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Preface

Many-body physics has the daunting task of describing the collective behavior of vast assem-
blies of elementary objects. While the fundamental laws are known, exact solutions like the
Bethe Ansatz are exceedingly rare. Nonetheless, the past century has witnessed a continuous
stream of conceptual breakthroughs, prompted by unforeseen discoveries of new states of mat-
ter: superconductivity and superfluidity, antiferromagnetism, the Kondo effect, the Mott tran-
sition, symmetry breaking, spin glasses and frustration, heavy Fermions, and high-temperature
superconductivity. Each of these cooperative phenomena is an example of emergence at work.
Their essence can often be captured by simple model Hamiltonians. Describing the richness of
real matter requires, however, to increase the complexity of the models significantly, as emer-
gent phenomena are frequently governed by the interplay of several scales. In this year’s school
we will highlight the Kondo effect, the physics of the Hubbard model, and frustrated quantum
spins, covering the range from fundamental mechanisms to the modeling of real materials.

The aim of the school is to introduce advanced graduate students and up to the essence of
emergence and modern approaches for modeling strongly correlated matter.

A school of this size and scope requires support and help from many sources. We are very
grateful for all the financial and practical support we have received. The Institute for Advanced
Simulation and the German Research School for Simulation Sciences at the Forschungszentrum
Jiilich provided the major part of the funding and were vital for the organization of the school
and the production of this book. The DFG Research Unit FOR 1346 generously supported
many of the attending students and the poster session. The Institute for Complex Adaptive
Matter (ICAM) offered travel grants for selected international participants.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jiilich and to Mrs.
D. Mans of the Graphische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with proof-
reading the manuscripts, often on quite short notice: Michael Baumgirtel, Khaldoon Ghanem,
Hoai Le Thi, Julian MuBhoff, Esmaeel Sarvestani, Amin Kiani Sheikhabadi, Guoren Zhang,
Qian Zhang, and, in particular, our native speaker Hunter Sims.

Finally, our special thanks go to Dipl.-Ing. R. Holzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini, Erik Koch, and Piers Coleman

August 2015






1 Heavy Fermions and the Kondo Lattice:
A 21st Century Perspective

Piers Coleman
Center for Materials Theory, Rutgers University

136 Frelinghuysen Road, Piscataway NJ 08854, USA
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1.2 Piers Coleman

1 Heavy electrons

1.1 Introduction

In a world where it is possible to hold a levitated high-temperature superconductor in the palm
of one’s hand, it is easy to forget the ongoing importance of low-temperature research. Heavy-
electron materials are a class of strongly correlated electron material containing localized mag-
netic moments that, by entangling with the surrounding electrons, profoundly transform the
metallic properties. A heavy-fermion metal can develop electron masses 1000 times that of cop-
per; it can also develop unconventional superconductivity, transform into new forms of quantum
order, exhibit quantum critical and topological behavior. Although most of these properties de-
velop well below the boiling point of nitrogen, the diversity and highly tunable nature of their
ground states make them an invaluable work-horse for exploring and researching the emergent
properties of correlated quantum matter.

This lecture will give an introduction to heavy-fermion materials, trying to emphasize a 21st
century perspective. More extensive discussion and development of the ideas in these notes
can be found in an earlier review article [1] and the later chapters of my book Introduction to
Many-Body Physics [2].

In the periodic table, the most strongly interacting electrons reside in orbitals that are well
localized. In order of increasing localization, partially filled orbitals are ordered as follows:

5d < 4d < 3d < 5f < 4f. (D

In addition, when moving along a row of the periodic table, the increasing nuclear charge pulls
the orbitals towards the nucleus. These trends are summarized in the Kmetko-Smith diagram [3],
which is shown in Fig 1. The d-orbital metals at the bottom left of this diagram are highly
itinerant and exhibit conventional superconductivity. By contrast, in rare earth and actinide
metals towards the top right-hand corner, the f-shell electrons are localized, forming magnets
or antiferromagnets. It is the materials that lie in the cross-over between these two regions that
are particularly interesting, for these materials are “on the brink of magnetism.” It is in this
cross-over region that many strongly correlated materials reside: It is here for instance that we
find cerium and uranium, which are key atoms for a wide range of 4f and 5 f heavy-electron
materials.

1.2 Local moments and the Kondo effect

Heavy-electron materials contain a lattice of localized electrons immersed in a sea of mobile
conduction electrons. To understand their physics, we need to first step back and discuss in-
dividual localized moments and the mechanism by which they interact with the surrounding
conduction sea.

The key feature of a localized moment is that the Coulomb interaction has eliminated the high-
frequency charge fluctuations, leaving behind a low-energy manifold of degenerate spin states.
In rare earth and actinide ions, the orbital and spin angular momentum combine into a single
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Fig. 1: The Kmetko-Smith diagram [3], showing the broad trends towards increasing electron
localization in the d- and f-electron compounds.

entity with angular momentum ] = [+ . For example, a C'e®" ion contains a single unpaired
4 f-electron in the state 4f', with [ = 3 and s = 1/2. Spin-orbit coupling gives rise to a low-
lying multiplet with j = 3 — 3 = 3, consisting of 2j + 1 = 6 degenerate orbitals [4f : Jm),
(my € [—g, g]) with an associated magnetic moment M = 2.64 . In a crystal, the 25 + 1-fold
degeneracy of such a magnetic ion is split, and provided there are an odd number of electrons
in the ion, the Kramers theorem guarantees that the lowest lying state has at least a two-fold
degeneracy (Fig. 2 a and b).
One of the classic signatures of localized moments is a high-temperature Curie-Weiss suscepti-
bility, given by

v 2, M? = g 5(j + 1), 2

3(T+0)

where n; is the concentration of magnetic moments, while )M is the magnetic moment with total
angular momentum quantum number j and gyromagnetic ratio g (g-factor). 0 is the Curie-Weiss
temperature, a phenomenological scale that takes account of interactions between spins.
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Fig. 2: a) In isolation, the localized states of an atom form a stable, sharp excitation lying
below the continuum. (b) In a crystal, the 25 + 1-fold degenerate state splits into multiplets,
typically forming a low-lying Kramers doublet. (c) The inverse of the Curie-Weiss susceptibility
of local moments x~ ! is a linear function of temperature, intersecting zero at T = —0.

The presence of such local moments inside a metal profoundly alters its properties. The physics
of an isolated magnetic ion is described by the Kondo model

AH

A\

H=> epc},cp, + JU(0)31(0) - S, 3)
ko

where c,Tm creates a conduction electron of energy £, and momentum &, and 47(0) = N2 >k c,Tm

creates a conduction electron at the origin, where N is the number of sites in the lattice. The
conduction sea interacts with the local moment via an antiferromagnetic contact interaction of
strength J. The antiferromagnetic sign (J > 0) of this interaction is an example of super-
exchange, first predicted by Philip W. Anderson [4, 5], which results from high-energy valence
fluctuations. Jun Kondo [6] first analyzed the effect of this scattering, showing that, as the tem-
perature is lowered, the effective strength of the interaction grows logarithmically, according
to

D
J— J(T)=J+2J% lnf 4)

where p is the density of states of the conduction sea (per spin) and D is the band width. The
growth of this interaction enabled Kondo to understand why in many metals at low temperatures
the resistance starts to rise as the temperature is lowered, giving rise to a resistance minimum.

Today, we understand this logarithmic correction as a renormalization of the Kondo coupling
constant, resulting from the fact that, as the temperature is lowered, more and more high-
frequency quantum spin fluctuations become coherent, and these strengthen the Kondo inter-
action. The effect is closely analogous to the growth of the strong interaction between quarks,
and like quarks, the local moment in the Kondo effect is asymptotically free at high energies.
However, as you can see from the above equation, once the temperature becomes of the order

1
Ty ~ Dexp [—E]
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Fig. 3: (a) Schematic temperature-field phase diagram of the Kondo effect. At fields and tem-
peratures large compared with the Kondo temperature Tk, the local moment is unscreened with
a Curie susceptibility. At temperatures and fields small compared with Ty, the local moment
is screened, forming an elastic scattering center within a Landau-Fermi liquid with a Pauli
susceptibility x ~ i (b) Schematic susceptibility curve for the Kondo effect, showing the
cross-over from Curie susceptibility at high temperatures to Pauli susceptibility at temperatures
below the Kondo temperature T. (c) Specific heat curve for the Kondo effect. Since the total
area is the full spin entropy RIn2 and the width is of order Ty, the height must be of order
v ~ RIn2/Ty. This sets the scale for the zero-temperature specific heat coefficient.

the correction becomes as large as the original perturbation, and at lower temperatures, the
Kondo interaction can no longer be treated perturbatively. In fact, non-perturbative methods
tell us that this interaction scales to strong coupling at low energies, causing electrons in the
conduction sea to magnetically screen the local moment to form an inert Kondo singlet denoted
by

1
V2

where the thick arrow refers to the spin state of the local moment and the thin arrow refers to the

GS) = —= (114) = 141), 5)

spin state of a bound electron at the site of the local moment. The key features of the impurity
Kondo effect are

e The electron fluid surrounding the Kondo singlet forms a Fermi liquid, with a Pauli sus-
ceptibility x ~ 1/Tk.

e The local moment is a kind of qubit that entangles with the conduction sea to form a
singlet. As the temperature 7' is raised, the entanglement entropy converts to thermal
entropy, given by the integral of the specific heat coefficient,

S(T) = /0 TdT’ CVT(,T/> .

Since the total area under the curve, S(T" — oo0) = RIn2 per mole, is the high-
temperature spin entropy, and since the characteristic width is the Kondo temperature,
it follows that the characteristic zero-temperature specific heat coefficient must be of the
order of the inverse Kondo temperature: v = $£(T — 0) ~ RIn2/Tk (see Fig. 3b).
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Fig. 4: Temperature dependence of resistivity associated with scattering from an impurity
spin from [7, 8]. The resistivity saturates at the unitarity limit at low temperatures, due to the
formation of the Kondo resonance. Adapted from [7].

e The only scale in the physics is T. For example, the resistivity created by magnetic
scattering off the impurity has a universal temperature dependence

RT) _ e (%) (6)

where n; is the concentration of magnetic impurities, ¢(z) is a universal function and pys
is the unit of unitary resistance (basically resistance with a scattering rate of order the

Fermi energy)

2ne?
Ry = ) (7)
Tmp

Experiment confirms that the resistivity in the Kondo effect can indeed be scaled onto a
single curve that fits forms derived from the Kondo model (see Fig 4).

e The scattering off the Kondo singlet is resonantly confined to a narrow region of order
Ty, called the Kondo or Abrikosov-Suhl resonance.

1.3 The Kondo lattice

In a heavy-fermion material, containing a lattice of local moments, the Kondo effect develops
coherence. In a single impurity, a Kondo singlet scatters electrons without conserving momen-
tum, giving rise to a huge build-up of resistivity at low temperatures. However, in a lattice with
translational symmetry, this same elastic scattering now conserves momentum, and this leads to
coherent scattering off the Kondo singlets. In the simplest heavy-fermion metals, this leads to a
dramatic reduction in the resistivity at temperatures below the Kondo temperature.
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As a simple example, consider CeCug a classic heavy-fermion metal. Naively, CeCug is just
a copper alloy in which 14% of the copper atoms are replaced by cerium, yet this modest
replacement radically alters the metal. In this material, it actually proves possible to follow the
development of coherence from the dilute single-ion Kondo limit to the dense Kondo lattice by
forming the alloy La; _,Ce,Cug. Lanthanum is isoelectronic to cerium but has an empty f shell,
so the limit x — 0 corresponds to the dilute Kondo limit, and in this limit the resistivity follows
the classic Kondo curve. However, as the concentration of cerium increases, the resistivity
curve starts to develop a coherence maximum and in the concentrated limit drops to zero with
the characteristic 72 dependence of a Landau-Fermi liquid (see Fig. 6).

CeCug displays the following classic features of a heavy-fermion metal:

e A Curie-Weiss susceptibility x ~ (T + 0)~! at high temperatures.
e A paramagnetic spin susceptibility y ~ const. at low temperatures.

e A dramatically enhanced linear specific heat Cyy = ~7" at low temperatures, where in
CeCug v ~ 1000 mJ/mol/K? is about 1000 times larger than in copper.

e A quadratic temperature dependence of the low-temperature resistivity p = p, + AT>.

In a Landau-Fermi liquid, the magnetic susceptibility x and the linear specific heat coefficient
v = Cy /T|r— are given by

B » N*(0)
X = (uB) T+ Fo (8)
21.2
v o= T e ©)

3

m*

where N*(0) = ™-N(0) is the renormalized density of states, and [y is the spin-dependent
part of the s-wave interaction between quasiparticles. One of the consequences of Fermi-liquid
theory is that the density of states factors out of the Sommerfeld or Wilson ratio between the
susceptibility and linear specific heat coefficient,

2
X KB 1

W =2 = . 10
0 (ZWkB) 1+ Fg (19)

In heavy-fermion metals, this ratio remains approximately fixed across several decades of vari-

ation in y and . This allows us to understand heavy-fermion metals as a lattice version of the
Kondo effect that gives rise to a renormalized density of states N*(0) ~ 1/Tk.

The discovery of heavy-electron compounds in the 1970s led Mott [9] and Doniach [10] to pro-
pose that heavy-electron systems should be modeled as a Kondo lattice, where a dense array of
local moments interacts with the conduction sea via an antiferromagnetic interaction .J. In such
a lattice, the local moments polarize the conduction sea, and the resulting Friedel oscillations in
the magnetization give rise to an antiferromagnetic RKKY (Ruderman Kittel Kasuya Yosida)
magnetic interaction [11-13] that tends to order the local moments. Mott and Doniach realized
that this interaction must compete with the Kondo effect.
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TK = TRKKY Trrry > Tk

Fig. 5: Doniach phase diagram for the Kondo lattice, illustrating the antiferromagnetic regime
and the heavy-fermion regime for Tx < Trxxy and Tk > Trxxy respectively. The effective
Fermi temperature of the heavy Fermi liquid is indicated as a solid line. Experimental evidence
suggests that in many heavy-fermion materials this scale drops to zero at the antiferromagnetic
quantum critical point.

The simplest Kondo lattice Hamiltonian [14] is

H=> excd e+ SiclGascis, (11)
ko J
where .
T — Z T —ik-R; 12
Cia Clear© (12)
v : ;5 k

creates an electron at site 7. Mott and Doniach [9, 10] pointed out that there are two energy
scales in the Kondo lattice: the Kondo temperature Tx ~ De~/(27) and the RKKY scale
Erkky = J?p.

For small Jp, Erxky > Tk leading to an antiferromagnetic ground state, but when Jp is
large, Tx > Erkky, stabilizing a ground state in which every site in the lattice resonantly
scatters electrons. Based on a simplified one-dimensional Kondo necklace model [15], Doniach
conjectured [10] that the transition between the antiferromagnet and the dense Kondo ground
state is a continuous quantum phase transition. Experiment confirms this conjecture, and today
we have several examples of such quantum critical points, including CeCug doped with gold to
form CeCug_,Au, and CeRhln; under pressure [16—18]. In the fully developed Kondo lattice,
the ground state Bloch’s theorem ensures that the resonant elastic scattering at each site will



Heavy Fermions and the Kondo Lattice 1.9

b)
a) 100 200
I T
' ' o ' : . CesBisPt
| i _ 250 3Dl
300 x:0.094|—m9u—r't_:{ Cexl_a1 'XCUS \ K2 electrical
g resistivity
£ 200 1 200k -
Q
c KBe1 CeCusx 2.5
3
E 100 1 -
a £ 1501
[&]
G
S
&

CeRhlns

100 x4

50

] ]
0 100 200 300
T

Fig. 6: (a) Resistivity of Ce,La,_,Cug. Dilute Ce atoms in LaCug exhibit a classic Kondo
resistivity, but as the Ce concentration becomes dense, elastic scattering off each Ce atom leads
to the development of a coherent heavy-fermion metal. (b) Resistivities of four heavy-fermion
materials showing the development of coherence. A variety of antiferromagnetic, Fermi liquid,
superconducting and insulating states are formed (see text).

generate a renormalized f band of width ~ T%. In contrast with the impurity Kondo effect,
here elastic scattering at each site acts coherently. For this reason, as the heavy-electron metal
develops at low temperatures, its resistivity drops towards zero (see Fig. 6b).

In a Kondo lattice, spin entanglement is occurring on a truly macroscopic scale, but this entan-
glement need not necessarily lead to a Fermi liquid. Experimentally, many other possibilities
are possible. Here are some examples:

e Ce3Bi,4Pt;, a Kondo insulator in which the formation of Kondo singlets with the Ce mo-
ments drives the development of a small insulating gap at low temperatures.

e CeRhlnj;, an antiferromagnet on the brink of forming a Kondo lattice, which under pres-
sure becomes a heavy-fermion superconductor with 7, = 2 K.

e UBe;; a heavy-fermion superconductor that transitions directly from an incoherent metal
with resistivity 200 ;{2 cm into a superconducting state.

Each of these materials has qualitatively the same high-temperature Curie-Weiss magnetism and
the same Kondo resistivity at high temperatures due to incoherent scattering off the local mo-
ments. However at low temperatures, the scattering off the magnetic Ce ions becomes coherent
and new properties develop.
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2 Kondo insulators: the simplest heavy fermions

In many ways, the Kondo insulator is the simplest ground state of the Kondo lattice. The
first Kondo insulator (KI) SmBg was discovered almost fifty years ago [19], and today there
are several known examples, including CesBisPt;. At room temperature, these Kls are metals
containing a dense array of magnetic moments, yet on cooling they develop a narrow gap due
the formation of Kondo singlets that screen the local moments [20-23]. We can gain a lot of
insight by examining the strong-coupling limit, in which the dispersion of the conduction sea is
much smaller than the Kondo coupling .J. Consider a simple tight-binding Kondo lattice

H=—t Z (c;rgcja +H.c.) + JZ gj- gj, 7 = (C;r'ﬁa_:ﬁacja) (13)
(i.5)o

J?aﬁ

in which ¢/J < 1 is a small parameter. In this limit, the inter-site hopping is a perturbation to
the on-site Kondo interaction,

t/J—0 R
H—— J) &-S;+0(), (14)

J?aﬁ

and the corresponding ground state shows the formation of a spin singlet at each site, denoted
by the wavefunction

1
Kn =11 (m - um) (1)

where the double and single arrows denote the localized moment and conduction electron re-
spectively.

Each singlet has a ground-state energy £ = —3.J/2 per site and a singlet-triplet spin gap of
magnitude AE = 2J. Moreover, if we remove an electron from site ¢, we break a Kondo
singlet and create an unpaired spin with excited energy 3.J/2,

: 1
ap* i) = i ]] 7 (ﬂj%‘ - UjTj) = V20, |KT), (16)
J#i
as illustrated in Fig 7(a). Similarly, if we add an electron, we create an electron quasiparticle,
corresponding to an unpaired local moment and a doubly occupied conduction electron orbital

lap~,i 1) = (Tz\l/i) H % (ﬂjij - U’jTj) = V2l |KT), (17)
J#i
as illustrated in Fig 7b.
If we now reintroduce the hopping —t between sites, then these quasiparticle excitations be-
come mobile, as illustrated in Fig. 7 a and b. From the explicit form of the states, we find
that the nearest-neighbor hopping matrix elements are (qp*,ic|H |qp™, jo) = +t/2, giving
quasiparticle energies

3
Eqpi(k) =tt(c, +cy+c.)+ EJ. (18)
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Fig. 7: Showing (a) hole and (b) electron doping of a strong-coupling Kondo insulator. (c)
Dispersion of strong-coupling Kondo insulator. A small amount of hole doping 0 gives rise to a
large Fermi surface containing 2 — 0 heavy electrons.

To transform from the quasiparticle to the electron basis, we need to reverse the sign of the hole
(gp™) dispersion to obtain the valence band dispersion, so that the band energies predicted by
the strong-coupling limit of the Kondo lattice are

3
Ef=—t(co+e,+c) =+ 57 (19)

separated by an energy 3.J as shown in Fig. 7c. Note that these are hard core fermions that
cannot occupy the same lattice site simultaneously.

In this way, the half-filled strong coupling Kondo lattice forms an insulator with a charge gap
of size 3.J and a spin gap of size 2.J. Notice finally that if we dope the insulator with an amount
0 of holes, we form a band of heavy fermions. In this way, Kondo insulators can be considered
the parent states of heavy-electron materials. However, we would like to examine the physics
of a Kondo lattice at weak coupling, and to do this requires a different approach.

3 Large-IN expansion for the Kondo Lattice

3.1 Philosophy and formulation

One of the great difficulties with the Kondo lattice is that there is no natural small parameter to
carry out an approximate treatment. One way around this difficulty is to use a large-/N expan-
sion, in which we extend the number of spin components of the electrons from 2 to /N. Histori-
cally, Anderson [24] pointed out that the large spin-orbit coupling in heavy-fermion compounds
generates (if we ignore crystal fields) a large spin degeneracy N = 25 + 1, furnishing a small
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Fig. 8: [llustration of the convergence of a quantum path integral about a semi-classical
trajectory in the large-N limit.

parameter 1/N for a controlled expansion about the limit N — oo. One of the observations
arising from Anderson’s idea [25,26] is that the RKKY interaction becomes negligible (of or-
der O(1/N?)) in this limit, and the Kondo lattice ground state becomes stable. This observation
opened the way to path-integral mean-field treatments of the Kondo lattice [26-31].

The basic idea of the large-/V limit is to examine a limit where every term in the Hamiltonian
grows extensively with V. In the path integral for the partition function, the corresponding
action then grows extensively with /V, so that

B L e Y L B

Here 1/N ~ hes behaves as an effective Planck constant for the theory, focusing the path

integral into a non-trivial “semi-classical” or “mean-field” solution as h.g — 0. As N — oo,
the quantum fluctuations of intensive variables a, such as the electron density per spin, become
smaller and smaller, scaling as (a”®)/(a*) ~ 1/N, causing the path integral to focus around a
non-trivial mean-field trajectory. In this way, one can obtain new results by expanding around
the solvable large- N limit in powers of 1/N (Fig. 8).

We will use a simplified Kondo lattice model introduced by Read and Newns [26], in which all
electrons have a spin degeneracy N = 235 + 1,

H= Zsk o Cra + = Z  Cia Sas(j) (21)
J ap
where cl, = VDD ¢l ™R creates an electron localized at site j, and the spin of the local

moment at position R is represented by pseudo-fermions

Sap(J) = f;afjﬁ - nfT(j)(Saﬁ- (22)
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This representation requires that we set a value for the conserved f occupancy ns(j) = (@ at
each site. This interaction can be rewritten in a factorized form

H= Za‘k cLackCY — %Z : (c}/gfjg) (f;acja) : (23)
ka JeB

Read-Newns model for the Kondo lattice

where the potential scattering terms resulting from the rearrangement of the f-operators have
been absorbed into a shift of the chemical potential. Note that

e the model has a global SU(/N) symmetry associated with the conserved magnetization.

e the Read-Newns (RN) model is a lattice version of the Cogblin-Schrieffer Hamiltonian [32]
introduced to describe the Kondo interaction in strongly spin-orbit coupled rare-earth
ions. While the Cogblin-Schrieffer interaction is correct at each site, the assumption that
the SU(N) spin is conserved by electron hopping is an oversimplification. (This is a price
one pays for a solvable model.)

e in this factorized form, the antiferromagnetic Kondo interaction is attractive.

e the coupling constant has been scaled to vary as .J/N to ensure that the interaction grows
extensively with V. The interaction involves a product of two terms that scale as O(N),
so that J/N x O(N?) ~ O(N).

e the RN model also has a local gauge invariance: The absence of f charge fluctuations
allows us to change the phase of the f-electrons independently at each site

fie = €% fi. (24)

A tricky issue concerns the value we give to the conserved charge n; = (). In the physical
models of interest, ny = 1 at each site, so one might be inclined to explicitly maintain this
condition. However, the large-/NV expansion requires that the action is extensive in /V, and this
forces us to consider more general classes of solutions where () scales with N so that the filling
factor ¢ = /N is finite as N — oo. Thus if we are interested in a Kramers-doublet Kondo
model, we take the half-filled case ¢ = 1/2, @ = N/2, but if we want to understand a j = 7/2
Yb3* atom without crystal fields, then in the physical system N = 2j 4+ 1 = 8, and we should
fixg=Q/N =1/8.

The partition function for the Kondo lattice is then

Z=Tr e " ][ 6(0s(5) — Q) (25)
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where 6(ns(j) — @) projects out the states with ny(j) = () at site j. By re-writing the delta
function as a Fourier transform, the partition function can be can be rewritten as a path-integral,

L[wlw)\]

R - <
/D [T, 4, A exp —/0 dr (V10,0 + H[p, ¥, A)) (26)

where ¢" = ({c'}, {fT}) schematically represent the conduction and f-electron fields,
J
= Z 5k01T<aCkoc - N Z : (c;r.ﬁf]ﬂ) <f;acja> D+ Z Aj(np — Q). 27)
ko 7,8 J

The field ), is a fluctuating Lagrange multiplier that enforces the constraint n; = () at each site.
Next we carry out a Hubbard-Stratonovich transformation on the interaction,

- % > (chafis) (Flacse) = Za: V5 (hafia) + (Flacia) Vi] + NVJV (28)

In the original Kondo model, we started out with an interaction between electrons and spins.
Now, by carrying out the Hubbard-Stratonovich transformation, we have formulated the inter-
action as the exchange of a charged boson

(29)

—% > (chfo)(flea) (30)

k’k/7a’/3

where the solid lines represent the conduction electron propagators, and the dashed lines rep-
resent the f-electron operators. Notice how the bare amplitude associated with the exchange
boson is frequency independent, i.e., the interaction is instantaneous. Physically, we may inter-
pret this exchange process as due to an intermediate valence fluctuation.

The path integral now involves an additional integration over the hybridization fields V and V'

S[V7V7A7 ,[/)T’w]

~

— /D[V, V, Al /D[ww] exp {—,/OB(W&WH[V,VN)}

ViV

H[V, VAl Z i Ol o + Z{ (L;fjo) + (f%%a)vj +A(ng=Q) } GD

Read-Newns path integral for the Kondo lattice
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where we have suppressed summation signs for repeated spin indices (summation convention).

The RN path integral allows us to develop a mean-field description of the many-body Kondo
scattering processes that captures the physics and is asymptotically exact as N — oo. In this
approach, the condensation of the hybridization field describes the formation of bound states
between spins and electrons that cannot be dealt with in perturbation theory. Bound states
induce long-range temporal correlations in scattering: Once the hybridization condenses, the
interaction lines break-up into independent anomalous scattering events, denoted by

The hybridization V' in the RN action carries the local U(1) gauge charge of the f-electrons,
giving rise to an important local gauge invariance:

fie = €% fig, V; = eV, A= N — (7). (32)

Read Newns gauge transformation

This invariance can be used to choose a gauge in which V; is real by absorbing the phase of the
hybridization V; = |V;|e’% into the f-electron. In the radial gauge,

SHV\&WW}

Y

2= [otvil [ Dt e~ [ @+ i)

Vi|?
HI|V], Al :Z EXClChr Z {W}\ (C;'gfja + f;gcj0> +Aj(ng—Q) + N%} (33)
k J

Read Newns path integral: radial gauge

Subsequently, when we use the radial gauge, we will drop the modulii signs. The interesting
feature about this Hamiltonian is that with the real hybridization, the conduction and f electrons
now transform under a single global U (1) gauge transformation, i.e the f electrons have become
charged.
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3.2 Mean-field theory

The interior fermion integral in the path integral (33) defines an effective action Sg[V, A] by the
relation

Zp = exp [~ NSg[V,\]] = / D[y’, ¢lexp [-S[V, A, ¢, ¢]] | (34)

The extensive growth of the effective action with N means that at large /V, the integration in (31)
is dominated by its stationary points, allowing us to dispense with the integrals over V' and .

— / DI\, V]exp[-NSp[V,\] ~ exp[-NSg[V, A] (35)

Saddle Point

In practice, we seek uniform, static solutions, V;(7) = V, A;(7) = A. In this case the saddle-
point partition function Zp = Tre #H#VFT ig simply the partition function of the static mean-field

Hamiltonian
h(k)
——

4 VP
Hypp = ( ot ) “k N 36
MFT ; Cros Jxo 7o fka +NN 7 q (36)

V>

- Z wkg L wka +NN 7 q]-

Here, fi = \/L/\T >, fj *kR; ig the Fourier transform of the f-electron field and we have

introduced the two-component notation

wko - (;i<7> ) wko— = (Cka’ fTJka> ) ﬁ(k) = (i/lf Z) . (37)

We should think about Hypr as a renormalized Hamiltonian, describing the low-energy quasi-
particles moving through a self-consistently determined array of resonant scattering centers.
Later, we will see that the f-electron operators are composite objects, formed as bound states
between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

By 0 VvV
Hypr =Y (aLo,bL,) < 6‘ Ek> (Zk ) + NN, ( —/\q>. (38)

ko

Here af , = uxc|, + v fi, and bl = —vicl, + wf] are linear combinations of ¢l and f;

playing the role of quasiparticle operators with corresponding energy eigenvalues

g1 (Y
VoA

det = (Bys —ex)(Byxr — ) — |V =0, (39)
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Fig. 9: (a) Dispersion for the Kondo lattice mean-field theory. (b) Renormalized density of
states, showing a “hybridization gap” (A,).

or

; (40)

and eigenvectors taking the BCS form

{Uk}: e LI (1)
R

The hybridized dispersion described by these energies is shown in Fig. 9.
Note that

e The Kondo effect injects an f band into the conduction sea, hybridizing with the conduc-
tion band to create two bands separated by a direct “hybridization gap” of size 2V and a
much smaller indirect gap. If we put ex = £D, we see that the upper and lower edges of
the gap are given by

D D — 2 2
Ei:%“i\/(%A) +V2z)\i%, (D>)X) 42

so the indirect gap has a size A, ~ 2V?/D, where D is the half bandwidth. We will
see shortly that V2/D ~ TJ is basically the single-ion Kondo temperature, so that V' ~
VT'x D is the geometric mean of the bandwidth and Kondo temperature.

e In the case when the chemical potential lies in the gap, a Kondo insulator is formed.
e A conduction sea of electrons has been transformed into a heavy Fermi sea of holes.

e The Fermi surface volume expands in response to the formation of heavy electrons (see
Fig. 10) to accommodate the total number of occupied quasiparticle states

Niot = <Z nm> = (Af + ) (43)
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Small Light FS

Kondo singlets:

+Qe

Fig. 10: (a) High-temperature state: small Fermi surface with a background of spins; (b)
Low-temperature state: large Fermi surface develops against a background of positive charge.
Each spin “ionizes” into () heavy electrons, leaving behind a background of Kondo singlets,
each with charge +Qe.

where n\, = aL \o kAo 18 the number operator for the quasiparticles and 7. is the total
number of conduction electrons. This means

VFS CL3
Ntot:N—3:Q+n07 (44)
(2m)
where a? is the volume of the unit cell. This is rather remarkable, for the expansion of the
Fermi surface implies an increased negative charge density in the Fermi sea. Since charge
is conserved, we are forced to conclude there is a compensating +()|e| charge density per

unit cell provided by the Kondo singlets formed at each site, as illustrated in Fig. 10.

3.3 Free energy and saddle point

Let us now use the results of the last section to calculate the mean-field free energy Fypr and
determine self-consistently the parameters A and V' that set the scales of the Kondo lattice. By
diagonalizing the mean-field Hamiltonian, we obtain

E:—TZlnHe*ﬁEki + N, E—Aq (45)
N — "\ J '

Let us discuss the ground state, in which only the lower band contributes to the free energy.
As T — 0, we can replace —T'In(1 + e #%%) — #(—E))E, so the ground-state energy
Ey = F(T = 0) involves an integral over the occupied states of the lower band:

E, 0 V2
T :/ dE p*(E)E + (7—Aq>, (46)

where we have introduced the density of heavy-electron states p*(E) = >,  0(E — El((i)).

Now by (39) the relationship between the energy E of the heavy electrons and the energy € of

the conduction electrons is )
Vv

E = .
€+E—)\
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As we sum over momenta k within a given energy shell, there is a one-to-one correspondence
between each conduction electron state and each quasiparticle state, so we can write p*(E)dE =
p(e)de, where the density of heavy electron states

d %6
P (E) :Pd_; :P(1+m) : 47)

Here we have approximated the underlying conduction electron density of states by a constant
p = 1/(2D). The originally flat conduction electron density of states is now replaced by a
hybridization gap, flanked by two sharp peaks of width approximately wpV? ~ Ty (Fig. 9).
Note that the lower bandwidth is lowered by an amount —V?/D. With this information, we can
carry out the integral over the energies to obtain

E 0 V2 V2
A dEF 14+ —— — = A 48
NN, ”/szm (*(E—A)?)*(J q)’ (%)

where we have assumed that the upper band is empty and that the lower band is partially filled.

