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response functions
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introduction
linear magnetic susceptibility

Kondo problem

(or DMFT impurity problem in certain regime)



scheme of the lecture
• introduction: what is all about 
• theoretical models 
• the many-body problem 
• the LDA+DMFT approach 

• basics of linear response theory 
• definitions & properties 
• Kramers-Kronig relations 
• fluctuation-dissipation theorem 

• the dynamical susceptibility 
• one-particle Green functions 
• two-particle Green functions 
• generalized susceptibility 

• the dynamical susceptibility in LDA+DMFT 
• the bubble term 
• the Bethe-Salpeter equation 
• local-vertex approximation 
• local susceptibility 

• example: one-band Hubbard model 
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theoretical models



theoretical models

what is “gold”?

we have in mind an idealized object: thermodynamic limit, ideal crystal,…

(figure from wikipedia)

what do we mean by system or material?



what do we want to know about it?

• its general properties 

• we want to understand cooperative phenomena: color, metallicity, …         
(or superconductivity, ferromagnetism, antiferromagnetism,…) 

• identify elementary entities 

• the latter depend on energy scale (electron vs localized spins) 

• theory describing ideal object: model Hamiltonian 

• gold is not iron: material-specific Hamiltonian



material-specific theory

electronic Hamiltonian (BO first approximation)
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lattice Hamiltonian

if crystal structure known we can concentrate on electrons

at first sight easy, the interactions are all known …



material-specific Hamiltonian

we choose a complete one-electron basis

interactions are all known …

for example choose atomic functions



material-specific Hamiltonian
… and write the Hamiltonian in second quantization
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one-electron terms: hopping integrals + crystal field

two-electron terms: Coulomb interaction tensor

(atomic function: here neglect overlap)
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to make progress we have to solve it



the many-body problem

the problem is known, but no exact solution :(

HΨ=EΨ 

do we need it?



classical N-body problem

one body: no interactions

two-body: analytically solvable problem

three-body: chaotic behavior possible

solution very difficult



correlations

many objects with simple two-body interactions
can give rise to a very complex system



the end of the n-body problem?

K.F. Sundman   (n=3)!
Q. Wang     (generalization)



exact solution does not help



emergent behavior

(from NASA website)



a single iron atom

26 electrons, 78 arguments,  
1078 values 

10 X 10 X 10 grid

 0(r1, r2, . . . , r26)

(from NASA website)



do we need the exact solution?

no.
too many details.

• its general properties 

• we want to understand cooperative phenomena: color, metallicity, …         
(or superconductivity, ferromagnetism, antiferromagnetism,…) 

• identify elementary entities 

• the latter depend on energy scale (electron vs localized spins) 

• theory describing ideal object: model Hamiltonian 

• gold is not iron: material-specific Hamiltonian

we need answers to interesting questions



a solid-state example: antiferromagnetism

LETTERS TO THE EDITOR 125'7

must be positive. This last condition is required in order that spin
states of high multiplicity, which favor ferromagnetism, have the
lowest energy. It seems certain that for many of the non-ferro-
magnetic substances containing a high concentration of magnetic
atoms the exchange integrals are negative. In such cases the lowest
energy state is the one in which the maximum number of anti-
parallel pairs occur. An. approximate theory of such substances
has been developed by Neel, I Bitter, and Van Vleck3 for one
specific case and the results are briefly described below.
Consider a crystalline structure which can be divided into two

interpenetrating lattices such that atoms on one lattice have
nearest neighbors only on the other lattice. Examples are simple
cubic and body-centered cubic structures. Let the exchange
integral for nearest neighbors be negative and consider only
nearest neighbor interactions. Theory then predicts that the
structure will exhibit a Curie temperature. Below the Curie tem-
perature the spontaneous magnetization vs. temperature curve
for one of the sub-lattices is that for an ordinary ferromagnetic
material. However, the magnetization directions for the two
lattices are antiparallel so that no net spontaneous magnetization
exists. At absolute zero all of the atoms on one lattice have their
electronic magnetic moments aligned in the same direction and
all of the atoms on the other lattice have their moments anti-
parallel to the first. Above the Curie temperature the thermal
energy is sufficient to overcome the tendency of the atoms to
lock antiparallel and the behavior is that of a normal paramagnetic
substance.
Materials exhibiting the characteristics described above have

been designated "antiferromagnetic. "Up to the present time the
only methods of detecting antiferromagnetism experimentally
have been indirect, e.g. , determination of Curie points by suscep-
tibility and specific heat anomalies. It has occurred to one of us
(J.S.S.) that neutron diKraction experiments might provide a
direct means of detecting antiferromagnetism. In an antiferro-
magnetic material below the Curie temperature a rigid lattice of
magnetic ions is formed and the interaction of the neutron mag-
netic moment with this lattice should result in measurable co-
herent scattering. Halpern and Johnson' have shown that the
magnetic and nuclear scattering amplitudes of a paramagnetic
atom should be of the same order of magnitude and this result.
has been qualitatively verified by experimental investigators. s At
the time of the above suggestion, an experimental program on the
determination of the magnetic scattering patterns for various
paramagnetic substances (MnO, MnF2, MnSO4 and Fe203) was
underway at Oak Ridge National Laboratory and room ternpera-
ture examination had shown {1)a form factor type of diffusion
magnetic scattering {no coupling of the atomic moments) to exist
for MnF2 and MnSO4, (2) a liquid type of magnetic scattering
(short-range order coupling of oppositely directed magnetic
moments) to exist for MnO and (3) the presence of strong coherent
magnetic diffraction peaks at forbidden re6ection positions for
the n-Fe203 lattice. The latter two observations are in complete
accord with the antiferromagnetic notion since the Curie points
for MnO and o.-Fe203 are respectively' 122'K and 950'K.
Figure 1 shows the neutron diffraction patterns obtained for

powdered MnO at room temperature and at 80'K. The room
temperature pattern shows coherent nuclear diGraction peaks at
the regular face-centered cubic re6ection positions and the liquid
type of diffuse magnetic scattering in the background. It should
be pointed out that the coherent nuclear scattering amplitudes for
Mn and 0 are of opposite sign so that the diGraction pattern is a
reversed NaCl type of pattern. The low temperature pattern also
shows the same nuclear diffraction peaks, since there is no crystal-
lographic transition in this temperature region, T and in addition
shows the presence of strong magnetic reflections at positions not
allowed on the basis of the chemical unit cell. The magnetic re-
jections can be indexed, however, making use of a magnetic unit
cell twice as large as the chemical unit cell. A complete description
of the magnetic structure will be given at a later date.
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Fi( . 1. Neutron diffraction patterns for MnO at room
temperature and at 80~K.

Imprisonment of Resonance Radiation in
Mercury Vapor

D. ALPERT, A. O. McCoUBRFY, AND T. HQLsTEIN
Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania

August 29, 1949

'HE term "imprisonment of resonance radiation" describes
the situation ~herein resonance radiation emitted in the

interior of a gas-filled enclosure is strongly absorbed by normal
gas atoms before it can get out; the eventual escape of a quantum
of radiation then takes place only after a number of successive
atomic absorptions and emissions. The phenomenon was first
observed by Zemansky' who measured the time of decay, T, of
diffuse resonance radiation from an enclosure of optically excited
mercury vapor, after the exciting beam of 2537A light was cut off.
T was found to depend upon gas density and enclosure geometry;
at densities around 10'5/cc, T attained values of the order of 10 4

sec., a thousand times greater than the natural lifetime of an
excited 6'PI atom.
On the theoretical side, a number of treatments' ' have been

presented. The early work' ' is reviewed in reference 6. In the
latter paper (as well as in that of Biebermans), the transport of
resonance quanta is described by a Boltzmann-type integro-
diEerential equation for the density of excited 6'PI atoms; the
solution of this equation by the Ritz variational method gives
accurate values for the decay time, T. It was found that T depends
not only on vapor density and enclosure geometry, but also on
the spectral line shape of the resonance radiation, as pointed out
earlier by Kenty explicit results were obtained for the case of
Doppler broadening and plane-parallel enclosure geometry. Most
recently, unpublished calculations have extended the analysis to
enclosures of the form of infinite circular cylinders and to a variety
of line shapes.

In conclusion it appears that neutron diffraction studies of anti-
ferromagnetic materials should provide a new and important
method of investigating the exchange coupling of magnetic ions.
*This work was supported in part by the ONR.
~ L. Noel, Ann. de physique l7, 5 (1932).
~ F. Bitter, Phys. Rev. 54, ?9 (1938).' J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
4 O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).' Whittaker, Beyer, and Dunning, Phys. Rev. 54, 771 (1938); Ruderman,

Havens, Taylor, and Rainwater, Phys. Rev. 75, 895 (1949); and also
unpublished work at Oak Ridge National Laboratory.

II Bizette, Squire, and Tsai, Comptes Rendus 207, 449 (1938).' B. Ruhemann, Physik. Zeits. Sowjetunion 7, 590 (1935).

prediction: Néel (1932)

experiment: Shull and Smart (1949)

from mean-field theory



but the theory was wrong…

Bethe: ground state of linear Heisenberg chain has S=0

Anderson: broken symmetry & quantum fluctuations

static mean-field ground state is wrong



after we understood the mechanism everything is simpler…

static mean-field solution

simple (wrong) method sufficient



the standard model



density-functional theory

shifts the focus from the wavefunction to the electronic density

 0(r1, r2, . . . , r26)! n(r)

state-of the art approach; works for a large class of systems 

exact (T=0) in principle, but only approximate functionals in practice

(LDA,GGA….)



density-functional theory
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Nobel Prize in Chemistry (1998)

Walter Kohn 

Kohn-Sham equations

understand and predict properties 
of solids, molecules, biological 
systems, geological systems...

Kohn-Sham Hamiltonian
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(in practice: LDA,GGA,…)



….those for which DFT (LDA) fails….

strongly correlated systems

….LDA effective potential not enough….

….Coulomb average effects not enough….



strongly correlated systems

Mott insulators 
heavy-Fermions 

unconventional superconductivity  
spin-charge separation 

……….
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Heavy fermions

Narrow bands and localized electrons

!
how do we recognize them?!

anomalous  phenomena



localized electrons
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partiallty filled localized d and f shell; atomic physics plays important role 



metal-insulator transition

not explained by mean-field, Hartree-Fock,  
perturbation theory, Fermi-liquid, DFT, etc….

