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6.2 Kevin Ingersent

1 Introduction

The lecture notes in this Autumn School describe many quantum impurity problems of current
interest in connection with the physics of strongly correlated electrons, as well as some of the
techniques that have been devised to solve these problems. One such technique that has histor-
ically been very influential in the understanding of quantum impurity systems is the numerical
renormalization group (NRG) method [1–3]. The NRG remains very important for the study of
a variety of topical issues (see, e.g., the lecture notes by T. Costi [4]).
The NRG method was developed to provide a robust account of the low-energy properties of
Hamiltonians describing the coupling of a local dynamical degree of freedom (a spin or a lo-
calized electronic level) to a gapless band of delocalized electrons. These lecture notes focus
on extensions of the NRG to treat quantum impurity problems that involve bosonic degrees of
freedom. We will consider three classes of problem of increasing complexity:

1. Local-bosonic models in which a localized degree of freedom couples not only to band
fermions but also to one or more discrete bosonic modes, each representing perhaps an
optical phonon mode or a monochromatic light source. Such models arise, for example,
in the description of single-molecule devices in which the molecular charge couples to a
localized vibration.

2. Pure-bosonic models in which the impurity couples to an environment of dispersive
bosonic excitations that acts as a source of decoherence on the impurity degrees of free-
dom. The canonical example of such a problem is the spin-boson model [5, 6].

3. Bose-Fermi models that couple an impurity both to band fermions and to dispersive
bosons, the latter representing, e.g., acoustic phonons or some effective magnetic fluctu-
ations. Such models, which describe not only the key physics of certain nanodevices but
also form approximate descriptions of heavy-fermion systems, manifest the phenomenon
of critical Kondo destruction.

In each of these cases, it proves possible to preserve the essential strategy of the NRG approach
of introducing an artificial separation of energy scales that allows the Hamiltonian to be solved
iteratively to provide controlled approximations to physical quantities at a sequence of energy
scales extending arbitrarily close to zero. However, the presence of bosons imposes greater
computational challenges since the Fock space of the problem is of infinite dimension even in
the atomic limit where one neglects the energy dispersion of the environmental excitations. As a
result, state truncation plays a greater role than in conventional NRG calculations and it proves
to be very important to make an appropriate choice of bosonic basis states.
The sections that follow treat in turn the three classes of problem identified above. For each
class, a representative model is introduced and physically motivated. The extension of the
conventional (pure-fermionic) NRG method to solve this problem is described and illustrative
results are presented.



NRG with Bosons 6.3

2 NRG with local bosons

2.1 The Anderson-Holstein model

The Anderson-Holstein model has been studied since the 1970s in connection with mixed
valence [7–10], negative-U centers in superconductors [11–13], and most recently, single-
molecule devices [14–16]. Its Hamiltonian is HAH = HA +HLB, where [17]

HA = εdnd + Und↑nd↓ +
∑
k,σ

εk c
†
kσckσ +

1√
Nk

∑
k,σ

Vk
(
d†σckσ + H.c.

)
(1)

describes the standard Anderson impurity model [18] in which dσ annihilates an electron of spin
z component σ = ±1

2
(or σ = ↑, ↓) and energy εd in the impurity level, nd = nd↑ + nd↓ (with

ndσ = d†σdσ) is the total impurity occupancy, and U > 0 is the Coulomb repulsion between
two electrons in the impurity level. Vk is the hybridization matrix element between the impurity
and a conduction-band state of energy εk annihilated by fermionic operator ckσ, while Nk is
the number of unit cells in the host metal and, hence, the number of inequivalent k values. The
local boson Hamiltonian term

HLB = ω0 b
†b+ λ(nd − 1)(b+ b†). (2)

describes the linear coupling of the impurity occupancy to the displacement of a local bosonic
mode of frequency ω0. Without loss of generality, we can take the electron-boson coupling λ to
be real and non-negative.
The conduction-band dispersion εk and the hybridization Vk affect the impurity degrees of
freedom only through the hybridization function ∆(ε) ≡ (π/Nk)

∑
k V

2
k δ(ε− εk). To focus on

universal physics of the model, we assume a featureless form

∆(ε) = ∆Θ(D − |ε|), (3)

where D is the half-bandwidth and Θ(x) is the Heaviside step function.
In the case ∆ = 0 of an isolated impurity, the impurity occupancy nd is fixed, and it is possible
to eliminate the electron-boson coupling (the second term inHLB) fromHAH via the substitution
b→ b̃ = b+ (λ/ω0)(nd − 1), which maps the Anderson-Holstein model to an Anderson model
plus a free boson mode: HAH = H̃A + ω0 b̃

†b̃, where H̃A is identical to HA apart from the
replacement of the level energy εd and the Coulomb repulsion U by

ε̃d = εd + ωp, Ũ = U − 2ωp, where ωp = λ2/ω0 (4)

is called the polaron energy in the context of electron-phonon coupling. The physical content
of Eq. (4) is that HLB describes a quantum harmonic oscillator displaced by a constant force
proportional to λ(nd − 1). For nd 6= 1, the ground state of the displaced oscillator is a coherent
state of energy −ωp (relative to the undisplaced ground state for nd = 1) in which the boson
occupation nb = b†b follows a Poisson distribution P (nb) = exp(−n̄b) (n̄b)

nb/nb! with mean
n̄b = (λ/ω0)

2. This lowering of the ground-state energy can be captured by the effective
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Fig. 1: Evolution with polaron energy ωp = λ2/ω0 of E − ε̃d, where E is the lowest energy
in each nd sector of the Anderson-Holstein model for εd = −1

2
U (particle-hole symmetry) and

∆ = 0 (no hybridization), while ε̃d is the energy of the lowest nd = 1 spin doublet. The gap 1
2
Ũ

to the lowest energy in the sectors nd = 0, 2 vanishes at ωp = 1
2
U . For ωp > 1

2
U , the system

has a charge-doublet ground state. Adapted from [19].

renormalization of Anderson model parameters according to Eq. (4). As shown in Fig. 1, for
ωp > U/2 the effective Coulomb interaction on the impurity site becomes negative, and for the
special case εd = −1

2
U of exact particle-hole symmetry the ground state passes from a spin

doublet to a charge doublet.
When the impurity-band hybridization is switched on, the effect of the electron-boson coupling
remains fully captured by Eq. (4) only if ω0 is so large that the boson distribution adjusts essen-
tially instantaneously each time that nd changes. More generally, though, each hybridization
event causes the emission and absorption of a cloud of bosons that relaxes with a characteristic
time scale ω−10 toward the distribution favored by the new impurity occupancy [9]. If ω−10 is
comparable with or longer than the characteristic time scale for impurity-band tunneling, the
relaxation is incomplete by the time the next hybridization event unleashes another boson cloud.
This creates inertia in the system that manifests itself as a reduction in the effective hybridiza-
tion width ∆. The resulting interplay of impurity charge fluctuations, strong electron-electron
correlations, and electron-boson coupling can be treated analytically only in certain limiting
cases [9,14]. In order to obtain a nonperturbative account of the physics over the full parameter
space, an NRG treatment of the Anderson-Holstein model is very desirable.