Carrying out the integral we obtain

E,  p V2?2 A O 1 A &
NN, _§(D+D> +?/_DdE(E—A+(E—A)2>+(J _Aq) )
D% A A V2
= 5 toh (5)*(7—”) (59)

where we have replaced A = 7pV2, which is the width of an isolated f-resonance, and have
dropped terms of order O(A?/D). We can rearrange this expression, absorbing the bandwidth
D and the Kondo coupling constant into a single Kondo temperature Tx = De~'/7# as follows

Ey D?*p A A pV?
NN > "7 \D) T\ M 1
D?*p A A A
= —+—In| = — = 52
2 +7T H(D>+<7TpJ q) (52)
D? A A
= ——p+—ln( 1)—)\q (53)
2 m e Tn
D*p A A
= ——+—In{—=—] —Ag. 54
5 T (TK> q (54)
This describes the energy of a family of Kondo lattice models with different J(D) and cutoff
D but fixed Kondo temperature. If we impose the constraint % = (ny) — ) = 0 we obtain
A
=—q= 0, so

(A =mp|V|) (55)

E,(V) Aln( A )_sz

NN, T mqeTyk 2 7

Let us pause for a moment to consider this energy functional qualitatively. There are two points
to be made:
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Fig. 11: Mexican hat potential for the Kondo Lattice, evaluated at constant (ny) = (@) as a
function of a complex hybridization V = |V |e®

e The energy surface Ey(V) is actually independent of the phase of V = |V|e® (see
Fig. 11), and has the form of Mexican hat at low temperatures. The minimum of this
functional will then determine a family of saddle-point values V' = |V, |e*, where ¢ can
have any value. If we differentiate the ground-state energy with respect to A, we obtain

0—11 A
_7Tn mqTx

A= 7TC]TK

or

confirming that A ~ T}.

e The mean-field value of the constraint field )\ is determined relative to the Fermi energy .
Were we to introduce a slowly varying external potential field to the conduction electron
sea, then the chemical potential would become locally shifted so that u — p© + e¢p(t).
So long as the field ¢(t) is varied at a rate slowly compared with the Kondo temperature,
the constraint field will always track with the chemical potential, and since the constraint
field is pinned to the chemical potential, A\ — A + e¢(¢). In the process, the constraint
term will become

A7) — Q) = Mg (j) — @) + ed(t) (4 () — Q). (56)

Since the f-electrons now couple to the external potential e¢» we have to ascribe a physical
charge e = —|e| to them. By contrast, the —() term in the constraint must be interpreted as
a “background positive charge” |e|@ = |e| per site. These lines of reasoning indicate that
we should think of the Kondo effect as a many-body ionization phenomenon in which the
neutral local moment splits up into a negatively charged heavy electron and a stationary
positive background charge we can associate with the formation of a Kondo singlet.
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3.4 The composite nature of the f-electron

The matrix Green’s function of the Kondo lattice reminds us of the Nambu Green’s function in
superconductivity. It is given by

Gu(T) = — (Yo (T)_(0)) = (57)

G.(k,7) Gcf(k,r)]
ch(k,T) Gf(k,T)

where G.(k,7) = —(a(1)cl_(0)), Gep(k,7) = —(cx(7)fi (7)) and so on. The anomalous
off-diagonal members of this Green’s function remind us of the Gor’kov functions in BCS
theory and develop with the coherent hybridization. Using the two component notation (37),
this Green’s function can be written

FT.
gk<T> = _<aﬂ' +hk)71 —_— gk(“‘un) == (an - hk)ila (58)

where F.T. denotes a Fourier transform in imaginary time (0, — —iw,,), or more explicitly,

-1

z—ex —V Ge(k,z) Gk, 2)
R AR e I
-V oz=A Gyre(k,z) Gyk,2)

1 z—A %
- (z—ek)(z—)\)—V2< 1% z—sk)’ (€0)

where we have taken the liberty of analytically extending iw, — z into the complex plane. Now
we can read off the Green’s functions. In particular, the hybridized conduction electron Green’s
function is

zZ—A

Glles) = —mm = (61)
1 1

— = 2

2 —ex — ZVfA 2z —ex — 2.(2) 62)

which we can interpret physically as conduction electrons scattering off resonant f-states at
each site, giving rise to a momentum-conserving self-energy

1% 1% V2
Zi(z) = — @@= .

o(1)

(63)

We see that the Kondo effect has injected a resonant scattering pole at energy z = A\ into the
conduction electron self-energy. This resonant scattering lies at the heart of the Kondo effect.
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3.4.1 An absurd digression: the nuclear Kondo effect

The appearance of this pole in the scattering raises a vexing question in the Kondo effect: What
is the meaning of the f electron? This might seem like a dumb question, for in electronic
materials the Kondo effect certainly involves localized f electrons, and surely we can interpret
this pole as the adiabatic renormalization of a hybridized band structure. This is certainly true.
Yet as purists, we do have to confess that our starting model was a pure Kondo lattice model
with only spin degrees of freedom: They could even have been nuclear spins!

This might seem absurd, yet nuclear spins do couple antiferromagnetically with conduction
electrons to produce nuclear antiferromagnetism. Leaving aside practical issues of magnitude,
we can learn something from the thought experiment in which the nuclear spin coupling to elec-
trons is strong enough to overcome the nuclear magnetism. In this case, resonant bound states
would form with the nuclear spin lattice giving rise to charged heavy electrons, presumably
with an expanded Fermi surface.

From this line of argument we see that while it is tempting to associate the heavy fermion with
a physical f or d electron localized inside the local moment, from a renormalization group per-
spective, the heavy electron is an emergent excitation: a fermionic bound state formed between
the conduction sea and the neutral localized moments. This alternate point-of-view is useful,
because it allows us to contemplate the possibility of new kinds of Kondo effects in states that
are not adiabatically accessible from a band insulator or metal.

3.5 Cooper pair analogy

There is a nice analogy with superconductivity that helps one to understand the composite
nature of the heavy electron. In a superconductor, electron pairs behave as loose composite
bosons described by the relation

/ /
r(2)yy(af) = —F(x — ). (64)
Here F(z — 2') = —(TY+(1)1,(2)) is the anomalous Gor’kov Green’s function, which de-

termines the Cooper-pair wavefunction, extended over the coherence length { ~ vp/T.. A
similar phenomenon takes place in the Kondo effect, but here the bound state develops between
spins and electrons, forming a fermion rather than a boson. For the Kondo lattice, it is perhaps
more useful to think in terms of a screening time 7x ~ /T, rather than a length. Both the
Cooper pair and heavy electron involve electrons that span decades of energy up to a cutoff, be
it the Debye energy wp in superconductivity or the (much larger) bandwidth D in the Kondo
effect [33,34].
To follow this analogy in greater depth, recall that in the path integral the Kondo interaction
factorizes as _

Sl S o — V (chfu) + (Flea) V 4 N7, (63)

so by comparing the right and left hand side, we see that the composite operators Sg,cs and
cLSaB behave as a single fermion denoted by the contractions:
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W
1 V 1 Vv
N E SgaCg = <7> fa N E Cgsaﬁ = (7> £, (66)
B B

Composite Fermion

Physically, this means that the spins bind high-energy electrons, transforming themselves into
composites that then hybridize with the conduction electrons. The resulting heavy fermions
can be thought of as moments ionized in the magnetically polar electron fluid to form mobile,
negatively charged heavy electrons while leaving behind a positively charged “Kondo singlet.”
Microscopically, the many-body amplitude to scatter an electron off a local moment develops a
bound-state pole, which for large N we can denote by the diagrams

,rz Z\\ 1% 1% TN
S - =——0--r-—-0— -———- +...
O(1) O(1/N)

The leading diagram describes a kind of condensation of the hybridization field; the second and
higher terms describe the smaller O(1/N) fluctuations around the mean-field theory.

By analogy with superconductivity, we can define a wavefunction associated with the temporal
correlations between spin-flips and conduction electrons, as follows

& S G () = gl = )l 1)
B

where the spin-flip correlation function g(7 — 7’) is an analogue of the Gor’kov function, ex-
tending over a coherence time 7x ~ h/Tx. Notice that in contrast to the Cooper pair, this
composite object is a fermion and thus requires a distinct operator f,, for its expression.

4 Heavy-fermion superconductivity

We now take a brief look at heavy-fermion superconductivity. There is a wide variety of
heavy-electron superconductors, almost all of which are nodal superconductors, in which the
pairing force derives from the interplay of magnetism and electron motion. In the heavy-
fermion compounds, as in many other strongly correlated electron systems, superconductiv-
ity frequently develops at the border of magnetism, near the quantum critical point where the
magnetic transition temperature has been suppressed to zero. In some of them, such as UPt;
(T.=0.5K) [35] the superconductivity develops out of a well developed heavy Fermi liquid,
and in these cases, we can consider the superconductor to be paired by magnetic fluctuations
within a well formed heavy Fermi liquid. However, in many other superconductors, such as
UBe;3(T.=1K) [36,37], the 115 superconductors CeColn; (T.=2.3K) [38], CeRhIn; under pres-
sure (T,=2K) [16], NpAl;Pd5(T.=4.5K) [39] and PuCoGa; (T.=18.5K) [40,41], the supercon-
ducting transition temperature is comparable with the Kondo temperature. In many of these
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Fig. 12: (a) Phase diagram of 115 compounds CeMIns, adapted from [42], showing magnetic
and superconducting phases as a function of alloy concentration. (b) Sketch of specific heat co-
efficient of CeColns, (with nuclear Schottky contribution subtracted), showing the large entropy
of condensation associated with the superconducting state. (After Petrovic et al 2001 [38]).

materials, the entropy of condensation

T
c CV
S. = /0 g dr (68)

can be as large as (1/3) R 1n 2 per rare-earth ion, indicating that the spin is in some way entan-
gling with the conduction electrons to build the condensate. In this situation, we need to be able
to consider the Kondo effect and superconductivity on an equal footing.

4.1 Symplectic spins and SP(N).

Although the SU(NN) large-N expansion provides a very useful description of the normal state
of heavy-fermion metals and Kondo insulators, there is strangely no superconducting solution.
This shortcoming lies in the very structure of the SU(N) group. SU(N) is perfectly tailored
to particle physics, where the physical excitations, the mesons and baryons, appear as color
singlets, with the meson a gg quark-antiquark singlet while the baryon is an /N-quark singlet
G192 - - - qn, (Where of course N = 3 in reality). In electronic condensed matter, the meson be-
comes a particle-hole pair, but there are no two-particle singlets in SU(N) beyond N = 2. The
origin of this failure can be traced back to the absence of a consistent definition of time-reversal
symmetry in SU(N) for N > 2. This means that singlet Cooper pairs and superconductivity
can not develop at the large- N limit.

A solution to this problem that grew out of an approach developed by Read and Sachdev [43] for
frustrated magnetism is to use the symplectic group SP(N ), where N must be an even number
[44,45]. This little-known group is a subgroup of SU(N). In fact for N = 2, SU(2) = SP(2)
are identical, but they diverge for higher N. For example, SU(4) has 15 generators, but its
symplectic sub-group SP(4) has only 10. At large N, SP(N) has approximately half the
number of generators of SU(N). The symplectic property of the group allows it to consistently
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treat time-reversal symmetry of spins, and it also allows the formation of two-particle singlets
for any N.

One of the interesting aspects of SP (V) spin operators is their relationship to pair operators.
Consider SP(2) = SU(2): The pair operator is ¥ = fT 1l |» and since this operator is a singlet,
it commutes with the spin operators [¥, S| = [@! S] = 0, which, since ¥ and W' are the
generators of particle-hole transformations, implies that the SU(2) spin operator is particle-
hole symmetric. It is this feature that is preserved by the SP(N) group, all the way out to
N — oo. In fact, we can use this fact to write down SP(N) spins as follows: An SU(N) spin
is given by ng ™) = fh f5- Under a particle-hole transformation f., — Sgn(«) fia. If we take
the particle-hole transform of the SU (V) spin and add it to itself we obtain an SP(N) spin,

Sus = fifs+Sen(aB)f_sfla, (69)

Symplectic Spin operator

where the values of the spin indices are o, § € {£1/2,...,£N/2}. This spin operator com-
mutes with the three isospin variables

m=ny—N/2,  Tr=> fiff. =D fafa (70)

a>0 a>0

With these local symmetries, the spin is continuously invariant under SU (2) particle-hole rota-
tions fo, — ufo+vSgn(a)f’,, where |u2|+|v?| = 1, as one can verify. To define an irreducible
representation of the spin, we also have to impose a constraint on the Hilbert space, which in its
simplest form is 73 = 7% = 0, equivalent to Q = N/2 in the SU(N) approach. In other words,
the s-wave part of the f pairing must vanish identically.

4.2 Superconductivity in the Kondo-Heisenberg model

Let us take a look at the way this works in a nearest neighbor Kondo-Heisenberg model [46],
H=H.+ Hg+ Hy,. (71)

Here H, = Zka €k cLUckU describes the conduction sea, whereas Hy and H,; are the Kondo
and Heisenberg (RKKY) interactions, respectively. These take the form

J J ~
KZ ROPEINE +—WK ((hafia) (Flscia) + aBEL L) fi-n0s0) )

H =53¢ 2 Sopi)Suli) = =57 3 _ Lt fio) + BULIL ) isfi)]| 72)

where we have introduced the notation & = Sgn(a) and have shown how the interactions
are expanded into particle-hole and particle-particle channels. Notice how the interactions are
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Fig. 13:  Phase diagram for the two-dimensional Kondo-Heisenberg model, derived in the
SP(N) large-N approach, adapted from [46], courtesy Rebecca Flint.

equally divided between particle-hole and particle-particle channels. When we carry out the
Hubbard-Stratonovich decoupling in each of these terms, we obtain

) Vi|? + |AK)?
Hie = > [C}a <ijja + O‘Aff;—"‘) " H'C] o <%> "
i
ti' 2 Az ?
Hy — > [tijfiTafja + Aya o+ H'C} A [%] (74)

(4,9)

At each site, we can always rotate the f electrons in particle-hole space to remove the Kondo
pairing component and set Af = 0, but the pairing terms in the Heisenberg component can
not be eliminated. This mean-field theory describes a kind of Kondo-stabilized spin-liquid [46].
The physical picture is as follows: In practice, a spin-liquid is unstable to magnetism, but its
happy coexistence with the Kondo effect brings its energy below that of the antiferromagnet.
The hybridization of the f with the conduction sea converts the spinons of the spin liquid into
charged fermions. The ¢;; terms describe various kind of exotic density waves. The A;; terms
now describe pairing amongst the composite fermions.

To develop a simple theory of the superconducting state, we restrict our attention to uniform,
static saddle points, dropping the #;;. Let us look at the resulting mean-field theory. In two

~ 2 2
<C~‘““) +NSN<|V| 4 ol2Hl ) (75)

dimensions, this becomes

H = Z (élT{a?flio)

k,a>0

EkT3 VTl
VT1 117 7_"—'— AHle

fka JK JH

where

Ao = (e ia), A=A afxa) (76)

are Nambu spinors for the conduction and f-electrons. The vector W of Lagrange multipliers
couples to the isospin of the f electrons: Stationarity of the free energy with respect to this
variable imposes the mean-field constraint (f77f) = 0. The function Ay, = Ay (cosk, —
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cos k) is the f-electron pair wavefunction. Here we have chosen a d-wave form-factor. For
this choice, the local f pair density automatically vanishes and so we need only choose W =
(0,0, A), where A couples to 73 (imposing the constraint ny = N/2). We could have also
tried an extended s-wave pair wavefunction, but in this case, the induced s-wave pair density
becomes finite, and the effect of the w constraint is to suppress the transition temperature. By
seeking stationary points in the free energy with respect to variations in Ay, V/, and \ one can
derive the phase diagram for d-wave pairing, shown in Fig. 13. The mean-field theory shows
that superconductivity develops at the interface between the Fermi liquid and the spin liquid.

S5 Topological Kondo insulators

One of the areas of fascinating development in the last few years is the discovery that Kondo
insulators can develop topological order to form a topological Kondo insulator. Topological
order refers to the idea that a quantum mechanical ground state can develop a non-trivial topol-
ogy. One of the defining features of topological ground states is the development of protected
surface states. The best known example of topological order is the integer quantum Hall effect,
where an integer-filled Landau level develops topological order that is responsible for the ro-
bust quantization of the quantum Hall effect [47—49]. In a remarkable series of discoveries in
2006, [50-57] it became clear that strong spin-orbit coupling can play the role of a synthetic
magnetic field, so that band insulators can also develop a non-trivial topology while preserving
time-reversal symmetry. Such Z, topological band insulators are defined by a single topolog-
ical Zo = %1 index that is positive in conventional insulators, but reverses in topological Zs
insulators. This topological feature manifests itself through the formation of robust conducting
surface states.

In 2007, Liang Fu and Charles Kane showed that if an insulator has both time-reversal and
inversion symmetry [57], this Z; index is uniquely determined by the parities ¢;,, of the Bloch
states at the high-symmetry points [; of the valence band

+1 conventional insulator
z,=[Jo(r) = . 77)
L —1 topological insulator

Fu Kane formula for the Z, index of topological insulators

where §(1;) = [[,, din is the product of the parities of the occupied bands at the high-symmetry
points in the Brillouin zone. This formula allows one to determine whether an insulator state is
topological merely by checking whether the index Z, = —1, without a detailed knowledge of
the ground-state wavefunction.

It used to be thought that Kondo insulators could be regarded as “renormalized silicon.” The
discovery of topological insulators forced a reevaluation of this viewpoint. The large spin-orbit
coupling and the odd parity of the f states led to the proposal, by Dzero, Sun, Galitski, and the
author [58], that Kondo insulators can become topologically ordered. The Fu-Kane formula has
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a special significance for Kondo insulators, which contain odd parity f electrons hybridizing
with even parity d electrons. Each time an f electron crosses through the band gap, exchanging
with a conduction d state, this changes the Z, index, making it highly likely that certain Kondo
insulators are topological. The oldest known Kondo insulator SmBg, discovered almost 50 years
ago, was well known to possess a mysterious low-temperature conductivity plateau [59, 60],
and the idea that this system might be a topological Kondo insulator provided an exciting way
of explaining this old mystery. The recent observation of robust [61, 62] conducting surface
states in the oldest Kondo insulator SmBg supports one of the key elements of this prediction,
prompting a revival of interest in Kondo insulators as a new route for studying the interplay of
strong interactions and topological order.

SmBg is really a mixed-valent system, which takes us a little beyond the scope of this lecture.
One of the other issues with SmBg is that its local crystal field configuration is likely to be a I'g
quartet state [63] rather than a Kramers doublet. Nevertheless, key elements of its putative topo-
logical Kondo insulating state are nicely illustrated by a spin-orbit coupled Kondo-Heisenberg
model, describing the interaction of Kramers doublet f states with a d band. The model is
essentially identical to (Eq. (71))

H Z €k wkocka + JK Z w3a¢jﬁsﬁa + JH Z Saﬁ Sﬁa( ) (78)

2

with an important modification that takes into account the large spin-orbit coupling and the odd
parity of the f states. This forces the local Wannier states ¥, that exchange spin with the local
moment to be odd-parity combinations of nearest-neighbor conduction electrons, given by

Z s oa(Ri — Ry) . (79)
We will consider a simplified model with the form factor

O(R) =

—z'f%g, R €nn (80)
0

otherwise.

This form factor describes the spin-orbit mixing between states with orbital angular momentum
[ differing by one, such as f and d or p and s orbitals. The odd parity of the form-factor
&(R) = —@(—R) derives from the odd-parity f orbitals, while the prefactor —i ensures that
the hybridization is invariant under time reversal. The Fourier transform of this form factor,

P(k) = > g P(R)e™ R is then
P(k) =87 8D

where the vector 5 = (sin ky,sin ko, sin k3) is the periodic equivalent of the unit momentum
vector k. Notice how 5(I;) = 0 vanishes at the high symmetry points.
The resulting mean-field Hamiltonian takes the form

V2 o 3t2
Hrpcr = Zwk k) ¢ + N, K—+E—AQ>} (82)
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Fig. 14: (a) When the d band is above the filled f band, a trivial insulator is formed. (b) When
the d band crosses the f band at the three X -points, the Zy parity changes sign, giving rise to
a topological insulator.

where o] = (¢l _, fl ) and

Mm=<5k'wgﬂ (83)

V&gk €k

while e = 2t¢(cy + ¢y + ¢;) + A (¢, = cos k) is the dispersion of the f state resulting from
a mean-field decoupling of the intersite Heisenberg coupling in the particle-hole channel. For
small k, the hybridization in the Hamiltonian (k) takes the form V& - k, closely resembling
the topologically non-trivial triplet p-wave gap structure of superfluid He-3B. Like He-3B, the
hybridization only develops at low temperatures, making SmBg an adaptive insulator.

Let us for the moment treat h(k) as a rigid band structure. Suppose the f band were initially
completely filled, with a completely empty d band above it (See Fig. 14a). This situation cor-
responds to a conventional band insulator with Z, = +1. Next, let us lower the d conduction
band until the two bands cross at a high symmetry point, causing the gap to close and then to
re-open. We know, from de Haas-van Alphen studies of the iso-electronic material LaBg [64]
(whose band-structure is identical to SmBg but lacks the magnetic f electrons) and from ARPES
studies [65—67] that in SmBg the d band crosses through the Fermi surface at the three X points.
Once the d band is lowered through the f band around the three X points, the odd-parity f states
at the X point move up into the conduction band, to be replaced by even-parity d states. This
changes the sign of Z, — (—1)3 = —1, producing a topological ground state. Moreover, since
there are three crossings, we expect there to be three spin-polarized surface Dirac cones.

We end by noting that at the time of writing, our understanding of the physics SmByg is in
rapid flux on both the experimental and theoretical front. Spin-resolved ARPES [68] mea-
surements have detected the presence of spin textures in the surface Fermi surfaces around the
surface X point, a strong sign of topologically protected surface states. Two recent theoretical
works [69, 70] have shown that the spin textures seen in these experiments are consistent with
a spin-quartet ground state in SmBg. Despite this progress, consensus on the topological nature
of SmBg has not yet been achieved, and competing groups have offered alternate interpretations
of the data, including the possibility of polarity-driven surface metallicity [71] and Rashba-split
surface states, both of a non-topological origin [72]. Another area of experimental controversy
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concerns the possible de Haas-van Alphen oscillations created by surface topological excita-
tions, with one report of the detection of surface de Haas-van Alphen signals [73] and a recent,
very remarkable report of bulk de Haas-van Alphen signals associated with unhybridized, quan-
tum critical d electrons [74].

6 Coexisting magnetism and Kondo effect

In this short lecture, I have given a quick introduction to the paramagnetic phases of heavy-
fermion systems. One of the of major open questions in heavy-fermion and Kondo-lattice
physics concerns the physics of magnetism and the right way to describe the development of
magnetism within these materials. There is growing evidence that magnetism and the Kondo
effect can coexist, sometimes homogeneously and sometimes inhomogeneously. For example,
In the 115 superconductor CeRhlnj there is evidence for a microscopic and homogeneous coex-
istence of local-moment magnetism and heavy-fermion superconductivity under pressure [75].
By contrast, in the geometrically frustrated CePdAl [76,77], two thirds of the Cerium sites spon-
taneously develop magnetism, leaving the other third to undergo a Kondo effect [78]. What is
the right way to describe these coexistent states? One possibility that I have worked on with
Aline Ramires [79, 80] is the use of a supersymmetric representation of the spin

Sas = [1f5+ blbg (84)

where the f[ and b, are fermionic and bosonic creation operators. Such a representation per-
mits in principle, the existence of two-fluid ground states, involving a Gutzwiller projection of
bosonic and fermionic wavefunctions

W) = Pg|¥r)|¥p), (85)

where V) is the fermionic component of the wavefunction describing the Kondo-quenched
local moments, while |¥5) describes the formation of long-range magnetic correlations within
a bosonic RVB wavefunction, and

de 10 (n ng—
Pq = /]:[2_7]‘—767’9J( ptnp—1) (86)
J

is a Gutzwiller projection operator onto the state with one spin per site. We have been trying
to describe such mixed-state wavefunctions in the large-/V limit, seeking saddle-point solutions
where a bosonic and fermionic fluid coexist [80]. One of the ideas that emerges from this kind
of approach is the possibility that the soft modes at a quantum critical point might develop
fermionic character, a kind of emergent supersymmetry [81].
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2.2 Kurt Schonhammer

1 Introduction

The electronic properties of mixed valence lanthanide materials, like Ce compounds, were stud-
ied experimentally over a long period of time. In addition to thermodynamic and transport
measurements various “high energy” spectroscopies like valence photoemission, inverse pho-
toemission, and core level spectroscopies were used to understand the electronic properties of
the f-levels of such systems [1]. It took some time until it was realized that electronic correla-
tions play an essential role for the understanding of the f-spectra. As a first step in the attempt
at theoretical understanding, a single rare-earth atom in a simple metal can be studied using the
single-impurity Anderson model [2]. In this model, discussed in detail in the following, the en-
ergy € of the f-level, the coupling A to the conduction electrons, and the Coulomb repulsion U
between two electrons in the f-level are the essential parameters that determine quantities like
the total f-level occupancy n;. If spin-orbit coupling and crystal-field splitting are neglected
the degeneracy of the f-level is given by Ny = 14.

The f-electron spectral function of the Anderson impurity model was a long-standing issue. If
the coupling A is weak, and the Fermi level balls between ¢, and ¢4 + U, the spectrum has a
peak near € (seen in photoemission) and a peak near ¢+ U (seen in inverse photoemission). It
was further realized that the spectrum has resonance close to e = 0 usually called the Kondo
resonance [3,4]. Except for some special cases [5] it was, however, for a long time hard to
determine even the qualitative properties of the Kondo resonance.

A historically important progress in the treatment of the Anderson impurity model was the
realization in the early eighties that 1//N; can be treated as a small parameter [6,7]. Using
this idea O. Gunnarsson and the author developed a method for calculating zero-temperature
spectral properties (intermediate states method), which becomes exact in the limit Ny — oo
[8—11]. In particular, this method makes it possible to study the Kondo peak quantitatively for
large values of N;. Analytical results in the infinite-U limit obtained to leading order in 1/N;
are presented in the following sections. Higher-order calculations that require numerical work
usually converge quickly for Ny = 14. They were successfully used for a comparison to the
experimental spectra of Ce compounds [9, 10, 12].

Apart from second quantization, the intermediate states method uses only basic quantum me-
chanics. The knowledge of more sophisticated many-body techniques, like Feynman diagrams,
is not necessary to understand it. This is presumably one of the reasons why it is used frequently
by experimental groups for the interpretation of their measured spectra.

At about the same time as the intermediate states method, large /N approaches (for infinite U)
were proposed that allow an extension to finite temperatures [13—16]. Some of the ideas in these
papers can be traced back to earlier work [17,18]. Using different many-body techniques, these
approaches lead to the same set of integral equations in the so-called non-crossing approxima-
tion (NCA). Usual Feynman diagram techniques can be used in the derivation if a slave boson
is introduced [16]. There is a chapter on the slave-boson technique in this book.
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At the time of these developments Wilson’s numerical renormalization group method (NRG) to
calculate ground state properties of the spin-degenerate Anderson impurity model numerically
to arbitrary accuracy was known [19], but the extension to calculate the impurity spectral func-
tion came more than ten years after Wilson’s work [20,21]. There are two chapters on the NRG
in this book. Therefore it is not further discussed here.

Later the NCA was generalized to finite values of U [22-24] and further improved [25, 26]
to correctly obtain the Kondo scale for Ny = 2. Another approach that circumvents many
of the earlier deficiencies in the treatment of the spin-degenerate single-impurity Anderson
model (SIAM) is the local moment approach [27]. It was later extended to include orbital
degeneracy [28].

Exact results for ground-state and thermodynamic properties of the spin-degenerate Anderson
impurity model were presented using the Bethe ansatz [29, 30]. Later, this approach was ex-
tended to models with large orbital degeneracy in the limit U — oo [31]. Unfortunately results
for spectral properties by this method do not (yet) exist.

Additional motivation for simple accurate calculational schemes for the impurity spectral func-
tion came later from the development of the dynamical mean-field theory (DMFT) [32], in
which an extended lattice model of correlated electrons is mapped onto a SIAM with a cou-
pling to a bath whose structure has to be determined self-consistently. Then the coupling of the
impurity to the conduction band can have an arbitrary energy dependence.

In section 2 the Anderson impurity model in its basic form as well as the minimal model for
an impurity with a core level in a metal are introduced. Important new aspects arising when
the orbital degeneracy is taken into account are discussed in section 3. As a first example of
the ideas of the 1/N; expansion presented in the following, the ground state of the impurity
system is discussed. In section 4 the intermediate states method is introduced and applied to
the description of various spectroscopies. The comparison with spectroscopic measurements of
mixed-valence compounds is briefly addressed in section 5.

2 Basic impurity models

2.1 Spin-degenerate single-impurity Anderson model

In order to study a single magnetic impurity in simple metals, P.W. Anderson proposed the
Hamiltonian [2]

+ Undﬂl[u s (1)

Hy = Z EaNds + Z ErNko + Z Vak (¢20¢k0 + H.C.)
k k

o

where 14, is the annihilation operator of the localized impurity |d)-state with energy ¢,, and
the 1 » are the annihilation operators of the delocalized band states |k) with energy e;. The
Ngy = wjlggbda (and d — k) are particle number operators. In the body of his 1961 paper
Anderson used the “physically unrealistic case” with only spin degeneracy and treated the case
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of a doubly degenerate d-orbital in an appendix [2]. As a “physically realistic” case the spin-
degenerate model was later used to describe hydrogen chemisorption on metal surfaces (d — a
for “adsorbate”), where |a) corresponds to the hydrogen 1s-level [33]. The last term of the
Anderson Hamiltonian describes the local Coulomb repulsion U, which acts when the d-level
is doubly occupied. This two-body interaction makes the model highly non-trivial.
Experimentally relevant spectral functions are obtained from the one-particle Green’s functions.
The general definition of the retarded functions [34] is

((A:B)). = i / T(A@), Bl e dt @)

where A(t) = et Ae~'! is the operator A in the Heisenberg picture, ( ) denotes the average
over the grand canonical ensemble, and z is a complex variable with Im 2z > 0 in order to
ensure the convergence of the time integral. For operators A involving products of an odd (even)
number of fermion field operators the anticommutator |, |, (commutator |, ]_) is chosen. The
Heisenberg equation of motion (EOM) for A(¢) and a partial integration yields the EOM

2((4; B)): — ({[A, H]; B)). = ([4, Bl+) - 3)

This EOM is very useful for discussing the exactly solvable limits of the Anderson impurity
model.
The retarded one-particle Green’s functions G;;(z) is obtained by A — 1;, B — w;

Gis(2) = (Wi ])- - @)
At zero temperature the local Green’s function takes the form
Cano(2) = { Eo(N) |ty oty + tts—— 0}, | Ey(N) ) (5)
7 9y H—Ey(N) ™™ "2 — H+ Ey(N) "%

c?a,da(z) + Gja,dg(z) :

The first term is relevant for photoemission and the second one for inverse photoemission. At
finite temperature 7' the spectral functions are obtained as

i) =~ F(&) I Gt (e + i0) and piyfe) =~ (1 = F()) Im (e +i0), (6)

where f(g) = 1/(e”® + 1) is the Fermi function with 3 = 1/kpT and the chemical potential is
chosen as the zero of energy. This leads to

pai(e) = € pg(e) . @)

This relation can be read as “photoemission determines inverse photoemission.” It has been
used in the present context to get information about a Kondo resonance above the chemical
potential by means of photoemission [35]. Unfortunately the relation is of limited practical use.
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For U = 0 the Anderson impurity model describes noninteracting electrons and is exactly
solvable. The generally valid EOMs follow from Eq. (3)

(2 = €4) Guoao (2) = U {(asna—o3 ¥ly))= = Y Vi Groo(2) = 1, )
K

(2 — €k) Grodo(2) = Vi Gaoao(2) = 0.

For U = (0 these equations close and one obtains

_ 1 . Z |Var|?
d0'7d0'(z) — 8d _ F(Z)’ Wi (Z) - z— gk ( )

For finite systems /7(z) has poles on the real axis. In the thermodynamic limit they go over to a
branch cut on the real axis.

Using pas.d0(€) = —Im Gy, 40(¢ + 10) /7 one obtains the impurity spectral function. The only
information about the band states that enters is the coupling function I"(e+i0). It determines the
width and location of the resonance resulting from the coupling. An often-used approximation
for the coupling function is the wide-band limit /'(¢ 4 i0) = F:I" with a constant I". Then
the U = 0 impurity spectral function py, q,(c) has a Lorentzian peak of half-width I” at ;.
The mathematical structure of the results of the noninteracting limit of the Anderson model first
appeared in earlier models by K.O. Friedrichs [36] and T.D. Lee [37].

A long history exists of attempts to solve the Anderson impurity model for finite values of the
Coulomb interaction U. It started with Anderson using the Hartree-Fock (HF) approximation [2]

l]”wﬂw¢—+(]<nm4nw>HF-F”dMnm§HFx—(”wﬁHF<”w)HF>» (10)

which corresponds to a noninteracting model with the bare f-level position given by the re-
placement 4 — /7' = ¢, + U (ny_,)"F. This leads to

1
z2—eq—Ung o) —I'(2)
In the language of the EOMs the HF-approximation corresponds to the factorization of the
retarded function ((Ygsna o3P )2 = (Ng_o){((ar; 1) )).. The discussion of the results of
the HF-approximation simplifies in the particle-hole-symmetric case 4 + U/2 = p = ep = 0

Gligas(2) =

(1)

for a symmetric band around the chemical potential. Then (ng_, )" = 1/2 = (n4_, )
and the R(estriced)HF resonance is at the chemical potential. The shape and position of this
RHF spectral function is independent of the value of U in this particle-hole symmetric case.
At a critical value U/I" = 7 solutions of the HF-equations occur where the occupancies of the
impurity level for spin-up and spin-down differ [2]. These “unrestricted Hartree-Fock™ (UHF)
solutions are an artifact of the approximation as no spontaneous symmetry breaking can occur
when the interaction acts in a zero dimensional system. Therefore the spin variable in the
Green'’s function is suppressed in (most of) the following (e.g. do — d).

In order to properly describe the U-dependence of G4y, a better treatment of the self-energy
X (z) defined in the usual way

1
Gaal(2) = z—¢eq—1'(2) — X(2)

(12)
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is necessary. The first order contribution in U to the self-energy X' is just the HF-term U (n, ).
In the particle-hole symmetric case and the wide-band limit the spectral function takes the form
X =XY-Undg—0))

1 I+ [ImX (e + i0
paale) = = | ( )

: ) : (13)
4 <€ “ReS(e))2 + (I + ImE(e + z0)|>

with Re i’(g) an even function of €. At zero temperature the Fermi liquid property holds:
ImY (e +1i0) ~ &2 for ¢ — 0. This can be seen easily for the self-energy to second order in U
and has been discussed to arbitrary order by Yamada and Yoshida [38]. This implies the exact
result for the particle-hole symmetric case at 7' = 0:

1

paa(0) = pi(0) = - (14)

Important additional insights into the energy dependence of p44(¢) are obtained by considering
the exactly solvable atomic limit, in which V; = 0 for all values of k. Again the EOMs close,
as (z — eq — U){((VaoNg—o;0)))2 = (na_s) holds for vanishing coupling to the conduction
band. Keeping the spin indices one obtains

- 1— <nd70'> <nd70'>

V=0 _ ] 1
Gda,da(z) 2 — ey + o — (5d + U) ( 5)

Here we only discuss the most interesting case when ¢, is below the Fermi energy and ¢4 +
U is above it. Then the total occupancy of the impurity level is approximately one, which
holds exactly in the particle-hole symmetric case. If an electron is removed from the impurity
level the empty impurity state created can decay by the tunneling back in of a spin-up or spin-
down electron, which gives the “atomic peaks” a width twice as large as the width of the RHF-

Lorentzian:
1/2 1/2

T U2 —2(2) 24 U2—2T(7)

A formal way to obtain this result is to calculate a properly defined self-energy matrix to second

Gdd(2> ~ (16)

order in the hybridization V' [39]. For U > I'most of the spectral weight is in the atomic peaks
that are assumed to be well described. At the chemical potential, the spectral weight vanishes
in this large-U limit as ~ I'/U? instead of yielding the exact result 1/(7I"). This implies that a
very narrow peak at the Fermi energy is missing.