G. Koltiar and D. Vollhardt, Physics Today 57, 53 (2004)



a Mott insulator
an example: KCuF3

F p
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(odd number of electrons)

LDA or GGA, or simple functional calculation

in real life: large gap orbitally orderded insulator
magnetic only below 40 K

it not a quantitative failure, but qualitative one



we can start from LDA, however

we can build one-electron basis  from DFT

correlation effects can be see as correction of DFT (LDA)

for example localized Wannier functions
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ab-initio Wannier functions



realistic models from DFT(LDA)

basis functions

localized Wannier functions  
from LDA (GGA,...)
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Coulomb and double counting

long range Hartree and mean-field exchange-correlation  
already are well described by LDA (GGA,..)
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difference U-HDC short range!

bare Coulomb integrals

Ĥe = ĤLDA + Û � ĤDC

if it would be long range perhaps not so strongly correlated…



light and heavy electrons

short-range correction to LDA
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DC

local or almost local

for a l shell, the local Coulomb interaction is

screening? cRPA, cLDA, ….  various approximations to be put to a test

light (weakly correlated): LDA (GGA,..)

heavy(strongly correlated): U

electrons

eg. l shell



from LDA to minimal models
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typical model
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one-band Hubbard model
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model for high-temperature superconducting cuprates



high-Tc superconducting cuprates

HgBa2CuO4 CuO2  planes

t t′

Cu
O



high-Tc superconducting cuprates
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Band-Structure Trend in Hole-Doped Cuprates and Correlation with Tc max

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,† O. Jepsen, and O. K. Andersen
Max-Planck-Institut für Festkörperforschung, D-70506 Stuttgart, Germany

(Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped high-
temperature superconductors, we have identified the range of the intralayer hopping as the essential,
material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s,
apical-oxygen 2pz , and farther orbitals. Materials with higher Tc max have larger hopping ranges and
axial orbitals more localized in the CuO2 layers.

DOI: 10.1103/PhysRevLett.87.047003 PACS numbers: 74.25.Jb, 74.62.Bf, 74.62.Fj, 74.72.–h

The mechanism of high-temperature superconductivity
(HTSC) in the hole-doped cuprates remains a puzzle [1].
Many families with CuO2 layers have been synthesized
and all exhibit a phase diagram with Tc going through a
maximum as a function of doping. The prevailing expla-
nation is that at low doping, superconductivity is destroyed
with rising temperature by the loss of phase coherence, and
at high doping by pair breaking [2]. For the materials de-
pendence of Tc at optimal doping, Tc max, the only known,
but not understood, systematics is that for materials with
multiple CuO2 layers, such as HgBa2Can21CunO2n12,
Tc max increases with the number of layers, n, until n ! 3.
There is little clue as to why for n fixed, Tc max depends
strongly on the family, e.g., why for n ! 1, Tc max is 40 K
for La2CuO4 and 85 K for Tl2Ba2CuO6, although the
Néel temperatures are fairly similar. A wealth of structural
data has been obtained, and correlations between struc-
ture and Tc have often been looked for as functions of
doping, pressure, uniaxial strain, and family. However,
the large number of structural and compositional param-
eters makes it difficult to find what besides doping con-
trols the superconductivity. Recent studies of thin epitaxial
La1.9Sr0.1CuO4 films concluded that the distance between
the charge reservoir and the CuO2 plane is the key struc-
tural parameter determining the normal state and supercon-
ducting properties [3].

Most theories of HTSC are based on a Hubbard model
with one Cu dx22y2-like orbital per CuO2 unit. The one-
electron part of this model is, in the k representation,

´"k# ! 2 2t"coskx 1 cosky# 1 4t0 coskx cosky

2 2t00"cos2kx 1 cos2ky# 1 . . . , (1)

with t, t0, t00, . . . denoting the hopping integrals "$0# on
the square lattice (Fig. 1). First, only t was taken into
account, but the consistent results of local-density approxi-
mation (LDA) band-structure calculations [4] and angle-
resolved photoemission spectroscopy (for overdoped,
stripe-free materials) [5] have led to the current usage
of including also t0, with t0$t ! 0.1 for La2CuO4
and t0$t ! 0.3 for YBa2Cu3O7 and Bi2Sr2CaCu2O8,
whereby the constant-energy contours of expression (1)
become rounded squares oriented in, respectively, the [11]

and [10] directions. It is conceivable that the materials
dependence enters the Hamiltonian primarily via its
one-electron part (1) and that this dependence is captured
by LDA calculations, but it needs to be filtered out.

The LDA band structure of the best known, and only
stoichiometric optimally doped HTSC, YBa2Cu3O7, is
more complicated than what can be described with the
t-t0 model. Nevertheless, careful analysis has shown [4]
that the low-energy layer-related features, which are the
only generic ones, can be described by a nearest-neighbor
tight-binding model with four orbitals per layer (Fig. 1),
Cu 3dx22y2, Oa 2px, Ob 2py, and Cu 4s, with the interlayer
hopping proceeding via the diffuse Cu 4s orbital whose
energy ´s is several eV above the conduction band. Also
the intralayer hoppings t0, t00, . . . , beyond nearest neighbors
in (1) proceed via Cu s. The constant-energy contours,
´i"k# ! ´, of this model could be expressed as [4]

1 2 u 2 d"´# 1 "1 1 u#p"´# !
y2

1 2 u 1 s"´# (2)

in terms of the coordinates u % 1
2 "coskx 1 cosky# and

y % 1
2 "coskx 2 cosky#, and the quadratic functions

d"´# % "´ 2 ´d# "´ 2 ´p#$"2tpd#2 and s"´# % "´s 2 ´# 3
"´ 2 ´p#$"2tsp #2, which describe the coupling of
Oa$bpx$y to, respectively, Cu dx22y2 and Cu s. The term
proportional to p"´# in (2) describes the admixture of
Oa$bpz orbitals for dimpled layers and actually extends
the four-orbital model to a six-orbital one [4]. For ´

-t’ε ε εd p s tsp tpd

t t’’
FIG. 1. Relation between the one-orbital model "t, t0, t00, . . .#
and the nearest-neighbor four-orbital model [4] (´d 2 ´p !
1 eV, tpd ! 1.5 eV, ´s 2 ´p ! 4 16 eV, tsp ! 2 eV).

047003-1 0031-9007$01$87(4)$047003(4)$15.00 © 2001 The American Physical Society 047003-1
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near the middle of the conduction band, d!´", s!´", and
p!´" are positive, and the energy dependence of d!´" may
be linearized ! !d . 0", while those of s!´" and of p!´"
may be neglected. The bilayer bonding and antibonding
subbands have ´s values split by 7t!

ss. Now, if ´s were
infinitely far above the conduction band, or tsp vanishingly
small, the right-hand side of (2) would vanish, with the
result that the constant-energy contours would depend
only on u. The dispersion of the conduction band near the
Fermi level would thus be that of the one-orbital model
(1) with t " !1 2 p"#4 !d and t0 " t00 " 0. For realistic
values of ´s and tsp, the conduction band attains Cu s
character proportional to y2, thus vanishing along the
nodal direction, kx " ky , and peaking at !p, 0", where it
is of order 10%. The repulsion from the Cu s band lowers
the energy of the Van Hove singularities and turns the
constant-energy contours towards the [10] directions. In a
multilayer material, this same y2 dependence pertains to
the interlayer splitting caused by t!

ss. In order to go from
(2) to (1), 1#!1 2 u 1 s" $ 2r#!1 2 2ru" was expanded
in powers of 2ru, where r $ 1

2 #!1 1 s". This provided
explicit expressions, such as t " %1 2 p 1 o!r"&#4 !d,
t0 " %r 1 o!r"&#4 !d, and t00 " 1

2 t0 1 o!r", for the
hopping integrals of the one-orbital model in terms of
the parameters of the four(six)-orbital model and the
expansion energy '´F . Note that all intralayer hoppings
beyond nearest neighbors are expressed in terms of the
range parameter r. Although one may think of r as
t0#t, this holds only for flat layers and when r , 0.2.
When r . 0.2, the series (1) must be carried beyond
t00. Dimpling is seen not to influence the range of the
intralayer hopping, but to reduce t through admixture of
Oa#b pz. In addition, it also reduces tpd .

Here, we generalize this analysis to all known families
of HTSC materials using a new muffin-tin-orbital (MTO)
method [6] which allows us to construct minimal basis
sets for the low-energy part of an LDA band structure
with sufficient accuracy that we can extract the materials
dependence. This dependence we find to be contained
solely in ´s, which is now the energy of the axial orbital,
a hybrid between Cu s, Cu d3z221, apical-oxygen Oc pz ,
and farther orbitals on, e.g., La or Hg. The range, r, of the
intralayer hopping is thus controlled by the structure and
chemical composition perpendicular to the CuO2 layers. It
turns out that the materials with the larger r (lower ´s) tend
to be those with the higher observed values of Tc max. In the
materials with the highest Tc max, the axial orbital is almost
pure Cu 4s. It should be noted that r describes the shape
of the noninteracting band in a 1 eV range around the
Fermi level, whose accurate position is unknown because
we make no assumptions about the remaining terms of the
Hamiltonian, inhomogeneities, stripes, etc.

Figure 2 shows the LDA bands for the single-layer
materials La2CuO4 and Tl2Ba2CuO6. Whereas the high-
energy band structures are complicated and very different,
the low-energy conduction bands shown by dashed lines
contain the generic features. Most notably, the dispersion
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FIG. 2. LDA bands (solid lines) and Cu dx22y2-like conduction
band (dashed line). In the bct structure, G " !0, 0, 0", D "
!p , 0, 0", Z " !2p , 0, 0" " !0, 0, 2p#c", and X " !p , p , 0".

along GDZ is suppressed for Tl2Ba2CuO6 relatively
to La2CuO4, whereas the dispersion along GXZ is the
same. This is the y2 effect. The low-energy bands
were calculated variationally with a single Bloch sum
of Cu dx22y2 -like orbitals constructed to be correct at an
energy near half filling. Hence, these bands agree with
the full band structures to linear order and head towards
the pure Cu dx22y2 levels at G and Z, extrapolating across
a multitude of irrelevant bands. This was explained in
Ref. [6]. Now, the hopping integrals t, t0, t00, . . . may be
obtained by expanding the low-energy band as a Fourier
series, yielding t " 0.43 eV in both cases, t0#t " 0.17
for La2CuO4 and 0.33 for Tl2Ba2CuO6, plus many
further interlayer and intralayer hopping integrals [7].

That all these hopping integrals and their materials
dependence can be described with a generalized four-
orbital model is conceivable from the appearance of the
conduction-band orbital for La2CuO4 in the xz plane
(Fig. 3). Starting from the central Cu atom and going in
the x direction, we see 3dx22y2 antibond to neighboring
Oa 2px, which itself bonds to 4s and antibonds to 3d3z221
on the next Cu. From here, and in the z direction, we see
4s and 3d3z221 antibond to Oc 2pz , which itself bonds to
La orbitals, mostly 5d3z221. For Tl2Ba2CuO6 we find
about the same amount of Cu 3dx22y2 and Oa#b 2px#y
character, but more Cu 4s, negligible Cu 3d3z221, much
less Oc 2pz , and Tl 6s instead of La 5d3z221 character. In
Tl2Ba2CuO6 the axial part of the conduction-band orbital
is thus mainly Cu 4s.