2.2 NRG solution method

As described in greater detail in the other lecture notes [4], there are three essential steps in the
NRG treatment of a pure-fermionic problem such as that described by HA:

1. Division of the band energies −D ≤ ε < D into logarithmic bins spanning DΛ−(m+1) ≤
±ε < DΛ−m for Λ > 1 and m = 0, 1, 2, . . .. Within each bin, the continuum of band
states is replaced by a discrete state, namely, the linear combination [weighted accord-
ing to the hybridization function ∆(ε)] that interacts with the impurity. The states from
adjacent bins have average energies that differ by a factor of Λ.
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2. The Lanczos method [20] is applied to perform a canonical transformation on the dis-
crete bin states, mapping the conduction band onto a semi-infinite tight-binding chain
that couples to the impurity only at the end site n = 0:

Hband =
∑
k,σ

εk c
†
kσckσ ' D

∞∑
n=0

∑
σ

tn+1

(
f †nσfn+1,σ + H.c.

)
, (5)

where the chain-site creation and annihilation operators obey {fnσ, f
†
n′σ′} = δn,n′δσ,σ′ and

the dimensionless hopping coefficients drop off as tn ' Λ−n/2 due to the separation of
energy scales in the discretized band.

3. Iterative diagonalization of scaled Hamiltonians HN on chains truncated at length N + 1,
starting with (for the Anderson impurity model)

H0 = εdnd + Und↑nd↓ +

√
2∆D

π

∑
σ

(
d†σf0σ + H.c.). (6)

The basis of HN has dimension dN = 4N+2, requiring storage ∝ d 2
N and a solution

time ∝ d 3
N . It therefore becomes necessary after only a few iterations to truncate the

basis. In most cases, one retains at the end of iteration N just the Ns states of lowest
energy (with Ns typically lying in the range 100 to 1 000) so that the basis of HN+1

has a reduced dimension dN+1 = 4Ns. Under this procedure, the low-lying many-body
eigenstates of HN (a) describe the essential physics on energy and temperature scales of
order DΛ−N/2, and (b) provide a good starting point for finding the low-lying eigenstates
of HN+1 = Λ1/2(HN − E(0)

N ) + D tN+1Λ
(N+1)/2

∑
σ(f †NσfN+1,σ + H.c.), where E(0)

N is
the ground-state energy of iteration N . The rescaling of HN+1 by a multiplicative factor
of
√
Λ relative to HN facilitates the identification of renormalization-group fixed-points

characterized by self-similar many-body spectra [1, 2].

Going fromHA toHAH does not require any modification of steps 1 and 2 above. At step 3, how-
ever, HLB in Eq. (2) must be added into H0 in Eq. (6). For the Anderson model, the Fock space
of iteration 0 has dimension 4 (for the impurity)×4 (for chain site 0) = 16, which makes numer-
ical diagonalization of H0 a trivial matter. The inclusion of bosonic decrees of freedom that are
not limited by the Pauli exclusion principle immediately has the effect of raising the Fock-space
dimension to infinity. Since diagonalization of infinite matrices is computationally infeasible,
one is forced to introduce the additional approximation (relative to the pure-fermionic NRG) of
truncating the basis of H0.
The low-lying many-body states of H0 should be superpositions of configurations in which nd
takes each of its possible values. We therefore expect to have to be able to capture both (a)
configurations with low values of nb that are energetically favorable for nd = 1 and (b) configu-
rations with boson distributions close to the coherent states favored for nd = 0 and 2. Given the
rapid fall-off of the coherent-state boson occupation distribution P (nb) = exp(−n̄b) (n̄b)

nb/nb!

for nb � n̄b = (λ/ω0)
2, one can hope to work with a bosonic basis consisting of all occu-

pation number eigenstates with 0 ≤ nb < Nb. Hewson and Meyer [9] established a criterion
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Nb ≥ 4n̄b. However, in view of the standard deviation σb =
√
n̄b of the Poisson distribution it

seems probable that for large n̄b it would be more efficient to select Nb = n̄b + cσb with c being
a fixed number of order 5. Better still might be a basis that directly includes the ground state
and low-lying excitations of the displaced oscillators, i.e., eigenstates of well-defined and small
b̃†b̃. However, exploration of such an option has been rendered unnecessary by the success of
the simpler basis 0 ≤ nb < Nb. This basis increases the CPU time for iteration 0, which is
proportional to (16Nb)

3, but leaves unaffected the generally much greater CPU time ∝ (4Ns)
3

for high iteration numbers.

2.3 Results

We begin by considering results for the symmetric Anderson-Holstein model (εd = −1
2
U )

where the impurity-boson subsystem has a level-crossing from a magnetic ground state (for
λ < λc) to a non-magnetic charge-doublet ground state (for λ > λc). Figure 2 plots three
temperature scales extracted from thermodynamic properties calculated using the NRG:

• Ts = 0.103/χs(T = 0), where χs(T ) is the impurity contribution to the system’s static
spin susceptibility, i.e., the difference between the spin susceptibility (〈S2

z 〉 − 〈Sz〉2)/T
(Sz being the z component of the system’s total spin) with and without the impurity. The
impurity spin degree of freedom is quenched for T . Ts, and in the Kondo regime 0 <

∆� −εd, U + εd of the Anderson model [2], Ts coincides with the Kondo temperature.

• Tc = 0.412/χc(T = 0), where χc(T ) is the impurity contribution to the static charge
susceptibility (〈Q2〉 − 〈Q〉2)/T with Q being the total electron number measured from
half-filling. The impurity charge is quenched for T . Tc, and in the regime 0 < ∆ �
εd, −(U + εd) of the negative-U Anderson model, Tc is the Kondo temperature charac-
terizing a many-body screening of the impurity charge directly analogous to the standard
(spin) Kondo effect [21, 22]. The different coefficients in the definitions of Ts and Tc
reflect the values χs = 1/(4T ) for a free spin doublet and χc = 1/T for a free charge
doublet.

• TK defined via the impurity contribution to the entropy via the condition Simp(TK) =

0.383. TK can be regarded as the crossover temperature for the suppression of all impurity
degrees of freedom and coincides with the relevant Kondo temperature in the spin-Kondo
and charge-Kondo regimes of the Anderson model.