Both approximations for the local spectral function in the particle-hole symmetric case pre-
sented so far are unable to properly describe this Kondo resonance at the Fermi energy. An
exact (numerical) calculation was only presented in the eighties with the help of the numerical
renormalization group (NRG) [20]. The exact NRG result in the wide band limit for U/I" = 47
is shown in Fig. 1. The RHF result agrees with the exact NRG result only for ¢ = 0 but oth-
erwise fails badly. The naive perturbation theory around the atomic limit fails badly in the low
energy region. For larger values of U/I" than shown in Fig. 1 the high energy features near
+U/2 agree better with the NRG-result.
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Fig. 1: Result for the impurity spectral function of the spin-symmetric Anderson model in the
particle-hole symmetric case in the wide band limit for U/I" = 4x: exact result from the
numerical renormalization group (NRG) with the Kondo peak at the Fermi energy (full line);
restricted Hartree-Fock approximation (dashed line); perturbation theory around the atomic
limit (dashed-dotted line)

The simple arguments presented in favor of the Kondo resonance in the particle-hole symmetric
case give no information about its width and its precise location if |e4| # |e4 + U|. Before the
NRG results were available, it was therefore useful to obtain partial answers to these questions
in the limit of large additional orbital degeneracy of the impurity level. This is discussed in
detail in the following sections.

There is a long history of attempts to obtain a controlled approximation for G 4; and the corre-
sponding spectral function that cannot presented here in detail. We shortly mention decoupling
schemes of higher order Green’s functions that appear in the EOM of ((¢4,14_; 1/J(Tia>>z or in
the EOMs of higher order [40—44]. The quality of the results for GG 44 is generally hard to judge.
The resulting spectral functions can have frequency regions with negative spectral weight [43].
Special attention to the large N, limit has been given by Czycholl [44]. To leading order in
1/Ny, he obtains at zero temperature a sharp peak at the correct Kondo energy.

Additional information on the attempts to understand the physics of the SIAM can be found in
the book by A. Hewson [45].
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2.2 Impurity models involving core levels

X-ray absorption spectroscopy and X-ray photoemission spectroscopy (XPS) of the core levels
of an impurity are useful tools for obtaining information about the properties of the valence
electrons. In a minimal model, a single nondegenerate core level of the impurity with energy
e. 1s considered, which is filled in the initial state. The creation of the core hole in the photoe-
mission process leads to an additional attractive potential for the valence level of the impurity
which lowers it by an amount Uy.. The corresponding model Hamiltonian reads

Hyot = Ha + eene = Uae(1 = 1e) Y N - (17)

As the ground state of the combined system has the form | Ey(V)), with | Ey(N)) the ground
state of the valence system with the core hole present, the time evolution of the remaining
pure valence system after removing the core electron is described by the modified Anderson
Hamiltonian 4, with the energy ¢, of the impurity level replaced by €; — U,.. The creation of
the core hole acts as a quantum quench for the valence system. The core spectral function is

pec(e) = <E0(N) ‘ 5(2 — 2. — Eo(N) + H,) ’ EO(N)> . (18)

For the case of noninteracting valence electrons, i.e., U = 0 in Eq. (1), this problem falls into the
class of the famous X-ray edge singularity problem [46]. The sharp core-level spectrum without
the presence of the valence electrons is replaced by a continuum with a power law singularity
at the high-energy edge. This is closely related to the Anderson orthogonality catastrophe [47]
which states that the overlap of the ground states of H,4 and H 4 vanishes with a power law
in 1/N when the number of electrons N tends to infinity. The core-level spectrum can show
satellite peaks corresponding to higher-energy eigenstates of H 4 due to physical processes that
occur on a finite time scale [48-50]. This has been addressed in detail, e.g., for core levels of
adsorbates at metal surfaces [50]. For small coupling /" a high energy resonance dominates the
core level spectrum if the adsorbate level, initially well above the chemical potential, is pulled
well below it when the core hole is created. For finite Coulomb interaction U, the problem
cannot be solved exactly, and various approximations were proposed [51,52]. The treatment
within the large-degeneracy limit is discussed in section 4.

3 Anderson impurity model with large orbital degeneracy

Despite the fact that Anderson proposed his model to treat transition-metal impurities in simple
metals, the five-fold orbital degeneracy of d-orbitals was not treated explicitly. The degeneracy
of f-orbitals is given by Ny = 14 if spin degeneracy is included and spin-orbit coupling and
crystal-field splitting is neglected. As mentioned in the introduction, an important progress in
the treatment of the Anderson model was the realization that the treatment of 1/N; as a small
parameter allows new approximation schemes [6,7]. In the SIAM Hamiltonian, Eq. (1), the
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non-degenerate orbital label d is replaced by the orbital quantum number m and Vj4 by Vi,,.
We assume that in the thermodynamic limit

> VinVigw 0( = £k) = V(€)? Gy (19)
k

holds [9, 10]. It is useful to introduce new one-particle states

le, mo) Z Vim 0(e — €x) (20)

and to use the combined degeneracy index ¥ = mo. The orthogonality relation of these states
reads (e, v|e’, V') = 6, 6(e — &').

Despite the fact that it is mathematically more appropriate to write down the many-body Hamil-
tonian for finite systems and take the thermodynamic limit in the end of the calculation, in the
following we formally write it down using creation and annihilation operators of the states de-
fined in Eq. (20). To avoid problems, one can discretize the energies € and replace the Dirac
delta functions d(e — ¢’) by Kronecker deltas J.... This is done anyway in the higher order
numerical treatment of the 1/N; scheme presented in the following sections [9]. Alternatively,
one has to subtract the (infinite) energy of the filled Fermi sea.

Keeping these precautions in mind, the N-fold-degenerate single-impurity Anderson Hamilto-
nian used in the following reads

Ny
H=>" {efwlwy i+ / el de+ / (V(e)¥it,. + H.c.) de} +UY nyn, . (21)
v=1

v<p

The Hamiltonian H, 0, Which contains linear combinations of conduction states that do not couple
to the f-level, is not included. It can be neglected for the properties studied here.
As in the following V (¢) enters in the combinations N;V ()% and V (£)?, it is useful to define

) = +/N;V(e) (22)

and require that f/(s) is independent of the degeneracy Ny. This simplifies the discussion of the
large degeneracy limit Ny — oo.

3.1 Ground-state calculation

The ground-state calculation is performed variationally by classifying the many-electron states
shown in Fig. 2 in orders of 1/N;.

In the state |0), all conduction states below the Fermi energy are filled, and the f-level is empty.
This state couples via H to the states denoted a in Fig. 2. They are of the form

¥.,10) (23)

= m
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Fig. 2: Schematic representation of the many-electron basis states. Solid circles show electrons
and open circles show holes. The hatched part indicates the filled conduction bands and the
horizontal lines the f-level. The arrows show which states couple to each other. A solid line
indicates the strength V and a dashed line the strength 1% / \/_

in which a conduction electron has hopped into the f-level. These states couple to the b states
with two electrons in the f-level

Wib, ., 0) (24)
T 2

and to the c states with a conduction electron-conduction hole pair

le.&') =

|Ee) = (25)

\/— Z 77Z}E'l/ ez/|0
where FE refers to a conduction electron state above the Fermi level (£ > ). Further states in
Fig. 2 can easily be written down [10].

The matrix elements coupling these states are given by

(e|H[0) =V(e), (26)
(e, €'|H|") = /1 — 1/N; (V(E') (e — ")+ V() 8(e — 5”)) , 27)
(Ee|H|"Y = V(E)/\/Nys (e — &) (28)

These examples illustrate the general result that within each row in Fig. 2 there are states that
couple with strength V, while states in different rows at most couple with a strength 1% / \/Ff
This allows one to classify the states in orders of 1/N; according to their contribution to the
ground state. The states in the first, second and third rows are of the orders (1/N;)°, (1/N)!
and (1/N;)?, respectively.
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As an illustration, we calculate the ground state for U = oo to lowest order in 1/N . Itis written

as [53] .

|E)© = A {|0> +/

-B
where the normalization constant A is related to the total occupancy n ¢ of the f-level by A? =
1 — ny. In contrast to the ground-state energy EY), the difference AE, = E(()U) — (0|H|0)
is finite also in the thermodynamic limit. Using the coupling matrix elements Eq. (26) and
(e|(H — (0| H|0))|e") = (e5 —€)d(e — &), the Schrodinger equation leads to

de (o) \s>] | 29)

0
AFEy = / V(e)a(e)de and (AEy —cef+e)ale) =V(e). (30)
-B
Therefore AFEj obeys the implicit equation
0 ‘7(5)2 ~ Ef — AEO
AEy= | ——2——de — V?In—1 31
0 /BAEO—sf+e Y N T AE+ B D

where the energy integration was performed for the case of an energy-independent V. We
discuss the solution for the case of constant V and ¢ ¢ well below the Fermi energy. Defining
the (positive) § = e; — AEy, A = 7V?, and &; = £; + (A/7) In (7 B/A) the equation for §
simplifies in the Kondo-limit —&; >> A to

A i A . x
5= =~ eErmA T = e A (32)
The coefficient _
A1
ae)? = T =0y (33)

grows on the energy scale ¢ as the Fermi energy is approached from below. The total f-
occupancy is determined by [a(e)? de. For the case of an energy-independent V, one obtains
ny = AJ(A + 76) [9]. The energy scale § depends exponentially on 7&;/A, which suggests
that it can be, apart from a factor given by the Boltzmann constant &, interpreted as the Kondo
temperature: Ty, = kgd. This will be further examined in the following sections.

The infinite-U, lowest-order calculation presented above can be extended to the case when the
spin-orbit splitting Ae is taken into account [9]. The single f-level (with N; = 14) is replaced
by two levels (with Ny, = 6 and Ny, = 8forj =5/2 and j = 7/2) ate; and £ + Acy. For the
description of high-resolution experimental spectra of Ce compounds it is important to include
the spin-orbit splitting [54,55].

The (1/Ny)° calculation of the ground state can also be extended to the finite U case. If an
infinite three-body interaction is assumed, one just has to take the b states in Fig. 2 into ac-
count with an additional term with coefficients b(e, ') in Eq. (29). The Schrodinger equation
then leads to an integral equation for a(e) that for U > B is of separable form [11]. For a
detailed discussion of the explicit bandwidth behavior of the energy difference 0(U) between
the nonmagnetic ground state and the lowest magnetic states that are not totally symmetric in
the degeneracy indices, see Ref. [11].

Numerical ground-state calculations of higher order in 1/N using the states shown in Fig. 2
quickly converge for N; = 14 [9, 10].
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4 The intermediate states method for spectra

The theoretical description of photoemission simplifies considerably when the emitted electron
in the state |) is assumed to have no interaction with the remaining (N — 1)-electron system.
This sudden approximation becomes increasingly accurate as the kinetic energy of the emitted
electron is increased. In this approximation the photoelectron current can be calculated using
Fermi’s golden rule. For a weak energy dependence of the matrix elements 7,; of the dipole
operator, where |i) is a valence state, the current is directly related to the spectral function of
one-particle Green’ functions GG;; when interference effects are neglected [56, 10].

In Eq. (5) the zero-temperature local one-particle Green’s functions G< and G~ are expressed
as an expectation value of the resolvent of the many body Hamiltonian /7. One obtains the well
known Lehmann representation by inserting the complete set of (N F 1)-electron eigenstates of
H. For G=< one can alternatively use the resolution of unity made of an arbitrary complete set
{|7)} of (N — 1)-electron basis states

Gy (2) = Y (Eo(N)[fIi)(il(= + H — Eo(N)) 1) (il | Eo(N)) - 34)
ij
The inversion of the matrix H(z);; = (i|(z + H — Eo(N))|j) would lead to the exact result for
G (2)
G5, (2) = S (Bo(N) |6 (H () ™)y (G146 | Eo(V)) (35)
ij
if the procedure could actually be carried out for a complete set of states. Approximations can
be obtained by truncating the set {|i)} of intermediate states. Useful results can be obtained
again using a classification of the states according to their contribution in orders of 1/N. For
the calculation of G~ one can proceed the same way but with (/N + 1)-electron intermediate
states {|i) }.

4.1 Valence photoemission spectroscopy

Again, we first consider the U = oo case and work to lowest order in 1/N;. Then the ground
state is described by Eq. (29). As | Eo)”) = A [de a(€) ¥.,|0)//Ny, we introduce the basis
states |cv) which via H couple to the states |cc’v), where

lev) = .,[0),  |eev) DI, |0) (36)
=T

The matrix [ (z) defined before Eq. (35) has the matrix elements

aafl

(2)eer =(2—AEy—e)d(e—¢), (37)

(Z)ss/,s“ = ‘7(5/) 5(5 - 6//) - V(E)/\/ﬁf&‘g/ - 6//)7 (38)
H(2)eetyey = (2 — AEy + 65— — &) d(e — 1) 6(c — &3) . (39)

)
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In leading order we neglect the term ~ 1/ \/Ff on the right-hand side of the second equation.

This leads to the simplification that for each |ev) one can treat the coupling of this state to a

continuum of states with an additional hole at ¢’ < £ = 0 separately. This greatly simplifies

the leading-order calculation of G,

For the inversion of H (2), itis convenient to use a block matrix form with elements H 11, H 12, Hy,
and H,y, where e.g. Hy; refers to the H(2).. and Hay to H(2).er o,c,. The well known matrix

inversion formula

N . [N |
<H‘1>11 — (1 — ol ) (40)
simplifies the calculation. Since Hyy is diagonal its inversion is trivial and one obtains

(H(z) Neer = §(z — AEy+ €5 —e)d(e =€) | (41)
where 0 ey
1 ~ Ve
§(2) = ——— = with = :
g(2) BT with I'(z) /_B P de (42)

Note that the energy integration in the definition of r (z) only extends to e = 0. The function
g(z) has the form of the f Green’s function of a noninteracting Anderson model with a sharp
band cut-off at ¢ = 0. Finally, performing one of the energy integrations with the help of the
delta function in Eq. (41), one obtains for G]f to leading order in 1/N;

0
G5, (2) = LAz/ a(e)?§(z — AEy +¢e5 — €') de'. (43)
Ny -B

The function Im g(e £ 40) has a continuum part for —B < £ < 0 due to the imaginary part of
F(a +40). As the transcendental equation (31) for AE can be written as AE, = —F((S)
the function §(z) has a pole at 2 = § = ¢; — AE,. The strength of the pole (1 — dI"/dz)~"
evaluated at z = 0 is given by 1 — ny. This pole of g yields for the total f spectral function
p;(e) = = >, Im G, (e +1i0)/7 using Eq. (33) and A* = 1 — n; the expression

N2 ()2
py(e) = u (;i);)/;(g) for —§<e<0. (44)

There is also a (partial) contribution of this type to p5(¢) for —B < ¢ < 4. As A? [a(e)? de =
ny, the total weight of p7 resulting from the pole of §(2) at z = 4 is given by ns(1 —ny). It
becomes very small in the Kondo limit ny ~ 1.

For ¢ < —0 the continuum part of Im g(¢ & i0) also contributes to p?(g), and there can be a
split-off state below the conduction band in §(z).

The low-energy spectral weight described in Eq. (44) rises sharply as € approaches e = 0
from below. It is the tail of the Kondo resonance present at € & ¢ in the spectral function p]? ()
describing inverse photoemission. This is discussed in the next subsection. This low-energy
behavior is totally different from the noninteracting case for Ny = 1. When ¢/ lies below the
Fermi energy, the f-spectral density in the Ny = 1 case has an ionization peak near €; and
the spectral density decreases when e approaches e = 0 from below. In the Kondo limit
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Ef=-1.5
A=075

Fig. 3: Comparison of the leading order result for pJf (¢) (full lines) with the result ofa Ny =1
calculation where A is replaced by A (dotted lines) for two different values of <.

—Egp > A, implying ny ~ 1, a similar ionization peak near €; dominates p]? (¢). In this limit
the energy integration with A%a(e")? in Eq. (43) for —¢ >> ¢ approximately acts like (one-sided)
delta function at the origin and p} (¢) ~ —Im g(e +1i0) /7 holds. The width of this peak is given
by A = N; A, where A = 7 V?(e;) is the half-width of the model for N; = 1. After removing
an f-electron from the ground state given by Eq. (29), the probability that a conduction electron
in channel v with energy € ~ ¢ hops into the f-level is given by A. Since there are /N, such
channels the width is given by N;A = A.

In Fig. 3, we compare results for the leading order result of p]? (¢) with the result of a Ny = 1
calculation where A is replaced by A. For both cases shown ¢ is below the Fermi level. In the
left part of the figure || < A and the ionization peak of the Ny = 1 spectrum only shows as
a shoulder in the leading-order result for p7 (¢). In the right half of the figure |e;| = 2A and
the ionization peak is more asymmetric than the Ny = 1 result. This is similar to Fig. 1 where
in the exact NRG result the atomic peaks are more asymmetric than the result from simple
perturbation theory around the atomic limit.

The leading order calculation of G, () can again be extended to the case of including spin-orbit
splitting [9] and the case of finite U [11].

4.2 Inverse Photoemission

In inverse photoemission, earlier called Bremsstrahlung isochromat spectroscopy (BIS), the
sample is bombarded by electrons that make radiative transitions into lower-lying (N + 1)-
electron states. Here we discuss transitions into the f-level. The theoretical description is in
terms of

1

¢T
VZ—H—I—EQ(N) v

(8

G2ule) = (Bul)

EO(N)> . (45)
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As the integrated weight of the total spectral function p,,, = p5,, + p;, is unity and [p5, () de =
ny /N ¢ holds, with ny < 1 in the infinite U case, the integrated weight of p,, is given by
1 —ng/Ny, ie., it is larger by a factor of Ny than the integrated weight of p5, . This is a clear
hint that a 1/N; approximation for the full G,, is problematic. If it does not fulfill p;, (0) =
p;,,(0), which is expected for an exact description at any finite N, this is an indication of the
requirement to treat G, differently from G7,,.

If in Eq. (45) the ground state to leading order in 1/N; Eq. (29) is used, one has to calculate the
expectation value of the resolvent of the many-body Hamiltonian with

GBSO = A ufl0) + —— 3 [ dzale)ulvlwn, o) o
VNI

In the first state on the right-hand side the f-level is singly occupied (f!), while in the states
in the second term it is doubly occupied (f?). Integrating the corresponding expectation values
of §(c — H + Eo(N)) shows that the total weight of the f! contribution is given by 1 — n;
and the f? weight by ns(1 — 1/N;). For large values of U the two different contribution are
energetically well separated.

In a first attempt, one would take the states on the right-hand side of Eq. (46) as the intermediate
states to calculate G,. If one focuses on the f!-peak in the U — oo limit, only the state
|v) = 47 |0) plays a role, and one obtains

1—ny _1—=ny

z+AE0—5f_z—5 “47)

G, (2) ~

In this approximation p;,, has a delta peak at e; — AE, = §. For £; well above the Fermi
energy e = 0 one has ny < 1, and |AEy| is small compared to €. This leads to a Delta peak
of weight =~ 1 close to €. This is the atomic limit of the trivial empty-level case. Lowering
€ lowers the peak position but it stays above the Fermi energy. For ; well below the Fermi
energy the peak is very close to the Fermi energy as 6/ A is exponentially small in 7& 7/ A (see
Eq. (32)). As 1 — ny < 1, the weight of the peak is very small. In fact, in this approximation
the Kondo peak has zero width.
Obviously when using this leading order description for the calculation of p3,,, the condition
P, (0) = p;,(0) is not fulfilled. In order to achieve this, one has to go one order higher in 1/N;
for the intermediate states inserted in Eq. (45). For £; well above the Fermi level, the state
|v) decays into states |Ev) = 1k, |0) with E ~ e/, which leads to a peak with a half-width
7V ()2 = 7V (ef)?/N;. The states | Ev) couple to the states | Eev) = 3, wgywiﬂbw/m)/\/ﬁf
with a matrix element V (<), i.e., of order (1/N;)°. In the infinite-U case these are the additional
states to be included. The calculation is similar to the leading-order calculation for G7,, pre-
sented in the previous subsection but using the inversion formula (40) twice. It leads to [9, 10]
1—ny
2+ AEy—er — pu(2)

: B V(E)?
with p(z) = =
0 2+ AEy—E+I'(—2— AEy+ E +¢y)

G, (2) =

(48)
dE.
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The additional term I” in the denominator of the integrand of (2) results from including the
states | Fev) with a hole in the conduction band. Neglecting I gives the result for the width of
the peak near € well above the Fermi energy, mentioned above. For ¢; well below the Fermi
energy it is essential to include I". Then the integrand on the right-hand side has apole at z = E
of strength 1 — n leading to —Im p(e + i0) = (1 — ny )7V (¢)?. This leads to

p>(€) _ (1 - nf>2 V(8)2
g (e =0 —Rep(e))* + (1 —nyg)mV(e))?

for 0<e<). (49)

In a strict 1/Ny expansion of pJ?, the contributions from g in the denominator are of order
1/Ny and can be neglected. With this assumption p; (¢) joins smoothly to the low-energy result
p; (€) in Bq. (44). The steep rise found there for — < & < 0 continues for p7 (¢). In the region
€ ~ ¢ the strict 1/Ny expansion fails, and the full expression in Eq. (49) has to be used. This
gives the Kondo peak a half-width (1 — n;)7V (§)? ~ 7nsd/N;. The correct treatment of the
energy range ¢ > ¢ within the approximation given by Eq. (48) requires the inclusion of the
“continuum part” of 1. Unfortunately the approximation Eq. (48) for (5;,, leads to an additional
weak, unphysical pole slightly below € = 0. A different type of anomaly appears in the NCA at
zero temperature [57]. For large Ny, the NCA properly describes how the weight of the Kondo
resonance decreases with increasing 7', where the scale is given by the Kondo temperature.
One can summarize the behavior of the f! peak as a function of ¢ ; as follows: Lowering ¢ ; from
well above the Fermi energy to well below it, its position goes from € very close to e = 0 Its
weight (1 — n;)N; and width (1 — n;)7V (6)%/Ny is reduced as ny goes from ~ 0 to ~ 1.

For a comparison with experiment, it is crucial to take into account that U is finite, since this
leads to a second f2-like peak in the BIS spectrum. Using the leading-order, finite-U ground
state and additional intermediate states with a doubly occupied f level and a hole in the con-
duction band, the resulting matrix has to be inverted numerically [10, 11]. The f? peak has a
broadening of 2A (half-width), as the f? state can decay by the hopping of either of the two f
electrons into the conduction band. It shows a tailing towards higher energies. The reason is
that the intermediate states with two electrons in the f level have a hole in the conduction band.
This hole is likely to be close to the Fermi energy but can also be located further down.

In the spin-degenerate case Ny = 2 a half-filled symmetric band and 2e; + U = 0 lead to
particle-hole symmetry and the Kondo resonance is at ¢ = 0 as shown in Fig. 1. For N; > 2
the Kondo resonance is above the Fermi level for 2, + U = 0 [24]. In order to obtain the
Kondo resonance exactly at ¢ = 0 for Ny = 2 an infinite summation of skeleton diagrams in
the generating functional is necessary leading to the symmetrized finite-U NCA [25].

Let us summarize the behavior of the total spectral function p; = pJf + ,0}? in the Kondo regime
—ef > A for large values of U: The ionization peak near €; has weight ny ~ 1; the weight of
the f! peak (Kondo peak) slightly above 5 is (1 — ny) Ny, and the f? peak near ¢; + U has a
weight nf(Nf —-1) =~ Ny — 1. Therefore, even for ny = 0.9 and Ny = 14, the weight of the
f! peak is higher than that of the ionization peak. Despite the fact that there is a small chance,
1 — ny, to find the f level empty, there are N different ways to place the electron. The weight
of the Kondo peak in the BIS spectrum is a factor /N larger than the part seen in photoemission.
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4.3 Spectra involving core holes

As mentioned in section 2.2, core-level XPS and X-ray absorption spectroscopy provide ad-
ditional information about the valence electrons. The Hamiltonian used to describe core-level
spectra of mixed-valence systems takes the form presented in Eq. (17) with Uy, — Uy, and H 4
replaced by the valence Hamiltonian A of Eq. (21). With the assumptions explained in section
2.2 the core spectral function is given by

pe(e) = ( Eo(N) | 8(c — ec = Eo(N) + H)| Eo(N)) (50

where H is the Hamiltonian of Eq. (21) with & s replaced by €5 = €y — Uy,. In the infinite-U
case to order (1/N;)° the ground state is given by Eq. (29), and the states |0) and |¢) defined in
Eq. (23) are used as intermediate states in the calculation of G.. = G,.. The matrix elements
H(2);; = (i|(z4 H — Ey(N))|i) are easily written down. The 00, O¢, €0 and e<’ matrix elements

1

of the inverse matrix H(z)~" are all needed. The calculation is analogous to obtaining the

Green'’s functions of a noninteracting Anderson model. With Z = z —e. — AE), this yields e.g.,
(H(2) Yoo = (2 = (2 + &))" with I" defined in Eq. (42). After some algebra [9], the result
can be brought into the form

Use
g — Ufc

2
pe(e +ec) = (1 —ny) ( ) prle — AEy + e — Uye) , (5D

where ) )
pr(e) = —=TIm — . (52)
T e+1i0—ep+ Us. — I'(e +10)

The same type of expression is obtained in the exact solution of the Ny = 1 filled band model
[58]. In this leading order in 1/N; approximation, the core spectrum is directly related to the
valence spectrum p;. This clearly shows that core-level spectroscopy gives information about
properties of the valence electrons, like ns, s, and A. The multiplying factor [Uy./(g — Uy,)]?
changes the weights in p; but does not normally introduce new structures.

To test the accuracy of the 1/N; method one can study the limit Ny = 1, where the exact solu-
tion can be obtained by solving the Nozieres-de Dominicis integral equation [46] numerically.
A comparison of the 1/N; result including the states 0, a, ¢, and d in Fig. 2 is shown in Fig. 4.
As mentioned in section 2.2 the exact result has a has an infrared singularity at threshold which
is not present in the 1/N result. To mimic lifetime broadening, the spectra shown were given
a Lorentzian broadening of 27" (full-width half-max). Despite the fact that the 1/N; calcula-
tion includes at most two holes, the asymmetry of the exact solution, which includes an infinite
number of electron-hole pairs, is quite well described except very close to threshold.

X-ray absorption spectroscopy of 3d — 4f transitions has formal similarities with inverse
photoemission, as an electron is added to the f-level. The difference is that the final state has
the core hole present. The theoretical description therefore, as in core-hole XPS, has to use the
Hamiltonian H with e; — £; — Uy, If one works to lowest order in 1/Ny, it is possible to
obtain an analytical solution even if f2 configurations are included [9].
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Fig. 4: The core-level spectrum for Ny = 1,6y = 0, A = 1.5, and Uy, = 9 and a semi-elliptical
form of V(¢)* with B = 3. The spectra are shown with a Lorentzian broadening (FWHM) of
0.15: exact result (full line), using the states 0, a, ¢, and d of Fig. 2 as intermediate states
(dashed line)

S Comparison with experiment

Model calculations for spectra using the impurity model are frequently used for a comparison
with experimental data of lanthanide materials. An example for systems with essentially zero f
occupancy in the ground state are La compounds. In Ce systems f° and f! play the important
role. Even in dense systems spectra calculated by the intermediate states method for the An-
derson impurity model are often in good agreement with experiment [9, 10, 12,59]. Switching
from the number of electrons in the f level to the number of holes, the formalism presented is
easily extended to also describe Yb compounds, as there 13 and f!! play the same role as the
f!and f° configurations in Ce compounds [54]. To study, e.g., Pr or Nd compounds, the model
used here should be generalized.

As the ab-initio determination of parameters of model Hamiltonians is a problematic issue, one
alternatively adjusts them to experimental data. If, e.g., different spectroscopies are used, a part
of the data may suffice to obtain the parameters by fitting to peak positions and their widths.
Then additional data can be used as a consistency check. If this turns out to be satisfying for
a class of materials, the use of the model in conjunction with a first set of data has predictive
power for further measurements. This is what in fact happened with spectra of mixed-valence
systems [1]. As an example let us take core-level spectra. The leading peak in Fig. 4 corresponds
to final states of mainly f* character, while the satellite corresponds to f°-like states. These are
the important final states for La compounds. For Ce compounds it is important to also take f?2
configurations into account. The core spectrum often has three peaks, corresponding to f°, f1
and f? states. The parameters are usually such that the high-energy f? peak (shoulder) has a
small but observable weight that strongly depends on the value of the coupling parameter A [10]
and is therefore suitable for its determination.
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Fig. 5: Comparison of experimental spectra (dots) for CeNiy with theoretical results using the
impurity model. The results for inverse photoemission (BIS), valence photoemission (PES), 3d
X-ray photoemission (XPS), and 3d — 4 f X-ray absorption (XAS) are discussed in the text.

Fig. 5 shows as an example experimental spectra for CeNiy and the attempts to fit them with a
single set of parameters using the Anderson impurity model and the methods discussed in sec-
tion 4. As the energy dependence of V' (¢)? has to be taken into account [12], the average value
A,y of TV (g)?, extracted from 3d — 4 f X-ray absorption spectra, A,, = 0.11 eV is presented.
The total f occupancy is inferred to be ny = 0.83. The two components of the XAS spectrum
in the figure are due to transitions from the spin-orbit-split 3d 3/2 and 3d 5/2 levels. Each com-
ponent shows an f! and f? peak with multiplet structure. The relative weights of the 3d 3/2
and 3d 5/2 components were adjusted to the experiment and a weak background was added as
shown. A Lorentzian broadening (FWHM=2.0 eV) was used to describe life-time broadening
and instrumental resolution. The parameters obtained from the 3d XPS spectrum differ only
slightly from the ones from the XAS data. The f? and f!-Kondo peak of the shown BIS spec-
trum were obtained using these parameters. Using the same parameters, the valence-band PES
spectrum shows the onset of the Kondo peak at energies close to zero. The peak at ¢ ~ —3 eV
is somewhat too low in energy and too narrow (e = —1.6 eV was used ). Introducing different
features in V/(£)? allows one to improve the agreement with experiment [12]. More information
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about the Coulomb parameters used can be found in Ref. [12]. It should be mentioned that for
CeNi, and other Ce compounds the calculation of the static magnetic susceptibility with the
parameters from spectroscopy leads to results in good agreement with the measured values.

As mentioned, there were many theoretical developments in the last thirty years that go beyond
the methods presented in sections 3 and 4. The intermediate states method nevertheless has
remained a valuable tool in the hands of experimentalists.
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3.2 Eva Pavarini

1 Overview

Around the beginning of last century magnetic phenomena in materials were at the center of a
hot scientific debate: What causes ferromagnetic order? At the time, atoms were not fully un-
derstood, and there were perhaps more questions than answers. Weiss proposed the molecular
mean-field theory of ferromagnetism [1], which dominated the scene. Friedrich Hund formu-
lated his now-famous rules [2] to determine the atomic ground-state multiplets, which turned
out to be basically exact. Heisenberg [3] realized that Coulomb exchange leads to ferromag-
netic coupling between local magnetic moments. New puzzles emerged. Can other types of
long-range order occur in Nature? In 1949 the first observation of antiferromagnetic order was
reported, causing a great sensation [4]. Such a state had been predicted by Néel [5] about 20
years before via an extended version of Weiss’ mean-field theory. In the mean-time, however, it
was clear that the theory had a problem. Indeed, antiferromagnetism was an artifact of the static
mean-field approximation. Bethe [6] had found the general solution of the one-dimensional
Heisenberg spin chain, which shows that, in the case of antiferromagnetic coupling between the
spins, the ground state has a total spin zero, and thus it is not the antiferromagnetic state. Sev-
eral years later, Anderson understood [7] that the original SU(2) symmetry of the Hamiltonian
in spin space, broken in the antiferromagnetic state, is recovered once quantum fluctuations
are taken into account; this lead to broken-symmetry theory and ultimately to the postulation
of the famous Anderson-Higgs boson [8,9]. While all this was happening, other effects that
involved local magnetic moments were discovered. A low-temperature minimum in the re-
sistance of some metals puzzled scientists for long, until in 1964 Kondo understood [10] that
it is caused by local spins (magnetic impurities) coupled antiferromagnetically to conduction-
electron spins. The theoretical efforts to understand the Kondo effect, described via the Kondo
model or the more general Anderson model, fueled the development of new powerful non-
perturbative many-body techniques, among which the numerical renormalization group. Exper-
imentally, many f-electron compounds were identified as lattices of Kondo impurities. In 1975,
the discovery of a huge electronic specific heat in CeAls below 0.2 K [11] brought a new cate-
gory of strongly correlated materials to light, the heavy fermions [12]. These are dense Kondo
systems with low-temperature Fermi liquid properties but extremely large quasielectron masses.
To complicate the scenario, in such materials the Kondo effect competes with long-range mag-
netic order, and both phenomena are mediated by the same interaction. Furthermore, several
members of the heavy-fermion family, such as CeCu,Siy, become unconventional supercon-
ductors at low temperature. Later on in 1986, a novel class of unconventional superconductors,
high-temperature superconducting cuprates, was found [13]; these systems are believed to be
doped Mott insulators, described, at least to first approximation, by the two-dimensional single-
band Hubbard model. Around the same time, with the development of the dynamical mean-field
theory (DMFT) [14], it emerged that the Anderson model and the Kondo effect are intimately
connected with the Mott metal-insulator transition [15, 16] and thus with the Hubbard model.
In these lecture notes we will discuss some of the models and methods that made this exciting
piece of the history of modern physics [12, 15-22].
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Magnetism ultimately arises from the intrinsic magnetic moment of electrons, 4 = —gugs,
where ;1 1s the Bohr magneton and g ~ 2.0023 is the electronic g-factor. It is, however,
an inherently quantum mechanical effect, the consequence of the interplay between the Pauli
exclusion principle, the Coulomb electron-electron interaction, and the hopping of electrons.
To understand this let us consider the simplest possible system, an isolated atom or ion. In the
non-relativistic limit electrons in a single ion are typically described by the Hamiltonian

1 Z 1
HER:_§Z:V’2_Z:E+;—M—W!’

where Z is the atomic number and {r;} are the coordinates of the electrons with respect to the
ionic nucleus. Here, as in the rest of this lecture, we use atomic units. If we consider only the
external atomic shell with quantum numbers nl, for example the 3d shell of transition-metal
ions, we can rewrite this Hamiltonian as follows

NR 2 : 2 : 2 : T
H = &nl mcr mU +35 mm/mm/ macm a’cm a’cmo (1)
oo’ mmm'm’

The parameter ¢, is the energy of the electrons in the nl atomic shell and m the degenerate
one-electron states in that shell. For a hydrogen-like atom

1 Z 2
The couplings U, ., are the four-index Coulomb integrals. In a basis of atomic functions

the bare Coulomb integrals are

Uz]z] /d’l"l/d Ty ¢zmo LS ¢jm’0’(r2>d}j m’a’(r2>¢z mo’(rl)

mm/’mm/ ’,,11_,’,,2‘

Y

andU! .. =Ui . where m,m',m,m € nl shell. The eigenstates of Hamiltonian (1)
for fixed number of electrons N are the multiplets [23,24]. Since in H® the Coulomb repulsion
and the central potential are the only interactions, the multiplets can be labeled with S and L,
the quantum numbers of the electronic total spin and total orbital angular momentum operators,
S = > .si,and L = ) .l;. Closed-shell ions have S = L = 0 in their ground state. Ions
with a partially-filled shell are called magnetic ions; the value of S and L for their ground state
can be obtained via Hund’s rules. The first and second Hund’s rules say that the lowest-energy

multiplet is the one with
1. the largest value of .S
2. the largest value of L compatible with the previous rule

The main relativistic effect is the spin-orbit interaction, which has the form H5® = "\, l;-s;.
For not-too-heavy atoms it is a weak perturbation. For electrons in a given shell, we can rewrite
HZ° in a simpler manner using the first and second Hund’s rule. If the shell filling is n < 1/2,
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the ground-state multiplet has spin S = (2l + 1)n = N/2; thus s; = S/N = S§/25. If,
instead, n > 1/2, since the sum of I; vanishes for the electrons with spin parallel to S, only
the electrons with spin antiparallel to S contribute. Their spin is s; = —S/N, = —S§/25
where N,, = 2(2[ + 1)(1 — n) is the number of unpaired electrons. We therefore obtain the LS
Hamiltonian

H5O ~ {2(—)(1 —2n) — 1] Elad] <——UR(7~)> L-S=XL-8, )

N J/

where O is the Heaviside step function and vg () is the effective potential, which includes, e.g.,
the Hartree electron-electron term [25]. For a hydrogen-like atom, vg (1) = —Z/r. Because of
the LS coupling (2) the eigenstates have quantum numbers L, S and J, where J = S + L is the
total angular momentum. Since L - S = [J? — L? — S?] /2, the value of J in the ground-state
multiplet is thus (third Hund’s rule)

|L — S| forfillingn < 1/2
e total angular momentum .J = S forfilling n = 1/2
L+S forfillingn > 1/2

In the presence of spin-orbit interaction a given multiplet is then labeled by 2°*'L;, and its
states can be indicated as |J.J,LS). If we consider, e.g., the case of the Cu?t ion, characterized
by the [Ar] 3d° electronic configuration, Hund’s rules tell us that the 3d ground-state multiplet
has quantum numbers S = 1/2, L = 2 and J = 5/2. A Mn>" ion, which is in the [Ar] 3d*
electronic configuration, has instead a ground-state multiplet with quantum numbers S = 2,
L = 2 and J = 0. The order of the Hund’s rules reflects the hierarchy of the interactions. The
strongest interactions are the potential vg(r), which determines &,,, and the average Coulomb
interaction, the strength of which is measured by the average direct Coulomb integral,

1
Uweg = Ul .
g (21 + 1)2 Z/ mm’mm

For an N-electron state the energy associated with these two interactions is E(N) = e, N +
UavgN(N — 1)/2, the same for all multiplets of a given shell. The first Hund’s rule is instead
due to the average exchange Coulomb integral, J,,, defined as

- _ 1 l 7l
Uavg Javg - 2[(21 T 1) Z (Umm’mm’ Umm/m'm) )

mm/

which is the second-largest Coulomb term; for transition-metal ions J,,, ~ 1 eV. Smaller
Coulomb integrals determine the orbital anisotropy of the Coulomb matrix and the second
Hund’s rule.! The third Hund’s rule comes, as we have seen, from the spin-orbit interaction
which, for not-too-heavy atoms, is significantly weaker than all the rest.

