/a(r> A'P;’LQ, .
’ weight

if we use a localized one-electron basis

AP, (7)) ~ > > para(T) AP oo

7 oo




example: magnetic susceptibility

. 1
MZ(T) ~ _g,uBZ Z pmam& (’l") 5 zma [AM ]00’ sz o’

oo’

[AMz]UG’ = <U|6z|0,>

one-band case, e.g., one-band Hubbard model

(6M.(q;w))o ~ (guB) \226_“’ (T T')ZUU/XEUgG ) h(q;w)

(95"l |--

magnetic field




example: magnetic susceptibility

system with partially filled 3d shells, i.e., localized magnetic moments

(6M.(g;w))o ~ (g915)°|ps(q |ZZ —a (T T’)Zaa’xgi’gf Vh(q;w)

= (

OF o
atomic form factor -

(neutron scattering)

guestion: where do localized magnetic moments come from ?

ve.s. (o) = [ ar e (SRRSO o



localized magnetic moments

atomic physics (+ crystal field)

more details: see, e.g., my lecture of last year



many electron atoms

1
HER:_§ZVZ Z +Z\r — 7]

) 1>

one shell, 2nd quantization

NR __ Z 2: } : T
H = &nl CirneCorne + = mm mm’cmacm J’Cm a’cma

oo’ mmm’m/’

Kinetict+central potential Coulomb interaction

’Lj’L j /d'rl/d ro wzma r 77bjm, o’ (7“2)% "m’o’ (r2)¢z ma(’rl)

mm mm/’ |’T‘1 —’I“2|



many electron atoms

does the atom/ion carry a magnetic moment?

total spin S and total angular momentum L

filled shells
S=L=0

partially filled shell: magnetic ions

1. Hund’s rule max S




origin: Coulomb repulsion

direct term: the same for all N electron states

1 l
Uavg - m Z Umm/mm/

mm/’

exchange term: 1. Hund'’s rule

_ 1 l 7l
Uavg — Javg — 2l(2l n 1) Z (Umm’mm’ Umm’m’m)



Coulomb exchange

C atom, p shell

J o, =
_ /drlfd ro 77bzm<7 1 wzm 0(T2)¢zma(r2)wzm a(’rl)
r1 — 72
¢zmm o rl szmm a(’r2) 1 4 2
- d dr = 37 T o [Pimm’o k ,
/ T]_/ ro |r1_r2| V - k2 |¢ ( )|

positive, hence ferromagnetic

__Z Z m,m’ ma ma ’-]l-’n,o‘cmo':_% 2J£Lm [Smsm +inmn ]

o m#m’ m#m/’




analytic properties of X(q,w)

{sl'/,,fbv} N: number of electrons
n: eigenvalue

A
Im z

Prm(g) = (BN|AP,(g:0)|EY), m

o) = (W)|AO.(g;0)[&,) Re z

1 e=BEY —uN) _ o=B(Ep—pN) .

nm

0>0 analytic in the upper part of the complex plane



Hermitian operators

iIf the operators are Hermitian

symmetry properties

Re [Xﬁyéy, (q;w)] = Re [XPVO (—q; — )}, even




Kramers-Kronig relations

analytic function in upper part complex plane + fast decaying

Re z

Ly [ Imlal
w! — w ’

T Re| e : 00
Im [X(Q;W)] _ __73/ R (qa )] R [ (qv )]dw’.

w' —w

=
@D
~—~
—
|
=
@
~~
g
|




thermodynamic sum-rule

let us take the static (w=0) limit

+00 m !
Re [x(q;w = 0)] — Re [x(g; 0)] = %7’/_ I [Xff,l’ o

let us take in addition the uniform (g=0) limit

o(P,
X (050) = hh,n—lm (‘9<h ,

response to a uniform and static perturbation



Thomas-Reich-Kuhn sum-rule

if O o P

2 /Ooow Im [Xpyéy, (q;w)] dw = <[[P’/’H]’O”/] >o

s

to proof it use a complete basis of eigenvectors
+ invariance of trace under cyclic permutations

also known as f-sum rule



detailed-balance
Sp,0,,(@:t) = ( AP, (q:1) A0, (~q) ),

Sﬁyéy, (q;w) = / dt et (AP, (q;t)AO, (—q;0))o

1 - ' N BN, — N nm mn
=72 | e P g0 g

_27T

> e_B(EiV_MN)P’?m(q)OZ}n(_q) 5((,0 _ ETJX ‘I—ET]LV)

if O « P*
Fermi’s golden rule

P (q) = (WN|AB,(q;0)|¥),

Op™Ma) = (U |A0u(q;0)|%,)



detailed-balance

exchanging the operators and then nand m

27T — N_ nm mmn
So. 5, (@:w) = 5 > e HERN) prm ()0 (g)b(w — EyY + Ep)

nm

So,,5,(—@—w) = e S 5 (q;w)