Figure 2 provides evidence for a smooth crossover with increasing electron-boson coupling
from a spin-Kondo effect to a charge-Kondo effect. As ωp increases from zero, Ts rises rapidly
as the impurity loses its local-moment character and the system crosses from the strongly corre-
lated spin-Kondo regime to the weakly correlated mixed-valence regime as Ũ falls toward zero
from its initial value of U . At the same time, Tc decreases from very large values at ωp = 0

and becomes exponentially small in the charge-Kondo regime ωp � 1
2
U = 0.1D where Ũ is

large and negative. Meanwhile, TK evolves from following Ts deep in the spin-Kondo regime
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Fig. 2: Variation with the polaron energy ωp = λ2/ω0 of three energy scales for the particle-
hole-symmetric Anderson-Holstein model with U = −2εd = 0.2D, ∆ = 0.032D, and ω0 =
0.05D: the spin-screening temperature Ts, the charge-screening temperature Tc, and the Kondo
temperature TK extracted from the impurity entropy via the condition Simp(TK) = 0.383. NRG
results obtained for Λ = 2.5 with bosonic cutoff Nb = 16, retaining up to 2 000 many-body
states (spin multiplets) after each iteration.

to tracking Tc deep in the charge-Kondo regime. In the intermediate region near ωp = 1
2
U , TK

is much smaller than either Ts or Tc, pointing to a many-body Kondo effect of mixed spin and
charge character.

The plot of TK vs. ωp in Fig. 2 is clearly asymmetric about its peak near ωp = 1
2
U . This

asymmetry can be seen more clearly in Fig. 3, which plots an effective Kondo energy scale (in
this case, extracted from the impurity spectral function) vs λ/ω0. For ωp � 1

2
U (which for the

parameters used in Fig. 3 means λ/ω0 � 1), Γ (λ) is captured by a perturbative mapping [14]
onto the Kondo model that incorporates effects beyond the replacement of εd and U by ε̃d and
Ũ given in Eq. (4). Upon increase of ωp beyond 1

2
U , Γ drops off extremely fast (note the

logarithmic vertical axis in Fig. 3) in a manner that is described quite well by a perturbative
mapping to an anisotropic charge-Kondo model in which the rate J⊥ of charge-flip impurity-
band scattering (nd = 0 → 2 and its time reverse, both via an nd = 1 virtual state) is smaller
than the rate J‖ of charge-conserving scattering (nd = 0 → 0 and nd = 2 → 2, also both via
nd = 1) by a factor J⊥/J‖ ' exp(−2λ2/ω2

0). This confirms the extremely strong suppression of
real (non-virtual) charge fluctuations caused by the small overlap between the bosonic ground
states in each sector of different nd. In the vicinity of ωp = 1

2
U , neither perturbative approach

is satisfactory, and one must rely on the full machinery of the NRG to provide reliable results.

Finally, in this section we consider the effect of moving away from particle-hole symmetry of
the impurity level. For εd 6= −1

2
U , the nd = 2 curve in Fig. 1 is raised above the solid line

(which now represents just nd = 0) by an amount U + 2εd independent of the electron-boson



6.8 Kevin Ingersent

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

λ/ω
0

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Γ
(λ

)/
Γ

(0
)

-2 -1 0 1 2

ω/ω
0

0

5

10

15

20

ρ
d
(ω

)

λ=0

λ=ω
0

λ=1.25ω
0

Γ = 12.2 e
 -1/ρ

0
J

K

Γ= 3.0 (J
⊥
/J = )

1/ρ
0J =

Fig. 3: Variation with λ/ω0 of an effective Kondo energy scale Γ for the particle-hole-sym-
metric Anderson-Holstein model with U = −2 εd = 0.1D, ∆ = 0.012D, and ω0 = 0.05D.
Γ is the width of the Abrikosov-Suhl resonance in the impurity spectral function ρd(ω) (see
inset). Circles represent NRG data while solid lines are the results of analytical approximations.
Reprinted figure with permission from P.S. Cornaglia, H. Ness, and D.R. Grempel, Phys. Rev.
Lett. 93, 147201 (2004). Copyright 2004 by the American Physical Society.

coupling. This shift splits the impurity charge doublet in a manner analogous to the action
of a magnetic field on the nd = 1 spin doublet, and in the charge-Kondo regime an impurity
asymmetry |U + 2εd| � Tc suppresses the Kondo effect.
Fig. 4 shows the linear conductance G through a nanodevice in which a single molecule bridges
the gap between two electrical leads. The transport is assumed to be dominated by a single,
strongly correlated molecular level of energy εd (which may be tuned via a voltage applied to
an electrical gate) and whose charge couples to a local vibrational mode in a manner described
by the Anderson-Holstein model. In such a device [14],

G =
2e2

h
π∆

∫ ∞
−∞

dω

(
−∂f
∂ω

)
ρd(ω), (7)

where ρd(ω) = −π−1ImGdd(ω), with Gdd being the retarded Green’s function for the active
impurity level. For λ = 0, Fig. 4a, the conductance at a comparatively high temperature T = ∆

exhibits the phenomenon of Coulomb blockade, where the strong interactions in the molecular
level suppress conductance via sequential tunneling of electrons from the source electrode into
the molecule and then off into the drain electrode, except near the point εd = 0 (or εd = −U ) of
degeneracy between states of occupancy nd = 0 and 1 (or nd = 1 and 2). At T = 0, however,
G is nonzero due to the formation of the collective Kondo ground state that allows electrons to
pass from one lead to another without incurring an energy penalty U . For λ = 0.4ω0, Fig. 4b,
the physics is similar, except the spacing between the Coulomb blockade peaks has diminished
from U to roughly Ũ . For still larger values of λ such that Ũ < 0, Fig. 4d, the high-temperature
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Fig. 4: Linear conductance G vs. level energy εd for a single-molecule device described by
the Anderson-Holstein model with U = 0.1, ∆ = 0.016, ω = 0.05, and different values of
λ. Thin (thick) lines show NRG results for temperature T = ∆ (T = 0). Reprinted figure
with permission from P.S. Cornaglia, H. Ness, and D.R. Grempel, Phys. Rev. Lett. 93, 147201
(2004). Copyright 2004 by the American Physical Society.

conductance is suppressed for all values of εd because there is no point of degeneracy between
ground states differing by 1 in their charge. A charge-Kondo peak remains centered at particle-
hole symmetry, but it is very narrow since the many-body Kondo state is essentially destroyed
once the charge-doublet splitting |U + 2εd| exceeds the Kondo scale.