"For more details on Coulomb integrals and their averages see Ref. [25].
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The role of Coulomb electron-electron interaction in determining S and L can be understood
through the simple example of a C atom, electronic configuration [He] 252 2p®. We consider
only the p shell, filled by two electrons. The Coulomb exchange integrals have the form

Jp _ mmmm /drlfd ) wzm(f T 77DZWL o(r2>¢img<r2)wim/0(rl)

e |71 — 7o
¢zmm o Tl)¢zmm U(TQ)
dry [ dr . 3
= [ [ an, ConmteEiCn 3)
If we express the Coulomb potential as
L = 1 47T6‘ k-(r1—2)
|’l"1 — ’l"g| % & k? ’

we can rewrite the Coulomb exchange integrals in a form that shows immediately that they are
always positive

mm Vzk2 ’¢zmma )’ >O

They generate the Coulomb-interaction term

__Z Z m,m/’ ma mac:rng Coic = T3 Z 2J§17m, [S;RS;’L/ —+ }annm’

o m#m’ m;ﬁm

This exchange interaction yields an energy gain if the two electrons occupy two different p
orbitals with parallel spins, hence it favors the state with the largest spin (first Hund’s rule). It
turns out that for the p? configuration there is only one possible multiplet with S = 1, and such
a state has I = 1. There are instead two excited S = 0 multiplets, one with L. = 0 and the other
with L = 2; the latter is the one with lower energy (second Hund’s rule).

To understand the magnetic properties of an isolated ion we have to analyze how its levels are
modified by an external magnetic field h. The effect of a magnetic field is described by

2

Hf—uB(gS+L)-h+%Z(xf+yf)—HeZJrHeL. @)
The linear term is the Zeeman Hamiltonian. If the ground-state multiplet is characterized by
J # 0 the Zeeman interaction splits its 2./ + 1 degenerate levels. The second-order term yields
Larmor diamagnetism, which is usually only important if the ground-state multiplet has J = 0,
as happens for ions with closed external shells. The energy pph is typically very small (for a
field as large as 100 T it is as small as 6 meV); it can however be comparable with or larger
than the spin-orbit interaction if the latter is tiny (very light atoms). Taking all interactions into
account, the total Hamiltonian is

H,~ HY 4 @50 4 git,
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In a crystal the electronic Hamiltonian is complicated by the interaction with other nuclei and
their electrons. The non-relativistic part of the Hamiltonian then takes the form

1
HNR _ _ V2
¢ 2; ! ;M—rz/ Z|rl R, | Z|R RO/
where 7, is the atomic number of the nucleus located at position R,. In a basis of localized
Wannier functions [25] this Hamiltonian can be written as

Hl}i\IR Z Z tm m’ ZmU 1, m'o + Z Z Z Z qu]zjnjmm zmgc;rm o'/C]/m glcllmg7 (5)

it'oc mm/ 43 ]] oo’ mm’ mm/
where .
ti;f:m, = —/d’r Yimo (T) [—§V2 + UR(’I")} Vit (T).
The terms &, ,,y = —tf;f’m, yield the crystal-field matrix and t;’f:m, with ¢ # ¢’ the hopping

integrals. The label m indicates here the orbital quantum number of the Wannier function. In
general, the Hamiltonian (5) will include states stemming from more than a single atomic shell.
For example, in the case of strongly correlated transition-metal oxides, the set {im} includes
transition-metal 3d and oxygen 2p states. The exact solution of the many-body problem de-
scribed by (5) is an impossible challenge. The reason is that the properties of a many-body
system are inherently emergent and hence hard to predict ab-initio in the absence of any un-
derstanding of the mechanism behind them. In this lecture, however, we want to focus on
magnetism. Since the nature of cooperative magnetic phenomena in crystals is currently to a
large extent understood, we can find realistic approximations to (5) and even map it onto simpler
models that still retain the essential ingredients to explain long-range magnetic order.

Let us identify the parameters of the electronic Hamiltonian important for magnetism. The first
is the crystal-field matrix ¢,, ,,,y. The crystal field at a given site ¢ is a non-spherical potential
due to the joint effect of the electric field generated by the surrounding ions and of covalent-
bond formation [24]. The crystal field can split the levels within a given shell and therefore
has a strong impact on magnetic properties. We can identify three ideal regimes. In the strong-
crystal-field limit the crystal-field splitting is so large that it is comparable with the average
Coulomb exchange responsible for the first Hund’s rule. This can happen in 4d or 5d transition-
metal oxides. A consequence of an intermediate crystal field (weaker than the average Coulomb
exchange but larger than Coulomb anisotropy and spin-orbit interaction) is the quenching of the
angular momentum, (L) = 0. In this limit the second and third Hund’s rule are not respected.
This typically happens in 3d transition-metal oxides. In 4f systems the crystal-field splitting
is usually much weaker than the spin-orbit coupling (weak-crystal-field limit) and mainly splits
states within a given multiplet, leaving a reduced magnetic moment. In all three cases, because
of the crystal field, a magnetic ion in a crystal might lose — totally or partially — its spin, its
angular momentum, or its total momentum. Or, sometimes, it is the other way around. This
happens for Mn>* ions, which should have a J = 0 ground state according to the third Hund’s
rule. In the perovskite LaMnQj3, however, they behave as S = 2 ions because of the quenching
of the angular momentum.
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Even if the crystal field does not suppress the magnetic moment of the ion, the electrons might
delocalize to form broad bands, completely losing their original atomic character. This happens,
e.g., if the hopping integrals tfn’i:m, are much larger than the average on-site Coulomb interaction
Uavg. Surprisingly, magnetic instabilities arise even in the absence of localized moments. This
itinerant magnetism is mostly due to band effects, i.e., it is associated with a large one-electron
linear static response-function x(q;0). In this limit correlation effects are typically weak. To
study them we can exploit the power of the standard model of solid-state physics, the density-
functional theory (DFT), taking into account Coulomb interaction effects beyond the local-
density approximation (LDA) at the perturbative level, e.g., in the random-phase approximation
(RPA). With this approach we can understand and describe Stoner instabilities.

In the opposite limit, the local-moments regime, the hopping integrals are small with respect
to Uy, This is the regime of strong electron-electron correlations, where complex many-body
effects, e.g., those leading to the Mott metal-insulator transition, play an important role. At low
enough energy, however, only spins and spin-spin interactions matter. Ultimately, at integer
filling we can integrate out (downfold) charge fluctuations and describe the system via effective
spin Hamiltonians. The latter typically take the form

HS:%Z;FWSi-Si/+---:HSH+.... (6)
The term HZ! given explicitly in (6) is the Heisenberg Hamiltonian, and I” i is the Heisenberg
exchange coupling, which can be antiferromagnetic (I > 0) or ferromagnetic (I"* < 0).
The Hamiltonian (6) can, for a specific system, be quite complicated, and might include long-
range exchange interactions or anisotropic terms. Nevertheless, it represents a huge simplifica-
tion compared to the unsolvable many-body problem described by (5), since, at least within very
good approximation schemes, it can be solved. Spin Hamiltonians of type (6) are the minimal
models that still provide a realistic picture of long-range magnetic order in strongly correlated
insulators. There are various sources of exchange couplings. Electron-electron repulsion itself
yields, via Coulomb exchange, a ferromagnetic Heisenberg interaction, the Coulomb exchange
interaction. The origin of such interaction can be understood via a simple model with a single
orbital, m. The inter-site Coulomb exchange coupling has then the form

J U'L'Lzz /d’l"1/d Ty ¢zm0 1 wz ma(r2)wzma('r2)wz ma('r‘l)

)

and it is therefore positive, as one can show by following the same steps that we used in Eq. (3)
for J¥

m,m/’*

Hence, the corresponding Coulomb interaction yields a ferromagnetic Heisenberg-
like Hamiltonian with

et — 9t <.

A different source of magnetic interactions are the kinetic exchange mechanisms (direct ex-
change, super-exchange, double exchange, Ruderman-Kittel-Kasuya-Yosida interaction ...),
which are mediated by the hopping integrals. Kinetic exchange couplings are typically (with
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a few well understood exceptions) antiferromagnetic [26]. A representative example of kinetic
exchange will be discussed in the next section.

While the itinerant and local-moment regime are very interesting ideal limiting cases, correlated
materials elude rigid classifications. The same system can present features associated with
both regimes, although at different temperatures and/or energy scales. This happens in Kondo
systems, heavy fermions, metallic strongly correlated materials, and doped Mott insulators.

In this lecture we will discuss in representative cases the itinerant and localized-moment regime
and their crossover, as well as the most common mechanisms leading to magnetic cooperative
phenomena. Since our target is to understand strongly correlated materials, we adopt the for-
malism typically used for these systems. A concise introduction to Matsubara Green functions,
correlation functions, susceptibilities, and linear-response theory can be found in the Appendix.

2 The Hubbard model

The simplest model that we can consider is the one-band Hubbard model

H=¢4 Z Z e —t Z Z e+ Uan-Tnu = Hy+ Hr + Hy, (7
i o (#) o 7

/o J/ J/
~~ ~~ N

Hy Hr Hy

where ¢, is the on-site energy, ¢ is the hopping integral between first-nearest neighbors (i7’), and
T

U the on-site Coulomb repulsion; ¢,

at site i, and n;, = c_c, . The Hubbard model is a simplified version of Hamiltonian (5) with

10 10 °

creates an electron in a Wannier state with spin o centered

m=m'=m=m'=1and

U = Ul 111

In the U = 0 limit the Hubbard model describes a system of independent electrons. The
Hamiltonian is then diagonal in the Bloch basis

Hy+ Hr =3 20+ k| i ®)
ko

The energy dispersion €, depends on the geometry and dimensionality d of the lattice. For a
hypercubic lattice of dimension d

d
ep = —2t Z cos(ky,a),
v=1

where a is the lattice constant, and 7, = z,79 = y,r3 = 2. The energy ¢, does not depend on
the spin. In Fig. 1 we show ¢ in the one-, two- and three-dimensional cases.
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Fig. 1: The band structure of the one-band tight-binding model (hypercubic lattice). The
hopping integral is t = 0.4 eV. From left to right: one-, two-, and three-dimensional case. At
half filling (n = 1) the Fermi level is at zero energy.

In the opposite limit (¢ = 0) the Hubbard model describes a collection of isolated atoms. Each
atom has four electronic many-body states

|N,S,S;) N S E(N)

0,0,0) = 10) 0 0 0

11,51 = c[0) 1 1/2 €d )
11,30 = o) 1 1/2 €4

12,0,0) = cl.cf |0) 2 0 2eq+ U

where E(N) is the total energy, IV the total number of electrons and S the total spin. We can
express the atomic Hamiltonian H, + Hys in a form in which the dependence on N;, S;, and S°
is explicitly given

2

Hd+HU:€dzni+UZ|:—(Si)2+%1, (10)

where S = (n;; — n;;)/2 is the z component of the spin operator and n; = »__n;, = Nj.
In the large ¢/U limit and at half filling we can downfold charge fluctuations and map the
Hubbard model into an effective spin model of the form

1 1
Hg = §FZ {Si Sy — ani,] . (11)
(i)
The coupling ' can be calculated by using second-order perturbation theory. For a state in
which two neighbors have opposite spin, |1,/ ) = cITcZT, 110), we obtain the energy gain

1

22
‘E(2) + E(0) — 2E(1) U

i

AEy ~=> (1L [He|I)(I

I

\z><1|HT| fd)~
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Here |I) ranges over the excited states with one of the two neighboring sites doubly occupied

and the other empty, | 1,0) = ZTCZ ¢|0> or |0,1)) = cZT./TcZT/ 110); these states can be occupied

Via virtual hopping processes. For a state in which two neighbors have parallel spins, |1,1) =
ZTc ’T|0> no virtual hopping is possible because of the Pauli principle, and AEy = 0. Thus

1 14¢2
~ (ABy — ABy) = 5+ (12)

The exchange coupling I" = 42 /U is positive, i.e., antiferromagnetic.
Canonical transformations [28] provide a scheme for deriving the effective spin model system-
atically at any perturbation order. Let us consider a unitary transformation of the Hamiltonian

o 1
Hy = ¢SHe ™™ = H + [iS, H] + 5 [iS, [iS, H]} +

We search for a transformation operator that eliminates, at a given order, hopping integrals
between states with a different number of doubly occupied states. To do this, first we split the
kinetic term Hr into a component HY that does not change the number of doubly occupied
states and two terms that either increase it (H;") or decrease it (H7 ) by one

:_tzz CioCilo H%+H7—L_+H7?7

where

:—tZZnZ Ucw Ciry Mt U—tzz [1—7% U]cmcl,a[l—ni/ﬂ},
H:}f——tz:z:nZ chw[ niz_a],

— T
Hy = (H})'.
The term HY. commutes with Hy;. The remaining two terms fulfill the commutation rules
[Hy,Hy] = FUH}.

The operator S can be expressed as a linear combination of powers of the three operators
HY, H;, and H;. The actual combination, which gives the effective spin model at a given
order, can be found via a recursive procedure [28]. At half filling and second order, however,
we can simply guess the form of S that leads to the Hamiltonian (11). By defining

S =~ (Hf - Hy)

we obtain

l( [Hi, Hy) + [HY, Hy) + [H HY) ) + O(U2).

HSZHU+H%+U
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Fig. 2: Left: The crystal structure of HgBa;CuO, showing the two-dimensional CuQOy layers.
Spheres represent atoms of Cu (blue), O (red), Ba (yellow), and Hg (grey). Right: A CuQs layer.
The first-nearest-neighbor hopping integral between neighboring Cu sites t is roughly given by
~ 412,/ Dgy, where tyq is the hopping between Cu d and O p states and Ay, = 4 — €, their
charge-transfer energy.

If we restrict the Hilbert space of Hg to the subspace with one electron per site (half filling),
no hopping is possible without increasing the number of occupied states; hence, only the term
Hy H contributes. After some algebra, we obtain Hg = HS) + O(U~2) with

14

(2)
HY = Z
’ 2U %

lSi - Sy — ;lnzn,/} .

The Hubbard model (7) is rarely realized in Nature in this form. To understand real mate-
rials one typically has to take into account orbital degrees of freedom, long-range hopping
integrals, and sometimes longer-range Coulomb interactions or perhaps even more complex
many-body terms. Nevertheless, there are very interesting systems whose low-energy proper-
ties are, to first approximation, described by (7). These are strongly correlated organic crystals
(one-dimensional case) and high-temperature superconducting cuprates, in short HTSCs (two-
dimensional case). An example of HTSC is HgBa;CuOy4, whose structure is shown in Fig. 2.
It is made of CuO, planes well divided by BaO-Hg-BaO blocks. The z? — y?-like states stem-
ming from the CuO; planes can be described via a one-band Hubbard model. The presence of
a 22 — y?-like band at the Fermi level is a common feature of all HTSCs.
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Fig. 3: Top: Density of states (DOS) per spin, p(€)/2, for a hypercubic lattice in one, two,
and three dimensions. The energy dispersion is calculated for t = 0.4 eV. The curves exhibit
different types of Van-Hove singularities. Bottom: Effect of p(¢r) on the temperature depen-
dence of xrp = XF(T)/xF(0). Up to ~ 1000 K only the logarithmic Van-Hove singularity
(two-dimensional case) yields a sizable effect.

2.1 Weak-correlation limit

2.1.1 The U = 0 case: Pauli paramagnetism

Let us consider first the non-interacting limit of the Hubbard model, Hamiltonian (8). In the
presence of an external magnetic field h = h,Z the energy £ of a Bloch state is modified by
the Zeeman interaction (4) as follows

1
€k —> Eko = €k T+ §UQMth,

where we take the direction of the magnetic field as quantization axis and where on the right-
hand side o = 1 or —1 depending if the spin is parallel or antiparallel to k. Thus, to linear order
in the magnetic field, the 7' = 0 magnetization of the system is

1 1 1
M, = —§(guB)N—k Zk: [kt — ngy] ~ 1 (QMB)2 pler)h.,
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Fig. 4: Band-structure trend in hole-doped cuprates and correlation with T, ..., the maximum
value of the critical temperature for superconductivity. From Ref. [29].

where ng, = <c;wc,w> and NN is the number of k points; p(cr) is the total density of states
(DOS) at the Fermi level €. The 7' = 0 susceptibility is then given by the Pauli formula

1

x"(0) = 1 (gus)’ pler).

In linear-response theory (see Appendix) the magnetization induced along Z by an external
magnetic field /. (q; w)?Z oscillating with vector q is given by

M. (g;w) = X22(q; w)h.(g; w).

The Pauli susceptibility x'(0) is thus the static (w = 0) and uniform (q = 0) linear response
function to an external magnetic field. At finite temperature the Pauli susceptibility takes the
form

) = g ) [ dee) (-2

where n(¢) = 1/(1 + e*=#5) is the Fermi distribution function, 3 = 1/kpT, and y the chem-
ical potential. x¥'(T) depends weakly on the temperature; its temperature dependence is more
pronounced, however, in the presence of Van-Hove singularities close to the Fermi level (Fig. 3).
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2.1.2 The Fermi liquid regime

In some limit the independent-particle picture still holds even when the Coulomb interaction
is finite. Landau’s phenomenological Fermi liquid theory suggests that, at low-enough energy
and temperature, the elementary excitations of a weakly interacting system can be described
by almost independent fermionic quasiparticles, fermions with effective mass m™* and finite
lifetime 79F

Qp _ M
6nk — m*gnkn

7P o (aT? + bw?) ™"

Remarkably, a very large number of materials do exhibit low-energy Fermi liquid behavior,
and the actual violation of the Fermi liquid picture is typically an indication that something
surprising is going on. How are quasiparticles related to actual particles, however? Landau
postulated that the low-lying states of a weakly-correlated system are well-described by the
energy functional

E=E;+ % Eko 0Ny + % % ; Frokio Onko 0Nk,
where Ej is the ground-state energy, dng, = ng, — ny, gives the number of quasiparticles
(or quasi-holes), ng, is the occupation number in the excited state, and nj,_ is the occupation
number of the non-interacting system at 7" = 0. The idea behind this is that dng, is small with
respect to the number of particles and therefore can be used as an expansion parameter. The
low-lying elementary excitations are thus fermions with dispersion

Enk = 5 = €k + E frok'orONksor
Nko ko

so that
E = Eo + Z&S:énkg,
ko
1.e., the energy of quasiparticles is additive. Remarkably, by definition
)
fk:ak:/a’ - 5nko-5nk/o-/ .

Hence, fi,k/o 1s symmetric in all the arguments. If the system has inversion symmetry, fix, ko =
f-ko—k'or; furthermore, if the system has time-reversal symmetry, fxow'or = f-k—o_k/—or- 1L 1S
therefore useful to rewrite it as the sum of a symmetric and an antisymmetric contribution,

frok'or = for + 00" figs, Where

f;k’ - i Z fkak’a’

1
a 2 : /
fkk’ = Z go fkak’a"
oo’
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Only the symmetric term contributes to the energy of the quasiparticles. Let us consider for
simplicity a Fermi gas, the dispersion relation of which has spherical symmetry. Since quasi-
particles are only well defined close to the Fermi level, we can assume that |k| ~ |k'| ~ kg;
therefore, fg,, and fg,, depend essentially only on the angle between k and k', while the de-
pendence on the k vector’s length is weak. Next, let us expand f;,, and fg,, in orthogonal
Legendre polynomials P;(cos Ok ), Where Oy is the angle between k and k. We have

Iil/c(’l = p(ép) Z _Fils/a .PZ(COS Qkk/)7
=0

where F* and F}* are dimensionless parameters. One can then show that the mass renormaliza-
tion is given by

*

m

1 S S

Quasiparticles are less compressible than particles, i.e., if  is the compressibility

*

K m 1
— = <1, 5 > 0.
ko m 14+ F§ 0

They are, however, more spin-polarizable than electrons; correspondingly the system exhibits
an enhanced Pauli susceptibility

*

X m 1
— = > 1 Fy < 0.
X o m 1+ Eg 0

It has to be noticed that, because of the finite lifetime of quasiparticles and/or non-Fermi liquid
phenomena of various nature, the temperature and energy regime in which the Fermi liquid
behavior is observed can be very narrow. This happens, e.g., for heavy-fermion or Kondo
systems; we will come back to this point again in the last part of the lecture.

2.1.3 Stoner instabilities

In the presence of the Coulomb interaction U # 0, finding the solution of the Hubbard model
requires many-body techniques. Nevertheless, in the small-U limit, we can already learn a lot
about magnetism from Hartree-Fock (HF) static mean-field theory. In the simplest version of
the HF approximation we make the following substitution

Hy =UY ngny = HF = U Y [nalng) + (nin)ne, — (niy) (nay)]

This approximation transforms the Coulomb two-particle interaction into an effective single-
particle interaction. Let us search for a ferromagnetic solution and set therefore
n

(Nig) =Ny = B +om,



3.16 Eva Pavarini

r=0.2 r=0.4
Py 2 TN
> 0 , \
9 = /I AN
s |7 N — e
® 2
r X M T X M r
r=0.2 r=0.4
w1l
O1
o
0 \ \.\\. \ \\
-2 0 2 -2 0 2

energy (eV)

Fig. 5: Top: Effect of = t'/t on the band structure of the two-dimensional tight-binding
model. Black line: Fermi level at half filling. Bottom: corresponding density of states per spin.

where m = (ny — n;)/2 and n = ny + ny. It is convenient to rewrite the mean-field Coulomb
energy as in (10), i.e., as a function of m, n and Si

,n2

1 (13)

HfP=U>" [—2m5§ +m? 4

The solution of the problem defined by the Hamiltonian Hy+ H;!* amounts to the self-consistent
solution of a non-interacting electron system with Bloch energies
n
850 :€k+n_UU:5k+§U—0mU.

In a magnetic field we additionally have to consider the Zeeman splitting. Thus

1
Eho = €n + —guph.o.

2
In the small-U limit and for 7" — 0 the magnetization M, = —gugm is then given by
2
M.~ 3 (0) e = 2 U] = x7(0) . + 2oun) UL
9B
Solving for M, we find the Stoner expression
X" (0)

S(0)-0) — .
O = ) v (0)
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Fig. 6: Doubling of the cell due to antiferromagnetic order and the corresponding folding
of the Brillouin zone (BZ) for a two-dimensional hypercubic lattice. The antiferromagnetic
Q- = (7/a,m/a,0) vector is also shown.

Thus with increasing U the g = 0 static susceptibility increases and at the critical value

Ue = 2/p(er)

diverges, i.e., even an infinitesimal magnetic field can produce a finite magnetization. This
means that the ground state becomes unstable against ferromagnetic order.

Let us consider the case of the half-filled d-dimensional hypercubic lattice whose density of
states 1s shown in Fig. 3. In three dimensions the DOS is flat around the Fermi level, e.g.,
pler) ~ 2/W where W is the band width. For a flat DOS ferromagnetic instabilities are likely
only when U ~ W, a rather large value of U, which typically also brings in strong-correlation
effects not described by static mean-field theory. In two dimensions we have a rather different
situation because a logarithmic Van-Hove singularity is exactly at the Fermi level (Fig. 3); a
system with such a density of states is unstable towards ferromagnetism even for very small U.
In real materials distortions or long-range interactions typically push the Van-Hove singularities
away from the Fermi level. In HTSCs the electronic dispersion is modified as follows by the
hopping ¢’ between second-nearest neighbors

e = —2t[cos(k,a) + cos(kya)] + 4t cos(kya) cos(kya) .

As shown in Fig. 4, the parameter  ~ '/t ranges typically from ~ 0.15 to 0.4 [29]. Fig. 5
shows that with increasing r the Van-Hove singularity moves downwards in energy.

It is at this point natural to ask ourselves if ferromagnetism is the only possible instability.
For a given system, magnetic instabilities with ¢ # 0 might be energetically favorable com-
pared to ferromagnetism; an example of a finite-q instability is antiferromagnetism (see Fig. 6).
To investigate finite-q instabilities we generalize the Stoner criterion. Let us consider a mag-
netic excitation characterized by the vector g commensurate with the reciprocal lattice. This
magnetic superstructure defines a new lattice; the associated supercell includes j = 1,..., N;
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Fig. 7: The ratio x0(q;0)/x0(0;0) in the xy plane for a hypercubic lattice with t = 0.4 eV
(T ~ 230 K) at half filling. From left to right: one, two, and three dimensions.

magnetically inequivalent sites. We therefore define the quantities
Silq) =) sy,
J

<S§Z> = mcos(q - R;),

where j runs over the magnetically inequivalent sites {R;} and ¢ over the supercells in the
lattice. In the presence of a magnetic field oscillating with vector g and pointing in the z
direction, h; = h. cos(q - R;)Z, the mean-field Coulomb and Zeeman terms can be written as

2

2 | |
HY" + Hz =) [WTB (hz - gu_BmU> [Si(a) + Si(—q)] +m* + % :

i

where m has to be determined self-consistently. This leads to the generalized Stoner formula

1 Xo(g;0)
S 2
;0) =5 ) (14)
1 Nk+q — Nk
)= —— y Ete Tk
Xo(q;0) Ny zk: Ekrq — €k

Expression (14) is also known as the RPA (acronym for random-phase approximation) suscep-
tibility. For ¢ = 0 in the 7" — 0 limit we recover the ferromagnetic RPA susceptibility with

1

X0(0;0) = 2 (gu5) " x"(0) ~ Sp(er).

Figure 7 shows the non-interacting susceptibility in the zy plane for our d-dimensional hy-
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X X

Fig. 8: The ratio xo(q;0)/x0(0;0) in the xy plane for the two-dimensional hypercubic lattice
witht = 0.4 eV (230 K) at half filling. Left: t' = 0.2t. Right: t' = 0.4¢.

percubic lattice. The figure shows that in the one-dimensional case the susceptibility diverges
at the antiferromagnetic vector Q; = (7/a,0,0); in two dimensions this happens at Q2 =
(m/a,m/a,0); in three dimension at Q3 = (7/a, 7 /a,7/a), not shown in the figure. The en-
ergy dispersion at these vectors exhibits the property of perfect nesting

€k+Q; = ~Ck-

Remarkably, the 7" = 0 non-interacting susceptibility x((Q;; 0) diverges logarithmically at the
nesting vector unless the density of states is zero at the Fermi level (¢ — 0)

EF:() 1

Xo(Q:;0) o i/ dsp(e)g — 00.

—00
Under these conditions an arbitrarily small U can cause a magnetic transition with magnetic
vector (Q;. In the two-dimensional case we have reached a similar conclusion for the T =
0 ferromagnetic (g = 0) instability. The finite-temperature susceptibility xo(q;0), however,
shows that the antiferromagnetic instability is the strongest (Fig. 7). Perfect nesting at Q)5 is
suppressed by t' # 0

Ek+Q, = —Ek + 8t' cos(kya) cos(kya).

Figure 8 shows how the susceptibility is modified by ¢’ # 0 (half filling). The Q) instability is
important even for ¢’ ~ (0.4¢, but instabilities at incommensurate vectors around it are stronger.
As a last remark it is important to notice that the RPA expression (14) depends on the filling
only through the density of states, i.e., magnetic instabilities described by the Stoner formula
can exist at any filling. This is very different from the case of the local-moment regime that we
will discuss starting with the next section.
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Ion n S L J 2L

Vit Tyt 3d' 12 2 32 Dy
Vit 3d% 1 3 2 3F,
Cr3t  v?t 3d® 32 3 312 4F3/2
Mn3t  Cr?t | 3d* 2 2 0 5Dy
Fe3t Mn?t | 3d®> 52 0 52 655/2

Fe?t | 3d° 2 2 4 D,

Co%*t | 3d" 32 3 92 4F9/2

Ni2t | 3¢® 1 3 4 3F,

Cu*t [3d° 112 2 512 2D5/2

Table 1: Quantum numbers of the ground-state multiplet for several transition-metal ions with
partially filled d shells. In transition-metal oxides the angular momentum is typically quenched
because of the crystal field and therefore only the total spin matters.

2.2  Atomic limit

2.2.1 Paramagnetism of isolated ions

As we have seen, the ground-state multiplet of free ions with partially occupied shells can be
determined via Hund’s rules. In Tab. 1 and Tab. 2 we can find the values of the S, L, and
J quantum numbers for the ground-state multiplets of the most common transition-metal and
rare-earth ions. If ¢ = 0 and n = 1, the Hubbard model (7) describes precisely a collection of
idealized free ions with an incomplete shell. For such idealized ions the only possible multiplet
is the one with quantum numbers J = S = 1/2, L = 0. In the presence of a uniform external
magnetic field 4,2 we can then obtain the magnetization per atom as

Tr [e-9rsh=5S: Gi]

MZ - <MZ> — ~9kB Tr [e—gﬂthﬁsi]

= g,[,LBS tanh (g,uthBS) )

and thus
oM, 5 1 9
= S)" —— |1 — tanh h.BS)| .
o, = 9neS)" p (1~ tanh® (guph.p5)]
The static uniform susceptibility is then given by the i1 — 0 limit
1 Cl/g
22(0;0) = (gupS)* — = =, 15
X()(QMB)kBT T (15)

where C' 5 is the S = 1/2 Curie constant. If S = 1/2, the relation S* = S(S + 1)/3 holds.
Thus, for reasons that will become clear shortly, the Curie constant is typically expressed as

o (gpn)*S(S+ 1)
1/2 = .
3kp

If the ions have ground-state total angular momentum .J, we can calculate the susceptibility

with the same technique, provided that we replace g with the Landé factor g,

(JJ.LS|(gS + L) - J|JJ.LS) 3  S(S+1)—L(L+1)
(JJ.LS|J - J|JJ.LS) 2 2J(J +1)

g5 =
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=~
<
[\~
0
£
h
Ne)
<

Ton n S

Ce3+ 411112
Pr3+ 412 1
Nd3+ 413 32
Pm3+ 41+ 2
Sm3*t | 45 512
Eu?t 4f6 3
Gd3+ 47 12
Tb3+ 418 3
Dy3* | 4f9 512
Ho3t 4 flo 2
Er3t 4f1 372
Tm3+ 4 f12 1
Yb3t | 4f18 12

52 2Ry, 67
4 3H, 45
92 gy 811
4 5 3/5
52 SHyy 277
0o R 0
72 887, 2
6 TR 32
152 SHyz; 413
8 Pl 5/4
152 4Ly 6/5
6  3Hy 76
12 2P, 87

W U NN LW O W LN W

Table 2: Quantum numbers of the ground-state multiplet for rare-earth ions with partially filled
f shells and corresponding g; factor. In 4f materials the crystal field is typically small; thus
the ground-state multiplet is to first approximation close to that of the corresponding free ion.

and calculate the thermal average of the magnetization M = —g;upJ, accounting for the
2J + 1 degeneracy of the multiplet. The result is

M, = (M?) = g;upJ By (9su5h.8J),

where B;(z) is the Brillouin function

2 1 2 1 1 1
Bjy(z) = J;J_ coth( JQ}_ 3:) — — coth (—x) :

In the low-temperature (z — o0) limit B;(x) ~ 1, and thus the magnetization approaches its
saturation value in which all atoms are in the ground state

M, ~ g;upJ = M.