Calculations with larger basis sets than one MTO per
CuO2 now confirm that, in order to localize the orbitals
so much that only nearest-neighbor hoppings are essential,
one needs to add one orbital, Cu axial, to the three stan-
dard orbitals. The corresponding four-orbital Hamiltonian
is therefore the one described above in Fig. 1 and Eq. (2).
Note that we continue to call the energy of the axial orbital
´s and its hopping to Oa px and Ob py tsp . Calculations
with this basis set for many different materials show that,
of all the parameters, only ´s varies significantly [7]. This
variation can be understood in terms of the couplings be-
tween the constituents of the axial orbital sketched in the
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The mechanism of high-temperature superconductivity
(HTSC) in the hole-doped cuprates remains a puzzle [1].
Many families with CuO2 layers have been synthesized
and all exhibit a phase diagram with Tc going through a
maximum as a function of doping. The prevailing expla-
nation is that at low doping, superconductivity is destroyed
with rising temperature by the loss of phase coherence, and
at high doping by pair breaking [2]. For the materials de-
pendence of Tc at optimal doping, Tc max, the only known,
but not understood, systematics is that for materials with
multiple CuO2 layers, such as HgBa2Can21CunO2n12,
Tc max increases with the number of layers, n, until n ! 3.
There is little clue as to why for n fixed, Tc max depends
strongly on the family, e.g., why for n ! 1, Tc max is 40 K
for La2CuO4 and 85 K for Tl2Ba2CuO6, although the
Néel temperatures are fairly similar. A wealth of structural
data has been obtained, and correlations between struc-
ture and Tc have often been looked for as functions of
doping, pressure, uniaxial strain, and family. However,
the large number of structural and compositional param-
eters makes it difficult to find what besides doping con-
trols the superconductivity. Recent studies of thin epitaxial
La1.9Sr0.1CuO4 films concluded that the distance between
the charge reservoir and the CuO2 plane is the key struc-
tural parameter determining the normal state and supercon-
ducting properties [3].

Most theories of HTSC are based on a Hubbard model
with one Cu dx22y2-like orbital per CuO2 unit. The one-
electron part of this model is, in the k representation,

´"k# ! 2 2t"coskx 1 cosky# 1 4t0 coskx cosky

2 2t00"cos2kx 1 cos2ky# 1 . . . , (1)

with t, t0, t00, . . . denoting the hopping integrals "$0# on
the square lattice (Fig. 1). First, only t was taken into
account, but the consistent results of local-density approxi-
mation (LDA) band-structure calculations [4] and angle-
resolved photoemission spectroscopy (for overdoped,
stripe-free materials) [5] have led to the current usage
of including also t0, with t0$t ! 0.1 for La2CuO4
and t0$t ! 0.3 for YBa2Cu3O7 and Bi2Sr2CaCu2O8,
whereby the constant-energy contours of expression (1)
become rounded squares oriented in, respectively, the [11]

and [10] directions. It is conceivable that the materials
dependence enters the Hamiltonian primarily via its
one-electron part (1) and that this dependence is captured
by LDA calculations, but it needs to be filtered out.

The LDA band structure of the best known, and only
stoichiometric optimally doped HTSC, YBa2Cu3O7, is
more complicated than what can be described with the
t-t0 model. Nevertheless, careful analysis has shown [4]
that the low-energy layer-related features, which are the
only generic ones, can be described by a nearest-neighbor
tight-binding model with four orbitals per layer (Fig. 1),
Cu 3dx22y2, Oa 2px, Ob 2py, and Cu 4s, with the interlayer
hopping proceeding via the diffuse Cu 4s orbital whose
energy ´s is several eV above the conduction band. Also
the intralayer hoppings t0, t00, . . . , beyond nearest neighbors
in (1) proceed via Cu s. The constant-energy contours,
´i"k# ! ´, of this model could be expressed as [4]

1 2 u 2 d"´# 1 "1 1 u#p"´# !
y2

1 2 u 1 s"´# (2)

in terms of the coordinates u % 1
2 "coskx 1 cosky# and

y % 1
2 "coskx 2 cosky#, and the quadratic functions

d"´# % "´ 2 ´d# "´ 2 ´p#$"2tpd#2 and s"´# % "´s 2 ´# 3
"´ 2 ´p#$"2tsp #2, which describe the coupling of
Oa$bpx$y to, respectively, Cu dx22y2 and Cu s. The term
proportional to p"´# in (2) describes the admixture of
Oa$bpz orbitals for dimpled layers and actually extends
the four-orbital model to a six-orbital one [4]. For ´

-t’ε ε εd p s tsp tpd

t t’’
FIG. 1. Relation between the one-orbital model "t, t0, t00, . . .#
and the nearest-neighbor four-orbital model [4] (´d 2 ´p !
1 eV, tpd ! 1.5 eV, ´s 2 ´p ! 4 16 eV, tsp ! 2 eV).
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The mechanism of high-temperature superconductivity
(HTSC) in the hole-doped cuprates remains a puzzle [1].
Many families with CuO2 layers have been synthesized
and all exhibit a phase diagram with Tc going through a
maximum as a function of doping. The prevailing expla-
nation is that at low doping, superconductivity is destroyed
with rising temperature by the loss of phase coherence, and
at high doping by pair breaking [2]. For the materials de-
pendence of Tc at optimal doping, Tc max, the only known,
but not understood, systematics is that for materials with
multiple CuO2 layers, such as HgBa2Can21CunO2n12,
Tc max increases with the number of layers, n, until n ! 3.
There is little clue as to why for n fixed, Tc max depends
strongly on the family, e.g., why for n ! 1, Tc max is 40 K
for La2CuO4 and 85 K for Tl2Ba2CuO6, although the
Néel temperatures are fairly similar. A wealth of structural
data has been obtained, and correlations between struc-
ture and Tc have often been looked for as functions of
doping, pressure, uniaxial strain, and family. However,
the large number of structural and compositional param-
eters makes it difficult to find what besides doping con-
trols the superconductivity. Recent studies of thin epitaxial
La1.9Sr0.1CuO4 films concluded that the distance between
the charge reservoir and the CuO2 plane is the key struc-
tural parameter determining the normal state and supercon-
ducting properties [3].

Most theories of HTSC are based on a Hubbard model
with one Cu dx22y2-like orbital per CuO2 unit. The one-
electron part of this model is, in the k representation,

´"k# ! 2 2t"coskx 1 cosky# 1 4t0 coskx cosky

2 2t00"cos2kx 1 cos2ky# 1 . . . , (1)

with t, t0, t00, . . . denoting the hopping integrals "$0# on
the square lattice (Fig. 1). First, only t was taken into
account, but the consistent results of local-density approxi-
mation (LDA) band-structure calculations [4] and angle-
resolved photoemission spectroscopy (for overdoped,
stripe-free materials) [5] have led to the current usage
of including also t0, with t0$t ! 0.1 for La2CuO4
and t0$t ! 0.3 for YBa2Cu3O7 and Bi2Sr2CaCu2O8,
whereby the constant-energy contours of expression (1)
become rounded squares oriented in, respectively, the [11]

and [10] directions. It is conceivable that the materials
dependence enters the Hamiltonian primarily via its
one-electron part (1) and that this dependence is captured
by LDA calculations, but it needs to be filtered out.

The LDA band structure of the best known, and only
stoichiometric optimally doped HTSC, YBa2Cu3O7, is
more complicated than what can be described with the
t-t0 model. Nevertheless, careful analysis has shown [4]
that the low-energy layer-related features, which are the
only generic ones, can be described by a nearest-neighbor
tight-binding model with four orbitals per layer (Fig. 1),
Cu 3dx22y2, Oa 2px, Ob 2py, and Cu 4s, with the interlayer
hopping proceeding via the diffuse Cu 4s orbital whose
energy ´s is several eV above the conduction band. Also
the intralayer hoppings t0, t00, . . . , beyond nearest neighbors
in (1) proceed via Cu s. The constant-energy contours,
´i"k# ! ´, of this model could be expressed as [4]

1 2 u 2 d"´# 1 "1 1 u#p"´# !
y2

1 2 u 1 s"´# (2)

in terms of the coordinates u % 1
2 "coskx 1 cosky# and

y % 1
2 "coskx 2 cosky#, and the quadratic functions

d"´# % "´ 2 ´d# "´ 2 ´p#$"2tpd#2 and s"´# % "´s 2 ´# 3
"´ 2 ´p#$"2tsp #2, which describe the coupling of
Oa$bpx$y to, respectively, Cu dx22y2 and Cu s. The term
proportional to p"´# in (2) describes the admixture of
Oa$bpz orbitals for dimpled layers and actually extends
the four-orbital model to a six-orbital one [4]. For ´
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FIG. 1. Relation between the one-orbital model "t, t0, t00, . . .#
and the nearest-neighbor four-orbital model [4] (´d 2 ´p !
1 eV, tpd ! 1.5 eV, ´s 2 ´p ! 4 16 eV, tsp ! 2 eV).
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a small crystal field plays a key role

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d1 Perovskites
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Using t2g Wannier functions, a low-energy Hamiltonian is derived for orthorhombic 3d1 transition-
metal oxides. Electronic correlations are treated with a new implementation of dynamical mean-field
theory for noncubic systems. Good agreement with photoemission data is obtained. The interplay of
correlation effects and cation covalency (GdFeO3-type distortions) is found to suppress orbital fluctua-
tions in LaTiO3 and even more in YTiO3, and to favor the transition to the insulating state.
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Transition-metal perovskites have attracted much in-
terest because of their unusual electronic and magnetic
properties arising from narrow 3d bands and strong Cou-
lomb correlations [1]. The 3d1 perovskites are particularly
interesting, since seemingly similar materials have very
different electronic properties: SrVO3 and CaVO3 are
correlated metals with mass enhancements of, respec-
tively, 2.7 and 3.6 [2], while LaTiO3 and YTiO3 are Mott
insulators with gaps of, respectively, 0.2 and 1 eV [3].

In the Mott-Hubbard picture the metal-insulator tran-
sition occurs when the ratio of the on-site Coulomb re-
pulsion to the one-electron bandwidth exceeds a critical
value Uc=W, which increases with orbital degeneracy
[4,5]. In the ABO3 perovskites the transition-metal ions
(B) are on a nearly cubic (orthorhombic) lattice and at the
centers of corner-sharing O6 octahedra. The 3d band
splits into pd!-coupled t2g bands and pd"-coupled eg
bands, of which the former lie lower, have less O character
and couple less to the octahedra than the latter. The
simplest theories for the d1 perovskites [1] are therefore
based on a Hubbard model with three degenerate, 16 -filled
t2g bands per B ion, and the variation of the electronic
properties along the series is ascribed to a progressive
reduction of W due to the increased bending of the pd!
hopping paths (BOB bonds).

This may not be the full explanation of the Mott
transition however, because a splitting of the t2g levels
can effectively lower the degeneracy. In the correlated
metal, the relevant energy scale is the reduced bandwidth
associated with quasiparticle excitations. Close to the
transition, this scale is of order !ZW, with Z! 1"
U=Uc , and hence much smaller than the original band-
width W. A level splitting by merely ZW is sufficient to
lower the effective degeneracy all the way from a three-
fold to a nondegenerate single band [6]. This makes the
insulating state more favorable by reducing Uc=W [5,6].
Unlike the eg-band perovskites, such as LaMnO3, where
large (10%) cooperative Jahn-Teller (JT) distortions of
the octahedra indicate that the orbitals are spatially or-
dered, in the t2g-band perovskites the octahedra are al-

most perfect. The t2g orbitals have therefore often been
assumed to be degenerate. If that is true, it is conceivable
that quantum fluctuations lead to an orbital liquid [7]
rather than orbital ordering. An important experimental
constraint on the nature of the orbital physics is the
observation of an isotropic, small-gap spin-wave spec-
trum in both insulators [8]. This is remarkable because
LaTiO3 is a G-type antiferromagnet with TN # 140 K,
m # 0:45#B, and a 3% JT stretching along a [9], while
YTiO3 is a ferromagnet with TC # 30 K, m0 ! 0:8#B,
and a 3% stretching along y on sites 1 and 3, and x on 2
and 4 [10] (see Fig. 1).