3 Bosonic NRG

3.1 The spin-boson model

The spin-boson model for a dissipative two-state system has been heavily studied in many
contexts [5, 6], including chemical reactions, motion of defects in solids, biological molecules,
and quantum information. Its Hamiltonian can be written [17] HSB = −∆Sx − hSz + HB,
where

HB =
∑
q

ωq a
†
qaq +

Sz√
Nq

∑
q

λq
(
aq + a†q

)
. (8)

Here, Sx and Sz are the x and z components of the spin (or pseudospin) of a two-state impurity
system and aq annihilates a boson of energy ωq [17]. ∆ is the matrix element for tunneling
between states | ↑〉 (Sz = 1

2
) and | ↓〉 (Sz = −1

2
), h is a (pseudo)magnetic field that couples

to the z component of the local spin, Nq is the number of boson modes, and λq is a linear
coupling between the displacement of mode q and the local spin z. The values of ωq and λq
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Fig. 5: NRG treatment of a bosonic bath: (a) The bath spectral function is divided into log-
arithmic bins. (b) The impurity (shaded circle) interacts with one representative state (open
circle) from each logarithmic bin m = 0, 1, 2, . . . in a “star” Hamiltonian form. (c) The Lanc-
zos procedure maps the Hamiltonian to a “chain” form where the impurity interacts with just
the end site n = 0. In (b) and (c), boxes from innermost to outermost enclose the degrees of
freedom treated at NRG iterations N = 0, 1, and 2. Reprinted figures with permission from
R. Bulla, H.-J. Lee, N.H. Tong, and M. Vojta, Phys. Rev. B 71, 045122 (2005). Copyright 2005
by the American Physical Society.

enter the problem only in a single combination, the bosonic bath spectral function J(ω) =

(π/Nq)
∑

q λ
2
qδ(ω − ωq), which in the thermodynamic limit Nq → ∞ generally becomes a

smooth function. The most important feature of J(ω) is its asymptotic low-frequency behavior,
so it is conventional to study power-law spectra

J(ω) = 2παωc(ω/ωc)
sΘ(ω)Θ(ωc − ω), (9)

where α is a dimensionless dissipation strength, ωc is a high-frequency cut-off and the bath
exponent must satisfy s > −1 to allow normalization. The most subtle physics occurs for bath
exponents 0 < s ≤ 1, which admit two distinct phases distinguished by an order parameter
φ = limh→0+〈Sz〉. In the delocalized phase (α < αc), the effective value of α renormalizes
to zero, leading to a singlet ground state and φ = 0. In the localized phase (α > αc), ∆
renormalizes to zero, asymptotically confining the impurity to one or other of its two states
and yielding (at least for bias field h = 0) a doublet ground state with φ > 0. In the heavily
studied case s = 1 of an ohmic bath, the quantum phase transition occurs at αc = 1 +O(∆/ωc)

and is known to be Kosterlitz-Thouless-like [5], involving a jump in the order parameter but
a correlation length that diverges on approach from the delocalized side. For sub-ohmic bath
exponents 0 < s < 1, the transition takes place at αc ∝ (∆/ωc)

1−s and is believed to be
continuous [23].

3.2 NRG solution method

For s = 1, the spin-boson model may be mapped to the anisotropic Kondo model [24] and thus
can be treated using the conventional NRG method [25]. However, no such mapping exists for
general values of s. The direct NRG treatment of the spin-boson model was pioneered by Bulla



NRG with Bosons 6.11

et al. [26, 27]. One can follow the same three essential steps found in the conventional NRG
(see Sec. 2.2). After logarithmic binning of the bath, Fig. 5a, the impurity interacts with one
representative state from each bin, destroyed by an operator am, see Fig. 5b, allowing the bath
part of HSB to be written

Hbath =
∑
q

ωq a
†
qaq ' ωc

∞∑
m=0

ξma
†
mam , (10)

where the operators am obey canonical bosonic commutation relations [am, a
†
m′ ] = δm,m′ and

have dimensionless oscillator energies

ξm =

∫ ωcΛ−m

ωcΛ−(m+1)

ω J(ω) dω

/
ωc

∫ ωcΛ−m

ωcΛ−(m+1)

J(ω) dω =
1 + s

2 + s

1− Λ−(2+s)

1− Λ−(1+s)
Λ−m. (11)

Application of the Lanczos procedure converts this “star form” of the bath Hamiltonian to a
tight-binding “chain form”, see Fig. 5c

Hbath ' ωc

∞∑
n=0

[
εnb
†
nbn + τn+1

(
b†nbn+1 + H.c.

)]
, (12)

where [bn, b
†
n′ ] = δn,n′ . The fact that J(ω) = 0 for ω < 0 causes the dimensionless on-site

energies εn and hopping coefficients τn to take values of orderΛ−n, dropping off with increasing
n at a rate twice as fast as the parameters tn ≈ Λ−n/2 in the fermionic NRG.
Bulla et al. [26, 27] constructed two different iterative NRG procedures for the spin-boson
model, one based on the star form of Hbath and the other based on the chain form:

1. The star-based NRG procedure is illustrated schematically in Fig. 5(b). It starts from an
initial Hamiltonian

H0 = −∆Sx − hSz + ωc

[
ξ0a
†
0a0 +

√
2α

1 + s
Sz γ0

(
a0 + a†0

)]
(13)

that includes only the bosonic operator a0 representing the highest-energy logarithmic bin
and proceeds to incorporate one more bin at each subsequent iteration according to

HN+1 = Λ
(
HN−E(0)

N

)
+ΛN+1ωc

[
ξN+1a

†
N+1aN+1 +

√
2α

1 + s
Sz γN+1

(
aN+1 + a†N+1

)]
.

(14)
In Eqs. (13) and (14), γm is a positive normalization constant satisfying

γ2m =
1 + s

2πα

∫ ωcΛ−m

ωcΛ−(m+1)

dω J(ω) =
[
1− Λ−(1+s)

]
Λ−(1+s)m. (15)

Each operator am couples only to the impurity, allowing the bosonic basis to be optimized
(at least for ∆ = 0, where the impurity becomes static) by transforming to displaced os-
cillators with annihilation operators ãm = am± θm, where θm =

√
α/2(1 + s) γm/ξm ∼
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Λ(1−s)m/2. Since the ground state of the displaced oscillator corresponds to 〈b†mbm〉 =

θ2m ∼ Λ(1−s)m, a basis of eigenstates of b†mbm restricted to nbm less than some finite
Nb will prove inadequate for capturing the low-energy behavior for any sub-ohmic case
s < 1. It will be shown in Sec. 3.3 that the same conclusion holds throughout the local-
ized phase of the full sub-ohmic spin-boson model with ∆ > 0, but that success can be
achieved using a suitably chosen basis of Nb displaced oscillator states optimized for the
value of θm.

2. The chain-based NRG procedure, which is illustrated schematically in Fig. 5c, starts from
an initial Hamiltonian

H0 = −∆Sx − hSz + ωc

[
ε0b
†
0b0 +

√
2α

1 + s
Sz
(
b0 + b†0

)]
(16)

where b0 =
∑∞

m=0 γmam and ε0 = (1 + s)/(2 + s). The iteration relation is

HN+1 = Λ
(
HN − E(0)

N

)
+ ΛN+1

[
εN+1b

†
N+1bN+1 + τN+1

(
b†NbN+1 + H.c.