In the high-temperature (x — 0) limit

J+1 2J2+2J+1 ,
-
3.J 30.J2 ’

By(z) ~ =z

and thus the susceptibility exhibits the Curie high-temperature behavior

Cy _ m5

zz 07 ~ - 5
Xe2(030) ~ 7 = g

where the generalized Curie constant is

(gsup)?*J(J +1)
3kp

Cy =
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1 — 10 — .
n 5|
EO .Co
<.0 = 0
2 N
> 5 _
-1 - 10 L— -
10 -5 0 5 10 10 -5 0 5 10
Moh,/kgT Mo/KgT

Fig. 9: Left: M,/My = B;(x) as a function of v = h,My/kgT. The different lines correspond
to J = 1/2 (blue), J = 1 (green) and J = 3/2 (red). Right: The ratio M,/Myh., for finite
magnetic field in the small x limit; the slope is (J + 1)/3J.

and where ;1; = gyup+/J(J + 1) is the total magnetic moment. Correspondingly, the suscep-
tibility decreases as 1/7" with increasing 7" (Fig. 9). We have thus the three limiting cases

CJ/T h, — 0

Remarkably, the 7" — 0 and ~, — 0 limit cannot be interchanged. If 7, is finite the suscepti-
bility goes to zero in the 7' — 0 limit; if we instead perform the i, — 0 limit first it diverges
with the Curie form 1/7'. The point h, = T' = 0 is a critical point in the phase space.

Let us return to the S = 1/2 case, i.e., the one relevant for the Hubbard model. It is interesting
to calculate the inter-site spin correlation function S; ;/

Siiv = ((8i = (Si) - (S — (Sir))) = (Si - Sir) — (Si) - (Sw) -

We express (S;-S;/) in the form [S(S+1)—S;(S;4+1) =Sy (Sy+1)] /2, where S; = Sy = 1/2 and
S = S, + Sy is the total spin. Then, since in the absence of a magnetic field (S;) = (Sy) =0,

1/4 S=1

Si,¢/:[5(3+1)_3/2]/2:{ a4 g0

The ideal paramagnetic state is however characterized by uncorrelated sites. Hence

(S)-(Su) ~0  i#d

(S;-S;) =3/4 i=d " (16)

Siir = (Si - Si) ~ {
The (ideal) paramagnetic phase is thus quite different from a spatially disordered state, i.e., a
situation in which each ion has a spin oriented in a given direction but spin orientations are
randomly distributed. In the latter case, in general, <Si . Si'> = 0 for i/ # i, even if, e.g., the
sum of (S? - S') over all sites 4’ with i’ # i is zero

> (Si-8T)~0.

i i
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The high-temperature static susceptibility can be obtained from the correlation function Eq. (16)

using the fluctuation-dissipation theorem and the Kramers-Kronig relations (see Appendix).

The result is

Xe(T) = My _ e
= kT T

7)

vorlq: 0) ~ L912) ZSizz”jeiQ'(RﬁRiH) _

kT
This shows that x..(q; 0) is g-independent and coincides with the local susceptibility x*_(T')

OM,
2z O 0) = li t(T).
Xz(0;0) = TS = X:.(T)

How can the spin susceptibility (17) be obtained directly from Hamiltonian (10), the atomic

limit of the Hubbard model? To calculate it we can use, e.g., the imaginary-time and Matsubara-
frequency formalism (see Appendix). Alternatively at high temperatures we can obtain it from
the correlation function as we have just seen. The energies of the four atomic states are given
by (9) and, at half filling, the chemical potential is i = &4 + U/2. Therefore

—B(H;—pN;) 7
(gpin)? Tr[e H (SZ)]

22(0;0) ~
X::(0;0) kgT Tr [e=AUHi—pNi)]

2
Tr[ B(H;—pN;) Sz} B Ci/o eBU/2
Tr [e=BHi—uNi)] T 14 eBU2T

Thus, the susceptibility depends on the energy scale

If we perform the limit U — oo, we effectively eliminate doubly occupied and empty states.
In this limit, we recover the expression that we found for the spin S = 1/2 model, Eq. (17).
This is a trivial example of downfolding, in which the low-energy and high-energy sector are
decoupled in the Hamiltonian from the start. In the large-U limit the high-energy states are
integrated out leaving the system in a magnetic S = 1/2 state.

2.2.2 Larmor diamagnetism and Van Vleck paramagnetism

For ions with J = 0 the ground-state multiplet, in short |0), is non-degenerate and the lin-
ear correction to the ground-state total energy due to the Zeeman term is zero. Remarkably,
for open-shell ions the magnetization nevertheless remains finite because of higher-order cor-
rections. At second order there are two contributions for the ground state. The first is the
Van-Vleck term

(OI(L- + gS:)|ID)]?
MVV_2 ‘
CEODh ey A

where E is the energy of the excited state |I) and Fj the energy of the ground-state multiplet.
The Van Vleck term is weakly temperature-dependent and typically small. The second term is
the diamagnetic Larmor contribution

1
M = =501 Y (@f +)]0).

The Larmor and Van Vleck terms have opposite signs and typically compete with each other.
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2.3 Strong-correlation limit

2.3.1 From the Hubbard model to the Heisenberg model

In the large-U limit and at half filling we can map the Hubbard model onto an effective Heisen-
berg model. In this section we solve the latter using static mean-field theory. In the mean-field
approximation we replace the Heisenberg Hamiltonian (11) with

1 1
HW:irzj&w&¢+@»5w%&wﬁm—gmw

In the presence of an external magnetic field h we add the Zeeman term and have in total

—guBZ - (h + h[") + const.] ,

h,m = Ny < z”>/9MB>

where n;y is the number of first nearest neighbors and h;" is the molecular field at site .
We define the quantization axis z as the direction of the external magnetic field, h = h,z,
and assume that 2 is also the direction of the molecular field, h” = Ah’Zz. Since I" > 0 and
hypercubic lattices are bipartite, the likely magnetic order is two-sublattice antiferromagnetism.

Thus we set M = —gup(S!), MP = —gup(S’), where A and B are the two sublattices,
it € Aand ¢ € B. In the absence of an external magnetic field, the total magnetization per
formula unit, M, = (MEP + M?)/2, vanishes in the antiferromagnetic state (M? = — M%)

We define therefore as the order parameter o,,, = 2m = (MP — M) /2M,, which is zero only
above the critical temperature for antiferromagnetic order. We then calculate the magnetization
for each sublattice and find the system of coupled equations

{ MMy = By [Mo(h. + Ah)S] (18)
ME[My = Buj [M(h. + A)5]
where
{ AhA = —(MEBMy) S2T'niiny /My
AP = —(M2/Mo) S* Ty /My
For h, = 0 the system (18) can be reduced to the single equation
Om = Bij2|0mS*I'nyin | (19)

This equation always has the trivial solution o, = 0. Figure 10 shows that, for small-enough
temperatures it also has a non-trivial solution o,, # 0. The order parameter o,,, equals £1 at
zero temperature, and its absolute value decreases with increasing temperature. It becomes zero
for T" > Ty with

S(S+1)

kBTN = 3
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T 7 T

T>Ty T=T N

0 0.5 1 1.5 2
X

Fig. 10: The self-consistent solution of Eq. (20) for o,, > 0. The blue line shows the right-
hand side of the equation, the Brillouin function By 5(x), with x = 0,Tx/T. The red lines
show the left-hand side of the equation, 0,,(x) = ax, with « = T/Tx; the three different
curves correspond to representative T /Tx values.

If T' ~ T\, we can find the non-trivial solution by first rewriting (19) as

T
Om = B1/2 {—NUm} .

T (20)

The inverse of this equation yields 7'/T} as a function of o,

T B Om,
Tn  Biylom]
If T' ~ Iy, the parameter o,,, is small. We then expand the right-hand-side in powers of o,
Om Om
Bl_/é(am) om+03/3+ ...

Nl—afn/S—i—....

This leads to the following expression

7\ /2
n=V3[(1-=—) |
; f( TN)

which shows that the order parameter has a discontinuous temperature derivative at 7' = Tx.

It is interesting to derive the expression of the static uniform susceptibility. For this we go back
to the system of equations (18) and calculate from it the total magnetization M,. In the weak
magnetic field limit, M* ~ —o,, My + x.-(0;0)h., and MZ ~ o,, My + x..(0;0)h.. Then, by
performing the first derivative of M, with respect to &, in the h, — 0 limit, we obtain

01/2(1 — 0'72,1)
2z Oa = .
X (050) = 77—
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The uniform susceptibility vanishes at 7" = 0 and reaches the maximum at 7" = Ty, where it
takes the value C /, /2Tx. In the high-temperature regime o,,, = 0 and

XzZ(O; 0) ~

which is smaller than the susceptibility of free S = 1/2 magnetic ions.
The magnetic linear response is quite different if we apply an external field h; perpendicular
to the spins in the antiferromagnetic lattice. The associated perpendicular magnetization is

My~ M, om(gshy)
V(guph)? + (40,) 2 (kpT)*

and therefore the perpendicular susceptibility is temperature-independent for 7' < Ty

. dM;  Cyp
x1(0:0) = hllHBo dh, — 2Tx’

Hence, for T < Ty the susceptibility is anisotropic, x..(0;0) = x;(0;0) # x.(0;0); at
absolute zero x(0; 0) vanishes, but the response to h, remains strong. For 7" > Ty the order
parameter is zero and the susceptibility isotropic, x(0;0) = x 1 (0;0).

We have up to now considered antiferromagnetic order only. What about other magnetic insta-
bilities? Let us consider first ferromagnetic order. For a ferromagnetic spin arrangement, by
repeating the calculation, we find

Cija(1 —02)
T— (=2 )To

Xzz<0; 0) =

where Tx = —S(S + 1)nunI/3kp is, if the exchange coupling I” is negative, the critical
temperature for ferromagnetic order. Then, in contrast to the antiferromagnetic case, the high-
temperature uniform susceptibility is larger than that of free S = 1/2 magnetic ions.

For a generic magnetic structure characterized by a vector g and a supercell with j = 1,...  N;
magnetically inequivalent sites we make the ansatz

(M?") = —0,, My cos(q - R;) = —gupm cos(q - R;),

where 0, is again the order parameter, 7 identifies the supercell, and R; the position of the j-th
inequivalent site. We consider a magnetic field rotating with the same g vector. By using the
static mean-field approach we then find

S(S+1) .

kBTq - 3 q>

I,=-— Z 004 gig (Tit-Ry) 1)
0

where I'°%% is the exchange coupling between the spin at the origin and the spin at site T} + R;

(5 in short); {R;} are vectors inside a supercell and {T;} are lattice vectors. In our example,

To = Tc and Ty, = In = —T¢. Thus we have

Chja(1 = 07)
T—-(1- afn)Tq7

Xz2(q; 0) = (22)
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which diverges at T' = T,,. The susceptibility x..(g; 0) reflects the spatial extent of correlations,
i.e., the correlation length &; the divergence of the susceptibility at Ty, is closely related to the
divergence of £. To see this we calculate £ for a hypercubic three-dimensional lattice, assuming
that the system has only one instability with vector ). First we expand Eq. (21) around Q
obtaining T, ~ Tg + a(q — Q)* + ..., and then we calculate x%?7*, the Fourier transform of
Eq. (22). We find that x%97% decays exponentlally with r = |T; + R;l, i.e., x2%9" o< e7"/¢/r.
The range of the correlations is ¢ o [T /(T — Tg)]*/?, which becomes infinite at T = Tg.
It is important to notice that in principle there can be instabilities at any g vector, i.e., g need
not be commensurate with reciprocal lattice vectors. The value of g for which 77, is the largest
determines (within static mean-field theory) the type of magnetic order that is realized. The
antiferromagnetic structure in Fig. 6 corresponds to gar = Q2 = (7/a,7/a,0).

In real systems the spin S is typically replaced by an effective magnetic moment, ji.g, and
therefore C' jo — Cot = 1124 /3kp. It follows that p is the value of the product 3k5T'x .. (g; 0)
in the high-temperature limit (here 7" > T;). The actual value of .z depends, as we have
discussed in the introduction, on the Coulomb interaction, the spin-orbit coupling and the crystal
field. In addition, the effective moment can be screened by many-body effects, as happens for
Kondo impurities; we will discuss the latter case in the last section.

2.3.2 The Hartree-Fock approximation

We have seen that Hartree-Fock (HF) mean-field theory yields Stoner magnetic instabilities in
the weak-coupling limit. Can it also describe magnetism in the local-moment regime (/U <
1)? Let us focus on the half-filled two-dimensional Hubbard model for a square lattice, and let
us analyze two possible magnetically ordered states, the ferro- and the antiferromagnetic state.
If we are only interested in the ferromagnetic or the paramagnetic solution, the HF approxima-
tion of the Coulomb term in the Hubbard model is given by Eq. (13). Thus the Hamiltonian is
H = Hy + Hr + Hj¥ with H{* = U>".[-2mS% + m? + tn?]. For periodic systems it is
convenient to write H in k space. We then adopt as one-electron basis the Bloch states

Wio (7 ersz o

where ¥, () is a Wannier function with spin o, T; a lattice vector, and N, the number of lattice

sites. The term H}" depends on the spin operator S¢, which can be written in k space as

St e DTS o, g DTS (),

kk/ N kk/

Sz (k, k")

The term H¥ has the same periodicity as the lattice and does not couple states with different
k vectors. Thus only S, (k, k) contributes, and the Hamiltonian can be written as

H = ZzaknngrUZ{ 2m S, k:k:)+m2+nz2},

J

HgF = Uzi[—QmSi +m?2+ %nQ]
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Fig. 11: Ferromagnetism in Hartree-Fock. The chemical potential is taken as the energy zero.

where m = (ny — n;)/2 and n = 1; for simplicity we set ¢, = 0. The HF correction splits the
bands with opposite spin, leading to new one-electron eigenvalues, cx, = € + %U —oUm; the
chemical potential is ¢ = U/2. The separation between e+ — p and e — p is 2mU, as can
be seen in Fig. 11. The system remains metallic for U smaller than the bandwidth 1. In the
small-¢ /U limit and at half filling we can assume that the system is a ferromagnetic insulator
and m = 1/2. The total energy of the ground state is then

1
EFZE;[&“]W— N Z|:€k——U1 —§U

Let us now describe the same periodic lattice via a supercell which allows for a two-sublattice
antiferromagnetic solution; this supercell is shown in Fig. 6. We rewrite the Bloch states of the
original lattice as

Do () = % ) O] W) = e ST

SQ( ’L

Here A and B are the two sublattices with opposite spins and T and T}? are their lattice vec-
tors; o = A, B. We take as one-electron basis the two Bloch functions ¥y, and ¥ q,,, Where
Q- = (7/a,m/a,0) is the vector associated with the antiferromagnetic instability and the cor-
responding folding of the Brillouin zone, also shown in Fig. 6. Then, in the HF approximation,
the Coulomb interaction is given by

2 2
HF _ i 2 1 i 2 1
H! _Z [—Qmsz+m +Z] +Z [+2m5’z+m +Z] .
i€A i€B
This interaction couples Bloch states with k vectors made equivalent by the folding of the
Brillouin zone. Thus the HF Hamiltonian takes the form

H = Zzgknkg+zzgk+Q2nk+Q2U+U2[ 2m S, ( k:k:+Q2)+2m +2421

J/

TV
static mean-field correction H EF
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mU=0 mU=0.5t
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Fig. 12: Antiferromagnetism in Hartree-Fock. The chemical potential is taken as the energy
zero. Blue: €. Red: €iq, = —¢ck. The high-symmetry lines are those of the large BZ in Fig. 6.

The sum over k is restricted to the Brillouin zone of the antiferromagnetic lattice. We find the
two-fold degenerate eigenvalues

1 1

5(er+erray) £ 5\/ (6 — Errq,)? + A(mU)2. (23)

€kt — U=
A gap opens where the bands €, and € ¢, cross, e.g., at the X point of the original Brillouin
zone (Fig. 12). At half filling and for mU = 0 the Fermi level crosses the bands at the X
point too; thus the system is insulator for any finite value of mU. In the small-¢/U limit we can
assume that m = 1/2 and expand the eigenvalues in powers of e, /U. For the occupied states
we find

1 I el 1 4¢* < £k > 2
2t/

The ground-state total energy for the antiferromagnetic supercell is then 2 Eap with

4t 1 €k 42
o= S S (@ -
Al = U U N, ot V-7

so that the energy difference per pair of spins between ferro- and antiferro-magnetic state is

T ™ n <u N 20U 27

which is similar to the result obtained from the Hubbard model in many-body second order per-
turbation theory, Eq. (12). Despite the similarity with the actual solution, one has to remember
that the spectrum of the Hartree-Fock Hamiltonian has very little to do with the spectrum of
the Heisenberg model, the model that describes the actual low-energy behavior of the Hubbard
Hamiltonian. If we restrict ourselves to the antiferromagnetic solution, the first excited state is
at an energy o< U rather than o< [7; thus, we cannot use a single HF calculation to understand the
magnetic excitation spectrum of a given system. It is more meaningful to use HF to compare
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the total energy of different states and determine in this way, within HF, the ground state. Even
in this case, however, one has to keep in mind that HF suffers from spin contamination, i.e.,
singlet states and S, = 0 triplet states mix [26]. The energy difference per bond EF — Efi"
in Eq. (24) only resembles the exact result, as one can grasp by comparing it with the actual
energy difference between triplet and singlet state in the two-site Heisenberg model

AE = Es—1 — Es—o =TI,

which is a factor of two larger. The actual ratio AE/AEMY might depend on the details of
the HF band structures. Thus, overall, Hartree-Fock is not the ideal approach to determine the
onset of magnetic phase transitions. Other shortcomings of the Hartree-Fock approximation are
in the description of the Mott metal-insulator transition. In Hartree-Fock the metal-insulator
transition is intimately related to long-range magnetic order (Slater transition), but in strongly
correlated materials the metal-insulator transition can occur in the paramagnetic phase (Mott
transition). It is associated with a divergence of the self-energy at low frequencies rather than
with the formation of superstructures. This physics, captured by many-body methods such as
the dynamical mean-field theory [15], is completely missed by the Hartree-Fock approximation.

2.3.3 The dynamical mean-field theory approach

The modern approach for solving the Hubbard model is the so-called dynamical mean-field the-
ory method [14—16]. In DMFT the lattice Hubbard model is mapped onto a self-consistent quan-
tum impurity model describing an impurity coupled to a non-correlated conduction-electron
bath. The quantum impurity model is typically the Anderson model, which will be discussed
in detail in the next chapter. Here we do not want to focus on the specific form of the quantum
impurity model but rather on the core aspects of the DMFT approach and on the comparison of
DMFT with Hartree-Fock. In Hartree-Fock the effective mean field is an energy-independent
(static) parameter; in the example discussed in the previous section it is a function of the mag-
netic order parameter m. In DMFT the role of the effective mean-field is played by the bath
Green function Gy (iv,,) where v, is a fermionic Matsubara frequencys; it is frequency dependent
(dynamical) and related to the impurity Green function G (iv,) via the Dyson equation

[G(ivn)] " = [Golivn)] ™' — X(ivn) (25)

where X(iv,,) is the impurity self-energy. As in any mean-field theory, the effective field is
determined by enforcing a self-consistency condition. In DMFT the latter requires that the
impurity Green function G(iv,), calculated by solving the quantum impurity model, equals
G';(ivy,), the lattice Green function at a site 4

Giilivn) = G(ivy,),

with
1 1

1
Gi(ivn) Ny, Zk:G( wn) Ny, — iVn — € — Y(ivy) + p
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Hartree-Fock DMFT
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Fig. 13: Idealized correlated crystal, schematically represented by a half-filled single-band
Hubbard chain. Sketch of the real-part of the self-energy in the insulating phase, as described
by Hartree-Fock (left-hand side) and DMFT (right-hand side). In HF the self-energy is a spin-
and site-dependent potential (Slater insulator). In DMFT it is spin and site independent; it is,

however, dynamical and its real part diverges at zero frequency (Mott insulator). The imaginary
part of the self-energy is always zero in Hartree-Fock (i.e., quasiparticles have infinite lifetimes).

The Green function on the real axis can be obtained from G(iv,) via analytic continuation;
in the non-interacting case, this can be done simply by replacing iv,, with w + i0". The self-
energy in Eq. (25) is frequency dependent but local (i.e., site- or k-independent); the locality
of the self-energy is, of course, an approximation; it becomes an exact property, however, in
the limit of infinite coordination number. DMFT yields the exact result in two opposite limits,
t = 0 (atomic limit) and U = 0 (band limit). The first success of DMFT was the description of
the paramagnetic Mott metal-insulator transition in the half-filled one-band Hubbard model. It
is interesting to examine in more detail the nature of the Mott transition in DMFT and compare
it to the Slater transition described by Hartree-Fock. Let us start with analyzing DMFT results.
The poles of the Green function, i.e., the solutions of

w—ep— Y'(w)=0,

where X' (w) is the real part of the self-energy, yield the excitations of our system. In the Fermi
liquid regime, the Green function has a pole at zero frequency. Around it, the self-energy has,
on the real axis, the following form

1 1 1
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where the positive dimensionless number Z yields the mass enhancement, m*/m ~ 1/Z, and
the positive parameter 7% ~ 1/(aT? + bw?) is the quasiparticles lifetime; at higher frequency
the self-energy yields two additional poles corresponding to the Hubbard bands. In the Mott
insulating regime the central quasiparticle peak disappears, and only the Hubbard bands remain.
The self-energy has approximately the form
2
Y(w) ~ % é —imd(w) —ifu(w)],

where fi;(w) is a positive function that is zero inside the gap and 7 is a model-specific renormal-
ization factor. Hence, the real-part of the self-energy diverges at zero frequency, and there are
no well defined low-energy quasiparticles. Furthermore, since we are assuming that the system
is paramagnetic, the self-energy and the Green function are independent of the spin

Thus DMFT can be seen, to some extent, as a complementary approximation to Hartree-Fock.
If we write the Hartree-Fock correction to the energies in the form of a self-energy, the latter is
a real, static but spin- and site-dependent potential. More specifically, we have at site ¢

ZEW) =0 |a, -],
where n’ is the site occupation for spin o. Let us consider the antiferromagnetic case. For this,
as we have seen, we have to consider two sublattices or a two-site cluster; the magnetization at
sites j, nearest neighbors of site 7, has opposite sign than at site ¢. Thus

YWy =-U lnz_ — 1} .

17 72
This spatial structure of the self-energy is what opens the gap shown in Fig. 12; this picture of
the gap opening is very different from the one emerging from DMFT; as we have just seen, in
DMEFT the gap opens via the divergence at zero frequency in the real-part of the self-energy;
this happens already in a single-site paramagnetic calculation, i.e., we do not have to assume
any long-range magnetic order. In HF the self-energy resulting from a non-magnetic (m = 0)
single-site calculation is instead a mere energy shift — the same for all sites and spins — and does
not change the band structure at all. Hartree-Fock is not, e.g., the large-U limit of DMFT but
merely the large frequency limit of DMFT (or of its cluster extensions). The differences among
the two approaches are pictorially shown in Fig. 13 for an idealized one-dimensional crystal.
Let us now focus on the magnetic properties of the Hubbard model, and in particular on the
magnetic susceptibility x..(q;iw,,). Since in DMFT we solve the quantum impurity model
exactly, we can directly calculate the local linear-response tensor, and therefore the local sus-
ceptibility x..(iw,,). If we are interested in magnetic order, however, we need also, at least
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Fig. 14: Diagrammatic representation of the Bethe-Salpeter equation. In the case of the
magnetic susceptibility, « = o = o andy =~ =o',

in an approximate form, the full g-dependent linear-response function, x..(g; iw,,). How can
we obtain it? It is tempting to think that x..(q;iw,,) can be approximated by the bare DMFT
susceptibility, x,(q;iw,,). In the paramagnetic regime, for the one-band Hubbard model this
is given by (see Appendix)

2
1
0 (q:iwm, :—(gMB) — G,(k;iv,)Gy(k + q;iv, + iw,y,), 26
Wasion) = S 50 3 Gl i) Gtk g .o

where w,, is a bosonic Matsubara frequency and G, (k;iv,,) is the single-particle Green func-
tion for spin 0. Since x°,(q;iw,,) depends only on the single-particle Green function it can
be extracted from DMFT calculations with little additional effort. To approximate the actual
susceptibility with x°_(q; iw,,) would be, however, totally incorrect. Indeed, while x?_(gq; iw,,)
is exact in the non-interacting limit (i.e., it correctly yields the Pauli susceptibility for U = 0), it
is incorrect in the atomic limit (f = 0) and hence in the whole local-moment regime. Let us see
what happens in the atomic limit. By summing Eq. (26) over g, we obtain the local xY_ (iw,,),
proportional to the sum of products of local Green functions,

O (i) = —@ % S G i02) Gl i + ).

If we replace the local Green functions with the corresponding atomic Green functions (see
Appendix) and then perform the Matsubara sums we find the expression

(g1p)* Be?r? [ 1 1 1—e

0 o (9#35)2
Xzz(o) - 4 1 —|—€ﬁU/2

1+ efU/2 +U_ﬁl—|—65U/2] BUsoe U
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Green Function Susceptibility

k-dependent Dyson equation matrix q-dependent Bethe-Salpeter equation matrix

G(k;ivn) = Go(k;ivn) + Go(k; ivn) X(k; ivn)G(K;ivn)  § X(g5iwm) = X0(q; iwm) + Xo(q; iwm) T'(g; iwm ) X(; iwm )

local self-energy approximation local vertex approximation
Y(k;ivy) = X(ivy) I(q;iwm) = I'(iwm)
local Dyson equation local Bethe-Salpeter equation
G(ivn) = Go(ivy) + Go(ivy) X (ivn)G(ivy,) X (wm) = xo0(iwm) + Xo(twm ) I (iwm ) x (twn)

Fig. 15: Analogies between the Green function G(k;iv,) in the local-self-energy approxima-
tion (left) and the response function x(q;iw,,) in the local vertex approximation (right). Each
term in the Bethe-Salpeter equation is a square matrix of dimension L, = N,NgN,,, where Ny,
is the number of k points, N,, the number of fermionic Matsubara frequencies, N, the number
of flavors (here: the spin degrees of freedom). The elements of, e.g., the matrix x(q;iw,,) can
be written as [x(q; iw, )]

! Lt .
okvp,0'k'v,,

where the exact result is

1 o Be’U (9pBS)?

22(0) = — 116802 U knl
X22(0) 4(9,&3) 14 ePU/2 pusoo kT

Since x,(0) is incorrect in the large AU limit, it also does not interpolate properly between the
two regimes, weak and strong coupling. Let us then take a step back. The local susceptibility
X (iwy,) can be obtained, as we have already mentioned, by solving exactly the self-consistent
quantum impurity model, e.g., via quantum Monte Carlo. In a similar way, the g-dependent
response function .. (q;w) could in principle be calculated from the solution of the full lattice
Hubbard model; the problem is that, unfortunately, the exact solution of the Hubbard model
is not available in the general case. If many-body perturbation theory converges, however, we
can calculate y,.(q;w) by solving the Bethe-Salpeter equation — the analogon of the Dyson
equation for the Green function — with x°_(q;iw,,) as bare susceptibility. The Bethe-Salpeter
equation is represented diagrammatically in Fig. 14. By summing up all diagrams in the series
we find

[X(q; iwn)]_l = [XO(q; an)]—l — I'(q;iwn). (27)

Here each term is a square matrix with dimension L, = N,NpN,,, where N, is the number of
flavors (here, the spin degrees of freedom), Vi is the number of k points and N,, the number
of fermionic Matsubara frequencies. The quantity I'(g;iw,) is the vertex function and hides
all diagrams appearing in the many-body perturbation series. Finding the exact I'(g; iw,,) is of
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course as difficult as solving the full many-body problem; we therefore have to find a reasonable
approximation. In the spirit of DMFT, let us assume that the vertex entering the Bethe-Salpeter
equation can be replaced by a local function

I'(g;iwy,) — I(iwy,).

Furthermore, let us assume that the local vertex solves, in turn, a local version of the Bethe-
Salpeter equation

I (iwnm) = [xo(iwm)] ™" = [x(iwm)] " (28)

The local vertex I"(iw,,), calculated via Eq. (28), can then be used to compute the susceptibility
from the g-dependent Bethe-Salpeter equation Eq. (27). The analogy between the calculation
of the susceptibility in the local vertex approximation and that of the Green function in the local
self-energy approximation is shown in Fig. 15.

Let us now qualitatively discuss the magnetic susceptibility of the one-band Hubbard model in
the Mott-insulating limit. For simplicity, let us now assume that the vertex is static and thus
that we can replace all susceptibility matrices in the Bethe-Salpeter equation with the physical
susceptibilities, which we obtain by summing over the fermionic Matsubara frequencies and
the momenta. For the magnetic susceptibility this means

Xzz(q; Zwm) g/J/B o a4 Z Z NQ Z q7 Zwm okvn,o'k'v,,

! Tk Rk
—(gp)? / dr ¢n7 (S,(1)5(0)).

In the high-temperature and large-U limit (3U — oo and T' > T'y) the static local susceptibility
is approximatively given by the static atomic susceptibility

Hog

kT’

where p2¢ = (gpg)*S(S + 1)/3. Therefore the vertex is roughly given by

1 kBT
I0) ~ =
Xzz<0) /’Leff

The susceptibility calculated with such a local vertex is

XzZ(O) ~

2 2
Heg Heg

kBT—ﬂszJ(q) kB(T—Tq),

X-2(q;0) ~

where the coupling is given by
1 1
X%.(g:0)  x%.(0)
Thus, in the strong-correlation limit, the Bethe-Salpeter equation, solved assuming the vertex

J(q) = —

is local and, in addition, static, yields a static high-temperature susceptibility of Curie-Weiss
form. We had found the same form of the susceptibility by solving the Heisenberg model in
the static mean-field approximation. A more detailed presentation of the DMFT approach to
calculate linear-response functions can be found in Ref. [27].
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3 The Anderson model

The Kondo impurity is a representative case of a system that exhibits both local-moment and
Pauli-paramagnetic behavior, although in quite different temperature regimes [12]. The Kondo
effect was first observed in diluted metallic alloys, metallic systems in which isolated d or f
magnetic impurities are present, and it has been a riddle for decades. A Kondo impurity in a
metallic host can be described by the Anderson model

Hy=) Y ewnno+ Y epnpetUnpng +Y [chLchJ +hel,  (29)
o k o ok

Hy Hy

where ¢ is the impurity level (occupied by ns ~ 1 electrons), ¢ is the dispersion of the metallic
band, and V}, the hybridization. If we assume that the system has particle-hole symmetry with
respect to the Fermi level, then ey — 4 = —U/2. The Kondo regime is characterized by the
parameter values € < pand €4 + U > p and by a weak hybridization, i.e., the hybridization
width

Ale) = WNik S ViPo(e, — )

is such that A(p) < | — €], |0 — ey — U|. The Anderson model is also used as the quantum
impurity problem in dynamical mean-field theory. In DMFT the bath parameters € and Vj
have, in principle, to be determined self-consistently. If quantum Monte Carlo is used to solve
the Anderson model, it is sufficient to determine the bath Green function self-consistently.

3.1 The Kondo limit

Through the Schrieffer-Wolff canonical transformation [28] one can map the Anderson model
onto the Kondo model, in which only the effective spin of the impurity enters

Hy = H,+ I'S; - 5.(0) = H, + H, (30)

where

1 1

— — >0
e g +U

I~ =2|V,,.|? {

is the antiferromagnetic coupling arising from the hybridization, S; the spin of the impurity
(Sy = 1/2), and s.(0) is the spin-density of the conduction band at the impurity site. For
convenience we set the Fermi energy to zero; kr is a k vector at the Fermi level. The Schrieffer-
Wolff canonical transformation works as follows. We introduce the operator .S that transforms
the Hamiltonian H into Hg

Hg=eSHe ™.
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We search for an operator S such that the transformed Hamiltonian Hg has no terms of first
order in V. Let us first split the original Hamiltonian / 4 into two pieces: Hy, the sum of all
terms except the hybridization term, and H;, the hybridization term. Let us choose S linear in
V. and such that

S, Ho] = —H,. (31)

From Eq. (31) one finds that the operator S is given by

”fo Nf—o t
S = Vies ¢, —h.c..
Z{ €k —Ef Ek—fff—U} #ho "o

The transformed Hamiltonian is complicated, as can be seen from explicitly writing the series
for a transformation satisfying Eq. (31)

Hg = Hy+ - [S Hi| + ;[S, [S,Hﬂ} ™

In the limit in which the hybridization strength /" is small this series can, however, be truncated
at second order. The resulting Hamiltonian has the form Hg = Hy + H,, with Hy = Hp +
Hg, + AHy 4+ Hg,. The first term is the exchange interaction

1 R N
HF = 4_1 ZFkk/ ch’ol <01|U|02>0k02 ’ Z C}O’g <g3|0|04>cf04]
kK’ 0102 0304
where
1 1 1 1
Fkk/:V,:Vk/[ + + + }
€k — €y €k —Ef U+5f—€k U+€f—€k/

Let us assume that the coupling [ is weakly dependent on k and k'; then by setting |k| ~ kg,
and |kK'| ~ kp we recover the antiferromagnetic contact coupling in Eq. (30).
The second term is a potential-scattering interaction

Hdir = Z |:Ak:k:’ - ilﬂkk’ﬁf} Zé};/gékg?

kk’

where

1 1 1
Agry = =V Vi [ + 1 )
2 Ek —Ef Er —Ef

This term is spin-independent, and thus does not play a relevant role in the Kondo effect. The
next term merely modifies the H term

1 . .
AHy = — Z |:Ak:k: - §Fkk nfo] Nfo-

ko
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Finally, the last term is a pair-hopping interaction, which changes the charge of the f sites by
two electrons and thus can be neglected if ny ~ 1

AHy = —i Z Fkk/c;fc,_acLUchcf_a + h.c..
kk'c
The essential term in H, is the exchange term H, which is the one that yields the antiferro-
magnetic contact interaction in the Kondo Hamiltonian (30). Remarkably, the Schrieffer-Wolff
transformation generates a perturbation series in the hybridization; an analogous perturbation
series is also used in the hybridization-expansion continuous-time quantum Monte Carlo ap-
proach to solve the quantum impurity problem in dynamical mean-field theory.