FIG. 1 (color). Pbnm primitive cells (right panels), subcells 1
(left panels), and the occupied t2g orbitals for LaTiO3 (top
panels) and YTiO3 (bottom panels) according to the LDA$
DMFT calculation. The oxygens are violet, the octahedra
yellow, and the cations orange. In the global, cubic xyz system
directed approximately along the Ti-O bonds, the orthorhombic
translations are a#%1;"1; 0&%1$ $&, b#%1; 1; 0&%1$ %&, and
c#%0; 0; 2&%1$ &&, with $, %, and & small. The Ti sites 1 to 4
are a=2, b=2, %a$ c&=2, and %b$ c&=2. The La(Y) ab plane is
a mirror %z $ "z& and so is the Ti bc plane %x $ y& when
combined with the translation %b" a&=2.
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t2g bands per B ion, and the variation of the electronic
properties along the series is ascribed to a progressive
reduction of W due to the increased bending of the pd!
hopping paths (BOB bonds).

This may not be the full explanation of the Mott
transition however, because a splitting of the t2g levels
can effectively lower the degeneracy. In the correlated
metal, the relevant energy scale is the reduced bandwidth
associated with quasiparticle excitations. Close to the
transition, this scale is of order !ZW, with Z! 1"
U=Uc , and hence much smaller than the original band-
width W. A level splitting by merely ZW is sufficient to
lower the effective degeneracy all the way from a three-
fold to a nondegenerate single band [6]. This makes the
insulating state more favorable by reducing Uc=W [5,6].
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large (10%) cooperative Jahn-Teller (JT) distortions of
the octahedra indicate that the orbitals are spatially or-
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assumed to be degenerate. If that is true, it is conceivable
that quantum fluctuations lead to an orbital liquid [7]
rather than orbital ordering. An important experimental
constraint on the nature of the orbital physics is the
observation of an isotropic, small-gap spin-wave spec-
trum in both insulators [8]. This is remarkable because
LaTiO3 is a G-type antiferromagnet with TN # 140 K,
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and a 3% stretching along y on sites 1 and 3, and x on 2
and 4 [10] (see Fig. 1).

FIG. 1 (color). Pbnm primitive cells (right panels), subcells 1
(left panels), and the occupied t2g orbitals for LaTiO3 (top
panels) and YTiO3 (bottom panels) according to the LDA$
DMFT calculation. The oxygens are violet, the octahedra
yellow, and the cations orange. In the global, cubic xyz system
directed approximately along the Ti-O bonds, the orthorhombic
translations are a#%1;"1; 0&%1$ $&, b#%1; 1; 0&%1$ %&, and
c#%0; 0; 2&%1$ &&, with $, %, and & small. The Ti sites 1 to 4
are a=2, b=2, %a$ c&=2, and %b$ c&=2. The La(Y) ab plane is
a mirror %z $ "z& and so is the Ti bc plane %x $ y& when
combined with the translation %b" a&=2.
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Using t2g Wannier functions, a low-energy Hamiltonian is derived for orthorhombic 3d1 transition-
metal oxides. Electronic correlations are treated with a new implementation of dynamical mean-field
theory for noncubic systems. Good agreement with photoemission data is obtained. The interplay of
correlation effects and cation covalency (GdFeO3-type distortions) is found to suppress orbital fluctua-
tions in LaTiO3 and even more in YTiO3, and to favor the transition to the insulating state.
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Transition-metal perovskites have attracted much in-
terest because of their unusual electronic and magnetic
properties arising from narrow 3d bands and strong Cou-
lomb correlations [1]. The 3d1 perovskites are particularly
interesting, since seemingly similar materials have very
different electronic properties: SrVO3 and CaVO3 are
correlated metals with mass enhancements of, respec-
tively, 2.7 and 3.6 [2], while LaTiO3 and YTiO3 are Mott
insulators with gaps of, respectively, 0.2 and 1 eV [3].

In the Mott-Hubbard picture the metal-insulator tran-
sition occurs when the ratio of the on-site Coulomb re-
pulsion to the one-electron bandwidth exceeds a critical
value Uc=W, which increases with orbital degeneracy
[4,5]. In the ABO3 perovskites the transition-metal ions
(B) are on a nearly cubic (orthorhombic) lattice and at the
centers of corner-sharing O6 octahedra. The 3d band
splits into pd!-coupled t2g bands and pd"-coupled eg
bands, of which the former lie lower, have less O character
and couple less to the octahedra than the latter. The
simplest theories for the d1 perovskites [1] are therefore
based on a Hubbard model with three degenerate, 16 -filled
t2g bands per B ion, and the variation of the electronic
properties along the series is ascribed to a progressive
reduction of W due to the increased bending of the pd!
hopping paths (BOB bonds).

This may not be the full explanation of the Mott
transition however, because a splitting of the t2g levels
can effectively lower the degeneracy. In the correlated
metal, the relevant energy scale is the reduced bandwidth
associated with quasiparticle excitations. Close to the
transition, this scale is of order !ZW, with Z! 1"
U=Uc , and hence much smaller than the original band-
width W. A level splitting by merely ZW is sufficient to
lower the effective degeneracy all the way from a three-
fold to a nondegenerate single band [6]. This makes the
insulating state more favorable by reducing Uc=W [5,6].
Unlike the eg-band perovskites, such as LaMnO3, where
large (10%) cooperative Jahn-Teller (JT) distortions of
the octahedra indicate that the orbitals are spatially or-
dered, in the t2g-band perovskites the octahedra are al-

most perfect. The t2g orbitals have therefore often been
assumed to be degenerate. If that is true, it is conceivable
that quantum fluctuations lead to an orbital liquid [7]
rather than orbital ordering. An important experimental
constraint on the nature of the orbital physics is the
observation of an isotropic, small-gap spin-wave spec-
trum in both insulators [8]. This is remarkable because
LaTiO3 is a G-type antiferromagnet with TN # 140 K,
m # 0:45#B, and a 3% JT stretching along a [9], while
YTiO3 is a ferromagnet with TC # 30 K, m0 ! 0:8#B,
and a 3% stretching along y on sites 1 and 3, and x on 2
and 4 [10] (see Fig. 1).

FIG. 1 (color). Pbnm primitive cells (right panels), subcells 1
(left panels), and the occupied t2g orbitals for LaTiO3 (top
panels) and YTiO3 (bottom panels) according to the LDA$
DMFT calculation. The oxygens are violet, the octahedra
yellow, and the cations orange. In the global, cubic xyz system
directed approximately along the Ti-O bonds, the orthorhombic
translations are a#%1;"1; 0&%1$ $&, b#%1; 1; 0&%1$ %&, and
c#%0; 0; 2&%1$ &&, with $, %, and & small. The Ti sites 1 to 4
are a=2, b=2, %a$ c&=2, and %b$ c&=2. The La(Y) ab plane is
a mirror %z $ "z& and so is the Ti bc plane %x $ y& when
combined with the translation %b" a&=2.
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An essentially exact solution of the infinite-dimensional Hubbard model is made possible by a new

self-consistent Monte Carlo procedure. Near half filling antiferromagnetisrn and a pseudogap in the
single-particle density of states are found for sufficiently large values of the intrasite Coulomb interac-
tion. At half filling the antiferromagnetic transition temperature obtains its largest value when the in-
trasite Coulomb interaction U = 3.
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The Hubbard model of strongly correlated electronic
systems has been an enduring problem in condensed
matter physics. It is believed to properly describe some
of the properties of transition-metal oxides, and possibly
high-temperature superconductors. Despite the simplici-
ty of the model, no exact solutions exist except in one di-
mension [1]. Recently, a new approach [2-4] based on a
dimensional expansion has been proposed to study such
strongly correlated lattice models. In this paper, I
present the first essentially exact numerical solution of
the Hubbard model in the infinite-dimensional limit.
This solution retains the physics expected in the low-
dimensional model, including antiferromagnetism (Figs.
3, 4, and S) and the formation of a correlation induced
Mott-Hubbard gap in the single-particle density of states
(Fig. 6).
The Hamiltonian of interest is

+g[e(n; 1+n; 1)+U(n; 1
——,

' )(n;1——,
' )],

where C; (C;t ) creates (destroys) an electron of spin o
on site i, and n; =C;t C; . This Hamiltonian will be
studied in a hypercubic lattice dimension d in the limit as
d~ I. The limit is taken subject to the constraint
4dt 2 =1, which yields a Gaussian unperturbed density of
states, p(ra) =exp( —co )/Jx [2,3]. This is the only non-
trivial way to take the limit, and is also appropriate for
studying the magnetic properties of the model since the
magnetic exchange J-t /U multiplied by the number of
neighbors is then kept fixed.

This limit greatly simplifies the problem. As shown in

[3,4], this limit reduces the problem to a local problem
since the nonlocal (intersite) dynamical interactions are
negligible in this limit. Thus, the irreducible self-energy
and irreducible vertex function are purely local, or site di-
agonal.
This fact may be seen from a diagrammatic argument

[S]. Consider the first few diagrams of the single-particle
self-energy for this problem as shown in Fig. 1. This is a
real-space representation, so each electron propagator G;~

1RI-Rtiscales as —t ' '. Thus the second-order term in Fig.
3(R(-Rt[

1 scales as t ' '. Consider the case where sites i and
j are nearest neighbors, then even after summing over the
contribution of a nearest-neighbor shell, the contribution
of the second-order diagram is dt . This contribution
vanishes in the limit as d ~ since dt is kept fixed
when the limit is evaluated. A similar argument may be
applied to all terms, and only the site-diagonal self-
energy survives when the limit is evaluated. Further-
more, since the lattice is translationally invariant
Z,J(ico„) Z(iro„)btj independent of i Thus, .the solution
of the single-particle properties reduces to solving

GJ(ico„)=G~l(iro„)+gp G)(ico„)Z(ico„)Gt,~(ico„) and
the diagrammatic equation for Z in Fig. 1 self-con-
sistently.
With appropriate modifications, which I discuss below,

these equations may be solved exactly with a self-
consistent quantum Monte Carlo (QMC) scheme [6]. In
the QMC part of the technique I introduce a local
Green's function 9 on site i. The single-particle diagrams
for 5' are illustrated in Fig. 2. Here, the undressed
Green's function is the solution to the modified lattice

I J

FIG. 1. The first few diagrams for the lattice self-energy.
Here, the solid lines represent the undressed (U=O) electron
propagators G;j(iro, ) and the dotted lines represent the intrasite
interaction U.