)]
, (17)

where the Λ−N decay of the tight-binding coefficients εN and τN dictates a rescaling of
HN+1 by a factor of Λ (instead of

√
Λ as in the fermionic NRG).

For ∆ = h = 0, H0 describes a displaced harmonic oscillator having a ground state in
which the occupation number nb0 ≡ 〈b†0b0〉 has a mean value n̄b0 = α/[2(1 + s)ε20] =

α(2 + s)2/[2(1 + s)3]. The α values of greatest interest are those near αc, of order 1
or smaller. Therefore, just as in the NRG treatment of the Anderson-Holstein model
[Sec. 2.2], it should be satisfactory to use a basis of bosonic number eigenstates with
nb0 < Nb, where Nb ≥ 4n̄b0. However, what is unclear a priori is whether a bosonic
truncation nb,N+1 < Nb will prove satisfactory during subsequent iterations of Eq. (17).

The star and the chain NRG formulations will be seen in Sec. 3.3 to have different strengths
and weaknesses. In both cases, a key challenge is to find a bosonic basis size Nb for each site
sufficiently large that the physical results are a good approximation to those for Nb →∞ while
keeping the computational time (∝ B3

b ) within acceptable bounds.

3.3 Results
3.3.1 Truncation effects in the chain and star formulations

Bulla et al. systematically investigated the effects of basis truncation in the star and chain ver-
sions of the bosonic NRG [27]. Figure 6a shows results for the chain NRG, which was the first
of the two to be implemented [26]. Throughout the delocalized phase and on the phase bound-
ary, 〈b†N+1bN+1〉 for a large fixed N (the figure illustrates N = 20 for s = 0.6 and ∆ = 0.01ωc)
converges rapidly with increasing Nb to a value much smaller than Nb. For α > αc, how-
ever, 〈b†N+1bN+1〉 continues to grow with Nb. Although the average boson occupancy saturates
for sufficiently large values of Nb, the size of the basis required to eliminate truncation effects
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Fig. 6: Effects of bosonic basis truncation in the NRG treatment of the sub-ohmic spin-boson
model: (a) Average occupancy of bosonic chain site 21 vs. bosonic truncation parameter Nb

within the chain NRG. Data for s = 0.6, ∆ = 0.01ωc, Λ = 2, and for α below, at, and above
αc = 0.06113. (b) Average occupancy nN = 〈b†NbN〉 vs bosonic bin index N within the star
NRG. Data for s = 0.8, ∆ = 0.01ωc, and Λ = 2, obtained for α below, at, and above αc using
an optimized displaced oscillator basis of Nb = 6 (lines) or Nb = 10 (symbols) states per bin.
Reprinted figures with permission from R. Bulla, H.-J. Lee, N.H. Tong, and M. Vojta, Phys. Rev.
B 71, 045122 (2005). Copyright 2005 by the American Physical Society.

grows with both N and α. The implication is that the chain NRG cannot access the asymptotic
low-energy physics in the localized phase of the sub-ohmic spin-boson model. No such prob-
lem affects the localized phase of the ohmic case s = 1, or super-ohmic (s > 1) baths where
the ground state is delocalized for any ∆ 6= 0.

Figure 6b illustrates results obtained using the star NRG. Since the oscillator shift θN is known
analytically only for ∆ = 0, these calculations used a basis of Nb orthogonalized oscillator
states chosen by minimizing the ground-state energy over multiple trial values of θN [27]. The
figure demonstrates (for s = 0.8) that in both phases and on the phase boundary, 〈b†NbN〉 shows
negligible difference for Nb = 6 and Nb = 10 and that the optimized basis seems to provide
robust values for the boson occupancies, even in the localized phase where 〈b†NbN〉 is diverg-
ing. Despite this promising behavior, the star NRG proves to be unreliable in the delocalized
phase and on the phase boundary, where its results are inconsistent with those obtained by other
methods including chain NRG [27]. The reasons for this failure are not fully understood.
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Bulla, N.-H. Tong, and M. Vojta, Phys. Rev. Lett. 91, 170601 (2003). Copyright 2003 by the
American Physical Society.

The conclusion from [27] is that neither the star NRG nor the chain NRG can provide a fully
reliable treatment of all cases. Although the star NRG has been preferred in a study of a related
model with ohmic dissipation [28], studies of the sub-ohmic spin-boson model have focused
overwhelmingly on the chain approach. The next subsection will highlight a few successes and
failures of the method.

3.3.2 Chain NRG results for the spin-boson model

Figure 7 illustrates for s = 0.6 and for s = 1 one of the primary outputs of the bosonic
NRG method: the evolution of the low-lying many-body spectrum with iteration number N .
When combined with the matrix elements of appropriate operators between the many-body
eigenstates, the spectrum can yield information on static and dynamic quantities of interest, such
as the static magnetization and the dynamical susceptibility of the impurity spin. Dynamical
properties are not discussed in these lecture notes for reasons of space. The left panels in Fig.
7 exemplify the delocalized phase, where a rapid initial change in the energies EN over the
first few iterations is followed by one or two intermediate plateaus before final approach to a
delocalized fixed-point spectrum. This spectrum, which is identical for all values of ∆ and
α < αc(∆), is just that of free bosons described by Hbath given in Eq. (12), reflecting the
renormalization of the dissipative coupling α to zero throughout the delocalized phase.
Upon fine tuning of α extremely close to its critical value, as shown in the center panels of
Fig. 7, an intermediate plateau (quite well developed in the left panel for s = 1, but barely
visible in the s = 0.6 example) stretches beyond N = 40. For s < 1, this plateau spectrum
is entirely distinct from that at the delocalized fixed point but is the same for all combinations
∆ 6= 0, α = αc(∆); it characterizes a critical fixed point located at nonzero critical couplings
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∆ = ∆∗(s), α = α∗(s). In the localized phase (upper right panel of Fig. 7), the spectrum
should in principle converge to a free-boson spectrum for a set of displaced oscillators, leading
to a set of energies identical to those at the delocalized fixed point. However, due to bosonic
truncation effects, the chain NRG instead yields a different, artificial fixed-point spectrum.
For s = 1, by contrast, the quantum phase transition at α = αc(∆) is governed by a critical
end point at ∆∗ = 0, α∗ = 1, which terminates a line of localized fixed points ∆∗ = 0,
α∗ ≥ 1 [5]. For points (∆,α) not too deep into the localized phase, α∗ is sufficiently small that
the chain NRG can faithfully reproduce the appropriate displaced oscillator ground state and its
excitations, so the many-body spectrum for N → ∞ is the same for all values of α (see the
lower panels of Fig. 7).
Most NRG studies of the sub-ohmic spin-boson model have focused on the critical properties,
which are very hard to access using algebraic methods. A particular focus has been the evalua-
tion of critical exponents such as β and δ entering the variations