The relation above can be understood as follows. If w > 0, the correlation function Sp 5 (q;w) describes the

probability P,_,, o« n(E,)[l1 — n(E,,)] that the system is excited from an initial state with energy F,, to a
final state with higher energy E,, = E, + w. Instead, Sp O, (—g; —w), describes the probability P, o
n(Em)[1 — n(E,)] that the system goes from the initial state with energy F,,, to a final state with lower energy
E, = E,, — w. The probability F,,_.,, is lower than P,,_,,, by the factor e Bw,



fluctuation-dissipation theorem

ifO o P*

1

= 2(1+ np)lmlxp, o, (@), np@) =

correlation imaginary part of the Bose-Einstein
function linear response dispersion
function
large temperature limit
1

Re[xp o ,(@;w =0)] —Re[xp o ,(g;00)] ~ ,CB—TSp,,o,,, (g;t=0)



Green functions



single-particle Green functions



temperature Green function

for a consistent perturbation theory at finite temperature

1 A A
Gaw (T) = =(Tea(m)el ()0 = = Tr [ PH0Te, (m)el, ()]
0<71 <p o(t) = eTH=1N) 5 o= (H—puN)

only one independent imaginary time variable



temperature Green function

using a full basis set

S @Y e BN @N e @ e A )

Nnm

N N
{ _eBy—EL T T 5

e~ (BN -ENVLLu)(—-1) .

only well defined in the interval

—p<T<p

and how does it look like?



~

Gaa

anti-periodic

-1 -0.5 0
/B

0.5

we can define it everywhere as

(11 £ 118,72 £n2f) =

(=

)n1+n2G

/(T1,T2)



temperature Green function

let us make it periodic with period 23

Fourier transform

1 X

GOéOé’ (T) — E Z e—iVnTGaa’(iVn)a

NnN=—oo

vn are fermionic Matsubara frequencies

I.e., the poles of the Fermi distribution function
v, =7(2n+1)/5

Fourier coefficients

1 . A
—(1— e“’“’”ﬁ)/ dre"""" Gy (T) =
g 2 0



sums over Matsubara frequencies

often we have to calculate Matsubara sums

> flivn)

n

how do we do this?



Im z
‘ ‘ some of the poles of the Fermi function
possible poles of the F function
ll F function  Fermi function

v

Ic = 57 j{]:kg Ine(2)e*"dz

If F decays fast enough, using Cauchy integral theorem

BZ e Froo (iVp) ZRGS \Freo (2p)] ne(2p)e™P”

Zp



examples

0.5 1-n(e)

G(7)
o

-0.5 n(e)-1 1 -Nn(e)

/B

1 |
B Ze_ZVn0+gk0(iyn) — gka(0+) — na(€k) — 1.



most common Matsubara FT

9o (vn; 2, y) 9a(T32,Y) = 5 2, € ga(Vni @, y)
9a(Vn;x,y) = [iv, — :13]_1 ng(z) — 1le™*7
go(vn; @, y) = [ivy — 2] N (2) (7 — B (z))e= 279
ge(Vnim,y) = [ivy — 2] vy —y] ™ | —[e T Png(x) — e T Fn, ()] [x — y] !
9a(vnim,y) = v — 2]~ [iv, + 2 [9a(T52,y) — gu(T; —2,9)] /22

Table 1: Some of the most common Matsubara Fourier transforms (fermionic case). The function n,(x) is the
Fermi-Dirac distribution function ny(x) = 1/(1 + €*P). The parameters x and y are real numbers. For T we
consider the interval (0, 5).



two-particle Green-functions



two-particle Green-functions

A

Xf;fyxff (1) = <TApoza’(7_177_2)AO’m/’ (73,74))

Apaa/(Tl,TQ) = C

AO’YW’ (7'3, 7'4) =C

(T2)eq (1) = (Tl (T2) e (1)),
(Ta)e, (T3) — {Tci;, (T4)c.,(73))-

Q= O —

three independent variables

/ /

Xfﬁ/ (1) = Xfﬁ/ (T14, T24, T34, 0)