FIG. 2. The first few diagrams for 5' {double solid line)
which is calculated in the QMC process. The undressed
Green's function Qe is calculated from Eq. (2) and is represent-
ed here as a solid line, and the intrasite interaction U is repre-
sented as dotted lines.
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problem:

S'o(ico„)=G; (ico„)
=Gp((ico„)+g Gjk (ico„)Zk (ico„)Gkj(ico„), (2)

k
where

irreducible vertex function is also locaL For example, the
static magnetic susceptibility matrix

jf j (i co„,i co ) =gj (i co„)6„+Tg gk (i co„)I (i co„,i cop)
p, k

xgkj(scop jcom) ~

0, if i =k,
Zk icon Z(i co„), otherwise. (3) where co„=(2n+ I )jcT. This is related to the static sus-

ceptibilities by

The prime indicates that the self-energy is set to zero on
site i T.his spatial dependence of Zk is necessary to avoid
overcounting of diagrams, since the Green's function 0 is
calculated to all orders in U by the QMC process. The
diagrammatic equation shown in Fig. 2 is the same as
that needed to solve the Anderson impurity problem.
Thus, given 9, I may solve for g with the QMC algo-
rithm of Hirsch and Fye [7]. The Green's function calcu-
lated in this process may then be inverted to yield a new
estimate for Z(i co„),

g(i co„) ' to(ico„) ' Z(ic—o„). (4)
Thus the QMC procedure and Eqs. (2) and (4) constitute
a set of self-consistent equations for the lattice self-
energy Z which essentially reduce the problem to a self-
consistently embedded Anderson impurity problem [8].
A variety of two-particle properties may also be calcu-

lated with this procedure [9], since, using similar argu-
ments applied to the self-energy, one may argue that the

T ~ iq
Xjt Z e Xjj(jcoll m ) '& n,m, i j

The noninteracting part is

jib (i co, ) Q—Gk(i co„)Gkyq(i co„),l (7)

where Gk(ico„) 1/[ico„—e—ek —Z(ico„)]. Equation (7)
may readily be evaluated in the ferromagnetic [q
(0,0,0, . . .)] and antiferromagnetic [q (jz, jz, jz, . . .)]

limits, in which it may be reexpressed as an integral over
the Gaussian density of states. The function I is the local
irreducible vertex function which may be calculated in
the QMC procedure by solving

g;;(ico„,ico ) 9'(ico„) b„m —Tgg(ico„) I (ico„,icop)
xg;; (icop, E corn ) .

Here g;; is the opposite-spin two-particle Green's func-
I tion,

"e ' " " '4 (T,C;, t(z4)Cjtl(z3)Cj, l(z2)Cj~l (zt)) (9)

scaling behavior is consistent with that of a Heisenberg
model on a lattice with an infinite number of nearest
neighbors, for which one expects the Curie-Weiss mean-
field form for OAF.
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FIG. 3. Antiferromagnetic susceptibility jCAF(T) vs tempera-
ture T when U 1.5 and e 0.0. The logarithmic scaling be-
havior is shown in the inset. The data close to the transition
fit the form giF4L (T T, (" with T, 0.0866+'0.0—003 and
v —0.99~0.05. The points at U=O reflect exactly known
limits.

EN ($1
g;;(ico„,ico ) —T dzi dz2 dz3 dz4e

and 9 is the corresponding fully dressed single-particle
Green's function.
Both 9 and g;; are calculated in the QMC procedure.

Here the problem is cast into a discrete path formalism in
imaginary time, zj, where zj /hz, hz P/L, and L is
the number of times slices. The values of L used ranged
from 40 to 160, with the largest values of L reserved for
the largest values of P since the time required by the al-
gorithm scales like L . No "sign problem" was observed
at any filling. At the start of the QMC process the initial
Green's function (for which U 0 on the simulated site)
is taken to be O' . The algorithm produces 9, which is
used in Eqs. (4) and (2) to produce another estimate for
Z and 9 . This process is continued until 9=G;; within
the numerical precision of code. Usually five to eight
iterations are required for convergence. Other quantities
such as g;;, jj =((nl —nt) ), etc., are calculated on the
last iteration, once convergence is reached.
It is expected that the Hubbard model will exhibit anti-

ferromagnetism at half filling. This transition is signaled
by the divergence of the antiferromagnetic susceptibility
OAF calculated using the methods described above. Re-
sults from this approach are shown in Fig. 3 for U=1.5
and e 0.0. The logarithmic scaling behavior is shown in
the inset. Near T, the data fit a form OAF jx(T T,("—
with T =0.866 ~ 0.0003 and v =—0.99~0.05. This
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tion. At half filling the antiferromagnetic transition temperature obtains its largest value when the in-
trasite Coulomb interaction U = 3.
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The Hubbard model of strongly correlated electronic
systems has been an enduring problem in condensed
matter physics. It is believed to properly describe some
of the properties of transition-metal oxides, and possibly
high-temperature superconductors. Despite the simplici-
ty of the model, no exact solutions exist except in one di-
mension [1]. Recently, a new approach [2-4] based on a
dimensional expansion has been proposed to study such
strongly correlated lattice models. In this paper, I
present the first essentially exact numerical solution of
the Hubbard model in the infinite-dimensional limit.
This solution retains the physics expected in the low-
dimensional model, including antiferromagnetism (Figs.
3, 4, and S) and the formation of a correlation induced
Mott-Hubbard gap in the single-particle density of states
(Fig. 6).
The Hamiltonian of interest is

+g[e(n; 1+n; 1)+U(n; 1
——,

' )(n;1——,
' )],

where C; (C;t ) creates (destroys) an electron of spin o
on site i, and n; =C;t C; . This Hamiltonian will be
studied in a hypercubic lattice dimension d in the limit as
d~ I. The limit is taken subject to the constraint
4dt 2 =1, which yields a Gaussian unperturbed density of
states, p(ra) =exp( —co )/Jx [2,3]. This is the only non-
trivial way to take the limit, and is also appropriate for
studying the magnetic properties of the model since the
magnetic exchange J-t /U multiplied by the number of
neighbors is then kept fixed.

This limit greatly simplifies the problem. As shown in

[3,4], this limit reduces the problem to a local problem
since the nonlocal (intersite) dynamical interactions are
negligible in this limit. Thus, the irreducible self-energy
and irreducible vertex function are purely local, or site di-
agonal.
This fact may be seen from a diagrammatic argument

[S]. Consider the first few diagrams of the single-particle
self-energy for this problem as shown in Fig. 1. This is a
real-space representation, so each electron propagator G;~

1RI-Rtiscales as —t ' '. Thus the second-order term in Fig.
3(R(-Rt[

1 scales as t ' '. Consider the case where sites i and
j are nearest neighbors, then even after summing over the
contribution of a nearest-neighbor shell, the contribution
of the second-order diagram is dt . This contribution
vanishes in the limit as d ~ since dt is kept fixed
when the limit is evaluated. A similar argument may be
applied to all terms, and only the site-diagonal self-
energy survives when the limit is evaluated. Further-
more, since the lattice is translationally invariant
Z,J(ico„) Z(iro„)btj independent of i Thus, .the solution
of the single-particle properties reduces to solving

GJ(ico„)=G~l(iro„)+gp G)(ico„)Z(ico„)Gt,~(ico„) and
the diagrammatic equation for Z in Fig. 1 self-con-
sistently.
With appropriate modifications, which I discuss below,

these equations may be solved exactly with a self-
consistent quantum Monte Carlo (QMC) scheme [6]. In
the QMC part of the technique I introduce a local
Green's function 9 on site i. The single-particle diagrams
for 5' are illustrated in Fig. 2. Here, the undressed
Green's function is the solution to the modified lattice

I J

FIG. 1. The first few diagrams for the lattice self-energy.
Here, the solid lines represent the undressed (U=O) electron
propagators G;j(iro, ) and the dotted lines represent the intrasite
interaction U.

FIG. 2. The first few diagrams for 5' {double solid line)
which is calculated in the QMC process. The undressed
Green's function Qe is calculated from Eq. (2) and is represent-
ed here as a solid line, and the intrasite interaction U is repre-
sented as dotted lines.
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problem:

S'o(ico„)=G; (ico„)
=Gp((ico„)+g Gjk (ico„)Zk (ico„)Gkj(ico„), (2)

k
where

irreducible vertex function is also locaL For example, the
static magnetic susceptibility matrix

jf j (i co„,i co ) =gj (i co„)6„+Tg gk (i co„)I (i co„,i cop)
p, k

xgkj(scop jcom) ~

0, if i =k,
Zk icon Z(i co„), otherwise. (3) where co„=(2n+ I )jcT. This is related to the static sus-

ceptibilities by

The prime indicates that the self-energy is set to zero on
site i T.his spatial dependence of Zk is necessary to avoid
overcounting of diagrams, since the Green's function 0 is
calculated to all orders in U by the QMC process. The
diagrammatic equation shown in Fig. 2 is the same as
that needed to solve the Anderson impurity problem.
Thus, given 9, I may solve for g with the QMC algo-
rithm of Hirsch and Fye [7]. The Green's function calcu-
lated in this process may then be inverted to yield a new
estimate for Z(i co„),

g(i co„) ' to(ico„) ' Z(ic—o„). (4)
Thus the QMC procedure and Eqs. (2) and (4) constitute
a set of self-consistent equations for the lattice self-
energy Z which essentially reduce the problem to a self-
consistently embedded Anderson impurity problem [8].
A variety of two-particle properties may also be calcu-

lated with this procedure [9], since, using similar argu-
ments applied to the self-energy, one may argue that the

T ~ iq
Xjt Z e Xjj(jcoll m ) '& n,m, i j

The noninteracting part is

jib (i co, ) Q—Gk(i co„)Gkyq(i co„),l (7)

where Gk(ico„) 1/[ico„—e—ek —Z(ico„)]. Equation (7)
may readily be evaluated in the ferromagnetic [q
(0,0,0, . . .)] and antiferromagnetic [q (jz, jz, jz, . . .)]

limits, in which it may be reexpressed as an integral over
the Gaussian density of states. The function I is the local
irreducible vertex function which may be calculated in
the QMC procedure by solving

g;;(ico„,ico ) 9'(ico„) b„m —Tgg(ico„) I (ico„,icop)
xg;; (icop, E corn ) .

Here g;; is the opposite-spin two-particle Green's func-
I tion,

"e ' " " '4 (T,C;, t(z4)Cjtl(z3)Cj, l(z2)Cj~l (zt)) (9)

scaling behavior is consistent with that of a Heisenberg
model on a lattice with an infinite number of nearest
neighbors, for which one expects the Curie-Weiss mean-
field form for OAF.
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FIG. 3. Antiferromagnetic susceptibility jCAF(T) vs tempera-
ture T when U 1.5 and e 0.0. The logarithmic scaling be-
havior is shown in the inset. The data close to the transition
fit the form giF4L (T T, (" with T, 0.0866+'0.0—003 and
v —0.99~0.05. The points at U=O reflect exactly known
limits.
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and 9 is the corresponding fully dressed single-particle
Green's function.
Both 9 and g;; are calculated in the QMC procedure.