φ(α > αc, T = h = 0) ∝ (α− αc)β and φ(α = αc, T = 0) ∝ |h|1/δ (18)

of the order parameter φ = limh→0+〈Sz〉, the exponents γ and x entering the variations

χ(α < αc, T = h = 0) ∝ (αc − α)−γ and χ(α = αc, h = 0) ∝ T−x (19)

of the order-parameter susceptibility χ = ∂φ/∂h|h=0, and the correlation-length exponent ν
characterizing the vanishing according to

T ∗ ∝ |α− αc|ν (20)

of the energy scale (extracted from data such as those shown in Fig. 7) at which the many-body
spectrum flows away from the critical spectrum to that of either the delocalized or the localized
fixed point. The chain NRG allows all these exponents to be determined to an unprecedented
degree of numerical precision [26, 29]. Although they vary with s, the exponents are found to
obey to within estimated numerical errors the scaling relations

δ = (1 + x)/(1− x), β = γ(1− x)/(2x), and ν = γ/x (21)

expected [30] to hold at an interacting quantum critical point in a magnetic impurity model
below its upper critical dimension.
For 1

2
< s < 1, the observed scaling of exponents is consistent with expectations based on a

mapping (carried out within a path-integral formulation [23]) of the spin-boson model onto a
classical model for a chain of Ising spins with a long-range ferromagnetic interaction that decays
with separation d like d−(1+s). The Ising model has a phase transition that is interacting for
cases corresponding to 1

2
< s < 1 [31, 32]. Within this range, the NRG is fully consistent with

the mapped classical problem, and the values of the exponents it produces agree with analytical
limiting results where they are available. There is every indication that the chain-form bosonic
NRG is yielding correct results over this range of weakly sub-ohmic bath exponents.
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In contrast, for more slowly decaying interactions, corresponding in the spin-boson model to
0 < s < 1

2
, the quantum critical point of the classical Ising chain is noninteracting and is

characterized by mean-field exponents corresponding to β = x = 1
2
, δ = 3, γ = 1, and

ν = 1/s. Of these values, only ν is in agreement with the NRG results. This discrepancy has
led to considerable debate about the validity of the quantum-to-classical mapping. However,
a preponderance of the evidence now points to deficiencies of the bosonic chain NRG in the
treatment of mean-field (noninteracting) critical points:

• It has been pointed out [33] that above the upper critical dimension, the order-parameter
exponent β and the magnetic exponent δ are properties not just of the vicinity of the crit-
ical point (where the chain NRG seems to be valid) but of the full flow to the delocalized
fixed point (where truncation errors are known to be inevitable [27]). Indeed, a solution
of the sub-ohmic spin-boson Hamiltonian in its NRG chain form using a variational ma-
trix product state method that selects an optimized bosonic basis for chain site has shown
for s = 0.2, 0.3, and 0.4 that the exponents take their mean-field (classical) values [34].
This result strongly highlights the importance of basis selection in NRG treatments of
problems involving bosonic baths.

• A second (seemingly independent) effect has been proposed [33, 35, 36] to account for
the difference between the thermal critical exponent x = s found within the NRG and the
classical value x = 1

2
. The basic idea [35] is that since the NRG at iteration N , corre-

sponding to temperature T ' ωcΛ
−N , neglects all oscillator weight at frequencies ω . T ,

the distance α− αc from criticality acquires temperature-dependent corrections. As a re-
sult, χ−1 calculated at α = αc(T = 0) acquires a spurious term ∝ T s that dominates the
underlying mean-field T 1/2 term. An ad hoc procedure for correcting this problem has
been proposed [35], but it leads to some apparent inconsistencies [37]. Whether or not
there is a rigorous fix for the mass-flow problem remains an important open question.

4 Bose-Fermi NRG

4.1 The Bose-Fermi Kondo model

The Bose-Fermi Kondo impurity model with Ising-symmetric bosonic coupling is described by
the Hamiltonian HBFK = HK +HB, where HB is as given in Eq. (8) and

HK =
∑
k,σ

εkc
†
kσckσ +

J

2Nk

S ·
∑

k,k′,σ,σ′

c†kσσσσ′ck′σ′ (22)

is the standard Kondo Hamiltonian for the antiferromagnetic exchange coupling (with strength
J) between an impurity spin-1

2
degree of freedom and the on-site spin of a conduction band. For

the hybridization function in Eq. (3), HK is the effective Hamiltonian to which the Anderson
impurity model [Eq. (1)] reduces in the limit 0 < ∆� −εd, U + εd in which real fluctuations
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of the impurity occupancy are frozen out, and only the impurity spin degree of freedom remains
active.
In this section, the conduction band dispersion εk is assumed to give rise to a density of states
(per unit cell per spin orientation)

ρ(ε) ≡ N−1k
∑
k

δ(ε− εk) = ρ0|ε/D|r Θ(D − |ε|). (23)

The case r = 0 represents a standard metal, while r > 0 describes a pseudogapped or semimetal-
lic host. The bosonic bath is again taken to have a spectral function of the form given in Eq.
(9) with the conventional replacement 2πα→ (K0g)2, where K0 is a density of states and g an
energy.
The metallic (r = 0) Bose-Fermi Kondo model was originally introduced in the context of
an extended dynamical mean-field theory for the two-band extended Hubbard model [38]. It
has received most attention in connection with heavy-fermion quantum criticality, arising as an
effective impurity problem in an extended dynamical mean-field treatment of the Kondo lattice
model [39, 40]; here, the bosonic bath in the impurity problem embodies the effects, at a given
Kondo lattice site, of the fluctuating magnetic field generated (via the Ruderman-Kittel-Kasuya-
Yosida interaction) by local moments at other lattice sites. The r = 0 Bose-Fermi Kondo model
with s = 1 also describes certain mesoscopic qubit devices, where the bosonic bath represents
gate-voltage fluctuations [41], and the model has been invoked with s = 1

2
and s = 1

3
within

a dynamical large-N treatment of a single-electron transistor coupled to both the conduction
electrons and spin waves of ferromagnetic leads [42].
Perturbative renormalization-group studies of the r = 0 Bose-Fermi Kondo model [43, 44]
indicate that for 0 < s ≤ 1, the competition between the conduction band and the bosonic
bath for control of the impurity spin gives rise to a continuous quantum phase transition at
g = gc(J) between a Kondo phase (for g < gc) and a localized phase (for g > gc). Just as in
the spin-boson model, the phases can be distinguished by an order parameter φ = limh→0+〈Sz〉,
where h is a local field that enters the Hamiltonian through a term −hSz added to HBFK. In
the localized phase, the order parameter increases as (g − gc)