(we can also choose T12 T34 T23)

anti-periodicity

/ /

X5 (T14 + B, T24,734,0) = —X55 (T14, T24, T34, 0),



non-interacting example

Wick’s theorem

X(7-127 O+; 7_23) — _Gaa (7_12 + To3 + O+)Gaa(_7_23)

% (T12,0"5T03)

0.25,;

-0.25




Matsubara Fourier transform

) = 55 / // / T TG (7

(V17V27V37V4)

energy conservation

V = (V'n,a —Up — Wm, Vn/ + Wi, _Vn’)

Wi Bosonic frequency



n+1/2

n+1/2

n+1/2

n+1/2

symmetry lines

/ / / /
Xpons | (1w ) = X (i)
a5 iwom) | = X3 i)

N\l ‘ ./
15
0

15 ?
Vb | N

non-interacting case

X2 (7) = =Gy (114) Gryar (—Ta3)



from the two-particle Green-function
to the susceptibility



generalized susceptibility

Xpi o (T) = (TAPL(r1,7m2) A0 (15,74))0.
Pi(r,12) = Y Phclo(m2)es (),

O\ (15,71) = Zo,”yl c;-r,,y,(7'4)ci,7(7'3).
2!

/
Vay = pgofy numbers

two-particle
Green function tensor

Xp: 0y, (T) = D van XS



generalized susceptibility

real space k space

- 3 - Xy >
z—
oy

o0, ) = Y e 2 S N

matrix LxL Ls=nxa

n: fermionic Matsubara frequencies
a: flavors



magnetic susceptibility

: 1
XP O, (Q§ Zwm) — Zva'y @ Z [X(q;wm)]La,LW -

oy

/
. v v
Ua"y - paO*'y

0z, = —gup{o|o.|o), pz, = —gup(d'|6.|o"),

the prefactor determines the type of response



non-interacting case

Wick’s theorem holds

k+q k'+q 1Gk+qya’ (ivn + twm)
Vn+Wm Vn4Wm
a 4
X 0 — X o
a Vv
Vn Vn’
k k’

igkow’ (ZVTL>

[XO (q7 iwm)]kLa,k’Lv p— ﬁNk,-gk/-FQOH’Y(iVn/ ‘I_ iwm)5n,n/5k,k/



Bethe-Salpeter equation




one-band Hubbard model
magnetic response



the one-band Hubbard model

IA{Hubbard — Z Zt; Zlc;fa Cil 5 + €4 Z Nig + UZ UZAAIA]

\

~ ~"~

Ho Hy

™
Q.
|

_t1,1/
(3,7
bty
1117
Ullll

-
Il

t=0: Ns atoms, insulator
half filling

U=0: half-filled band, metal



the U=0 limit



energy (eV)

d=1

the U=0 limit

Hy+ Hp =) ) [ea+ k] ChyCh,
k o

hypercubic lattice

d
e = —2t Z cos(k, a)
v=1

d=2 d=3

\ /TN

N AN




Pauli paramagnetism

1
Ek — €ko = €k + §UQMth

+D

Er

o3 M |
3y 1




Pauli paramagnetism

1 1 1 5
M, =—= — ) [ner — ey ~ - h
2(9#3) N, k Nkt — Nl ] 4(9MB) p(EF)
zero temperature
P 1 2
X" (0) =~ (9pp)" pler)

finite temperature

D) = g lann)” [ dente <_ dif)>




finite temperature

d=1 d=2 d=3
N R I A B =} AR
2 0 2 2 0 2 2 0 2
energy (eV)
d=1 d=2 d=3
- 4 L
1 — |
oC \\
X . |
O ....................................
2000 4000 2000 4000 2000 4000

T(K)



Gko (T)

temperature Green function

U=0 limit

= (T |ens (el 0)] ).

= —[6(7) (1 — no(er)) — O(=T)no(ex)] e~ =717

, 1
gkza(zyn) — iVn — ey 1 10



magnetic susceptibility
paramagnetic region

Xz2(q;1wm) = (guB) Z @ Z Z ano (1Wm)

U=0 limit
Z XQJU Zwm — _6— Z Z gk‘,o‘ ZVn gk—kqa(zyn + Zwm)én n’

nn’ o

static case (wm=0)

9o (vn; 2, y) 9a(T32,Y) = 5 2, € ga(Vni @, 1)
o(Vn; 2, y) = [ivy, — ] [ng () —1]e™™"
(V3 @, y) = [ivn — 2] () (= B (a))e =)
(Vns 2, y) = [ivn —x]  ive —y] ' | — [e= = Fn,(z) — e YT P, (y)] [«
a(ni @, y) = [ive — 2] [ivy + 2] 9a(T32,Y) — ga(T5 —1, y)]/2ﬂlj