Here the problem is cast into a discrete path formalism in
imaginary time, zj, where zj /hz, hz P/L, and L is
the number of times slices. The values of L used ranged
from 40 to 160, with the largest values of L reserved for
the largest values of P since the time required by the al-
gorithm scales like L . No "sign problem" was observed
at any filling. At the start of the QMC process the initial
Green's function (for which U 0 on the simulated site)
is taken to be O' . The algorithm produces 9, which is
used in Eqs. (4) and (2) to produce another estimate for
Z and 9 . This process is continued until 9=G;; within
the numerical precision of code. Usually five to eight
iterations are required for convergence. Other quantities
such as g;;, jj =((nl —nt) ), etc., are calculated on the
last iteration, once convergence is reached.
It is expected that the Hubbard model will exhibit anti-

ferromagnetism at half filling. This transition is signaled
by the divergence of the antiferromagnetic susceptibility
OAF calculated using the methods described above. Re-
sults from this approach are shown in Fig. 3 for U=1.5
and e 0.0. The logarithmic scaling behavior is shown in
the inset. Near T, the data fit a form OAF jx(T T,("—
with T =0.866 ~ 0.0003 and v =—0.99~0.05. This
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model includes the full dynamics of the t2g electrons,21 the
effective U0 is larger than for the two-band model. By scanning
different U0 between 7 and 5 eV we find that U0 ∼ 5.5 eV
yields a gap quite close to that of the two-band model and a
spectrum in good agreement with experiments. This shows that
in the two-band model the Coulomb integral U0 is screened
∼10% by the t2g electrons. The half-filled t2g bands exhibit a
very large gap because at half filling the t2g exchange couplings
effectively enhance the effect of the Coulomb repulsion U0.
Finally, we find the on-site spin-spin correlation function to
be ⟨Stg

z S
eg

z ⟩ ∼ 0.74, very close to the value of 0.75 expected
for aligned eg and St2g

= 3/2 t2g spins. Concerning the sign
problem, we find it negligible for all of these calculations (the
average sign is ∼0.99 in the worst case).

IV. ORBITAL FLUCTUATIONS AND MAGNETISM IN
CaVO3 AND YTiO3

The importance of orbital fluctuations in the physics of
3d1 perovskites has long been debated.6,15,16,28–30 Single-site
DMFT calculations have shown that in the presence of crystal-
field splitting Coulomb repulsion strongly suppresses orbital
fluctuations.6 However, these conclusions were based on a
Hubbard model with density-density Coulomb interactions
only. In this section we analyze the effect of the neglected
spin-flip and pair-hopping Coulomb interactions. Furthermore,
exploiting our efficient CT-HYB solver, we address the issue
of the nature of the low-temperature (30 K)15,31 ferromagnetic
transition in YTiO3.

A. Orbital fluctuations

The minimal model to consider for 3d1 transition-metal
oxides is a three-band Hubbard model for the t2g bands
including spin-flip and pair-hopping terms, and with

εmσm′σ ′ = εmm′δσ,σ ′ ,

t ii
′

mσm′σ ′ = t ii
′

mm′δσ,σ ′ ,

where m,m′ = xy,xz,yz. For the Coulomb parameters we use
U0 = 5 eV and Jt2g

∼ 0.68 eV (CaVO3) or Jt2g
= 0.64 eV

(YTiO3) from theoretical estimates and previous works.6,27

Because the local Hamiltonian mixes flavors even in the
crystal-field basis, i.e., the basis diagonalizing the nonin-
teracting part of the local Hamiltonian, we perform the
LDA + DMFT calculations using the Krylov version of our
general CT-HYB QMC solver.

In Table I we show the occupations ni of the natural orbitals,
i.e., the eigenstates of the one-body density matrix, at ∼190 K
in CaVO3 and YTiO3. We find that CaVO3 is a paramagnetic
metal with a small orbital polarization. Instead, YTiO3 is
a paramagnetic insulator with orbital polarization p = n1 −
(n2 + n3)/2 ∼ 1, i.e., basically full (orbitally ordered state).
For this system, the double occupancies at 290 K are small; i.e.,
we find 1

2

∑
mσ ̸=m′σ ′ ⟨n̂mσ n̂m′σ ′ ⟩ ∼ 0.015 for YTiO3. The occu-

pied orbital is |1⟩ = 0.611|xy⟩ − 0.056|xz⟩ + 0.789|yz⟩. We
find the occupied state and orbital polarization are basically the
same with full Coulomb and density-density approximations.
Previous calculations6 in which spin-flip and pair-hopping
terms have been neglected and T ∼ 770 K are in line with these
results. This shows that spin-flip and pair-hopping terms do

TABLE I. Occupations ni of the natural orbitals (with ni > ni+1)
at T = 190 K in CaVO3 and YTiO3 obtained by diagonalizing the
occupation matrix. For YTiO3 the occupied orbital is the natural
orbital |1⟩ = 0.611|xy⟩ − 0.056|xz⟩ + 0.789|yz⟩, and it basically
coincides with the lowest-energy crystal-field state; we find about
the same occupied orbital by performing the calculation with and
without pair-hopping and spin-flip terms, or in the paramagnetic and
in the ferromagnetic phase.

n1 n2 n3

CaVO3 0.47 0.28 0.25
YTiO3 0.98 0.01 0.01

not change the conclusion that orbital fluctuations are strongly
suppressed in the Mott insulator YTiO3. In the CT-HYB QMC
simulations the average sign is ∼0.9 for YTiO3 and ∼0.95 for
CaVO3.

B. Ferromagnetism in YTiO3

YTiO3 is one of the few ferromagnetic Mott insulators.
Neutron scattering experiments pointed out early-on the diffi-
culties in reconciling ferromagnetism and the expected orbital
order,15 and there have been suggestions that the ferromagnetic
state could rather be associated with a quadrupolar order
and large-scale orbital fluctuations.29 However, second-order
perturbation theory calculations indicate that ferromagnetism
and orbital order could be reconciled, provided that the real
crystal structure of YTiO3, including the GdFeO3-type dis-
tortion (tilting and rotation of the octahedra, and deformation
of the cation cage), is taken into account.16 To clarify this
point, we check the instability towards ferromagnetism of the
three-band t2g Hubbard model obtained for the experimental
structure of YTiO3. With this approach we calculate the
ferromagnetic transition temperature TC due to superexchange
alone in the orbitally ordered phase. Since experimentally
TC ∼ 30 K, we have to perform LDA + DMFT calculations
down to very low temperatures, which becomes possible with
the CT-HYB QMC solver. On lowering the temperature, we
find that the sign problem becomes sizable (average sign ∼0.7
at 40 K). However, we can basically eliminate it (average
sign ∼0.97) by performing the LDA + DMFT calculations

 0
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 20  30  40  50  60  70  80

m
 (

T
)

T (K)

FIG. 3. Ferromagnetic spin polarization as a function of temper-
ature in YTiO3. The plot shows a transition at the critical temperature
TC ∼ 50 K, slightly overestimating the experimental value TC ∼
30 K, as one might expect from a mean-field calculations.
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FIG. 4. Convergence of the Krylov approximation |ψ(τ )⟩r to
|ψ(τ )⟩ = e−(Hloc−E0)τ |ψ⟩ for a representative test case (five-orbital
model, half filling). The figure shows the difference #(r) =
||ψ(τ )⟩r − |ψ(τ )⟩|. Symbols (in order of increasing size) represent
τ = 0.005, 0.05, 0.5, 5, and 100.

window and truncate adaptively the outer bracket of the trace.
This further reduces the CPU time.

The performance of our CT-HYB QMC solver (Krylov and
segment version) on the Jülich BlueGene/Q, and comparison
with Hirsch-Fye QMC, is shown in Fig. 5.

3. Green’s function and occupation matrix

The partition function (2) can be seen as the sum over all
configurations c = {αiτi ,ᾱi τ̄i ,n} in imaginary time and flavors.
In a compact form,

Z =
∑

c

⟨Z⟩c =
∑

c

wc ∼
∑

{c}
sign(wc),

where in the last term the sum is over a sequence of
configurations {c} sampled by the Monte Carlo approach
using |wc| as the probability of configuration c. In the
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FIG. 5. (Color online) Scaling of our CT-HYB QMC
LDA + DMFT code on BlueGene/Q. Black line: Hirsch-Fye (HF)
solver, two orbitals. The dark and light lines are CT-HYB calculations.
Dark lines: Krylov solver with truncation of the local trace (open
symbols, K-t) and without (solid symbols, K). Results are for two
(circles) and three (triangles) orbitals. Light lines: Segment solver (S),
five-band model (pentagons). All points correspond to calculations
of high quality (and with comparable error bars) for the systems
considered in this work. For β = 70 (∼165 K) the five-orbital segment
solver is about as fast the three-orbital Krylov with trace truncation or
the two-orbital Krylov without trace truncation, and it is remarkably
faster than the two-orbital HF solver.

segment solver approach, we parametrize the configurations
by intervals [0,β) (time line), occupied by a sequence of
creators and annihilators, which define segments on the time
line. The basic Monte Carlo updates are addition and removal
of segments, antisegments, or complete lines.8 In the Krylov
solver approach we use the insertion and removal of pairs
of creation and annihilation operators9,10 as basic updates.
In addition, we shift operators in time8,10 and exchange the
configurations of blocks or flavors39 (global moves). Finally,
a generic observable O can then be obtained as a Monte Carlo
average:

O ∼
∑

{c}⟨O⟩c sign(wc)
∑

{c} sign(wc)
,

where ⟨O⟩c is the value of the observable for configuration c,
and c runs over the configurations visited with probability |wc|
during the sampling. The average expansion order increases
linearly with the inverse temperature. For the case of YTiO3,
at ∼40 K, the average expansion order is n ∼ 40.

We calculate the Green’s function matrix in two ways,
directly8,12 and via Legendre polynomials.40 In the first
approach, the Green’s function matrix is obtained as a Monte
Carlo average with ⟨O⟩c = ⟨Gαᾱ⟩c, and

⟨Gαᾱ⟩c =
Nb∑

b=1

nb∑

i,j=1

#(τ,τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ.

Here M (n) = [F (n)]−1 is the inverse of the hybridization-
function matrix, which we update at each accepted move, while
# is given by

#(τ,τ ′) = − 1
β

{
δ(τ − τ ′) τ ′ > 0,

−δ(τ − (τ ′ + β)) τ ′ < 0,

and the δ function is discretized. In the second approach, we
calculate the Legendre coefficients ⟨O⟩c = ⟨Gl

αᾱ⟩c, with

⟨Gl
αᾱ⟩c =

Nb∑

b=1

nb∑

i,j=1

Pl(τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ,

Pl(τ ) = −
√

2l + 1
β

{
pl(x(τ )), τ > 0,
−pl(x(τ + β)), τ < 0,

where pl(x) is a Legendre polynomial of rank l, with x(τ ) =
2τ/β − 1, and we reconstruct the Green’s function matrix from

Gαᾱ(τ ) =
∞∑

l=0

√
2l + 1
β

pl(x(τ ))Gl
αᾱ.

Concerning occupations, in the segment solver we calculate
them from the total length of the segments of the different
flavors;8 in the Krylov solver we obtain them in two ways,
directly from the Green’s function and by explicitly inserting
the occupation number operator at the center of the oper-
ator sequence (τ = β/2) and calculating the corresponding
trace.9,11 The off-diagonal elements of the local occupation
matrix ⟨c†αcᾱ⟩, which cannot be obtained by inserting the
corresponding operators at τ = β/2,41 are extracted from the
Green’s function matrix only.
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linear-response theory



we need some definitions

�Â(r; t) = Â(r; t)� hÂ(r)i0

hÂi0 =
1

Z
Tr

h
e��(Ĥ�µN̂)Â

i
Z = Tr e��(Ĥ�µN̂)

partition function

difference wrt unperturbed equilibrium case

expectation value

Ĥ ! Ĥ +
R
dr Ĥ1(r; t) + . . .

