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Correlated electron 
materials �  huge resistivity changes (VO2, …) 

�  colossal magnetoresistance (La1-xSrxMnO3, …) 

�  high-Tc superconductivity (YBCO, …) 

�  novel phenomena at surfaces/interfaces (LaTiO3 /SrTiO3 , 
…) 

Potential for technological applications 
�  sensors, switches,… 

�  spintronics 

�  high-Tc superconductors 

�  photovolatics 

CuO2 plane 



Correlated electron 
materials �  huge resistivity changes (VO2, …) 

�  colossal magnetoresistance (La1-xSrxMnO3, …) 

�  high-Tc superconductivity (YBCO, …) 

�  novel phenomena at surfaces/interfaces (LaTiO3 /
SrTiO3 , …) 

Potential for technological applications 

 

�  Kondo effect: 

�  Superconductivity: 

 



Co Co 

Nanosystems and electronic 
correlations 

�  Atomically thin materials 

�  Clusters and artificially 
created nanosystems on 
surfaces 

�  Nanoscopic “Mott 
systems” 

TM clusters on graphene, Cu (111) and CuN 

Monolayer of   Bi2Sr2CaCu2Ox  

K.  Novoselov et al., PNAS 2005 

La0.5Ca0.5MnO3 
Nanoclusters 
Das et al., PRL 107, 
197202 (2011) 

Two-site Kondo effect in CoCunCo-chains  
N. Neél, TW et al., PRL. 107, 106804 (2011). 

Material specific theoretical approaches for 
correlated materials? 

Co2-complex junction 
S. Wagner et al., Nature Nanotech. (2013). 



First principles electron 
theory 

 Many body Schrödinger equation 

�  Flexibility of  wave function à large number M of  
single particle states φi required 

�  Dimension of  Fock space: 2M 

�  Dimension of  N particle subspace:  

2nd Quantization 
Co Co 

c.f  Nobel Lecture: K. S. Novoselov 
Rev. Mod. Phys. 83, 837 (2011) 



Density functional theory 
P. Hohenberg and W. Kohn (1964)  

W. Kohn and L. Sham (1965)  

For |GS>  use density n(r) instead of  Ψ(r1,r2,...,rN)	
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DFT: Kohn-Sham Theory 
Non interacting auxiliary system: 

Hartree potential: 

Energy functional: 

Effective potential: 
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KS-kinetic Energy: 
All many body effects in Exc. 

 
Assumption: KS-auxiliary particles = Quasiparticle excitations 

 
Σ(r,r’,ω) = Veff(r) 



Correlated electrons: The Hubbard 
model 

U 

t 

Dynamic correlations 

 

 

 

 

 

 

Effects beyond single particle 
factorization approximations 

Frequency dependent self  energy 

 

 

 

 

 

 

METAL 

INSULATOR 

~U Lower 
 HB 

Upper 
 HB 

Quasi-particle peak 

A.Georges, G.Kotliar, W.Krauth and M.Rozenberg, Rev. Mod. Phys. ‘96 



The DFT++ approach 

V. I. Anisimov et al., J. Phys. Condes. Matter (1997) 

A. I Lichtenstein and M. I. Katsnelson, PRB (1998) 
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Outline 
�  Correlated subspaces and projectors 

�  Quantum impurity problems 

�  Projector formalism in LDA+DMFT 

�  Interaction terms: Hubbard U and beyond  
�  The constrained random phase approximation  
�  Non-local Coulomb interactions 

�  Double counting and charge self-consistency 



Correlated subspaces and 
projectors 

Electronic density of  states (DOS) and band structures as obtained from DFT 

DFT++ Hamiltonian 

Central quantity to connect DFT and model 
Hamiltonians: 

Projection <k|m> 



Magnetic impurity systems 

Anderson impurity model 

Effective local action 

 



Magnetic impurity systems 

Anderson impurity model 

Action 

 

Effective local action 

 



Magnetic impurity systems 

Anderson impurity model 

Effective local action 

 

Noninteracting impurity GF: Kohn Sham GF: 

Wanted 
Projection onto Correlated Subspace 



DFT++ implementation 
Idea: Use of  projections of  DFT wave functions          onto 

localized orbitals         to obtain hybridization functions 

PRB 77, 205112 (2008), PRB 81, 085413 (2010),  
J. Phys.: Condens Matter 23, 085601 (2011). 

Projector	
  augmented	
  wave	
  basis	
  

Local	
  Green	
  func9on 

Implementa9on	
  with	
  VASP	
  code 



Transition Metal Adatoms on 
Ag(100) Photoemission spectroscopy + First principles theory 2

−3 −2 −1  0

In
te

ns
ity

 (a
rb

. u
.)

(a)
1

1 2

1
2

3

1

Mn
Fe
Co
Ni

−4 −3 −2 −1  0

DO
S 

(a
rb

. u
.)