U=0 limit, static case

1

Xz2(0;0) = 1 (gun)” pleF),

1 dng Ek
per) =3 3, 3 g

T=0



magnetic susceptibility

£k = -+ cos(kya) + cos(k.a)]

finite temperature ~ 350 K
%0(d;0)

d=2 d=3

2-dimensional case: M point!

weakly temperature dependent



the t=0 limit



atomic limit (£=0) & half filling

N, S, S.) N S E(N)
0,0,0) = |0) 0 0 0
1,31 = chlo) 1 1/2 £d
X ! S=1/2
Lsd) = o) 1 1/2 £d
2,0,0) = clejoy 2 0 244 U

Hyg+ Hy = ¢4 Zm‘JrUZ {— (52)2+nz]

emergence of the spin!

half filling: highly degenerate states, 2Nsdegrees of freedom

Insulating behavior



magnetization

non interacting ions
uniform magnetic field hz, Zeeman term

Tr [e_g:U'B thBS; S;]

M. = (M) = —gup Tr [e—9rBh=B5:]

= gupS tanh (gugh.BS5)

derivative with respect to h;

oM,

1
o (91BS)° — [1 — tanh® (guph.B9)]

kT




Curie susceptibility

Curie behavior

1 _ 01/2

2z O; — °
Xz2(0;0) = (gupS) =~ 7

Curie constant

(gug)° S(S + 1)
3kp

C/o =




local spin as emergent entity

one-site Hubbard model

gy [T [P0 (81)] Py [omstmon i)
X22(0;0)  ~ ksT Tr [e—B(Hi_IJINi)} | Tr [6_5(Hi_“Ni)]
Chjo  ePU/2
T 1+ePU/2

U=FE(N;+1)+ E(N; —1) — 2E(N;)

infinite U limit: the spin S=1/2

only S=1/2 part of Hilbert space remains



temperature Green function

t=0 limit

1 1

GolT) = =3 T eaur [QTU/Q i e(ﬁ_T)U/Q}
&

. 1 1 1
Golivn) = 5 [z’yn +U/2 i — U/Q}



10 10
X’LO’ 1o’

(T

—I—):

magnetic susceptibility

t=0 limit

sector T1<12<13<T4

1

2(1 + eBU/2

) (67'12U/2+7-34U/2 _|_50_O_/6(B—’7'12)U/2—7‘34U/2)

2
io io _ (g:uB) 1 6([3—7'12—7'34)U/2

Xic’io! 46 (1 _I_e[-}U/Q)




Fourier transform

Xzz] s (twm) = B %(91@)2 > sign(P)fp

B T14 T24 . _ .
. . . _ ’L
frliwp,,iwp,,iwp,) = / d714/ d724/ dr3y WPITIA TP Ta TIPS T84 1 (1) 4 1oy, T34)
0 0 0

1 (ot 1
SE(T14, Toa, Taa) = (1 + eBU/2) ePU/2 e (natman)lf2 = (1 + eBU/2) 9E(T14, T24, T34



calculating the integral

B T14 T24
IP (CIJ, —x, x;iwpl : in2 : ?:wpg) — / d7'14 / d7'24 / d7'34 oW Py Ti4 WP, T24+1W P, T34 633(T14_T24‘|‘T34
0 0 0

B T14 Ti4a—T _ _ ' ' . /
=+ / d7-14 / dT / dr’ e(lel +iwp, +iwps +)T14— (WP, +WP, )Te—(zwp3 +x)T
0 0 0

1 1 1 1
- iwp, + * —iwp, + T [iwpl + x n(x) i Béwpl+wp2]
1 1= buptun, [ 1 1 1
+ iwp, +  i(wp, +wp;) [iwpl +r i(wp, +wp, +wp,) —|—.CB]

n(z)

. Zw%1+ : { [(Wll+ x)} i n(lx) _ 3 [ (inllJr x)] ! n(wgf’f) } .