Ĥ1(r; t) = �
P

⌫ Ô⌫(r; t)h⌫(r; t),

a small space- and time-dependent perturbation H1

Ô⌫(r; t) = ei(Ĥ�µN̂)tÔ⌫(r)e
�i(Ĥ�µN̂)t,

β=1/kBT



linear response theory

Ĥ ! Ĥ +
R
dr Ĥ1(r; t) + . . .

Ĥ1(r; t) = �
P

⌫ Ô⌫(r; t)h⌫(r; t),

hP̂⌫(r; t)i = hP̂⌫(r)i0 + h�P̂⌫(r; t)i0,

h�P̂⌫(r; t)i0 = �i

Z
dr0

Z t

�1
dt0

Dh
�P̂⌫(r; t),�Ĥ1(r

0; t0)
iE

0
.

a small space- and time-dependent perturbation H1

linear effect on some property P

term to calculate

 external fieldproperty of the system



linear response function

h�P̂⌫(r; t)i0 = i
X

⌫0

Z
dr0

Z t

�1
dt0

Dh
�P̂⌫(r; t),�Ô⌫0(r0; t0)

iE

0
h⌫0(r0; t0).

�P̂⌫Ô⌫0
(r, r0; t, t0) ⌘ lim

h⌫0!0

@hP̂⌫(r; t)i
@h⌫0(r0; t0)

.

�P̂⌫Ô⌫0
(r, r0; t, t0) = i

Dh
�P̂⌫(r; t),�Ô⌫0(r0; t0)

iE

0
⇥(t� t0), (1)

linear response

SP̂⌫Ô⌫0
(r, r0; t, t0) = h�P̂⌫(r; t)�Ô⌫0(r0; t0)i0

linear response function

now recognize the correlation function

replacing H1 with its expression



..and it is retarded…

�P̂⌫Ô⌫0
(r, r0; t, t0) = i

Dh
�P̂⌫(r; t),�Ô⌫0(r0; t0)

iE

0
⇥(t� t0), (1)

a perturbation has only effects after it has been switched on

⇥(t� t0) =

⇢
1 if t� t0 > 0
0 if t� t0 < 0.

perturbationeffect

effect only after perturbation



Fourier transform

for system with time and space translation invariance

often it is better to work in Fourier space

h�P̂⌫(q;!)i0 =
X

⌫0

�P̂⌫Ô⌫0
(q;!)h⌫0(q;!)



ideal crystal
rewrite operators in second quantization

�P̂⌫(r) =
X

ii0

X

↵↵0

 i↵0(r) i0↵(r)| {z }
⇢i,i0
↵0↵(r)

c†i↵0 [�P̂⌫ ]↵↵0 ci0↵| {z }
�P̂i,i0

⌫,↵↵0

=
X

ii0

X

↵↵0

⇢i,i
0

↵0↵(r)�P̂i,i0

⌫,↵↵0

�P̂⌫(r) = �†(r)�P̂⌫ �(r)

operator

weight

if we use a localized one-electron basis

�P̂⌫(r) ⇠
X

i

X

↵↵0

⇢i,i↵0↵(r)�P̂i
⌫,↵↵0



example: magnetic susceptibility

M̂z(r) ⇠ �gµB

X

i

X

m↵m0
↵

⇢m↵m0
↵
(r)

1

2

X

��0

c†im↵� [�M̂z]��0 cim0
↵�0 ,

[�M̂z]��0 = h�|�̂z|�0i

h�M̂z(q;!)i0 ⇠ (gµB)
2|⇢(q)|2

X

ii0

e�iq·(Ti�Ti0 )
X

��0

��0����0�0

Ŝi
zŜ

i0
z

(!) hz(q;!)

= (gµB)
2|⇢(q)|2�ŜzŜz

(q;!)hz(q;!),

one-band case, e.g., one-band Hubbard model

magnetic field



example: magnetic susceptibility

h�M̂z(q;!)i0 ⇠ (gµB)
2|⇢s(q)|2

X

ii0

e�iq·(Ti�Ti0 )
X

��0

��0����0�0

Ŝi
zŜ

i0
z

(!)hz(q;!)

= (gµB)
2|⇢s(q)|2�ŜzŜz

(q;!)hz(q;!).

atomic form factor 
(neutron scattering)

spin 
susceptibility

system with partially filled 3d shells, i.e., localized magnetic moments

question: where do localized magnetic moments come from ? 

�ŜzŜz
(q;!) = i

Z
dt ei!t

Dh
Ŝz(q; t), Ŝz(�q; 0)

iE

0
⇥(t).



localized magnetic moments

atomic physics (+ crystal field)

more details: see, e.g., my lecture of last year



many electron atoms

HNR
e = "nl

X

m�

c†m�cm� +
1

2

X

��0

X

mm̃m0m̃0

U l
mm0m̃m̃0c†m�c

†
m0�0cm̃0�0cm̃�

U iji0j0

mm0m̃m̃0 =

Z
dr1

Z
dr2

 im�(r1) jm0�0(r2) j0m̃0�0(r2) i0m̃�(r1)

|r1 � r2|

HNR
e = �1

2

X

i

r2
i �

X

i

Z

ri
+
X

i>j

1

|ri � rj |

one shell, 2nd quantization

kinetic+central potential Coulomb interaction



many electron atoms

filled shells

partially filled shell: magnetic ions

S=L=0

1. Hund’s rule max S

total spin S and total angular momentum L

does the atom/ion carry a magnetic moment?



origin: Coulomb repulsion

Uavg =
1

(2l + 1)2

X

mm0

U l
mm0mm0

direct term: the same for all N electron states

Uavg � Javg =
1

2l(2l + 1)

X

mm0

�
U l
mm0mm0 � U l

mm0m0m

�

exchange term: 1. Hund’s rule



Coulomb exchange

Jp
m,m0 = Up

mm0m0m

=

Z
dr1

Z
dr2

 im�(r1) im0�(r2) im�(r2) im0�(r1)

|r1 � r2|

=

Z
dr1

Z
dr2

�imm0�(r1)�imm0�(r2)

|r1 � r2|
=

1

V

X

k

4⇡

k2
|�imm0�(k)|2 ,

�1

2

X

�

X

m 6=m0

Jp
m,m0c†m�cm�c

†
m0�cm0� = �1

2

X

m 6=m0

2Jp
m,m0


Sm
z Sm0

z +
1

4
nmn0

m

�

positive, hence ferromagnetic

C atom, p shell



analytic properties of Χ(q;ω)

Pnm
⌫ (q) = h N

n |�P̂⌫(q; 0)| N
m i,

Omn
⌫0 (q) = h N

m |�Ô⌫0(q; 0)| N
n i

�P̂⌫Ô⌫0
(q;!) =

1

Z

X

nm

e��(EN
n �µN) � e��(EN

m�µN)

EN
m � EN

n � ! � i�
Pnm
⌫ (q)Omn

⌫0 (�q)

Re z

Im z

{ N
n } N: number of electrons 

n: eigenvalue

analytic in the upper part of the complex planeδ>0



Hermitian operators

Re
h
�P̂⌫Ô⌫0

(q;!)
i

= Re
h
�P̂⌫Ô⌫0

(�q;�!)
i
,

Im
h
�P̂⌫Ô⌫0

(q;!)
i

= �Im
h
�P̂⌫Ô⌫0

(�q;�!)
i
.

if the operators are Hermitian

odd

even

symmetry properties



Kramers-Kronig relations

Re [�(q;!)]� Re [�(q;1)] =
1

⇡
P
Z +1

�1

Im [�(q;!0)]

!0 � !
d!0,

Im [�(q;!)] = � 1

⇡
P
Z +1

�1

Re [�(q;!0)]� Re [�(q;1)]

!0 � !
d!0.

analytic function in upper part complex plane + fast decaying

IC =

I

C

�(q; z)

z � ! + i �
dz = 0

Re z

Im z



thermodynamic sum-rule

�⌫⌫0(0; 0) = lim
h⌫0!0

@hP⌫i
@h⌫0

Re [�(q;! = 0)]� Re [�(q;1)] =
1

⇡
P
Z +1

�1

Im [�(q;!0)]

!0 d!0

let us take the static (ω=0) limit

let us take in addition the uniform (q=0) limit

response to a uniform and static perturbation



Thomas-Reich-Kuhn sum-rule

2

⇡

Z 1

0
! Im

h
�P̂⌫Ô⌫0

(q;!)
i
d! =

Dh
[P̂⌫ , Ĥ], Ô⌫0

iE

0

if O ∝ P+

to proof it use a complete basis of eigenvectors 
+ invariance of trace under cyclic permutations 

also known as f-sum rule



detailed-balance

SP̂⌫Ô⌫0
(q; t) =

D
�P̂⌫(q; t)�Ô⌫0(�q)

E

0

SP̂⌫Ô⌫0
(q;!) =

Z 1

�1
dt ei!th�P̂⌫(q; t)�Ô⌫0(�q; 0)i0

=
1

Z

X

nm

Z 1

�1
dt ei(!+EN

n �EN
m)te��(EN

n �µN)Pnm
⌫ (q)Omn

⌫0 (�q)

=
2⇡

Z

X

nm

e��(EN
n �µN)Pnm

⌫ (q)Omn
⌫0 (�q) �(! � EN

m + EN
n )

Fermi’s golden rule
Pnm
⌫ (q) = h N

n |�P̂⌫(q; 0)| N
m i,

Omn
⌫0 (q) = h N

m |�Ô⌫0(q; 0)| N
n i

if O ∝ P+



detailed-balance

SÔ⌫0 P̂⌫
(q;!) =

2⇡

Z

X

nm

e��(EN
m�µN)Pnm

⌫ (�q)Omn
⌫0 (q)�(! � EN

n + EN
m)

SÔ⌫0 P̂⌫
(�q;�!) = e��!SP̂⌫Ô⌫0

(q;!)