(b)

Figure 1. (Color online) Valence band spectra for (top to bot-
tom) Mn, Fe, Co, and Ni. (a) Experimental Spectra obtained
by Photoemission (b) Theoretical spectra obtained from QMC
calculations at β = 20eV−1 with imaginary time resolution of
∆τ = 0.125 via analytical continuation [24]. The 3d shell oc-
cupancies used in the simulations are n = 5.0 for Mn, n = 6.0
for Fe, n = 7.8 for Co, and n = 8.4 for Ni.

sharp diffraction spots on low background. Isolated TM
adatoms were obtained by depositing, Mn, Fe, Co and
Ni atoms at a substrate temperature of 20 K (statistical
growth regime). The TMs coverage were calibrated by
a quartz microbalance and here we conventionally define
the coverage according to mass equivalent of a nominal
monolayer. The sample temperature was maintained at
20 K during the photoemission measurements. The pho-
toemission spectra were measured with a photoenergy of
120eV which corresponds to the Cooper minimum of the
Ag 4d photoionization cross section. Under this experi-
mental condition, there is an enhancement of the signal of
the impuritiy (coverages in the range of 10−2 to 10−3 ML)
with respect to the one of the host surface. The photoe-
mission experiments were performed at the SuperESCA
beamlinebeam line at the ELETTRA Synchrotron Ra-
diation facility, with an overall energy resolution of 40
meV.

Fig. 1 (a) shows the photoelectron energy distribu-
tion curves in the valence band of isolated Mn, Fe, Co
and Ni atoms (top to bottom) on the Ag(100) surface.
The curves are difference spectra between the empty Ag
surface and the surface covered with a few adatoms and
thus correspond to the contribution from 3d impurity
electronic states [25]. We observe a remarkable evolu-
tion of the impurity spectra through this series of TM
adatoms: Mn possess one structure (labelled 1) at bind-
ing energy (BE) of 3.25 eV; Fe has two structures, one

(1) at 2.32 eV BE and the other one (2) near the Fermi
Energy (FE); Co has one (1) broad structure at 2.57 eV
BE, one structure (2) at 0.8 eV BE, and one structure
(3) close to the FE; and Ni has four structures (1,2,3,4)
at 1.52, 0.85, 0.35, 0.08 eV BEs, respectively.

We start with reconceiling these experimental results
in the context of a generalized Kondo description: For
Mn, the spectral peak at −3.25 eV and virtually no quasi-
particle peak at the Fermi level could be well in line with
Mn acting effectively as a spin S = 5/2 Kondo impu-
rity. Indeed, this would be very similar to the situation
found for Mn impurities in bulk Ag, which has been de-
rived from photomession spectroscopy and measurements
of the magnetic susceptibility [5]. The virtually absent
quasiparticle peak would then be well understandable as
the large spin S = 5/2 leads to very small Kondo tem-
peratures [10]. With increasing filling of the 3d shell the
impurity spin should be gradually reduced and the spec-
tral weight of the quasiparticle peak near the Fermi level
should be growing exponentially. Indeed, Fe, Co, and Ni
exhibit spectral weight near the Fermi level but the shape
and weight of these low energy spectral varies very non-
monotonically through the series of Fe, Co and Ni. In
particular, we do not find a monotonous increase of the
quasiparticle spectral weight as might be expected based
on spin-only Kondo model descriptions [10]. Rather, ad-
ditional degrees of freedom must be responsible for the
experimentally observed evolution of the transition metal
adatom spectra, which we adress theoreically by combing
density functional theory (DFT) calculations with quan-
tum many body methods in the following.

We performed density functional theory (DFT) cal-
culations [26] to obtain relaxed geometries and the hy-
bridization functions, which are used as an input pa-
rameters of 5 orbital Anderson impurity models for the
adatoms. These models were then solved using the
Hirsch-Fye Monte Carlo method [27], the Non-Crossing-
and One-Crossing Approximations [11, 28], as well as ex-
act diagonalization in the spirit of the Hubbard I approx-
imation [29].

The DFT calculations show that all transition metal
adatoms adsorb to high symmetry positions continuing
the Ag lattice, i.e. sitting in the center of a square of Ag
atoms. The adsorption height above the surface differs
only little, from Mn at 1.30 Å to Ni at approximately
1.4 Å. In line with the similar adsorption geometries
the hybridization functions, Im∆(ω), of the adatoms are
similar for all adatoms [25]. Most importantly, the hy-
bridization function is rather featureless for all adatoms
in the energy region between −3 eV and +1 eV. Thus, the
complex evolution of the spectra observed experimentally
also cannot be a single particle hybridization effect.

Therefore, we resort to many body calculations of the
spectral functions of Anderson impurity models with the
hybridization functions obtained from the DFT calcula-
tions and Coulomb interactions defined via the Slater in-

S. Gardonio, TW, et al., PRL 110, 186404 (2013) 

Experiment Theory 



Projector formalism in LDA
+DMFT 



LDA+DMFT 

F. Lechermann et al. PRB 2006 



LDA+DMFT 

Matrix representations of  Green functions 

 Bloch basis 

 

 

 

 

 Correlated subspace basis / “localized basis” 

Required 
1.  Choice of  correlated subspace 

basis |Rm>, e.g. localized 
orbitals from basis set or MLWFs 

2.  Choice of  Bloch basis |Bkα>, e.g. 
KS eigenstates |k> 

3.  Projections <Rm|Bkα> 



Example: SrVO3 



Example: SrVO3 

U=4eV U=6eV 



Interaction terms: 
Hubbard U and beyond 

Interaction local and restricted to correlated subspace! 