3.1.1 The impurity susceptibility

The solution of the problem defined by (29) or (30) is not at all trivial and requires many-body
techniques such as the Wilson numerical renormalization group [30] or the Bethe ansatz [31].
Here we only discuss some important exact results concerning the magnetic properties. Let us
define the impurity susceptibility x!_(T) as the total susceptibility minus the contribution of the
metallic band in the absence of the impurity [30-32]. One can show that at high temperatures
xZ.(T) has the following behavior

(g1B)*Sy(Sy + 1) {1 - 1 }

F(TY ~

This expression resembles the Curie susceptibility, apart from the In(7"/Txk) term. The scale Tk
is the Kondo temperature, which, to first approximation, is given by

kT ~ De—Q/p(EF)F’

where 2D = W is the band width of the host conduction band. Because of the In (7'/Tk) term,
the susceptibility apparently diverges at 7' ~ Tk. In reality, however, around Tk there is a
crossover to a new regime. For 7" < Tk

C1/2

2
WTK {1 aT },

XL(T
where WV is a (universal) Wilson number. Thus the low-temperature system has a Fermi liquid
behavior with enhanced density of states, i.e., with heavy masses m*/m; furthermore x/_(0) =
Ch/2/ W1k is the Curie susceptibility (Eq. (15)) with the temperature frozen at T = W1k. At
T = 0 the impurity magnetic moment is screened by the conduction electrons, which form
a singlet state with the spin of the impurity. In other words, the effective magnetic moment
formed by the impurity magnetic moment and its screening cloud,

pen(T) = 3kpTxL.(T) o< (SIST) + (S!s2),

vanishes for 7" < Tk. The Kondo temperature is typically 10-30 K or even smaller, hence the
Fermi liquid behavior is restricted to a very narrow energy and temperature region.
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3.1.2 Poor man’s scaling

We can understand the existence of a Fermi liquid regime by using a simple approach due to
Anderson called poor man’s scaling [33] and an argument due to Nozieres. First we divide the
Hilbert space into a high- and a low-energy sector. We define as high-energy states those with
at least one electron or one hole at the top or bottom of the band; the corresponding constraint
for the high-energy electronic level ¢, is D' < ¢ < D or —D < ¢4 < —D’, where
D' = D — §D. Next we introduce the operator Py, which projects onto the high-energy states,
and the operator P, = 1 — Py, which projects onto states with no electrons or holes in the
high-energy region. Then we downfold the high-energy sector of the Hilbert space. To do this
we rewrite the original Kondo Hamiltonian, H = H{ + H, as the energy-dependent operator
H’, which acts only in the low-energy sector

H = P ,HP, +6H;, = H;, +0H;,

~1
§H, = P,HPy <w _ PHHPH> P HP,.

Here Hj is the original Hamiltonian, however in the space in which the high-energy states
have been eliminated; the term 0H7, is a correction due to the interaction between low and
(downfolded) high-energy states. Up to this point, the operator H' has the same spectrum
of the original Hamiltonian. To make use of this expression, however, we have to introduce
approximations. Thus, let us calculate d H; using many-body perturbation theory. The first
non-zero contribution is of second order in [’

—1
6H{ ~ P HpPy (w— PyHyPy)  PyHrPy.

There are two types of processes that contribute at the second order, an electron and a hole
process, depending on whether the downfolded states have (at least) one electron or one hole in
the high-energy region. Let us consider the electron process. We set

Py~ S o FS)(FSle,  Pur S ol FS)FSley,
ko

qo

where |e| < D’ and |F'S) = [],, ch,|0) is the Fermi sea, i.e., the many-body state correspond-
ing to the metallic conduction band. Thus

1 1 1 oD
5H£2):—§FQZW_E stc(0)+ ~ ZP(EF)F2 65]680(0)‘}‘
q q

We find an analogous contribution from the hole process. The correction 5H£2) modifies the
parameter /' of the Kondo Hamiltonian as follows

I —=TI'=T4+0T,

5r 1 )
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Fig. 16: Sketch of the scaling diagrams for the two-channel Kondo model. I' = —Jy1, and
I'r = —Jg. For I' > 0 (antiferromagnetic) and I'r < 0 (ferromagnetic), the antiferromag-
netic coupling scales to strong coupling and ferromagnetic one to weak coupling (right bottom
quadrant). From Ref. [34].

where § In D = § D/ D. Equation (32) has two fixed points, I" = 0 (weak coupling) and I’ — oo
(strong coupling). By solving the scaling equations we find

B r

14 lpep) I 2

!/

If I" is antiferromagnetic the renormalized coupling constant I diverges for D' = De~2/T'r(er),
an energy proportional to the Kondo energy kT . This divergence (scaling to strong coupling)
indicates that at low energy the interaction between the spins dominates, and therefore the sys-
tem forms a singlet in which the impurity magnetic moment is screened. The existence of this
strong coupling fixed point is confirmed by the numerical renormalization group of Wilson [30].
Nozieres [35] has used this conclusion to show that the low-temperature behavior of the sys-
tem must be of Fermi liquid type. His argument is the following. For infinite coupling I the
impurity traps a conduction electron to form a singlet state. For a finite but still very large 7,
any attempt at breaking the singlet will cost a very large energy. Virtual excitations (into the
ny = 0 or ny = 2 states and finally the ny = 1 triplet state) are however possible and they
yield an effective indirect interaction between the remaining conduction electrons surround-
ing the impurity. This is similar to the phonon-mediated attractive interaction in metals. The
indirect electron-electron coupling is weak and can be calculated in perturbation theory (1/1°
expansion). Nozieres has shown that, to first approximation, the effective interaction is between
electrons of opposite spins lying next to the impurity. It is of order D*/I™® and repulsive, hence
it gives rise to a Fermi liquid behavior with enhanced susceptibility [35].
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Ift I' = I'r < 0 (ferromagnetic coupling, as for example the coupling arising from direct
Coulomb exchange) the renormalized coupling constant I goes to zero in the D’ — 0 limit
(scaling to weak coupling). This means that the local spin becomes asymptotically free and
yields a Curie-type susceptibility, which diverges for 7' — 0. For small but finite coupling we
can account for the ferromagnetic interaction perturbatively (expansion in orders of I'r). In
f-electron materials often both ferro and antiferromagnetic exchange couplings are present, the
first, [, arising from the Coulomb exchange, the second, I', from the hybridization. There
are therefore two possibilities. If both exchange interactions couple the impurity with the same
conduction channel, only the total coupling 'z + I" matters. Thus a |I'z| > I" suppresses the
Kondo effect. If, however, ferromagnetic and antiferromagnetic exchange interaction couple
the impurity to different conduction channels, a |[I'=| > I" does not suppress the Kondo effect
(Fig. 16) but merely reduces Tx. In the infinite |I'+| limit the model describes an undercompen-
sated Kondo effect [34].

3.2 The RKLKY interaction

The Kondo Hamiltonian (30) describes a magnetic coupling between a local impurity and a bath
of conduction electrons. Thus, in the presence of several Kondo impurities coupled to the same
conduction electron bath, an indirect magnetic coupling between the local moments arises. Let
us start for simplicity from two Kondo impurities described by the Hamiltonian

Hyg =Y epnie + »_ I'S} - 5.(0). (33)
ko

i=1,2

Let us calculate the effective magnetic coupling between the impurities by integrating out the
degrees of freedom of the conduction electrons; this can be done again via perturbation theory
or via a canonical transformation. At second order in ', the original Hamiltonian becomes

Hyxky = hao(Ri2) S} - S7 (34)

where R;» = R; — R, and

cosq - Ry

1 1
Io(Ryp) ~ — I — — Olep — k)0 — .
12(Ri2) N Zk: N Xq: (er — €k)O(Chiq — €F) S—

For a free-electron gas one finds

[12<R12> ~ -

FQC]% [sin 2qrRy2 — 2qr Ry2 cos 2qp Ryo
(2QFR12)4 ’

3

where Rjy = |Rys|. The coupling I15(R;») decays as ~ 1/R3, with the distance between
the two impurities. It oscillates with a behavior similar to Friedel oscillations; the sign of
the interaction at a certain distance between the impurities depend on the band filling, and
it is negative (ferromagnetic) for g — 0. The exchange Hamiltonian Hgikky is known as
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and competes with the Kondo effect.
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We can understand this competition using the following — well known but naive — argument.
For simplicity, we assume /15 > 0 (antiferromagnetic) as it is often the case. The energy
gain obtained forming a singlet (antiferromagnetic state) is Eg o< —I;5 o< —I'?; the Kondo
energy gain is instead Ex o< —kgTx ~ —De2/PEr)I If the coupling constant I is small
|Eg| is larger than |Ek|. In this case, the antiferromagnetic order is favored over the Kondo
effect, which would lead to the screening of local moments. In the opposite limit, i.e., when
I' is large, the Kondo effect dominates, and the local moments are screened — thus the system
does not exhibit any long-range order. Although reality is more complex — the two effects
occur together — this simple argument gives a picture of the mechanisms at play in a lattice
of Kondo impurities. It is important to understand that the RKKY interaction is an indirect
coupling arising from the interaction of a correlated impurity with a conduction-electron bath;
the coupling I, is proportional to I'?, and the coupling I itself was obtained by integrating
out high-energy doubly occupied states on the impurity, in a similar way as we have seen for
kinetic exchange. In the U = 0 limit the coupling I’ diverges and the full construction breaks
down. Finally, in a system in which non-perturbative effects — such as the Kondo effect — play a
key role, the second order Hamiltonian Hrkky 1S in general not even sufficient to describe the
actual nature of the magnetic phenomena; to obtain Hrkky we have actually integrated out the
very interaction leading to the Kondo effect, and this is clearly incorrect in the general case.

4 Conclusion

In this lecture we introduced some of the fundamental aspects of magnetism in correlated sys-
tems. We have seen two distinct regimes, the itinerant and the local-moment regime. In the
first regime we can, in most cases, treat correlation effects in perturbation theory. In the world
of real materials this is the limit in which density-functional theory (DFT), in the local-density
approximation or its simple extensions, works best. If the system is weakly correlated we can
calculate the linear-response function in the random-phase approximation and understand mag-
netism within this approach fairly well.

The opposite regime is the strong-correlation limit, in which many-body effects play a key role.
In this limit perturbation theory fails and we have in principle to work with many-body meth-
ods. If, however, we are interested only in magnetic phenomena, at integer filling a strong
simplification comes from mapping the original many-body Hamiltonian into an effective spin
model. The exact solution of effective spin models requires in general numerical methods such
as the Monte Carlo or quantum Monte Carlo approach, or, when the system is small enough,
exact diagonalization or Lanczos. To work with material-specific spin models we need to cal-
culate the magnetic exchange parameters. Typically this is done starting from total-energy DFT
calculations for different spin configurations, e.g., in the LDA+U approximation. The LDA+U
approach is based on the Hartree-Fock approximation, and therefore when we extract the pa-
rameters from LDA+U calculations we have to keep in mind the shortcomings of the method.
Furthermore if we want to extract the magnetic couplings from total energy calculations we
have to make a guess on the form of the spin model. More flexible approaches, which allow
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us to account for actual correlation effects, are based on Green functions and the local-force
theorem [36], or on canonical transformations [28, 37].

In strongly correlated materials localized- and itinerant-moment physics can often be observed
in the same system, although in different energy or temperature regimes. This is apparent in the
case of the Kondo effect. For a Kondo impurity, the susceptibility exhibits a Curie behavior at
high temperature and a Fermi liquid behavior at low temperature. In correlated transition-metal
oxides Fermi liquid and local-spin magnetism can both play an important role but at different
energy scales. Furthermore, in the absence of a large charge gap, downfolding to spin mod-
els is not really justified. The modern method to bridge between the localized and itinerant
regimes and deal with the actual complications of real systems is the dynamical mean-field the-
ory (DMFT) [14-16]. Within this technique we directly solve generalized Hubbard-like models,
albeit in the local self-energy approximation. DMFT is the first flexible approach that allows us
to understand the paramagnetic Mott metal-insulator transition and thus also magnetism in cor-
related materials in a realistic setting. Modern DMFT codes are slowly but steadily becoming
as complex and flexible as DFT codes, allowing us to deal with the full complexity of strongly
correlated materials. While this is a huge step forward, we have to remember that state-of-
the-art many-body techniques have been developed by solving simple models within certain
approximations. We have to know these very well if we want to understand real materials and
further advance the field. In DMFT we self-consistently solve an effective quantum impurity
model, a generalization of the Anderson model. Thus a lot can be learnt from the solution of
the Anderson model in the context of the Kondo problem. Much can be understood alone with
simple arguments, as Anderson or Nozieres have shown us, reaching important conclusions on
the Kondo problem with paper and pencil.
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Appendices

A  Formalism

The formulas in this Appendix are in atomic units: The numerical value of e, m, and A is 1, that
of pup is either 1/2 (ST units) or a/2 (cgs-Gauss units), where « is the fine-structure constant;
the energies are in Hartree.

A.1 Matsubara Green functions

A.1.1 Imaginary-time and frequency Green functions

The imaginary-time Matsubara Green function is defined as

Guar (1) = ~(Tea(m)elu(m)) = =5 Tr [P0 T, (m)cl ()]

where T is the time-ordering operator, T = (71, 73), Z = Tre #(H=1N) is the partition function,
and the imaginary-time operators o(7) = ¢(7), ¢! (7) are defined as

o(T) = eTH=1N) g o=T(H=pN)

The indices « and o are the flavors; they can be site and spin indices in the atomic limit and k
and spin indices in the non-interacting-electrons limit. Writing the action of the time-ordering
operator explicitly, we obtain

Gow (1) = —=O(11 = 72) (o (1)cly (12)) + Oz — T1) (e}, (T2) o (1))

Using the invariance of the trace of the product of operators under cyclic permutations, one can
show that the following properties hold

Gaa’ (T) = Gaa’ (7—1 - 7_2)7
Gaa’(T) = —Gaa/(’r —+ B) for — 6 <7 <0.

The Fourier transform on the Matsubara axis is
1 [P . B .
Goo (1) = = / dre"" G (T) = / dre"" " G oo (T),
2/ 5 0
with v, = (2n + 1)7/f. The inverse Fourier transform is given by

“+o00

Gaw (T) = 3 Z e TG e ().

n=—oo

The convergence of G,/ (7) is only guaranteed in the interval —3 < 7 < (3. Finally, if n,, is
the number of electrons for flavor «, one can show that

Goa(T = 07) = =14+ n4, Gou(t = B7) = —n4q. (35)
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Fig. 17: The function Gy, (T) defined in Eq. (37) for a state well below the Fermi level (red)
and at the Fermi level (blue) for 3 = 2 (eV)™'. The green line shows the atomic G(1) from

Eq. (39) for U = 6 eV and magnetic field h = 0.

A.1.2 Non-interacting limit

For a non-interacting system described by the Hamiltonian
Hy =Y epngg
ko

we can show that the imaginary time Green function G, (7) is given by

G (7) = = (T |, (), (0)] )
__ [@m (1 = no(er)) — O(=7)ng () [T,

where n, (¢ ) is the occupation number

B 1
no(ek) = T s
The Fourier transform of the Green function Gy, (7) at the Matsubara frequencies is

1

iy — (e — 1)

gka (ZVn> =
To obtain the analytic continuation of this Green function on the real axis we substitute

v, — w4107,

(36)

(37)
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A.1.3 Matsubara sums

The non-interacting Green function G, (2) has a pole at z, = &5 — p; the Fermi function n,,(2)

has poles for z = iv,, instead. Let us consider the integral
1
271

% Fro(2)ne(2)e*Tdz = 0,
c

where 0 < 7 < [ and where the function F},(z) is analytic everywhere except at some poles
{zp}. The contour C is a circle in the full complex plane centered at the origin and including
the poles of the Fermi function (Matsubara frequencies) and the poles of Fg,(z). The integral
is zero because the integrand vanishes exponentially for |z| — oco. Furthermore

Res [n,(iv,)] = —l.

B

Using Cauchy’s integral theorem we then have

% Z €T Fro(ivy) = Z Res [Fro(2p)] 1o (2,)e".

Zp

We can use this expression and (35) to show that
1 0 . _
B Z e—wno gka(zyn) = gka(o ) = na(gk)a
1 - .
52 G li11) = G (0%) = ) — 1.

In a similar way we can show that

1 , . . dng(e

520 Gl i) = T = o1+ o)
1 ivp 0T . . . . Nikt+q — Nk
B ; (& gkU<ZVn)gk+qa (’an + Zwm) = i, + Ehiq — 5](.:,

where in the last relation w,,, = 2mm /[ is a bosonic Matsubara frequency.

A.1.4 Atomic limit

It is interesting to consider a half-filled idealized atom described by the Hamiltonian
N2
H = gd;ng +U <T — 53) + gughsS.. (38)

For 7 > 0 we can calculate explicitly the Green function, obtaining

1 1
21+ €PU2 cosh (Bgush/2)

G, (1) = [eT(U—guBho)ﬁ + e(B—T)(UJrguBhU)/?} _ (39)
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The Fourier transform of G, (7) is

w— i W4
i + (U= gugho)/2  iv, — (U + gugho)/2]|’

Gy (iv,) =

where

1 1 4+ ePU/2¢%Bgppha/2
" 21+ €U cosh (Bguph/2)’

w4

Since the Green function is written as the sum of functions with one pole, the analytic continu-
ation is simple, as in the non-interacting case. We replace iv,, with w + 0.

A.2 Linear-response theory
A.2.1 Theory

The response of a system described by the Hamiltonian H to a small magnetic field h(r,t) is
given by the linear correction to the Hamiltonian, i.e.,

> GH,(rit) = =Y M, (rit)h,(r;t), (40)
where M (r;t) is the magnetization operator in the Heisenberg representation
M, (r;t) = ™M, (r)e !

and v = x,y, z. To linear order in the perturbation and assuming that the perturbation is turned
on adiabatically at t) = —o0

(M, (r; 1)) — (My(7))o = —iZ/dr’/ dt' ([AM,,(v;t), 6 H, (r"; t)])o.

-~

(M, (r; 1)) v

Here (M, (7))o is the (equilibrium) thermal average in the absence of the perturbation and
AM,(r;t) = M,(r;t) — (M,(r))o. By replacing > , 6 H,,(7';t') with (40) we obtain

t
(M, (r;t)) = iZ/dr’/ dt’<[AMV(r;t),AMV/(T’;t’)DO hy (7' t).
The function

Xow (P, 758, 8") = 0 (([AM, (r;t), AM,, (r';t)]), Ot — t') 41)

is the so-called retarded response function. If the Hamiltonian / has time translational invari-
ance symmetry the retarded response function depends only on time differences ¢t — t’. For the
Fourier transform, we have

§(M,(r;w)) = Z/dr'XW/(fr,r’;w)h,,/(r’;w).
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For a system with translational invariance, we additionally have
S(My(q;w)) = Xow (@ w)hor (g5 w).
In the w = 0 and ¢ — 0 limit we have

. OM,
Xow (0:0) = hh/rgo oh,’

where h,, = h,,(0;0). More details can be found in Ref. [27]. In the rest of the Appendix we
replace for simplicity the notation (- - - ) with (- - -).

A.2.2 Kramers-Kronig relations and thermodynamic sum rule

Important properties of the spin susceptibility are the Kramers-Kronig relations

Re[x(q;w)] — Re[x(q; 00)] = %P /jm de’,

o

Im[x(q;w)] = _%'P /_+OO RG[X(q;lej/iie{X(q; oo)]dw/’

o

where P is the Cauchy principal value, and Re and Im indicate the real and imaginary part.
The first Kramers-Kronig relation yields the sum rule

Rely(gies = 0)] - Rely(gioo)] = 27 [ ML g )

In the g = 0 limit, Eq. (42) is known as thermodynamic sum rule.

A.2.3 Fluctuation-dissipation theorem and static susceptibility
We define the spin-spin correlation function
Sl/l/’<q; t) = < ASZ/(q; t)ASV’(_q)>

where AS,(q;t) = S,(q;t) — (S,(q;0)) and where the S, are spin operators. The Fourier
transform of the correlation function in frequency space is S,,/(g; w). One can show that

S (q;w) = eBwSV/V(q; —w).

The following formula, known as fluctuation-dissipation theorem, relates the spin-spin correla-
tion function with the magnetic susceptibility

1 1
I v/ g, =571 1 - 2 v \gq; W), = .
o (4:9)] = gy () S ), () = g
Assuming kpT large and using Eq. (42) we find
2
Re{uuus(g: = 0)] ~ Relyuu(g:00)] ~ P25, (g:1 = 0).

kT
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A.2.4 Imaginary-time and frequency response function
We define the susceptibility in imaginary time as
Xow' (@5 T, 7-,) =(TAM,(q;7)AM, (—q; 7_,)>

where AM,(q;7) = M,(q;7) — (M,(q;0)). As in the case of the Green function, by using the
invariance properties of the trace one can show that

Xow (@7, 7) = X (@; 7 — 7).
The response function in imaginary time is related to the response function at the bosonic Mat-
subara frequency iw,, through the Fourier transforms
1 —iWwm T .
Xow (@5 7) = 3 > e N (G ),
n

XZ/V'(q; Zwm) = / dTeimeXZ/u’ (q7 7—)'

A.3 Magnetic susceptibility

A.3.1 Spin and magnetization operators

The spin operators .S, are defined as

1
S, = 3 Z cj,a,,cg,,
[oxon

where v = z, y, z and o, are the Pauli matrices

0 1 0 — 1 0
Oy = oy = _ o, = )
1 0 ) 0 0 -1
The magnetization operators M, are defined as M,, = —gugS,.

A.3.2 Matsubara magnetic susceptibility

The magnetic susceptibility for a single-band system can be expressed as

2 , 2 11
Calasr) = DS oot o ) < L S ot S S @ e @
k kk/

! !

oo oo

-~

X2 (1)

where 0 = 1 or —1 depending on whether the spin is up or down, 7 = (7, 75 73, 74) and

[x(gq; T)]gk:,a’k’ :<Tck:<7(Tl)C}Lc—I—qU(T?)Ck’—i-qU’(7-3)6};/0’ (74))
(T o (11l o (TDN(T a4 o (78l (7))
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In Fourier space

Xzz(q; iwm) - (gZB Z 62 Z quw Zu)m

- (9%13 Z ﬁ2 Z 6 2 Z (@5 19m)] ko ke

kk’

J

g

!
X327 (iwm)

where w,,, = 2mm /3 is a bosonic Matsubara frequency and

Xgon(r (Zwm) — qcro‘ 6 /// dT eujT qaa’( ) (44)

The integral for each 7 component is from —f5 to § and v = (v, —Vy, — Wi,y Vi + Winy — Vit ).

A.3.3 Symmetry properties
Let us now analyze the symmetry properties of (44). The complex conjugate is given by

qoo’

X8 Gom) | = X35 s (—im),

Xzona w)m _ /// dTe Wm7—23+1/n7_12+l/n/7'34)xq0'0' (T)

By using the fact that, for the cases considered here, the response function is real in 7 space and

with

by exchanging the indices 1 and 4, 2 and 3 in the integrand, we find

qoo’ qo'o

Xnn (Zwm) Xn ,n (Zwm)

and hence if 0 = ¢’, v, = v/, is a reflection axis. An additional reflection axis can be found by
first shifting the frequency v, = v; — wy,

X?ZU @wm> — g/// dT ei(*me13+VzT12+Vn/T34)X']UU’(7-)

and then exchanging in the integrand the indices 12 with 34 and vice versa. Hence

qgoo’ qo'o

Xi,n! (iwm) = Xn/ 1 (—iwm)
so that, if 0 = ¢/, V4., = —V, is a mirror line

qgoo’

Xn+mn (Zwm ’ - ‘ana

1,—n—m-—1 (iwm) :
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A.3.4 Non-interacting limit

For a non-interacting system described by Hamiltonian (36) Wick’s theorem yields

11

X7 (1) = —Bm Z(Tcka(Tl)c;rc+qa/(T4)><Tck+qa’ (73)Chy (72))

N _BE nga (714)Gk 1o (—T23) 00,0

Then, in the paramagnetic case, the magnetic susceptibility is given by

211 1

Xz:(q;T) = —(91B) Zgﬁzgko T14) Gkt qo(—T23)-

Its Fourier transform is

X=2(@5 iwin) = (gp) Z@ Z Z X3 (i),

where

§ : O'O' 1 . . .
ng n' ZOJm - _ﬁN E gka(zyn)gk:—i-qa(“/n + Zwm)én,n“
k
ko

Thus, the static susceptibility is

91 1 o &k — Ny (€
X::(q;0) = — (gup)? ~— +a) ~ Mo(eh)

€k+q — Ck

Finally, in the ¢ — 0 and 7" — 0 limit we find

l00) = e - 3 |- g ol
ko T=0

J

p(er)

A.3.5 Atomic limit

In the atomic limit, we sum over g to obtain the local susceptibility tensor
= i Z ano’ (1)
Ni .

For Hamiltonian (38), in the sector 7+ such that 7; > 7,1, the latter has the form

/ 1 1

X77(rT) = B2(1 + PUR2) e B

The magnetic susceptibility for 7; > 7,., is then given by

2
XZZ( g,UB ZO’O’I oo’ + (g'uB) 1 6(5*7'12*7'34)U/2

1B (1407 |
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which depends only on 7 = 715+734. In the remaining sectors (labeled with P) the susceptibility
has a similar form after appropriate permutation of the imaginary times

2
Xzz( guB ZO’O” oo’ = SP(QIZE) n(_spy>e—5P(T12+T34)y’

where y = U/2 and sp = +1; the derivation can be found in [27]. If we perform the Fourier
transform of x,(7) we find x..(iw,) = x2.(0)dw, 0. The static susceptibility is

1 eBU/2
4l€BT1+65U/2 - gMB 152 ZZUJ Xnn’

nn! oo’

X=:(0) = (gup)?

Here, after setting

1 1
Wy — Y Wn + Y

we have

dM, M, dM, dM,,
/ =" — 5nn’_n 571 —n/— k - MnMn’
ZUU X i Bn(y)[ W gy T }+ﬁn( Y)

_5 |:Mn’_5n<y)6n,—n’—1 + Bn<_y)5n,n’:| Mn

Most contributions cancel each other when the sums over the Matsubara frequencies are per-
formed. A detailed derivation can be found in Ref. [27]. For y = 0 only the terms proportional
to d,, v survive, as expected from the Wick theorem.
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4.2 Andriy H. Nevidomskyy

The Kondo model has played a very important role in condensed matter physics. Experimen-
tally motivated, it attracted a great deal of theoretical attention in the 1960s and 1970s, resulting
in the conclusion that thermodynamic and transport properties depended logarithmically on
temperature as In(7"/T ), where T is called the Kondo temperature. The ideas of summing
up the leading logarithmic divergences and establishing how this procedure depended on the
high-energy cutoff were instrumental in the development of the scaling theory and the renor-
malization group, which were initially invented in the 1950s in high-energy physics. Despite
this progress, what was very puzzling was that the resulting theoretical predictions for the ther-
modynamic and transport properties displayed a divergence at ' ~ T, at which point the
theory became unusable. Was this logarithmic divergence physical and what was the fate of
the model at low temperatures 7' < T'x? These questions remained unanswered for almost a
decade, until the breakthrough made by Kenneth Wilson in 1974, who invented a numerical al-
gorithm of renormalization, now known as the numerical renormalization group, and showed it
to be stable down to very low temperatures [1]. Wilson’s work was hugely influential, for which
he was awarded the Nobel prize in physics in 1982. At the same time, Nozieres had developed
a phenomenological low-energy theory of the Kondo model [2], showing it to be a Fermi lig-
uid, in agreement with Wilson’s numerical conclusions. This was a triumph of theory, further
corroborated when the exact solution of the Kondo model was found in 1980 [3,4]. From a
historical perspective, the Kondo model therefore clearly has an iconic status. However, this is
not the only reason why this topic features prominently in several Lectures in this School. It
can be said without exaggeration that the ideas of scaling and renormalization group developed
en route to solving the Kondo problem represent a cornerstone in our current understanding of
correlated many-body systems, applicable to both condensed matter and high-energy physics.
In this Lecture, I will first briefly introduce the Kondo model, before discussing in detail the
elegant renormalization argument invented by P.W. Anderson, the so-called Poor Man’s scaling
theory [5]. I will then summarize briefly Wilson’s numerical renormalization group idea as
well as the aforementioned Fermi liquid theory by Nozieres. The discussion in these sections is
loosely based on the original article by Anderson [5] as well as on the textbooks by Yamada [6]
and Hewson [7]. Having thus introduced the concept of scaling and renormalization, I will
further illustrate their value by applying these methods to the more complicated incarnations of
the Kondo model based on the so-called multichannel Kondo model in Section 5 and Section 6.
This lecture is self-contained; however it presumes that the reader is well versed in the language
of second quantization and has some familiarity with Feynman diagrams. Other than this, no
special prerequisites are necessary.

1 The Kondo problem: Introduction

It was noticed as early as the 1930s that the resistance of noble metals like gold or silver exhibits
a minimum as a function of temperature, see Fig. 1. It was later realized that this effect arises
from magnetic impurities such as Mn and Fe, which are naturally present in noble metals.
In ordinary metals, the electrical resistance originates from the lattice umklapp scattering and



Kondo Model and Poor Man’s Scaling 4.3

Resisiance/Resistance(T=0 Celsius) x 10000

(from W.J. de Haas and G.J. van den Berg,
Pnysica vol. 3, page 440, 1936)

Low temperature resistivity of
Au

L—=w Temperature T (K)
5 10 15 20

Fig. 1: Normalized resistance of Au with magnetic impurities as a function of temperature.
(Reproduced from Ref. [8])

scattering off of impurities as well as lattice vibrations (phonons). When the temperature is
lowered from room temperature, the resistance due to phonons decreases proportionally to 7.
At much lower temperatures, when lattice vibrations are frozen out, the temperature dependence
of resistance stems from the electron-electron interaction, which in ordinary metals scales as T2,
consistent with the prediction of Landau’s Fermi liquid theory. In any event, the resistance of a
regular metal is a monotonically decreasing function as the temperature is lowered. By contrast,
in dilute magnetic alloys the resistance starts increasing again with decreasing temperature.

This behavior of the resistance remained a puzzle until 1964, 30 years after the experimen-
tal discovery, when Jun Kondo presented the theory that explains the resistance minimum [9].
Kondo wrote down the model in which the dilute magnetic impurities are described by spin
variables S(R;) at positions R; that interact with conduction electrons via a spin-spin interac-
tion. Since the impurities are randomly distributed and dilute, it is sufficient to consider one
such impurity interacting with conduction electrons:

H=Y excl,c, +2Js-S, (1)
k.o

where conduction electron spin s at the impurity site R = 0 is defined as s(R) = 1c/(R)oc(R)
(setting i = 1 for convenience). The spin interaction in the last term arises from the exchange
interaction between a conduction electron (for instance, in an s-shell of Au) and the localized
electron (d-shell in the case of transition metal impurities). The above model is often referred
to as the s-d model or, equivalently, as the Kondo model (in what follows, we shall adopt the
latter nomenclature). The factor of 2 in front of the interaction is chosen for convenience.
Equivalently, the model can be re-written by Fourier transforming the conduction electron cre-
ation/annihilation operators to the reciprocal space as follows:

H= Z £k cLackU +J Z CL,U, O oo Crp ™ S, 2)

k,o kK

with the summation over spin indices o, ¢’ implied. One can further generalize this model by
allowing anisotropy of the exchange interaction:

1
H = Z e b Oyt Z Z o o7, ckU-SZ+§ Z (J_ CL,TCM ST+ Jy CITwCM S+> , (3)
k,o

Kk o KKk
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where as usual S* = S, + S,. In what follows, we shall assume the transverse spin interaction
to be isotropic: J; = J_ = J4 (in which case J, = J, = J, also follows).

In order to calculate the resistance of the model in Eq. (2), Kondo computed the scattering
probability for conduction electrons using the 7-matrix formalism [9, 10]. This formalism will
be introduced in detail when discussing the scaling of the Kondo model in Section 3, so in
order to avoid an unnecessary repetition, we shall only quote the final result for the resistance
obtained by Kondo in the first Born approximation (see Ch. 4 of the book by Yamada [6] for
more details):

R =R, [1—4Jpln(kBTT>+..}, 4)

where R, is the residual (temperature-independent) resistance, D is the conduction electron
bandwidth and p is the density of states at the Fermi level. As temperature decreases, kg1 < D
and the logarithm is negative, leading to a logarithmic increase of the resistance (and eventual
divergence as 7' — 0) provided J > 0. This is the essence of the Kondo effect, which explains
the low-temperature behavior of the resistance in Fig. 1. At high temperatures, on the other
hand, the aforementioned 7° contribution to resistance from phonon scattering dominates, so
that the resistance has a non-monotonic behavior with a minimum roughly around 7" ~ T
We note that while historically, the position of the resistance minimum was often taken as a
definition of the Kondo temperature, this is unsatisfactory because this definition depends on the
details of the phonon scattering and the prefactor R, in Eq. (4). Instead, the modern approach
is to define the Kondo temperature independently of the resistance. To see how one might
go about this, consider the higher scattering processes (beyond the first Born approximation),
which are implicitly contained in the . ..” in Eq. (4). In fact, Abrikosov showed [11] that these
terms yield an even stronger divergence as 7' — 0 because they scale as [Jplog(kgT/D)]™.
Summing the most divergent terms, Abrikosov obtained the result for resistance [11]

R= o - (5)

[1 +2Jpln (%)}

The Kondo temperature may be defined as the characteristic temperature at which the resistance

diverges, which results in the estimate

kgTkx ~ D exp <_2ch/)> ) (6)
As mentioned earlier in the introduction, other physical quantities, such as the magnetic sus-
ceptibility, were also shown to diverge logarithmically as the temperature 7' = T. Clearly, the
theory cannot be trusted for low temperatures 7" < T, and this became the stumbling block
of the Kondo problem until Wilson’s numerical solution in 1974 [1]. To understand how Wil-
son’s solution works, we have to first introduce the concept of renormalization and study how
it applies to the Kondo model, which will be dealt with in the next two sections.
We note parenthetically that the divergence in Eq. (5) only occurs for the antiferromagnetic sign
of the Kondo interaction (J > 0); otherwise, the resistance becomes small and converges. We
shall explain the physical reason behind this behavior when we study the scaling of the Kondo
model in Section 3.
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2 Concept of renormalization

Usually, physical phenomena take place on a wide energy scale in condensed matter systems,
from the conduction electron bandwidth of the order of several electron-volts, down to the
experimentally relevant temperature range of the order of 1 Kelvin (1K ~ 10~ eV). We are
interested in the low-energy (also called infra-red) limit, and the question is how to arrive there
starting from the model formulated at high energy scales. The crucial idea is that instead of
focusing on the fine details of the high-energy model (such as the exact spatial dependence
of the interactions), one can arrive at the low-energy properties by monitoring the behavior
of the system as one slowly lowers the cutoff scale A, which has the meaning of the energy
corresponding to the largest-energy excitations available. If the system has a well-defined low-
energy limit, the low-energy excitations will remain immune to this renormalization of the
cutoff, and the model will be described by the “fixed point” Hamiltonian. In this case, the entire
continuous family of model Hamiltonians H (/) is said to “flow to the fixed point” and they
belong to the same universality class. The word “universality” here implies that the low-energy
behavior is universal, in other words, independent of the details of the high-energy (ultra-violet)
model.

This idea of elucidating the low-energy universal behavior is achieved by the so-called renor-
malization group procedure, which consists of two steps:

1. Rescale the energy cutoff A — A’ = A/b, where b > 1, and integrate out the degrees of
freedom in the energy range [A/b, A]. This will result in the change of the Hamiltonian
H(A) — H'.