The relation above can be understood as follows. If ! > 0, the correlation function SP̂⌫Ô⌫0
(q;!) describes the

probability Pn!m / n(En)[1 � n(Em)] that the system is excited from an initial state with energy En to a

final state with higher energy Em = En + !. Instead, SP̂⌫Ô⌫0
(�q;�!), describes the probability Pm!n /

n(Em)[1 � n(En)] that the system goes from the initial state with energy Em to a final state with lower energy

En = Em � !. The probability Pm!n is lower than Pn!m by the factor e��!
.

exchanging the operators and then n and m



fluctuation-dissipation theorem

SP̂⌫Ô⌫0
(q;!) = 2(1 + nB)Im[�P̂⌫Ô⌫0

(q;!)], nB(!) =
1

e�! � 1

Bose-Einstein  
dispersion

correlation 
function

imaginary part of the 
linear response 

function

Re[�P̂⌫Ô⌫0
(q;! = 0)]� Re[�P̂⌫Ô⌫0

(q;1)] ⇠ 1

kBT
SP̂⌫Ô⌫0

(q; t = 0)

large temperature limit

if O ∝ P+



Green functions



single-particle Green functions



temperature Green function

G↵↵0(⌧ ) = �hT c↵(⌧1)c
†
↵0(⌧2)i0 = � 1

Z
Tr

h
e��(Ĥ�µN̂)T c↵(⌧1)c

†
↵0(⌧2)

i

invariance of trance under cyclic permutations of operators 

G↵↵0(⌧ ) = G↵↵0(⌧1 � ⌧2)

only one independent imaginary time variable
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temperature Green function

G↵↵0(⌧) =
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using a full basis set

only well defined in the interval

�� < ⌧ < �

and how does it look like?



anti-periodic
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temperature Green function

G↵↵0(⌧) =
1
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+1X

n=�1
e�i⌫n⌧G↵↵0(i⌫n),
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Z �

0
d⌧ei⌫n⌧G↵↵0(⌧).

let us make it periodic with period 2β

Fourier transform

νn  are fermionic Matsubara frequencies

i.e., the poles of the Fermi distribution function

⌫n = ⇡(2n+ 1)/�

Fourier coefficients



sums over Matsubara frequencies

often we have to calculate Matsubara sums 

X

n

f(i⌫n)

how do we do this?
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if F decays fast enough, using Cauchy integral theorem

some of the poles of the Fermi function

possible poles of the F function
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Fermi functionF function
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most common Matsubara FT
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Table 1: Some of the most common Matsubara Fourier transforms (fermionic case). The function n

�

(x) is the

Fermi-Dirac distribution function n

�

(x) = 1/(1 + e

x�). The parameters x and y are real numbers. For ⌧ we

consider the interval (0,�).



two-particle Green-functions



two-particle Green-functions

�P̂↵↵0(⌧1, ⌧2) = c†↵0(⌧2)c↵(⌧1)� hT c†↵0(⌧2)c↵(⌧1)i,

�Ô��0(⌧3, ⌧4) = c†�0(⌧4)c�(⌧3)� hT c†�0(⌧4)c�(⌧3)i.

�↵↵0

��0 (⌧ ) = hT �P̂↵↵0(⌧1, ⌧2)�Ô��0(⌧3, ⌧4)i

�↵↵0

��0 (⌧14 + �, ⌧24, ⌧34, 0) = ��↵↵0

��0 (⌧14, ⌧24, ⌧34, 0),

anti-periodicity

three independent variables

�↵↵0

��0 (⌧ ) = �↵↵0

��0 (⌧14, ⌧24, ⌧34, 0)

(we can also choose τ12 τ34 τ23)



non-interacting example

χ (τ12,0+;τ23)
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Wick’s theorem



Matsubara Fourier transform
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energy conservation

!m Bosonic frequency
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non-interacting case



from the two-particle Green-function 
to the susceptibility



generalized susceptibility
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Ôi0
⌫0
(⌧ ) =

X

↵�

v↵� �↵i
�i0

(⌧ ),

numbers
two-particle  

Green function tensor

v↵� = p

⌫
↵o

⌫0

�



generalized susceptibility

�(q;⌫) =
X

↵�

v↵�

X

ii0

ei(Ti�Ti0 )·q�↵i
�i0

(⌫) =
X

↵�

v↵�
1

N2
k

X

kk0

�↵k
�k0 (⌫)

=
X

↵�

v↵� [�(q; i!m)]L↵,L�
,

�P̂⌫ Ô⌫0
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n: fermionic Matsubara frequencies
α: flavors



magnetic susceptibility
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non-interacting case
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Wick’s theorem holds



Bethe-Salpeter equation
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one-band Hubbard model  
magnetic response



the one-band Hubbard model

ĤHubbard = �
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half filling
t=0: Ns atoms, insulator

U=0: half-filled band, metal



the U=0 limit



the U=0 limit

hypercubic lattice
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Pauli paramagnetism
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Pauli paramagnetism
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finite temperature
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temperature Green function
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magnetic susceptibility
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Table 1: Some of the most common Matsubara Fourier transforms (fermionic case). The function n
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(x) is the

Fermi-Dirac distribution function n
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(x) = 1/(1 + e

x�). The parameters x and y are real numbers. For ⌧ we

consider the interval (0,�).

X

�

�q��
n,n0(i!m) = ��

1

Nk

X

k

X

�

Gk�(i⌫n)Gk+q�(i⌫n + i!m)�n,n0

U=0 limit

static case (ωm=0)
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U=0 limit, static case



magnetic susceptibility
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2-dimensional case: M point!
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finite temperature ~ 350 K

weakly temperature dependent



the t=0 limit



atomic limit (t=0) & half filling

|N,S, Szi N S E(N)
|0, 0, 0i = |0i 0 0 0
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emergence of the spin!
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half filling: highly degenerate states,  2Ns degrees of freedom

insulating behavior



magnetization
non interacting ions

uniform magnetic field hz, Zeeman term

derivative with respect to hz

Mz = hM i
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Curie susceptibility

�zz(0; 0) = (gµBS)
2 1

kBT
=

C1/2

T

C1/2 =
(gµB)
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3kB

Curie constant

Curie  behavior



local spin as emergent entity
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one-site Hubbard model

infinite U limit: the spin S=1/2

only S=1/2 part of Hilbert space remains

U = E(Ni + 1) + E(Ni � 1)� 2E(Ni)



temperature Green function
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magnetic susceptibility
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Fourier transform
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calculating the integral
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magnetic susceptibility

�zz(q; 0) = (gµB)
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result after Matsubara sums

Curie-like temperature behavior

infinite U limit: emergence of spin



the small t/U limit



perturbation theory
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Hubbard model

nD = number of doubly occupied sites

idea: divide Hilbert space into nD=0 and nD>0 sector

next downfold high energy nD>0 sector

half filling: N=1 electrons per site



two sites

site 1 site 2 site 1 site 2

nD=0 sector nD=1 sector

N=1 per site; Ntot=2



Hilbert space

H

H

nD=0 sector nD>0 sector

next downfold high energy nD>0 sector



low energy model
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low energy model

energy gain only for antiferromagnetic arrangement

Pauli principle
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static mean field
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divergence at critical temperature

relation between critical temperature and couplings

Curie-Weiss susceptibility



Χ0 term
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iE

0
⇥(t� t0), (1)

basics of linear-response theory

strongly-correlated systems:  
LDA+DMFT method



=

+
!n

"o
!nk

!n+#m
k+q

k

!n+#m
k+q

"
!n

!n+#m !n′+#m

!n′

k+q

k

k′+q

k′

"

$ ""o
!n+#m
k+q

!n k
!n′

k′

!n′+#m
k′+q

α′

α′

α′

αα

α

γ

γ′

γ′

γγ

γ′

Bethe-Salpeter equation

MULTIPLET EFFECTS IN ORBITAL AND SPIN . . . PHYSICAL REVIEW B 87, 195141 (2013)

10-12

10-9 

10-6 

10-3 

100 

0 2 4 6 8  10

∆(
r)

r

FIG. 4. Convergence of the Krylov approximation |ψ(τ )⟩r to
|ψ(τ )⟩ = e−(Hloc−E0)τ |ψ⟩ for a representative test case (five-orbital
model, half filling). The figure shows the difference #(r) =
||ψ(τ )⟩r − |ψ(τ )⟩|. Symbols (in order of increasing size) represent
τ = 0.005, 0.05, 0.5, 5, and 100.

window and truncate adaptively the outer bracket of the trace.
This further reduces the CPU time.

The performance of our CT-HYB QMC solver (Krylov and
segment version) on the Jülich BlueGene/Q, and comparison
with Hirsch-Fye QMC, is shown in Fig. 5.

3. Green’s function and occupation matrix

The partition function (2) can be seen as the sum over all
configurations c = {αiτi ,ᾱi τ̄i ,n} in imaginary time and flavors.
In a compact form,

Z =
∑

c

⟨Z⟩c =
∑

c

wc ∼
∑

{c}
sign(wc),

where in the last term the sum is over a sequence of
configurations {c} sampled by the Monte Carlo approach
using |wc| as the probability of configuration c. In the
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FIG. 5. (Color online) Scaling of our CT-HYB QMC
LDA + DMFT code on BlueGene/Q. Black line: Hirsch-Fye (HF)
solver, two orbitals. The dark and light lines are CT-HYB calculations.
Dark lines: Krylov solver with truncation of the local trace (open
symbols, K-t) and without (solid symbols, K). Results are for two
(circles) and three (triangles) orbitals. Light lines: Segment solver (S),
five-band model (pentagons). All points correspond to calculations
of high quality (and with comparable error bars) for the systems
considered in this work. For β = 70 (∼165 K) the five-orbital segment
solver is about as fast the three-orbital Krylov with trace truncation or
the two-orbital Krylov without trace truncation, and it is remarkably
faster than the two-orbital HF solver.

segment solver approach, we parametrize the configurations
by intervals [0,β) (time line), occupied by a sequence of
creators and annihilators, which define segments on the time
line. The basic Monte Carlo updates are addition and removal
of segments, antisegments, or complete lines.8 In the Krylov
solver approach we use the insertion and removal of pairs
of creation and annihilation operators9,10 as basic updates.
In addition, we shift operators in time8,10 and exchange the
configurations of blocks or flavors39 (global moves). Finally,
a generic observable O can then be obtained as a Monte Carlo
average:

O ∼
∑

{c}⟨O⟩c sign(wc)
∑

{c} sign(wc)
,

where ⟨O⟩c is the value of the observable for configuration c,
and c runs over the configurations visited with probability |wc|
during the sampling. The average expansion order increases
linearly with the inverse temperature. For the case of YTiO3,
at ∼40 K, the average expansion order is n ∼ 40.

We calculate the Green’s function matrix in two ways,
directly8,12 and via Legendre polynomials.40 In the first
approach, the Green’s function matrix is obtained as a Monte
Carlo average with ⟨O⟩c = ⟨Gαᾱ⟩c, and

⟨Gαᾱ⟩c =
Nb∑

b=1

nb∑

i,j=1

#(τ,τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ.

Here M (n) = [F (n)]−1 is the inverse of the hybridization-
function matrix, which we update at each accepted move, while
# is given by

#(τ,τ ′) = − 1
β

{
δ(τ − τ ′) τ ′ > 0,

−δ(τ − (τ ′ + β)) τ ′ < 0,

and the δ function is discretized. In the second approach, we
calculate the Legendre coefficients ⟨O⟩c = ⟨Gl

αᾱ⟩c, with

⟨Gl
αᾱ⟩c =

Nb∑

b=1

nb∑

i,j=1

Pl(τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ,

Pl(τ ) = −
√

2l + 1
β

{
pl(x(τ )), τ > 0,
−pl(x(τ + β)), τ < 0,

where pl(x) is a Legendre polynomial of rank l, with x(τ ) =
2τ/β − 1, and we reconstruct the Green’s function matrix from

Gαᾱ(τ ) =
∞∑

l=0

√
2l + 1
β

pl(x(τ ))Gl
αᾱ.

Concerning occupations, in the segment solver we calculate
them from the total length of the segments of the different
flavors;8 in the Krylov solver we obtain them in two ways,
directly from the Green’s function and by explicitly inserting
the occupation number operator at the center of the oper-
ator sequence (τ = β/2) and calculating the corresponding
trace.9,11 The off-diagonal elements of the local occupation
matrix ⟨c†αcᾱ⟩, which cannot be obtained by inserting the
corresponding operators at τ = β/2,41 are extracted from the
Green’s function matrix only.
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