A gedanken experiment 

DFT++ Hamiltonian includes only local interactions within 
correlated subspace but all electrons provide screening 
 
Partially screened interaction in DFT++ Hamiltonian → cLDA, cRPA 



The constrained random 
phase approximation (cRPA) 

P. Hansmann et al., JPCM 25, 094005 (2013) 

F. Aryasetiawan et a., PRB 74, 125106 
(2006) 



Non local Coulomb 
interactions 

Example: Graphene 



Coulomb interactions in 2d 
materials 

Renormalized Fermi velocity 

Elias et al., Nature Phys. 7, 701 (2011) 

Defect induced magnetism in 
graphene. Magnetic moment per 
vacancy.  
Nair et al. Nature Phys. 8, 199 
(2012). 

Magnetism 

Symmetry broken ground states in multilayer graphene 

J. Velasco Jr et al., Nature Nanotech. 7, 156 
(2012). 
 
B. Feldman et al., Nature Physics 5, 893 
(2009). 
 
R. T. Weitz, et al., Science 330, 812 (2010). 
 
A. S. Mayorov et al., Science 333, 860 
(2011). 
… 



How to model Coulomb interactions? 
Magnetism Renormalized Fermi velocity 

Symmetry broken ground states in multilayer graphene 
Kotov et al.,Rev. Mod. Phys. 84, 1067 (2012). 

Yazyev,  Rep. Prog. Phys. 73 
056501 (2010). 

U ~ t ~ 3 eV 

R. Pariser and R. G. Parr, J. Chem. Phys. 
21, 767 (1953). 
J. A. Pople, Proc. Phys. Soc. A 68, 81 
(1955). 

Hydrocarbons: PPP 
model 



Coulomb interactions in 
graphene 

Z. Y. Meng et al., Nature 464, 847-851 (2010)  Honerkamp, PRL 100, 146404 (2008)  

TW et al., PRL 106, 236805 (2011) 



Optimal local Hubbard model 
for graphene 

U*=? 



Peierls-Feynman-Bogoluibov 
variational principle 

Choose U* such that density matrix of  effective system 
approximates density matrix of  original system as 
close as possible 

M. Schüler, TW et al., PRL 111, 036601 (2013) 



Non local density correlation 
functions 

�  Calculations within DQMC (Quest code) 



Renormalized local interactions 

Effective local interaction U* reduced by the non-local interactions 
 

Dirac semimetal phase stabilized against the AFM phase 

Z. Y. Meng et al., Nature 464, 847-851 (2010)  

M. Schüler, TW et al., PRL 111, 036601 (2013) 



A gedanken experiment 



Model Hamiltonians 
from first principles 

Remaining issues: 

•  Double counting µDC 

•  Charge self-consistency 



Double counting problem 

�  Interaction “U” added 

�  Kohn Sham eigenvalues εk already include some 
interaction contribution 

�  For LDA or GGA xc-functionals not clear which part of  
exchange and correlation contribution to εk  corresponds 
to added interaction “U” 
�  Nonlinearity of  xc-functionals like LDA or GGA 
�  No diagrammatic representation of  LDA or GGA 
 

Fully diagrammatic approaches  
(e.g. GW+DMFT ) 

Empirical schemes to fix µDC 



Empirical schemes to fix µDC 

�  Assumption on how xc-functional includes xc-
effects or quantities it describes correctly 

�  Correct charge by LDA, GGA:  

�  Correct static mean field components of  self-energy 
in LDA 

�  Correct self-energy at Fermi level in LDA 



Empirical schemes to fix µDC 
�  Around mean field:  

�  LDA eigenvalues include xc-effects in spherically / 
orbitally averaged manner 

�  Fully localized limit 
�  LDA / GGA total energies fine for purely integer 

occupancies 



Example: NiO 

(Partial) solutions 
 

•  Arrange with empircal character of  DC 
correction J 

•  Fully diagrammatic schemes: GW+DMFT 
•  Charge-self-consistency 



Charge self-consistent LDA
+DMFT 

F. Lechermann et al. PRB 2006 

•  Charge redistribution due to many body part 

•  „Bare“ part of  DFT++ Hamiltonian  includes interactions: Hartree and xc potential 

•  Hartree terms within DFT++ charge self-consistency counteract charge redistributions 

•  Scheme less sensitive to double counting correction? 



Example: LaFeAsO 



Conclusions 

�  Number of  adjustable parameters in H can be 
significantly reduced by deriving them from first 
principles → (almost) „ab-initio“ studies of  
correlated materials 

�  Useful tools 
�  Projectors 
�  cRPA approach 

�  Issues 
�  Double counting 
�  Non-local interactions 