2. Rescale the energy scales back so that w = bw’ and the new Hamiltonian H (A/b) = bH'.

These two steps are then repeated successively and in the limit b — 1, one will obtain a contin-
uous evolution of the model Hamiltonian with A. Below, we shall apply this idea to the Kondo
model following P.W. Anderson’s “Poor Man’s scaling” argument [5].

3 Poor man’s scaling for the Kondo model

3.1 T'-matrix description of scattering processes

Following the general renormalization group ideas outlined above, we progressively integrate
out the electronic states at the edge of the conduction band in the energy range [A — A, A]. The
resulting Hamiltonian will depend on the running energy scale A:

JL(A
H(A) :Z €k cLUcka—i—JZ(/l)z b0t Sy + = )Z (CL,TCM S_+ CLkaT S+>, (7)

2
|8k‘</1

where the last two terms correspond to the original Kondo Hamiltonian but with the renormal-
ized coupling constant .J(A). This procedure was first performed by Anderson and Yuval using a
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(d) ko Ko’
q ‘\\\//’
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Fig. 2: Feynman diagrams contributing to (a,b) second-order processes in the Kondo inter-
action vertex (marked with an empty circle); and (c,d) third-order processes in the Kondo in-
teraction. The solid lines denote the conduction electron propagator, whereas the dashed line
denotes the impurity spin.

somewhat different method for a one-dimensional model equivalent to the Kondo model [12,13]
and later reformulated by Anderson in a simplified form, which he called the “Poor Man’s” scal-
ing approach [5]. The term “poor man” refers to the fact that the bandwidth is not rescaled to
its original size after each progressive renormalization. This simplifies the matter as there is
no need to rescale the Hamiltonian, eliminating the second step in the renormalization group
procedure. Nevertheless, the results obtained via this simplified renormalization procedure are
qualitatively accurate and correctly describe the low-energy behavior of the Kondo model.
Following Anderson, we integrate out the high-energy spin fluctuations using the formalism of
the 7-matrix, which describes the scattering of an electron from initial state |k) into the final
state |k’). The matrix elements of such a scattering process constitute the so-called 7-matrix,
defined as a function of energy w as follows:

Troae(@) = Viese + Vierq Golw, @) Tyre () = V + V——— T'(w), ®)
w— Hy
where Hy = ) ko 6kCLUCkU is the non-interacting conduction electron Hamiltonian, V is the
Kondo exchange interaction, and (G is the non-interacting Green’s function. In what follows,
we shall calculate the T-matrix to second-order in the Kondo interaction V oc J , in which
case we can replace T — V in the last term in Eq. (8). This corresponds to renormalizing the
interaction V — V' with

~ ~ ~ 1 ~ N A

Vi=V4+V—>nu-V=V+AT. 9)
w—H 0

Two kinds of processes contribute to the 7'-matrix at this order: (a) the electron is scattered

directly, as the Feynman diagram in Fig. 2a illustrates; or (b) a virtual electron-hole pair is

created in the intermediate state, see Fig. 2b. In both cases, the intermediate state may occur

with or without flipping the spin of the conduction electron/hole. Let us first consider the case
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when the conduction electron spin is 1 both in the initial and in the final state. Consider first
the simplest case when the conduction electron spin is not flipped in the intermediate state. The

first process in Fig. 2a contributes

A>|eq|>A—5A
ATrfi)ﬂip(w) = Z (J.)% S, cLchT (w—eq+ex — Hy) 1S, cjﬂckT (10)
q
It is understood that 7' is a matrix depending on the external momenta and spin polarizations
{k’ 1,k 1}; however, we drop these indices for brevity. If the energy w is measured relative to
the Fermi level 11, then Hy = 3, (ex — p1)7 can be set to zero in the ground state. Since the
summation over q takes place in the narrow energy window [A — 04, A], we can set £, ~ A.
Then, chcIIT = 1 — nq can be approximated as 1 in the particle-like intermediate state at low
temperatures. Replacing the g-summation with an integration over the density of states p, we
thus obtain

ATrS:-)ﬂip(W) = U:]10 04185 CL/TCM = () lpoA| CL Cher »
w—A+¢g dlw—A+g) ¥TK

where we have used S? = 1/4 for a spin 1/2 impurity. This term does not depend on the impurity

(1)

spin and contributes to the potential scattering only, resulting in an overall energy shift. The
same conclusion is reached in the case of the second type of scattering given by Fig. 2b. Such
potential scattering is a new term absent from the original Kondo model in Eq. (7); however, it
is irrelevant in the renormalization group sense and does not qualitatively alter the behavior of
the model.

3.2 Renormalization of J .,

Let us now consider the physically more interesting case where the conduction electron is scat-
tered from a 1 to a 1 state with a spin-flip in the intermediate state. The first process in Fig. 2a
yields the following contribution to the 7-matrix:
A>leq|>A—-6A
(a) _ -t 7 1o+ F
AT (W)= > JoJ_ ST dhpeq (w—egter—Hy) 'St el an.  (12)
q

Similar to the earlier case, H, o can be set to zero in the ground state, and the intermediate state

energy €, ~ /. Given that ¢, CLT = 1 in the particle-like intermediate state at low temperatures,
we thus obtain
A—§A<eq<A
q
~ T J_|pSAIS™ST el e (w—A+e,)" (13)

Similarly, the second process depicted in Fig. 2b yields
—A<eq<—A+6A
ATT(? (w) = Z JiJ- S*cleck,T (WHeq — ek/)’lS’cLTc
q

T |pSAISTS Cpcls (w— A — )™, (14)

qT

Q
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where we used the fact that in the hole-like intermediate state, the summation is near the lower

band edge [—A, —A + 6] and we can therefore replace ¢, = —/, with occupation number
cLchT = 1. We can now use the spin commutation relations on the impurity site to deduce that,

forspin 1/2, S~ St =1/2— 5., and similarly STS~ = 1/2+ S, (we have set i = 1 for conve-
nience). We conclude that the expressions in Eq. (13) and (14) contribute to the renormalization
of the J,.S, clT(Tck,T term in the Kondo Hamiltonian. Similar expressions, but with the opposite
sign, can be obtained starting from the conduction electron in the spin | state. We conclude that
the J, term in the Kondo interaction is renormalized as follows:

V! = (J.+0dJ.) Z (clT(Tck,T — chckw) - S, (15)
KK/
with
0], = —JyJ_ploA| = + ! (16)
= +-P W—A—i—é‘k w—/l—gk/ .
Note the “— sign in the above expression. Its importance will become apparent later when we

discuss the renormalization flow for the coupling constants.

3.3 Renormalization of J

Finally, let us consider the scattering processes that contribute to the renormalization of the
transverse (/1) Kondo interaction. These are the processes that involve both the longitudinal
and transverse terms, in which the electron is scattered from an initial state 1 to a final state
J with a coherent flip of the impurity spin. Repeating the arguments similar to those used to
derive Egs. (13) and (14), one finds that the Feynman diagram in Fig. 2a results in the following
contribution to the 7" matrix:

T (=J.) |p0A] S.St el cir . T T, |p0A| S*S.cl e
w—A+¢eg w—A+¢eyp .

AT (w) = (17)
The signs of the two terms are opposite because in the first expression, the spin-flip happens
first, so that .J, term scatters two spin-| states, resulting in the overall minus sign: —.J, SZCL, 1Cqls
whereas in the second term the order of spin-flips is the opposite so that JZSZCLTCkT contributes
with the positive sign. Using the identities S,S* = S*/2 and ST5, = —S57/2, we see that
both terms contributes equally to the S* term:

T T |p6A| STl o

AT = — 18
+ w—A + €k ( )

Similarly, the diagram in Fig. 2b contributes in two ways
ATV () = Ji . |poA S-S ecli, . Jo(=J.) |p6A| ST Sl | (19)

" W—A—ék/ w—/l—ek/
Using the spin identities, we conclude that this results in
T, |pdA| S*teel, Jp . |pSA| S*tel e

ATg)(w): w2 |p oA K% U |p oA k'l kT’ (20)

W—A—gk/ w—A—Ek/
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where the last equality is obtained by changing the order of the creation/annihilation operators
(incurring a minus sign). Collecting together the contributions from Eq. (18) and (20), we find
that J is renormalized according to

1 1
(5J+:_J+sz’5/1’ lw—A+€k+w_A_€k/:|. (21)

A similar result can be obtained for the renormalization of the J_ term, by considering the
scattering from spin | into spin 7 state:

1 1
_=—J_ A . 22
o7 I-Jzplo |Lu—/1+5k+w—/1—5kl (22)

3.4 Renormalization group flow

Summarizing our results so far, we conclude that elimination of the virtual scattering to the band
edges results in a Hamiltonian that retains its Kondo form (neglecting the potential scattering
terms such as Eq. 11). However, the coupling constants in Eq. (7) are renormalized as a result
of integrating out the high-energy states: J, — J, + 0J,. It is said that .J, becomes a running
coupling constant. By collecting the results obtained in Egs. (16), (21), and (22) and assuming
from now on that J, = J_ = J., we conclude that:

1 1
o, = —J2 oA 23
=g ’Lu—/l—i—&tkjLw—A—&tkl’ 23)

1 1
5Ji: —JZJi ,0’(5/1’ |iw_/1+€k+w_/1_€kl . (24)

The w dependence underlines the fact that the renormalized interactions are retarded. However,
for low-energy excitations relative to the conduction electron bandwidth or the cutoff A, the
frequency dependence of the interactions can be neglected in the denominator. Similarly, since
one is typically interested in the scattering of conduction electrons near the Fermi surface (on
energy scales of the order of kpT'), the energies €y, and € can also be neglected compared to
A. The resulting renormalization of the coupling constants can then be recast in terms of two
coupled differential equations:

SN )
dma ~ i 25)
dJy
= -2 ) 2
Note that § A is negative, and therefore d(In A) = —|dA|/A in the above equations.

This logarithmic dependence of the coupling strength on the ultra-violet energy cutoff A is the
essential idea behind the concept of the renormalization group. The above equations can be
rewritten more conveniently by introducing the dimensionless coupling constants g, = J,p
(a0 = z, %) as follows:
dg.
dln A
dg.
dln A

= =201+ 0(¢°) = B.(9a)

= —29.9: + O(¢°) = PB(ga)- (27)
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The right-hand side of these relations is called the beta function, using the established nomen-
clature. The isotropic case J, = J is particularly instructive, in which case we obtain

dg N 2 3 4
= —2¢% + 26° + O(¢"), (8)

where the second term on the right-hand side was obtained by considering the higher-order
diagrams depicted in Figs. 2¢ and d.

Notice that to leading order in the coupling constant, the sign of the S-function in Eq. (28) is
negative, meaning that as the energy cutoff A decreases, the corresponding coupling strength
increases. For ferromagnetic interaction (¢ < 0), the coupling renormalizes to zero, g — 0;
however in the antiferromagnetic case, g remains positive and runs off to infinity as A — 0.
It is said that the theory tends towards strong coupling. This crucial difference between the
ferromagnetic and the antiferromagnetic case is a quantum effect and should be understood as
follows: If the impurity couples ferromagnetically to the conduction electrons (the so-called
s-d model), the effect of such coupling becomes negligible at low temperatures. In other words,
the impurity spin decouples from the conduction electron sea and becomes asymptotically free.
In the case of antiferromagnetic (Kondo) interaction, on the other hand, the coupling is always
relevant at low temperatures, no matter how weak the initial coupling strength. This means that
a perturbative treatment of the Kondo model will break down at sufficiently low temperature
of the order of the Kondo temperature 7T, and a non-perturbative approach is necessary to
determine the low-temperature behavior. It was famously shown by Kenneth Wilson using
numerical renormalization group (see Section 4.1) that the ground state of the Kondo model is a
spin-singlet [1], forming due to the screening of the impurity spin by the conduction electrons.

The antiferromagnetic Kondo model has a very interesting parallel with high-energy physics.
In condensed matter physics, we are interested in the low-energy and low-temperature regime,
i.e., the infra-red (IR) limit A — 0, whereas high-energy particle physics concerns itself with
the renormalization in the ultra-violet (UV) regime (A — o0). Bearing this distinction in mind,
we note that the negative S-function is equivalent to the statement that the running coupling
constants tends to zero as the energy cutoff A increases (provided g > 0 initially). This is sim-
ilar to the celebrated phenomenon of the “asymptotic freedom” in quantum chromodynamics
(QCD) where the interaction between quarks vanishes in the UV limit [14, 15]. For this reason,
the Kondo impurity model is perhaps the simplest model that displays such behavior of the run-
ning coupling constant. Of course in condensed matter systems, the UV cutoff is not infinite
as in QCD, but rather is fixed to be the conduction electron bandwidth D by the underlying
crystalline lattice.

Returning to Egs. (25-26), note that the following relation between J, and .J is valid:

dJ.  Je
dJ.  J.)

(29)

or, equivalently, J, dJ, = J. dJ.. Integrating both parts of this equation, we conclude that

J? — Ji = const. (30)
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A Ji

\/

.
Fig. 3: Renormalization flow diagram of the anisotropic Kondo impurity model. On reducing
the cutoff A, the coupling constants are scaled along the arrows. In the ferromagnetic region
J. < 0and |Ji| < |J,|, the system flows to weak coupling J. — 0 (blue arrow). In the rest
of the parameter regime, the system flows towards the strong coupling regime J, — oo (red

arrows).

This is an example of a scaling law that holds at any point in the renormalization flow. Conse-
quently, the renormalization group preserves the hyperbolic trajectories expressed by Eq. (30)
and depicted in Fig. 3. It follows from Eq. (25) that the S-function for J, is always negative,
meaning that J, always grows upon renormalization. For antiferromagnetic Kondo interactions,
this indicates that the model flows towards the strong-coupling fixed point (J,, J. — o0), as
mentioned above for the isotropic case. The ferromagnetic case J, < 0 requires extra care
because the outcome depends on the ratio of J/|J.|. The case Jy < |J.| corresponds to the
constant being positive in the scaling relation (30) and since the S-function for .J. is positive,
J+ — 0 under the renormalization flow whereas J, < 0 tends to a constant value, as indicated
by the blue arrow in Fig. 3. In the other case Jy > |J,|, Ji initially decreases, however it
follows the hyperbolic curve, and at some point .J, changes sign to positive, at which point both
coupling constants run off to infinity.

3.5 Kondo temperature and breakdown of the perturbative scheme

Using the above scaling results, we can estimate the temperature scale at which the perturbative
approach to the antiferromagnetic Kondo problem breaks down. In what follows, we shall con-
sider the isotropic case J, = .J, in which case the S-function is given by Eq. (28). Integrating
both sides of Eq. (28), we obtain:

g
dg
—/92_93 =2InA

g

A D
L= —21In (F) (31)

The integral in the left-hand side can be evaluated to give

dg 1
Y e Y
/92—93 g

1— l‘ (32)
g
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We expect perturbation theory to fail once the dimensionless running coupling constant be-
comes large ¢g*(A*) > 1. Then, the terms of the order 1/¢* can be ignored in the left-hand side
of Eq. (31) and Eq. (32), resulting in the expression for A*

AN~ D V9 exp (—i> , (33)

which we can identify with the Kondo temperature kg7 ~ A*. Taking into account the fact

that the unrenormalized value of g = pJ ~ J/D is much smaller than 1, we can approximate
v 1 — g = 1, resulting in the well known expression for the Kondo temperature

1
kT ~ ~/Jp D exp <—E) . (34)

This expression 1s non-analytic in .J, confirming that it cannot be obtained via perturbation
theory. Note that had we limited ourselves to the second-order diagrams in J only (Fig. 2a,b),
the 3-function in Eq. (28) would contain only the —2¢? term, and the corresponding expression
for the Kondo temperature would have a slightly different form: kBTI((O )~ D exp(—1/2Jp),
which only differs by an algebraic prefactor from Eq. (34).

One might worry that higher-order terms in the diagrammatic expansion used to obtain the
B-function could generate new terms that are not present in the original Kondo Hamiltonian.
However, such terms would behave as a power-law of (1/A4)", rather than In A, and so tend
to zero rather than diverge as the cutoff A — oo (or equivalently, the conduction electron
bandwidth D — o0). Such higher-order terms are irrelevant in the RG sense as they do not
affect the low-temperature properties of the Kondo problem.

4 Low-temperature properties of the Kondo model

4.1 Wilson’s numerical renormalization

The above scaling argument can be used down to energy scales larger than the Kondo temper-
ature. Beyond that point, the running coupling constant diverges and the theory predictions
cannot be trusted. An important breakthrough in this very difficult problem was achieved by
Wilson [1], who transformed the model into a form appropriate for computer modeling and
used a numerical renormalization algorithm to deduce the properties of the system. Below, we
will explain briefly Wilson’s line of reasoning. In a spherically symmetric system such as the
single-impurity Kondo model, arbitrary real-space interactions V (r — R) can be expanded in
spherical harmonics centered around the impurity site R. Assuming the Kondo interaction to
be a d-function J(r — R), only the s-wave harmonic contributes, allowing one to describe the
system as effectively one-dimensional, depending on the radial distance |r — R| from the impu-
rity site. Wilson further assumed the conduction electron dispersion to be linear ¢, = £ (here
the Fermi velocity was set to 1 in the appropriate units with —1 < k& < 1) and replaced it with a
spectrum of discrete levels ¢,, = A" equally distributed on the logarithmic scale (here we use
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Wilson’s original notation, A should not be confused with the UV cutoff of the previous sec-
tion). Then, the Hamiltonian of this discrete-level system can be written as a one-dimensional
tight-binding chain with the O-th site corresponding to the impurity position:

N-1
n=0

with the original Hamiltonian obtained after rescaling and taking the limit of an infinitely long
chain: H = lim A~-N-1/23,.

N—o00
The prefactor AX¥=1/2 in front of the Hamiltonian is necessary to keep the scale of low-energy

n/2

excitations constant. Note also that the hopping matrix element is proportional to A~"/* and

decays quickly as a function of the distance from the impurity site.

4.2 Ground state of the Kondo model

The renormalized Kondo interaction .J - A(N~1/2 becomes large as the number of sites /V in-
creases, corresponding physically to the formation of a spin-singlet state on the impurity site.
Wilson showed by careful numerical simulations that this is indeed the ground state of the
Kondo model. Wilson also calculated the ratio of the uniform magnetic susceptibility and the
specific heat coefficient (now known as the Wilson ratio) to be

T
W = lim LX/X0 _ (36)
-0 C'/79
This result is significant because of the conventional Fermi liquid result, where one has
Cr m? 2 92M2B
— = — _k = = 37
T = 0= FhBr, XFL = Xo T (37)

resulting in the Wilson ratio Wy, = 1 (as before, p is the density of states at the Fermi level).
In the Kondo impurity case, the Wilson ratio is doubled. The classic work by Nozieres [2]
explains this as follows: The low-energy excitations of the Kondo model can be understood in
the framework of the Fermi liquid theory. However in contrast to the one-body problem (where
Wilson’s ratio is 1), the interaction between the impurity and an electron with antiparallel spins
contributes to the antisymmetric Fermi liquid parameter ¢“, which, as Nozieres showed, leads
to an additional contribution to the Wilson ratio. In the Kondo model, where this interaction
becomes infinitely strong in the low-temperature limit, this extra contribution results in the
Wilson ratio being 2. This is in line with the more general case of the Anderson Hamiltonian,
where the Wilson ratio increases from 1 to 2 with increasing interaction U between antiparallel
spins [16].

The Kondo model turns out to be exactly solvable via the Bethe ansatz, as shown independently
by N. Andrei [3] and P. Wiegmann [4]. The exact solution fully confirmed Wilson’s earlier con-
clusion that the ground state of the Kondo model is the spin singlet and corroborated Nozieres’
Fermi liquid theory.
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S Multichannel Kondo problem

Having described the behavior of the spin 1/2 Kondo impurity model above, it is natural to ask:
What happens in the case of impurity spin .S larger than 1/2? This problem was first addressed
by Nozieres and Blandin in 1980 [17], who formulated what we now refer to as the multichannel
Kondo impurity model:

K
H=> il Cuopt > S0, (38)

k,ou p=1

where o, = > . cf(a 1T a Cyg, denotes the conduction electron spin in one of K orbital chan-
nels labeled by index ;. We shall only focus on the antiferromagnetic coupling .J since the
ferromagnetic case flows to weak coupling at low energies, as discussed earlier in Section 3.

5.1 Phenomenology and scaling

The multichannel model turns out to harbor rich physics, and depending on the number of
conduction electron channels relative to the impurity spin size .S, three different scenarios can
be realized [17] (for a review, see also Ref. [18]):

o If K =29, the number of channels is exactly sufficient to fully compensate the impurity
spin and the ground state is a spin singlet. This case, referred to as perfect screening,
gives rise to the usual Fermi liquid behavior similar to the single-channel Kondo model
discussed earlier in Section 4.

o If K < 28, the impurity spin is not fully compensated since there are not enough con-
duction electron degrees of freedom. The dressed impurity remains magnetic with spin
S" = S — K/2, resulting in the underscreened Kondo model.

o If X' > 25, the impurity spin is overscreened, resulting in the critical non-Fermi-liquid
physics characterized by power-law or logarithmic behavior of thermodynamic quantities.

As the perfectly screened case needs little explanation, we will focus here on the latter two
scenarios.

(1) Underscreened case K < 28

Consider the spin S maximally polarized along the z axis, |S, = S). Because of the antiferro-
magnetic coupling to K conduction electron channels (each with spin 1/2), part of the impurity
spin will be screened as the energy cutoff /A becomes lower than the Kondo temperature. The
remaining spin S’ = S — K/2 will be pointing along the z axis as shown in Fig. 4a. This
resulting spin can still interact with the conduction electrons because the latter can perform vir-
tual hops onto the impurity site from neighboring sites with characteristic strength |.J/| ~ A%/.J
obtained in second-order perturbation theory (here the running cutoff A < J under the RG
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Fig. 4: Schematic depiction of the strong-coupling ground state of the impurity spin S and K
conduction electron spins, together with the scaling trajectory for the running coupling constant
J when (a) K < 2S5, (b) K > 2S. A fixed point under the RG flow is denoted by asterisk (*).

process). The crucial point is that this coupling J’ is ferromagnetic. Indeed, a nearby electron
with | spin cannot jump onto the central site because all available orbital channels are already
occupied by spin-|. electrons as shown in Fig. 4a. Therefore, down spins do not interact with the
unscreened impurity spin. By contrast, spin-up electrons can lower their energy in second-order
perturbation theory by interacting with the unscreened spin S’ that is also pointing up. There-
fore, the residual coupling is indeed ferromagnetic and, as we know from Section 3, scales to
weak-coupling under the RG flow, J' — 0. Therefore, the J — oo fixed point remains stable,
as illustrated in the flow diagram in Fig. 4a.

(2) Overscreened case K > 2S

As in the previous case, the idea is to consider a two-stage process as the energy cutoff is re-
duced: First the Kondo singlet with the impurity spin forms, resulting from the strong coupling
J(A) — oo. That leaves a residual interaction J’ of the partially screened spin with the con-
duction sea. For a spin S along the z-axis, the conduction electron spins will “pile up” at the
impurity site at sufficiently low energy /A, generating an effective spin S” = K /2 — S that is
pointing down, opposite to the initial direction S, (see Fig. 4b). Similar to the previous case,
spin-down electrons do not participate in the virtual hopping onto the impurity site because all
the spin-down states are already occupied (Pauli principle). Just as before, spin-up electrons can
reduce their energy in second-order perturbation theory, generating an interaction |J'| ~ A?/.J
with the remaining impurity spin. The difference is that now S’ is pointing down, so that the
coupling J' to the conduction electrons is antiferromagnetic. However, we know that such an
antiferromagnetic Kondo interaction scales to strong coupling as the cutoff is reduced, meaning
that at sufficiently low A, the coupling J’'(A) is going to “blow up.” This is problematic because
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our perturbative argument for .JJ’ ~ A?/.J hinges on the fact that .J’ is small, otherwise perturba-
tion theory does not converge. We conclude that the above two-stage RG process is untenable,
meaning that the strong-coupling fixed point J(/A) — oo we assumed is actually unstable. The
logical conclusion is that instead .J(A) should get renormalized to some finite value, leading to
an intermediate-coupling fixed point denoted by the asterisk in Figure 4b.

Formally, one can see the appearance of the intermediate-coupling fixed point as follows. Con-
sider the scaling equation obtained by summing the diagrams in Figures 2a-d. It has the form
similar to Eq. (28) we derived in Section 3:

d(Jp)

B S 2 3 4
Tna ~ 2Up) +2K (Jp)" + O(Jp), (39)

except that the prefactor in the last term is now 2K instead of 2. This is because the closed loop
in the diagrams in Fig. 2c and 2d contributes an additional factor of K due to the summation
over the internal channel index 4 = 1. .. K. Notice now that the beta-function on the right-hand
side can be made to vanish at a fixed point

= (40)

provided J > 0 (antiferromagnetic). When K = 1 as in the single-channel Kondo model, the
result is meaningless because the expansion for the S-function in Eq. (39) does not converge.
On the other hand for K large, the expansion becomes meaningful because every additional
vertex yields a factor J* = 1/K and every additional loop yields a factor K(J*)? = 1/K.
Therefore, the expansion at the fixed point

d(pJ*) 1 1 c d
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is well defined, thus making plausible the existence of the intermediate-coupling fixed point J*.
This conclusion, originally reached by Nozieres and Blandin [17], was later confirmed by the
exact solution obtained by the Bethe ansatz [19,20] and by conformal field theory [21]. Unlike
the strong-coupling fixed point in the one-channel Kondo model whose low-energy properties
are described by Fermi-liquid theory [2], the intermediate-coupling case is characterized by its
non-Fermi-liquid behavior. For instance, the exact solution of the multi-channel problem [19,
20] shows that the magnetic susceptibility and the specific heat both vary as

XwgmwmA,K>z (42)
In the particular case of K = 2, the power-law is replaced by a logarithmic temperature depen-
dence:
C T
— ~ In{—]. 43
C (1) w

Of particular historical and practical importance is the (overscreened) two-channel Kondo prob-
lem for spin S = 1/2, which we shall analyze in more detail below.
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5.2 Two-channel Kondo problem

The peculiarity of the intermediate-coupling fixed point predicted by Nozieres and Blandin [17]
is that at low temperatures, the running coupling constant flows to a fixed point with a finite
value of J*, regardless of how strong or weak the initial (bare) coupling is. This is remarkable
because unlike the single channel model, nothing cuts off this scaling process and the impurity
spin can never be screened. This means that there is no special energy scale analogous to the
Kondo temperature in the single-channel model, and on approaching the fixed point, the system
looks the same on all length scales. This inherent scale-invariance is the hallmark of a critical
point, and like at any critical point, the correlation length £ (the length at which the impurity
spin affects the conduction electrons) diverges. It was shown by Affleck and Ludwig [21,22]
that this critical point is in fact described by a conformal field theory. Because of the criticality,
various quantities are expected to scale as power-laws (or logarithmically, which can be viewed
as a power-law with exponent zero). Indeed, as already mentioned, the intermediate coupling
fixed point in the two-channel Kondo model is characterized by a logarithmic behavior of the
magnetic susceptibility and the specific heat. The analysis by Ludwig and Affleck [22] further
predicts the resistivity of the non-Fermi-liquid form:

p~po+ AVT. (44)

A critical point generally requires fine-tuning, in other words, it may be destabilized by a rele-
vant perturbation in the space of the model parameters. The two-channel Kondo model provides
an illustrative example in that it is very sensitive to external perturbations. Below, we first con-
sider the behavior under the application of the magnetic field that couples to the impurity spin,
and then the effect of the channel anisotropy.

(a) Effect of the applied magnetic field

Because the impurity spin is never completely screened at the intermediate-coupling fixed point,
the multichannel model displays a residual ground-state entropy. For the case of impurity spin
S = 1/2, the residual entropy per impurity was calculated by the Bethe ansatz [19,24]:

S(0) = In lz cos <KL+2H . 45)

In the case of the two-channel model, the residual entropy % In 2 per impurity remains. However,
application of an external magnetic field that couples to the impurity spin has a dramatic effect:
It introduces a new energy scale T, =~ T (H /T ) "%/ K (T, ~ H?/Tk in the two-channel case)
that interrupts the scaling and below which the crossover to the screened, Fermi liquid behavior
occurs. As a result, the residual entropy is removed in the 7" — 0 limit. This is shown in Figure
5a, which displays the entropy as a function of temperature for several applied magnetic field
strengths (reproduced from the numerical solution in Ref. [23]). This removal of the residual
entropy has a spectacular signature in the temperature dependence of the specific heat. Above
the crossover scale T' > Tj, it behaves as a logarithm according to Eq. (43), but below this scale,
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Fig. 5: Results for the two-channel Kondo model in an applied spin (magnetic) field: (a) entropy
and (b) specific heat coefficient as function of temperature. The residual ground state entropy is
released by the application of the field, while the specific heat develops a Schottky-like anomaly
at the crossover scale T;. (Reproduced from Ref. [23].)

the loss of the residual entropy manifests itself in a Schottky-like anomaly in the specific heat,
shown in Fig. 5b. Notice that the value at the peak maximum can greatly exceed the H = 0
value of the specific heat, leading to a striking effect as a magnetic field is applied. A similar
phenomenon occurs in the heavy fermion compound Y;_,U,Pds, and it was suggested [25-27]
that the multichannel Kondo model may provide an explanation, although of course one must
remember that this is a dense Kondo lattice rather than an isolated impurity.

(b) Effect of the channel anisotropy

Unless there is a symmetry argument that requires the two orbital channels to couple to the
impurity spin with identical strength, one might consider lifting this degeneracy by assigning
two Kondo couplings J, # J_:

H:Zngcfwuckw—i-J+S~0'+—|—J,S‘0',. (46)

k,o p==%

Sometimes this is referred to as applying a ‘“channel field” in that it splits the channels by
an amount AJ = J, — J_ similarly to the Zeeman splitting in the case of the “spin field.”
It was argued that a real magnetic field can have this effect in the context of a quadrupolar
Kondo effect [27]. Like in the case of the spin splitting described above, the channel anisotropy
introduces a new crossover scale T.;, ~ (AJ)?/Tk that also cuts off the renormalization flow.
However in this case, the consequences are much more dramatic: It was shown by Nozieres
and Blandin [17] that the more strongly coupled channel will tend towards the strong-coupling
fixed point (as in the regular Kondo screening), whereas the weakly coupled channel will tend
towards the zero-coupling fixed point. The resulting RG flow of the running coupling constants
J+(A) is shown schematically in Fig. 6. The intermediate-coupling fixed point (marked by the
black circle) is only stable along the J, = J_ line but unstable for any small A.J. In particular,
the fixed point is unstable along the separatrix shown with the dashed line in Fig. 6. The flow
trajectories approach this separatrix on either side of the J; = J_ line, depending on the sign
of the bare AJ.
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Fig. 6: Renormalization group flow of the anisotropic two-channel Kondo model for impurity
spin S = 1/2 in the phase space of coupling constants. The flow to the intermediate coupling
fixed point (filled circle) is stable only along the red line J,. = J_. The dashed blue line
indicates the separatrix.

In conclusion, to observe the critical behavior of the two-channel spin-1/2 Kondo model and the
associated non-Fermi liquid behavior, a perfect channel symmetry is required. In practice, this
may be achieved if, for instance, the crystal point-group symmetry protects the system against
the channel anisotropy. A conclusive experimental evidence of the non-Fermi-liquid behavior
associated with the two-channel Kondo model is still lacking. This is partly due to the fact that
the most promising candidates are in the dense Kondo lattice (rather than isolated impurity)
limit. Nevertheless, the overscreened multichannel Kondo model displays rich physics and
historically has played a very important role in the development of various theoretical tools
used to study strongly correlated electron systems.

6 Kondo model in the presence of Hund’s coupling

In the previous section, we have introduced the multi-channel Kondo impurity model. In par-
ticular, we stated that in the perfectly screened case K = 25, the ground state of the problem
is a spin-singlet, similar to the one-channel Kondo impurity model. A practical question arises,
which we have not yet addressed: How does the Kondo temperature of such a multi-channel
model depend on the size S of the impurity moment? Despite the deceiving simplicity, the
answer to this question is not so simple and has not been fully appreciated until fairly recently,
although the problem has a very interesting history dating back to the 1960s. One natural way
of creating a large moment .S on the impurity site is by Hund’s coupling between 2.5 singly
occupied orbitals, each with spin s = 1/2 (we shall use lower case s when referring to such a
constituent impurity spin 1/2, not to be confused with the conduction electron spin o). In this
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section, we shall present the Poor Man’s scaling theory of this problem and study its depen-
dence on the size S of the impurity moment. The following discussion is based on the results
of Ref. [28].

Let us consider K spin s = 1/2 impurity spins at a single site, ferromagnetically interacting
via Hund’s coupling Jy, each coupled to a conduction electron channel of bandwidth D via an
antiferromagnetic interaction J:

K 2 K
p=1 p=1

Ko,
where ¢, is the conduction electron energy, ;1 = 1,.., K is the channel index and o, =
Yk cLa O Cyp, 18 the conduction electron spin density in channel p at the origin. We im-
plicitly assume that Hund’s scale K .Jy is smaller than D.
The behavior of this model is well understood in the two extreme limits [17]: for Jg = oo,
the K spins lock together, forming a K -channel spin S = K /2 Kondo model studied in the
previous section. The opposite limit J; = 0 describes K replicas of the spin-1/2 Kondo
model. Paradoxically, the leading exponential dependence of the Kondo temperature on the
coupling constant kT ~ De~'/2/7 in these two limits is independent of the size of the spin.
Naively, interpolating between these limits, one would conclude that the spin size does not enter
into the Kondo temperature. However, it has been long known experimentally that this is not
the case: the Kondo temperature of dilute d-metal impurities shows a striking dependence on
the impurity spin, as shown in Fig. 7. The left panel is borrowed from the classic review paper
by Daybell [29], based on the original experimental finding reported by Daybell and Steyert in
1968 [30]. What they noticed is that the Kondo temperature has a characteristic V-shape when
plotted against the occupation of the d-electron level. For clarity, these data have been re-plotted
as a function of the impurity spin in Fig. 7b, showing an impressive suppression of the Kondo
temperature over five orders of magnitude when S is varied from S = 1 in Ti>" and Ni** to
S =5/2in Mn?*.
Amazingly, this exponential dependence of the Kondo temperature on the impurity spin size
had been predicted in 1967 by Schrieffer [31] before the experimental findings (in fact, Daybell
and Steyert used Schrieffer’s prediction to fit the data in Fig. 7a):
25-1
T (S) =~ Dexp (—%) =Tk (%) , (48)

1/2J¢ 5 the leading exponential term in the Kondo temperature for spin 1/2

where Ty ~ De™
(cf. Eq. 34), and we have set kg = 1 for convenience. Schrieffer obtained this result in the limit
of infinitely strong Hund’s coupling /7, which we will explain later in this section.
Intriguingly, the experimental results and Schrieffer’s early work from the 1960s were largely
forgotten and have been re-discovered much more recently by the author and P. Coleman [28],
who used the framework of Anderson’s Poor Man’s scaling to deduce the exponential suppres-
sion of the Kondo temperature with the impurity spin and generalized Schrieffer’s analysis to
finite Jg. This interesting phenomenon, referred to as the Kondo resonance narrowing due to
Hund’s coupling, is the main subject of this section.
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Fig. 7: Measured values of the Kondo temperature T in host alloys Au, Cu, Zn, Ag, Mo, and
Cd containing transition metal impurities: (a) plotted vs. the d-level occupation of the impurity
(Reproduced from Ref. [29]); (b) plotted vs. the nominal size S of the spin on the impurity site
(Reproduced from Ref. [28]). Solid line is the fit to Eq. (63) with Ay = JyS.