β [cf. Eq. (18)]. For g < gc,
φ = 0 but the effective Kondo temperature [the crossover scale to the low-temperature Fermi-
liquid regime] vanishes continuously as TK ∝ (gc − g)ν [cf. Eq. (20)] describing a critical
destruction of the Kondo many-body state. It is worth pointing out that although HK exhibits
SU(2) spin symmetry, the impurity-boson coupling lowers the overall symmetry of HBFK to a
U(1) invariance associated with conservation of the z component of local spin. This means that
within any renormalization-group treatment, the Kondo exchange coupling evolves from JS ·sc
(where sc is the conduction-band spin at the impurity site) to an effective form JzSzsc,z +
1
2
J⊥(S+s−c + S−s+c ). It is the spin-flip coupling J⊥ that necessarily scales to infinity in the

Kondo phase and to zero in the localized phase.
The fermionic pseudogap Kondo model described by Eqs. (22) and (23) with r > 0 has served as
a paradigm for impurity quantum phase transitions [30, 45–47]. The suppression of the density
of conduction states near the Fermi energy gives rise for 0 < r < 1

2
to a transition between
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Fig. 8: Schematic representation of the Bose-Fermi NRG procedure for situations where the
conduction half bandwidth D and the bosonic cutoff ωc are of similar magnitudes. Since the
bosonic tight-binding coefficients τn (and ξn, not shown) vary as Λ−n, decaying twice as fast as
the fermionic coefficients tn ∝ Λ−n/2, the bosonic chain is extended by one site only at every
other iteration. Dashed boxes from innermost to outermost enclose the degrees of freedom
treated at NRG iterations N = 0, 1, and 2. Adapted from [50].

an unscreened or local-moment phase for J < Jc (where ρ0Jc ' r for r � 1
2
) and a phase

exhibiting partial Kondo screening of the impurity spin for J > Jc. The critical coupling Jc
diverges as r approaches 1

2
from below, and for r ≥ 1

2
the system is always in the local-moment

phase where the impurity has a spin-doublet ground state. The pseudogap variant of the Bose-
Fermi Kondo model has been proposed as a setting to explore the interplay between fermion-
and boson-induced critical destruction of the Kondo effect [48].

4.2 NRG solution method

The Bose-Fermi Kondo model can be treated by suitably combining [49, 50] elements of the
NRG treatment of pure-fermionic models (as summarized at the start of Sec. 2.2) and the NRG
formulation of pure-bosonic models (as described in Sec. 3.2). Since the conduction band part
of the Hamiltonian is mapped onto the tight-binding form in Eq. (5), it is convenient also to
treat the bosonic bath part in the chain representation [Eq. (12)] rather than the alternative star
formulation. The NRG iteration scheme must take into account that the fermionic hopping
coefficients are proportional to Λ−n/2 whereas the bosonic tight-binding coefficient decay as
Λ−n. It is in the spirit of the NRG for each iteration to treat fermions and bosons of the same
energy scale. This can be achieved by adding one site to the fermionic chain at each iteration
but extending the bosonic chain only at every other iteration. In situations where D and ωc are
not too different in magnitude, one can adopt the scheme shown schematically in Fig. 8 where
bosonic site n is introduced at iteration N = 2n. (If ωc � D, it is more appropriate to delay the
incorporation of bosonic site 1 until some iteration N = M > 2, and then to introduce bosonic
sites n > 1 at iteration N = M + 2n− 2.)
To date, all NRG calculations for Bose-Fermi models such as HBFK have been performed using
a bosonic basis of eigenstates of b†nbn with eigenvalues nb satisfying 0 < nb < Nb. If one retains
Ns many-body eigenstates after each iteration, then the CPU time is proportional to (4NbNs)

3

at any iteration where the bosonic chain is extended, and is otherwise proportional to (4Ns)
3.
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Fig. 9: Critical exponents of the Bose-Fermi Kondo model vs. bath exponent s: (a) Recipro-
cal correlation length exponent ν−1, comparing NRG results for the Bose-Fermi Kondo model
(circles) with those for the spin-boson model (crosses). The dotted line plots the mean-field de-
pendence ν−1 = s, while the dashed line shows the form ν−1 =

√
2(1− s)+C with C = O(1)

that arises in a perturbative expansion about s = 1. (b) Exponents β, γ, and 1/δ. Symbols show
values directly computed within the NRG, while the lines come from substituting NRG values
for ν(s) and x(s) into the scaling relations in Eqs. (21). Reprinted from [50].

The additional factor of 43 at iterations of the former type compared to the iteration time in
pure-bosonic problems such as the spin-boson model makes the NRG treatment of HBFK quite
computationally intensive. In comparison with a standard Kondo or Anderson problem, the
computational time grows by a factor even greater than N3

b because it is generally necessary to
increase Ns for the Bose-Fermi problem to achieve similar levels of accuracy. For Nb = 8, the
overall time increase may be of order 104–105.

4.3 Results

4.3.1 Metallic band (r = 0)

The NRG scheme described in Sec. 4.2 has been used to carry out a detailed study of the Bose-
Fermi Kondo model with Ising-symmetric bosonic coupling [49, 50]. The principal finding of
this work is that for sub-ohmic exponents 0 < s < 1, the quantum critical point of the model
is described by s-dependent critical exponents that are identical within numerical error to those
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for the spin-boson model with the same bath exponent. This conclusion is illustrated in Fig. 9a,
which compares Bose-Fermi Kondo and spin-boson values for the correlation-length exponent ν
[defined in Eq. (20)]. Figure 9b compares directly computed values of β, γ, and δ [see Eqs. (18)
and (19)] with ones derived from NRG values for ν(s) and x(s) using the scaling relations in
Eqs. (21). The NRG gives x = s across the entire range 0 < s < 1.
Given the lessons learned from the spin-boson model (see Sec. 3.3), is seems quite possible
that the finding of an interacting critical point in the Bose-Fermi Kondo model for 0 < s < 1

2

is an artifact of the NRG treatment of the bosonic bath. This is not absolutely certain because
there is a symmetry difference between the two problems. The Bose-Fermi Kondo model has
U(1) spin-rotational invariance about the z axis plus an additional Z2 symmetry for longitudinal
field h = 0. There are no such symmetries in the spin-boson model due to the nonzero value
of ∆ that must be present to induce a quantum phase transition. A recent study of a two-
bath generalization of the spin-boson model in which the baths couple to different components
of the impurity spin has found that a quantum critical point is classical in the presence of a
transverse field but non-classical in the absence of the field where an additional Z2 symmetry
exists [34, 51]. Whether such a difference exists between the Bose-Fermi Kondo and one-bath
spin-boson models is an interesting question.