magnetic susceptibility
result after Matsubara sums

1 ePU/2
4k 1 + ePU/2

Xzz(q; O) — (g:LLB)2

Curie-like temperature behavior

infinite U limit: emergence of spin



the small t/U limit



perturbation theory

Hubbard model

_6dzzcza za_tzzcza 'La_'_UanTnli_Hd—FHT_'_HU

(i1/) ©

half filling: N=1 electrons per site

np = number of doubly occupied sites

idea: divide Hilbert space into np=0 and np>0 sector

next downfold high energy np>0 sector



np=0 sector

e
b

site 1 site 2

two sites

N=1 per site; Niot=2

np=1 sector

4
— K-

site 1 site 2



Hilbert space

np=0 sector np>0 sector

next downfold high energy np>0 sector



low energy model

eliminate states with a doubly occupied site

4 &

virtual hopping U
energy gain
AE Hy|I)(I ! I){I|H 2t



low energy model

energy gain only for antiferromagnetic arrangement

4 ) <

1 442 Pauli principle

1
"I~ (AEy — AEy) = — —
5 (AEw 1) Wi

1 1
H — —F 7 g — —TNgTLyy
5= 5 <E-.,> {S S 4nn }



static mean field

(M?*)y = —o,Mycos(q-R;) =—gupm cos(q- R;)

relation between critical temperature and couplings

S(S +1 o
kpTy = ( ; )I’q, Iy=—) TI%ieaTith)
350
Cl 2(1 — O',,Qn)
Xzz(g; 0) = =2

B TR —o0;,)Tq
divergence at critical temperature

Curie-Weiss susceptibility



Xo term

atomic limit

k+q k'+q igk—kq'ya’(?:’/n + W)
Vn+@Wm Vn+Wm
a

Xo = XO
a
Vn — Vn’
k k igka'y’(iyn)
: 1 1 1 1 1
7% (0) = — 5nn’500’_ : ; ‘ '
X (0) g 4 wn—l—U/2+wn—U/2] [zyn+U/2+wn—U/2]

BU/2 1 1 1 —ePU
2 66 ¢
-(0) = §(gnn) Z B2 ZX o)’ + ePU? {1 I (1 +e—BU/2)}




Xo term

atomic limit

BU/2 1 1 [ 1—e PV

2 5 Pe e

Xzz g,uB Z 62 ZX gﬂB) 1 _|_€BU/2 1 _|_63U/2 + Uﬁ (1 _|_e—,3U/2>:|
large U: weakly temperature dependent

X2.(0) ~ (gup)*/4U

small U limit?



Xo term

in the t=0 limit

1

Glivn) = i + p— X(ivy)

U? 1
X (iv,) = I
(ivp) u+4%

what about the small /U limit?

let us consider an approximate form for the self-energy

TUU2 1

S(iv,) =
(ivp) = p + T




Xo term

what about the small t/U limit?

TUU2 1
4 v,

Y(ivn) = p+

1 1 E; E.

Gr(iv,) = - , —
k(ivn) vy — X(ivp) —ew  EY — Ep livy, — Ef v, — Ep

10




X2 (q;0)

1 1
_ 2= E

Xo term

perform Matsubara sums

(g1p)> 252 Zx

k
“metallic” “insulating”
) B Bl q n(ER) = n(Ej,)
(E:_E/;)(E;+q El;—l—q) Ea Elz—l—q



Xo term

at the [ point

1 11 o5
qc;0) ~ ? 1————E =
xolgo:0) ~ (oms) 7 |1 = 3, — U
In general

I [[_1 Jo 1 Jg
4\/TUU 2\/7“UU 4\/7“UU

X0(q;0) ~ (guB)’

Jq = 2J[cosq, +cosqy], Joct?/U




Xo term & the local vertex I

use atomic susceptibility as local susceptibility to determine the vertex
via the local Bethe-Salpeter equation

h XSJ(O) - xz:(O)] - (gulB)2 [MEU <1 " %\/7{_;(]) - 4kBT]

the expected Curie-Weiss behavior

1 1 1

2— —
(@O =T "~ B T T

X-2(q;0) = |



conclusion

strongly-correlated systems: compare to data:
LDA+DMFT method need a response theory

8.2

e 0.
= 0 X ... No YES DONE!

basics of linear-response theory




Bethe-Salpeter equation

k+q kK'+q

Vn+Wm Vn'+Wm
Vn - Vn’
k+q k+q k+q
Vn+@Wm a,—’ VntWm  VnWm — >
a
Xo + Xo
a a
Vn Vn Vn
k k k

local susceptibility: QMC methods

local-vertex approximation

= 0002 23 o5 HF ¢

S
5 10| !
D q
s K-t
o 14 1
s
o . . . L

20 30 40 50 60 70

B(ev’)
CT-HYB vs HF

Phys. Rev. B 87, 195141



thank you!