6.1 Poor man’s scaling with Hund’s coupling

We employ the Poor Man’s scaling approach [13] described in detail in Section 3, in which
the leading renormalization group (RG) flows are followed as the conduction electron degrees
of freedom are systematically integrated out from the Hilbert space. The present exposition
follows closely that in Ref. [28], where the scaling theory of the Kondo problem in the presence
of Hund’s coupling was first derived.

In the course of renormalization, one must be careful to consider the cutoff scale A relative
to the other scales in the problem, in particular Hund’s coupling Jy. We thus break up the
energy integration into two intervals: (I) JyS < A < D and (I) T} < A < Jy S, where T} is
the renormalized Kondo temperature (to be determined) below which the problem runs off to
strong coupling.

Regime I: JgyS < A < D. In this regime Hund’s coupling has no effect to leading order on
the renormalization of the Kondo coupling J. In other words, the impurity s = 1/2 spins are
decoupled from each other at high energies/temperatures, as illustrated schematically in Fig. 9a.
We then arrive at the same equation (28) for the 5-function obtained earlier in Section 3:

d (Jp) o 2 3
ol = —2(Jp)*+2(Jp)°. (49)

The Hund’s coupling itself also gets renormalized, and the contributions to the /5 function are

captured by the Feynman diagrams in Fig. 8. We shall not go into the details of calculating
these diagrams but will quote the final result:

d (Jup)

_ 2
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Fig. 8: The lowest-order Feynman diagrams in the RG flow of Hund’s coupling. Solid lines
denote the conduction electron propagators and dashed lines the impurity spins’ (labeled by
the channel number i, 1i'). A square vertex denotes Hund’s coupling Jy, a circle the Kondo
interaction J).

Thus the Hund’s strength itself becomes a running coupling constant, whose value is renormal-
ized down as the Kondo coupling Jp(A) grows:

In (jH(A)> = —4/(pJ(A))2d(1nA). (51)

Jn
A

This downward-renormalization of the Hund’s coupling is, however, weak and to leading loga-
rithmic order, we can approximate .J; (/) to be constant.

Integrating both sides of Eq. (49) similarly to the procedure in Section 3.5, we find that as the
cutoff A is reduced from the electron bandwidth D down to the Hund’s scale Jy S, to leading
logarithmic order we obtain a new renormalized Kondo coupling

JuS

) (52)
A=D

1 1
- — 44
2 2, "

which grows upon renormalization as expected, J; > J. Expressing the bare Kondo coupling
in terms of the Kondo temperature 2.Jp = In~'(D /T ), we can rewrite the above expression as
follows (we set kg = 1 for convenience):

2pJ; =In"* <JLS> . (53)

Regime II: T}, < A < JgS. Once A is reduced below .Jy S, the individual local moments
become locked into a spin S = K/2, as illustrated schematically in Fig. 9. This is the same
effect as discussed by Jayaprakash ef al. in Ref. [32] for the case of two impurities coupled by
ferromagnetic RKKY interaction and as realized in the limit of J; — oo analyzed by Schrieffer
in his 1967 paper [31].

The low-energy properties of the system in region Il are described by a Kondo model of spin
K /2 with K conduction electron channels:

K
Hyy=J(A)) S 0o, (54)
p=1
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Fig. 9: (a) Schematic showing the behavior of the running coupling constant guz(A) =
J(A) p Ko on a logarithmic scale, with K 4 the effective number of conduction electron chan-
nels per impurity spin (Kz = 1 in region I and K in regions Il and IIl). (b) Schematic showing
effective moment ,ufﬁc(T ) =T x(T) in terms of the susceptibility x(T') showing an enhancement
in region II (see Eq. 68) and a loss of localized moments due to Kondo screening in region III.

however with the renormalized value of the Kondo coupling J*. In order to obtain the value of
J*, we must project the original model onto the subspace of maximum spin S. By the Wigner-
Eckart theorem, any vector operator acting in the basis of states |.S.) of spin S = K/2 is related
by a constant prefactor to S itself:

Summing both sides of the equation over the impurity index ;o = 1, ... K, one obtains
(SS.1> " s,lSS.) = gs K S.. (56)
o

However, since ) WSy = K's = S, one arrives at the conclusion that g¢ X' = 1, hence de-
termining the value of the constant coefficient g5 = 1/K in Eq. (55). Therefore, the Kondo
interaction in the original model (47) can be cast in the form

K K
IY su0,=1Jgs» S-o,. (57)
p=1 p=1

Comparing this equation with Eq. (54) and substituting g¢ = 1/K, we arrive at the following
expression for the effective Kondo coupling:

J =

J
25" (58)

=~
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This equation captures the key effect of the crossover from region I to region II in Fig. 9. This
result was first derived in the early work on the multi-channel Kondo problem by Schrieffer [31],
where the limit of /i — oo was implicitly assumed, and also appears for the particular case of
K = 2 in the study of the two-impurity Kondo problem by Jayaprakash et al. [32].

Having established the value J* of the coupling constant, we now proceed with the Poor Man’s
renormalization of the effective model in Eq. (54). The scaling equation for J*(A) in region II
involves calculating the same diagrams for the 7" matrix (see Fig. 2) as we have done earlier for
the multichannel Kondo model in Eq. (39), with the result

d(J*p)
dln A

= —2(J"p)* + 2K (J*p)’, (59)

where the prefactor K in the last term appears due to the summation over the channel index
i = 1... K inside the conduction electron bubble in the diagrams in Fig. 2c and 2d.

To one loop order, the -function for J*(A) in region II is identical to that of region I, see
Eq. (49). However, now the value of J* is K times smaller according to Eq. (58). To avoid
the discontinuous jump in the coupling constant at the crossover from region I to region II in
Figure 9, it is more convenient to consider a dimensionless coupling constant

Jeff = J*(A) p Ker , (60)

which is designed to be smooth at the crossover from I to II by requiring that the effective
number of channels K.y = 1 and K in regions I and II, respectively. It follows from Eq. (59)
that this continuous variable satisfies

dger 2 2

e S T 61
1o A Kt Jefr T Ko Geft » (61)

so the speed at which it scales to strong coupling becomes K times smaller in region II (see
Fig. 9a). Solving this RG equation to leading order, and setting g.;r(A = Tj) ~ 1, we obtain
T ~ (JuS) (D/JyS)™ ¢~ 777 for the renormalized Kondo scale. Comparing this with the bare
Kondo scale T ~ De~'/27? and denoting JS = Ay, we deduce

T 28 T 25—1
Ty ~ Ag (—K) =Ty (—K) : (62)

showing that the effective Kondo temperature is exponentially suppressed by a factor of (25 —
1) compared to its bare value for spin 1/2. When plotted on a logarithmic scale, the Kondo
temperature is expected to scale linearly with the size of the impurity spin:

A
InT5(S) = In Ay — (25) In (—°> : (63)
Tk
which fits well the experimental data by Daybell and Steyert [30] for dilute d-electron impurities

in Fig. 7.
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Regime III: A < Tj. When the energy cutoff (or temperature) drops below the Kondo
temperature in Eq. (62), the Poor Man’s scaling predicts that the Kondo coupling runs off to
infinity, as discussed in detail in Section 3. In this regime, the perturbative renormalization
scheme employed above breaks down and alternative methods are necessary to establish the
fate of the ground state.
In essence, Hund’s coupling converts a one channel Kondo model (more precisely, K copies of
the one-channel model) to a /& -channel Kondo model but with a larger impurity spin S = K/2.
As discussed in Section 5, the behavior of the perfectly screened multi-channel Kondo model
is known from the seminal work of Nozieres and Blandin [17] to be a Fermi liquid, with the
conduction electrons screening the impurity spin. Of particular interest is the Wilson ratio
defined in Eq. (36), which for the K-channel Kondo model was shown [17] to be
w2+ 6
3
reducing to the value W = 2 in the one-channel case [2]. The above result holds in the limit
of infinitely strong Hund’s coupling. For a finite value of Jy, a crossover occurs between a 1-
channel (region I) and a K -channel Kondo model (region II), as illustrated in Fig. 9a. While the
Wilson ratio is difficult to determine in this case, we expect its value to depend on the ratio n =
U*/J}, where U™ is the effective intra-channel interaction in the underlying Anderson model
in the limit 7" — 0, and Jj; is the renormalized Hund’s coupling (recall that Hund’s coupling
is a running coupling constant whose value is not constant, see Eq. (50)). We estimate [28] the
Wilson ratio to be

K -1

which reproduces the result of Eq. (64) in the n — 0 limit (Jg — 00).

6.2 Experimental ramifications of Hund’s coupling

A. Effective moment crossover as a function of temperature

One of the observables sensitive to the Kondo narrowing is the effective spin on the impurity
site, which we expect to change from spin 1/2 in regime I at high temperatures (1" > Jz.5) to
effective spin S = K//2 at temperatures much lower than Jy. The effective impurity moment
can be extracted from the Curie magnetic susceptibility, which we estimate to be:

Regime I: A spin-1/2 disordered paramagnet is characterized by a high temperature Curie
magnetic susceptibility (g is the electron g-factor):

K (1 2
a(@) =5 (— + 1) o) (66)

with effective moment (plg)? = 3K /4 in the conventional units of (gup)?.
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Regime II: The magnetic impurity susceptibility in region II can be calculated perturbatively
for T' > T7}. by keeping the leading logarithms In(7 /T ) (see e.g. Ref. [7]):

. (gps)? 1 1
o= gg 4 ) [ 1-——— 40 ——
o )

ey

Substituting S = K/2, we see that the magnetic moment is enhanced at the crossover

(67)

from region I to II as expected, with the ratio given by

(/i) = (K +2)/3 (68)

Note that the above ratio is equal, up to the factor of 2, to the Wilson ratio in Eq. (64),
which was obtained in the idealized Jy — oo limit.

Regime III: Below the Kondo scale 77, the Curie contribution to the susceptibility vanishes
because the impurity moment becomes completely screened, as already mentioned above.

The temperature behavior of 7'y (7"), which is proportional to the effective moment squared,
is plotted schematically across these three regimes in Fig. 9b. As described above, it shows
an enhancement of the effective moment on the crossover from regime I to II and eventually
vanishes due to Kondo screening as 7" — 0 in regime III.

B. Suppression of the Kondo temperature

Next, we return to the behavior of the Kondo temperature, Eq. (62) which is the central result of
this section. It follows from fitting the experimental data in Fig. 7 to our formula Eq. (63), that
the bare value of T is of the order of 3000 K (kgTx ~ 0.3 eV), too large to observe for dilute
spin-1/2 impurities. However, the Kondo temperature is drastically suppressed for larger values
of spin, for instance 7T ~ 20 K for Fe impurities (S = 2) in Cu [30], from which we extract
the ratio Tx /Ay = Tk /(JuS) ~ 0.2 consistent with the known value of Hund’s coupling
Jy ~ 0.7 eV in d-electron metals. In the case of Mn impurities (S = 5/2), the suppression
is so dramatic that 77 is unobservably low, probably in the milli-Kelvin range. In this regard,
it is fitting to quote a visionary remark from Schrieffer’s 1967 paper [31] (written before the
experimental discovery!):

“Since exp(—1/J*p) varies so rapidly with J*p, is it not possible that for modest variations of
this parameter, T could sweep from millidegrees to beyond the melting point of metals?”

C. Kondo resonance narrowing

The exponential suppression of the Kondo temperature as a function of impurity spin in the
limit of large Hund’s coupling has an important consequence for the electron spectral function
Ax(w) = —2Im(GE(w)), where G is the retarded propagator. Detailed analysis of the spec-

tral function is beyond the subject of this lecture, but for our purposes, it is sufficient for the
reader to know that at low temperatures 7' < T, the formation of the spin singlet in the Kondo
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Fig. 10: Local electron density of states calculated with NRG at T' = 0 for a particle-hole
symmetric two-orbital Anderson impurity model with varying strength of Hund’s coupling J.
The Coulomb parameter U and the hybridization Ay were chosen such that the system is in the
Kondo limit. The Kondo resonance width is dramatically reduced upon increasing J (see inset
for J =U/10). (Reproduced from Ref. [33])

impurity model manifests itself in a sharp peak near zero energy, known as the Abrikosov-
Suhl resonance. The width of this peak is known to be of the order of the Kondo temperature.
Thus, the suppression of the Kondo temperature because of Hund’s coupling on the impurity
site should result in the commensurate narrowing of the Kondo resonance peak. Direct experi-
mental measurement of the Kondo resonance is not an easy task, however resonance narrowing
was noticed in numerical renormalization group study of the two-orbital Anderson model by
Pruschke and Bulla [33], reproduced in Figure 10. A dramatic resonance narrowing, by a factor
of 1077, occurs by introducing a large value of Jy = U/10, where U is the interaction strength
in the Anderson impurity model. While not understood at the time, this numerical evidence
is in perfect agreement with the Kondo resonance narrowing effect described above. More re-
cently, a number of numerical studies have confirmed this effect (for a comprehensive review,
see Ref. [34]).

In itinerant systems, such as the iron-based superconductors, Hund’s coupling was also found
to play an important role, enhancing the effect of electron correlations. In particular, the so-
called coherence temperature 7™, as inferred from the broad “hump” in resistivity measurement,
was predicted to decrease drastically as the Hund’s coupling strength is increased in numerical
calculations [35]. Of course in this case, the localized moments are periodically arranged (as
described by the Hubbard or periodic Anderson model) rather than centered on isolated impurity
sites. Nevertheless it is tempting to associate the coherence temperature 7™ with the typical
lattice Kondo scale T%;. The latter should be suppressed dramatically by the Hund’s coupling,
explaining qualitatively the behavior in the Hubbard model. For more details, we refer the
reader to the review by Georges et al. [34].
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Conclusions

In this Lecture, we have outlined the basic ideas of the renormalization group (RG) approach
and shown how they apply, in the simplest form, to the Kondo impurity model. This simplified
renormalization procedure, known as Poor Man’s scaling, captures the salient features of the
Kondo problem. In particular, we showed how logarithmic singularities arise and how they
can be summed up to result in the RG equation for the running coupling constant .J(A) that
is cutoff-dependent. The essential feature of the antiferromagnetic Kondo model is that the
running coupling constant grows upon renormalization and the resulting theory tends to strong
coupling. At that point, the perturbative expansion in J is no longer reliable and an alternative
approach is called for. We now know that the ground state of the Kondo model turns out to
be a Fermi liquid, with impurity spin completely compensated (screened) by the conduction
electrons. This important result was first obtained by Wilson’s numerical renormalization and
Nozieres’ phenomenological theory, and later confirmed by the exact solution of the Kondo
model.

Having established these results for the simplest Kondo model, we then considered somewhat
more complicated models that arise in realistic systems: the multichannel Kondo problem and
the effect of Hund’s coupling at the impurity site. Naturally, given the time and space con-
straints, we have only scratched the surface in analyzing these more complex cases. The reader
is referred to the original papers and review articles for more detailed information, as well as
to an excellent textbook by Yamada [6] and an encyclopedic monograph by Hewson [7]. Nev-
ertheless, we hope to have given the reader a sense of what the Kondo problem is and how
one goes about solving it within the scaling approach. The appeal of the Kondo problem also
lies in the fact that, in addition to its rich underlying physics, the ideas we have developed in
the course of this lecture are quite general and apply to many other branches of physics, both in
condensed matter and in high-energy physics. Personally, I find this very satisfying and perhaps
this accounts for the reason why, in addition to its historical significance, the Kondo model is
such a fascinating topic. Finally, let me add that the lattice generalization of this model, the so-
called Kondo lattice model, is still unsolved and remains an active subject of research to date,
with important consequences for heavy fermion materials (see lecture by Piers Coleman in this
School).
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1 Introduction

This lecture deals with a particular implementation of the renormalization group idea: Wilson’s
non-perturbative numerical renormalization group (NRG) method for quantum impurity models
[1]. The technique was originally developed in the context of the Kondo model for magnetic
impurities (such as Fe or Mn) in non-magnetic metals (such as Cu, Au, Ag etc).

The Kondo model is defined by the Hamiltonian

Hin=J S -5+ Zé‘kg C,Tmc,w : (1)
ko

and describes a localized impurity spin S interacting antiferromagnetically (J > 0) with the
conduction electrons of the host via their spin density S, at the impurity site. Unlike the case
of non-magnetic impurities, or potential scatterers, magnetic impurities have internal dynami-
cal degrees of freedom that result in inelastic scattering of conduction electrons. This makes
the Kondo problem, the scattering of electrons from magnetic impurities, a genuine many-body
correlation problem. Wilson used the NRG to solve the many-body Hamiltonian (1) and demon-
strated conclusively that a S = 1/2 magnetic impurity embedded in a non-magnetic metal has
its magnetic moment completely screened by the surrounding conduction electrons, provided
the temperature is sufficiently low, namely for 7' < Ty, where Tx = /JNp e~ V//NF is a dy-
namically generated low-energy scale called the Kondo scale (see Sec. 2). This pioneering work
established the formalism and gave a detailed analysis of the fixed points and thermodynamics
of the Kondo model and, later, also of the Anderson impurity model. The NRG has since been
applied to many more quantum impurity models [2—4]. In addition, it has been extended to the
calculation of equilibrium dynamical and transport properties [5—10], e.g., dynamical suscepti-
bilities, resistivities and thermopower or the conductance through quantum dots [11], thereby
making the NRG a useful tool for interpreting experiments that probe these quantities.
Despite this progress, the NRG is still under development, and important challenges remain
to be addressed. Two such challenges are (i) to extend it to more realistic multi-orbital and
multi-channel models (e.g., for use in realistic modeling of materials), and (ii) to extend it to
the transient and non-equilibrium steady state response of quantum impurity systems. Recent
progress and ideas in these two directions are outlined in Sec. 6.
The outline of this lecture is as follows: Quantum impurity models are introduced in Sec. 2;
the linear chain representation of such models is described, and the first step in the NRG pro-
cedure is also indicated there (the “zeroth approximation”). Anderson impurity and Kondo
models are described, as is the spin-boson model and its fermionic equivalents: the anisotropic
Kondo model (AKM) and the interacting resonant level model (IRLM). For a direct treatment
of bosonic models within NRG, see the Lecture by K. Ingersent.
Wilson’s NRG method is described in Sec. 3, and the calculation of physical properties is out-
lined in Sec. 4. In Sec. 5, we describe the recently introduced complete basis set [12] and its
use in constructing the full density matrix [10]. Applications to thermodynamics and Green
functions are given. An outline of some recent developments using the NRG is given in Sec. 6,
and Sec. 7 summarizes with possible future directions.
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2  Quantum impurity models

Quantum impurity models describe systems where the many-body interaction acts at one or only
a few sites, the “impurity,” and the impurity is coupled to a large system, the bath, consisting of a
macroscopically large number of non-interacting particles. These particles can be either bosons
(e.g., phonons, magnons, photons, particle-hole pairs, etc.) or fermions (e.g., electrons in the
conduction band or quasiparticles in superconductors). The “impurity” may be a real impurity,
such as an Fe impurity (in Au), or a two-level atom (coupled to the electromagnetic field), or
just a confined region behaving like an artificial atom, as in the case of semiconductor quantum
dots (coupled to leads). It may also simply represent the lowest two quantum mechanical states
of a system with a double-well potential, as in the case of quantum tunneling between macro-
scopic fluxoid states in a superconducting quantum interference device, which can be used to
realize a qubit for quantum computation. Two magnetic impurities in a non-magnetic metal at
a distance R apart, interacting via the RKKY indirect exchange Jrkky may also be regarded
as a quantum impurity system [13]. Analogues of this in nanostructures, such as double quan-
tum dots attached to leads, also exist. The transfer of electrons between donor and acceptor
molecules in photosynthesis and other biological processes may also be crudely described in
terms of a two-state system coupled to environmental degrees of freedom (solvent). Concrete
models describing the above situations go under the names of (isotropic and anisotropic) single
and multi-channel Kondo models, the Anderson impurity model, and the dissipative two-state
system [14,15]. They describe a large number of physical systems of current experimental and
theoretical interest. Quantum impurity models are also of relevance in the study of correlated
lattice models, such as the Hubbard or Kondo lattice models, since the latter are often well
approximated, via the dynamical mean-field theory, by a local impurity model embedded in a
medium that has to be determined self-consistently [16].

Historically, interest in quantum impurities arose when magnetic impurities were found to be
present, albeit in very low concentrations, even in apparently very pure metals such as Au or Ag.
In particular, measurements of the resistivity of Au as early as the 1930’s showed an unexpected
minimum at low temperature (Fig. 1). The puzzle of the resistivity minimum was resolved by
Kondo in 1964, who showed that a small concentration c;,,, of magnetic impurities modeled
by Eq. (1) gives rise to an additional temperature dependent term in the resistivity of the form
PK = —Cimp b In (T'/ D), which increases with decreasing temperature. The balance between
the decreasing phonon contribution behaving as pphonon = a7 and the increasing Kondo con-
tribution gives rise to the observed resistivity minimum. The logarithmic contribution to the
resistivity, found by Kondo in perturbation theory, cannot hold down to 7" = 0 as the total
scattering remains finite in this limit (unitarity limit). Wilson’s non-perturbative NRG provides
a way to obtain the correct behavior of the resistivity p(7") from high temperatures through a
crossover regime at 7' ~ Tk all the way down to zero temperature [see Fig. 11a showing the
analogous quantity for a Kondo correlated quantum dot, the conductance G(7)].

The general form of the Hamiltonian for any quantum impurity system is given by

H = Himp + Hint + Hbath 5 (2)
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Fig. 1: Resistivity R(T) versus
temperature T|K] of two samples of
“pure” Au showing the first observa-
tion of the resistivity minimum [17].
The expected behavior of R(T) for a
pure metal with weak static disorder is
a T° term due to phonons and a satu-
ration to a constant value, pg, at'T' = ()
due to static disorder. The former is
seen in the experiment, but at low tem-
perature an additional logarithmically
increasing contribution is also found.

where Hiy,;, describes the impurity, a small quantum mechanical system with only a few degrees
of freedom, Hy,¢1, represents the bath, and H;, is the interaction between the two.

We next consider explicit examples and introduce the linear-chain form of quantum impurity
models, which is the starting point for an NRG treatment.

Anderson impurity model

The prototype model for strongly correlated systems is the single-band non-degenerate Ander-
son model [18,19],

HAM - Z €d Ndo + U NgrNg) + Z de(cltoda + djrcko) + Z €k Czacka . (3)

ko ko
NS >

- -~ -~

Himp Hing Hypatn
The first two terms describe the impurity, represented here by a non-degenerate s-level of energy
g4 (see Sec. 6 for generalizations). Electrons in the local level are subject to a Coulomb repul-
sion U that acts between spin-up and spin-down electrons. The local level hybridizes with the
Bloch states of a non-interacting s-wave conduction band, the last term in H 4;;, with amplitude
Vka- The properties of the model are determined by the hybridization function

Aw) =7 [Vial*d(w — &), 4)
k

which, like the conduction density of states p(w) = >, 6(w — €;), will in general be a compli-
cated function of energy. In cases where the interest is in the very low-energy physics, it is a
good approximation to set A(w) ~ A(er) = A. In applications to pseudogap systems [20,21]
or to effective quantum impurities in dynamical mean-field theory, the full frequency depen-
dence has to be retained. In applications to quantum dots, the impurity is attached to two baths,
the left and right leads, as shown in Fig. 2.!

! Although such dots are attached to two baths (the left and right leads), for a single level on the dot, only
the even combination of left and right lead states couples to the dot. When several levels on the dot are active
in transport, one will have a two-channel multi-orbital Anderson model with intra- and inter-orbital Coulomb
interactions playing a role (e.g. Hund’s exchange).
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Fig. 2: A quantum dot with charg-
ing energy U > A and level en-
ergy €4 connected to left/right leads
Ho—pp = Do ekaacLQUCkQJ via
tunnel barriers. The gate voltage
Vy ~ €q allows changing €, relative
to ep and thereby the dot occupa-
tion ng fromng = 1 foreq = —U/2
(Kondo regime) to ng = 0 through a

mixed valence regime withng ~ 0.5
foreqa~ 0. [22,23]

Kondo impurity model

Closely related to the Anderson model, is the Kondo model, which was briefly mentioned in the
introduction. We write its Hamiltonian as

HKM = _gMBBSZ+J§'§O+Z€kCl];aCk07 (5)
ko
——— N —
Himp Hint Hbath
where we included a magnetic field term Hi,, = —gupBS. to indicate the impurity spin

S (taken here to be S = 1 /2 for simplicity), which interacts via an exchange interaction of
strength J with the conduction electron spin-density 5, = > __, fga Opo' foor at the impurity
site, where fo, = Y, ¢y, is the local Wannier state of the conduction electrons at the impurity
site. The connection to the Anderson model can be established formally via a Schrieffer-Wolff
transformation. In essence, provided ¢, < 0 and 4 + U > 0 so that a single electron occupies
the local level in the Anderson model, the physics of both models will be the same at low
temperatures.” In this case, one finds the correspondence J = 2V?(1/(U +¢,4) — 1/e,4), which
reduces to 8V /U for the symmetric case ¢, = —U/2 (see discussion of zero bandwidth limit
below).

Linear chain representation

For a numerical treatment of the Anderson and Kondo models, it is useful to reformulate them
in the form of linear chain models [2,3]. This will allow them to be iteratively diagonalized by a
procedure to be described in Sec. 3. We carry this out for the Anderson model: First notice that
the impurity state in the Anderson model hybridizes with a local Wannier state |00) = f|_|vac),

2Strictly speaking, one should also include a potential scattering term in the Kondo model, of the form
S iwre VES e, for this to be true.
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to 4

t2 tm—l :
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Himp & &n

oXle

Fig. 3: The linear-chain form of the Anderson model (9). Hiyp, = €4ng + U ngtngy. The site
energies &, and hoppings t,, follow from A(w).

with |vac) the vacuum state, and fJ given by

Vi, = Viacl, (6)
k

The value of V follows from the normalization { fo,, fi } =1

1/2
V= (Z md|2> : (7)
k

Using the above local state, one can apply the Lanczos procedure (Appendix B) for tridiagonal-
izing a Hermitian operator, such as Hy,1,, to obtain

Hbath = Z €k ngcko— — Z [En fgofno + tn(f:wfn—l—lo + HC):| (8)
ko

o,n=0

with site energies ¢,, and hoppings t,, depending only on the dispersion €, and hybridization V4
through the hybridization function A(w), resulting in the linear chain form [2]

HAM =¢&qNdq + U NarNa| + VZ <f(J)[Udcr+ dlf(]a)—i_z |:€Tl f?iafna—i_ tn(frtofn+lo+ f:ﬂrlcrfncr)]

o,n=0
©))
depicted in Fig. 3 (with ng = ZU Ng4y). Although formally this model looks like the one-
dimensional real-space models treated by the DMRG method [24, 25], the interpretation here
is not in terms of electrons hopping on a one-dimensional lattice in real-space. Instead, as will
become clearer in Sec. 3, each successive site added along the chain corresponds to adding
lower-energy degrees of freedom, measured relative to the Fermi level. By considering longer
chains one can then access lower energies.
The same procedure can be used to reformulate any quantum impurity model in terms of an
impurity site with local interactions attached to a one-dimensional chain of non-interacting
sites. For example, the Kondo model (5) can be rewritten as

HKM = _g:uBSZ + J§ : §0 + Z |:€nf:wfno' + tn(f);o'fn+1o' + fl+1o’fno) . (10)

o,n=0
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Zeroth-order approximation for Anderson/Kondo models

A zeroth-order (high energy) approximation to the spectrum of the Anderson model can be
obtained by considering just the coupling of the n = (0 Wannier state to the impurity and
neglecting all others (the zero-bandwidth limit),

Hay ~ Hy = eana+ Unanay + V'Y (fd, +db fo, ). (1)

There are 16 many-electron states |ng, 10), which can be classified by the conserved quantum
numbers of total electron number N, total z-component of spin S’ and total spin S. Us-
ing these symmetries we can diagonalize the block matrices R,e’ 5.5, to obtain the many-body
eigenstates | N, S, S,, r) and the corresponding eigenvalues. For example, in the product basis
|na)|no), the Hamiltonian for N, = 1,5 = 1/2, S, = £1/2 is given by

Ed %
Hy 15— _ =
Ne=1,8=1/2,5,=+1/2 < vV oo >

Ey = (5di\/efl—|—4V2) /2.

Proceeding similarly for the other Hilbert spaces (exercise), we find that for the particle-hole

with eigenvalues

symmetric case ¢4 = —U/2 in the strong correlation limit U > V2, the spectrum separates
into two groups of states, one group of low-energy states lying close to the (singlet) ground
state with spacings O(V?2/U) and one group of high-energy states lying at energies O(U/2)
higher and also split by O(V?2/U). This limit corresponds to a singly occupied impurity level
effectively behaving as S = 1/2. In fact, the 8 lowest states correspond to those obtained from
a zeroth-order approximation to the spectrum of the Kondo model via

. Jr - .
HKM%HOEJS-§0:§[(S+§0)2—52—§% . (12)

The Kondo model is therefore the low-energy effective model of the Anderson model in the
limit of strong correlations and single occupancy. By comparing the splitting of the two lowest
levels in the Kondo model, the singlet and triplet states, with the corresponding splitting of
the same levels in the Anderson model one finds the relation between the bare parameters of
the models to be J = 8V?2 /U, in agreement with the value obtained from the Schrieffer-Wolff
transformation J = 2V?(1/(U + &4) — 1/£4) upon setting ¢4 = —U /2 [26].

Within the above zeroth-order approximation, / ~ H, of the Kondo (and Anderson) model,
excitations are unrenormalized. The singlet-triplet excitation (splitting) takes the bare value
J. The key ingredient of Wilson’s NRG, to be discussed in the next section, is a controlled
procedure for adding the remaining states n = 1,2,... neglected in the above zero band-
width approximation. As we shall see in the calculation of dynamical quantities below, this
leads to a drastic renormalization of the spin and single-particle excitations, such that the
relevant excitations of the Kondo model are not on the bare scale J but on the Kondo scale
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Tx = D(pJ)Y?exp(—1/pJ), where p = 1/2D is the density of conduction states. One can
interpret this large renormalization J — Tk as a renormalization of a bare tunneling ampli-
tude (J, = J) due to the dissipative effects of the bath of conduction electrons by a mapping
of the (anisotropic) Kondo model onto the dissipative two-state system (also called the spin-
boson model). We introduce this and its fermionic equivalents in the next subsection, partly
to make the above connection and partly to show that the linear chain representation, which is
the starting point for NRG calculations, applies also to bosonic quantum impurity models. For
a detailed discussion of the bosonic models within NRG, we refer the reader to the lecture by
K. Ingersent.

Spin-boson model and fermionic equivalents

The Hamiltonian of the spin-boson model (SBM) is given by,

1 1 1
Hep = — §A001 + 560'2 + 502 EZ A (CLi + ai) + Zi:wi (aiai + 1/2> . (13)

J/

H?;p I;i:t H;;h

The first term H;,,,, describes a two-level system with bias splitting € and bare tunneling am-
plitude Ay. The 0;—,, . are the Pauli spin matrices. The third term, Hy,s1, is the environment
and consists of an infinite set of harmonic oscillators (7 = 1,2,...,00) with ai(aj) the an-
nihilation (creation) operators for a harmonic oscillator of frequency w; and 0 < w; < w,,
where w. is an upper cut-off frequency. The non-interacting density of states of the environ-
ment is denoted by g(w) = >, 6(w — w;) and is finite in the interval [0, w.| and zero otherwise.
Finally, H;; = %az > Aila; + aj) describes the coupling of the two-state system coordi-
nate o, to the oscillators, with \; denoting the coupling strength to oscillator i. The function
IF(w+i6) = > ,(Ni/2)*/(w — w; +46) = [dw' (ANw')/2)* g(w')/(w — W + id) characterizes
the system-environment interaction. For a numerical treatment using the NRG, one proceeds
to re-formulate the model (13) in a linear chain form as in (9) and (10) for the Anderson and
Kondo models. Thus, one uses the Lanczos procedure and applies Hy,,¢, repeatedly on the local
bosonic orbital Aby = ), A; a; to tridiagonalize Hy,,. The resulting linear chain model

1 1 1 =
Hsp = — 5200, + 0.+ 50.) <b0 + bg) +3 " e blby, + b (bjnbm+1 n b;Hbm) (14)
m=0

N J/ N J/
~ —~ —~

Himp Hint Hbath

may then be treated within NRG in a similar way to the treatment of the Anderson and Kondo
models [27], see the lecture by K. Ingersent for details. One difference is that the number of
bosons in the eigenstates of Hgp is arbitrary, requiring an additional approximation even at the
first iteration for Hy = Hipp + %az)\(bo + bg) to restrict the maximum number of bosons to a
finite number n;, (typically 8 — 10).
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Anisotropic Kondo model

It may be shown via bosonization [28] that the ohmic two-state system, specified by Eq. (13)
with a spectral function J(w) = —Im/ (w+1id) ~ aw forw — 0, where « is the dimensionless
dissipation strength, is equivalent to the anisotropic Kondo model

J — - z
Haxn = %(5%0 +S7sg) — gupBS, + J|S.s5 + E €k ChoCros (15)
- —— ko
Himp Hing Hbath

where J, (J)) is the transverse (longitudinal) part of the Kondo exchange interaction and B
is a local magnetic field. The correspondence is given by pJ, = —Ay/w., —gupB = ¢,
and o = (1 + 26/m)? where § = arctan(—mpJj/4) and p = 1/w, is the density of states
of the conduction electrons in the anisotropic Kondo model [29-31, 14, 15]. The natural low-
energy scale of the ohmic two-state system is the renormalized tunneling amplitude A, /w. ~
(Ag/we) =), A more precise estimate is A, /w. = [/I'(1 —2a)cos(ra) Ag/w] /1),
yielding the known limits A, (o — 0) = Ag and A, (o — 1/2) = Z(Ap/w.)? we [15]. For
a > 1/2, further corrections are needed [15,32]. It is related to the low-energy Kondo scale T

of the Anisotropic Kondo model. The connection between the (anisotropic) Kondo and ohmic
two-state sy