4.3.2 Pseudogapped band (r > 0)

This subsection is devoted to the pseudogap variant of the Bose-Fermi Kondo model described
by a density of states of the form of Eq. (23) with 0 < r < 1

2
and a bosonic bath expo-

nent 1
2
< s < 1. For g = 0, the bosons decouple from the rest of the system and for

r > 0 the model exhibits fermion-driven critical destruction of the Kondo effect at some
J = Jc(r, g = 0) [30, 45–47]. For r = 0, as described in the preceding paragraphs, the
model instead features boson-driven Kondo destruction. This raises the question of the na-
ture of the quantum critical point or points in situations where the fermionic and bosonic
Kondo-destruction mechanisms are both present. The issue has been elucidated in [48], which
presents NRG solutions of HBFK for numerous combinations of exponents (r, s), corroborated
by continuous-time quantum Monte Carlo treatments of the corresponding Bose-Fermi Ander-
son model (HBFA = HA + HB) for (r, s) = (0.4, 0.6) and (0.4, 0.8). In all cases g > 0, a
continuous quantum phase transition occurs at some J = Jc(r, s, g) between Kondo (J > Jc)
and localized (J < Jc) phases. The physics in the former phase is essentially that of the
Kondo-screened phase of the pseudogap Kondo model, modified by an irrelevant coupling to
the bosons, while the localized phase behaves like that of the spin-boson model with irrelevant
corrections from the Kondo coupling.
While continuous quantum phase transitions between phases in which the impurity degree of
freedom is respectively quenched and asymptotically free are found in a number of models,
including several discussed above, an interesting new feature of the pseudogap Bose-Fermi
Kondo model is the existence of three qualitatively different types of quantum criticality, each
accessed within a different region of the (r, s) space, as shown in Fig. 10:
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denote quantum criticality of the F, B, and M types described in the text. Filled symbols rep-
resent NRG results for the Bose-Fermi Kondo model while open symbols represent continuous-
time quantum Monte Carlo results for the Bose-Fermi Anderson model. Solid lines show the
conjectured boundaries s = 1 − 2r and xB(s) = s = xF (r) between the different types of
criticality. Reprinted from [48].

• Fermionic- or F-type criticality arises in cases where the critical spin fluctuations induced
by the band pseudogap are more divergent for temperatures T → 0 than those resulting
from the bosonic coupling. Specifically, F-type criticality occurs for all (r, s) such that
the thermal critical exponent xF (r) of the pseudogap Kondo model—which is given by
xF ' 1− (ρ0Jc)

2 for 0 < r � 1
2

[30] but in general must be determined numerically—is
smaller than that of the spin-boson model xB(s) = s [see Eq. (19)]. The asymptotic low-
energy spectrum calculated within the NRG recovers the SU(2) spin symmetry broken
by the bosonic coupling g, and this spectrum decomposes into a direct product of the
spectrum of free bosons with bath exponent s [that of Hb in Eq. (12)] and the critical
spectrum of the pseudogap Kondo model with band exponent r, i.e., (BF critical) = (B
free) ⊗ (F critical). All calculated critical exponents are identical to those of the pure-
fermionic pseudogap Kondo model with the same r.

• Bosonic- or B-type criticality is fully governed by the bosonic bath, a condition that (for
reasons that have yet to be fully understood) occurs for s < 1− 2r. The fixed-point spec-
trum exhibits SU(2) spin symmetry and decomposes into a direct product of the critical
spectrum of the spin-boson model with bath exponent s and the Kondo-phase spectrum
of the pseudogap Kondo model with band exponent r, i.e., (BF critical) = (B critical) ⊗
(F Kondo). All calculated critical exponents are identical to those of the metallic (r = 0)
Bose-Fermi Kondo model with the same s.
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Fig. 11: Reciprocal of the Bose-Fermi Kondo model correlation length exponent 1/ν vs. bath
exponent s for the metallic case r = 0 and for pseudogaps described by r = 0.1–0.4. The
r = 0 exponents coincide with those of the corresponding spin-boson model and represent
the values 1/νB(s) describing pure-bosonic criticality. Each horizontal line segment shows a
pure-fermionic value 1/νF (r). The Bose-Fermi Kondo exponent coincides with 1/νB(s) for
s < 1− 2r and with 1/νF (r) for s ≥ xF (r). For 1− 2r < s < xF (r), 1/ν(r, s) lies in between
the bosonic and fermionic values. Reprinted from [48].

• Mixed- or M-type criticality is found across the range of intermediate s values such that
1−2r < s < xF (r). The fixed-point spectrum exhibits broken SU(2) spin symmetry and
does not decompose into a direct product of bosonic and fermionic parts. The thermal ex-
ponent x takes its spin-boson model value xB(s) = s but the correlation-length exponent
lies between the values for the spin-boson model and the pseudogap Kondo model, i.e.,
ν−1F (r) < ν−1(r, s) < ν−1B (s), as illustrated in Fig. 11. Just as for the F- and B-types,
all other calculated exponents obey the scaling relations in Eqs. (21), indicating that the
quantum critical point is interacting.

It is important to consider whether the NRG accurately captures the quantum phase transitions
of the pseudogap Bose-Fermi Kondo model. Given that over the entire region 0 < r < 1

2
,

1
2
< s < 1 the exponent x determined using the NRG is larger than its mean-field counterpart

x = 1
2
, it does not seem possible that the true critical behavior is being masked by the mass-

flow problem identified in the spin-boson model for 0 < s < 1
2
. Since the exponent ν can

be determined entirely in the Kondo phase, it should be immune to the truncation errors that
plague the localized phase (an immunity that has been found to be present in the spin-boson
model [29]). These observations provide strong grounds for believing that the Bose-Fermi NRG
method correctly accounts for the quantum critical behavior over the range of bath exponents
considered.
Mixed quantum criticality arising from a nontrivial interplay between fermionic and bosonic
critical fluctuations constitutes a new universality class of impurity quantum phase transitions
distinct from those of the pseudogap Kondo model and the spin-boson model. This intriguing
finding provides a motivation to search for yet other universality classes in models that may be
more readily realized than the pseudogap Bose-Fermi Kondo model.
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5 Closing

The goal of these lectures notes has been to introduce the main technical issues surrounding the
extension of the NRG method to treat quantum impurity models that include bosonic degrees of
freedom, to lay out the steps that have been developed to addresses these issues, and to provide
an idea of the capabilities and limitations of the method that results. Space limitations have
precluded description of the calculation of Green’s functions and correlation functions, details
of which can be found in some of the references, and have forced omission of many interesting
applications as well as discussion of topical issues such as the treatment of systems out of
equilibrium.
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