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1 Overview

Around the beginning of last century magnetic phenomena in materials were at the center of a
hot scientific debate: What causes ferromagnetic order? At the time, atoms were not fully un-
derstood, and there were perhaps more questions than answers. Weiss proposed the molecular
mean-field theory of ferromagnetism [1], which dominated the scene. Friedrich Hund formu-
lated his now-famous rules [2] to determine the atomic ground-state multiplets, which turned
out to be basically exact. Heisenberg [3] realized that Coulomb exchange leads to ferromag-
netic coupling between local magnetic moments. New puzzles emerged. Can other types of
long-range order occur in Nature? In 1949 the first observation of antiferromagnetic order was
reported, causing a great sensation [4]. Such a state had been predicted by Néel [5] about 20
years before via an extended version of Weiss’ mean-field theory. In the mean-time, however, it
was clear that the theory had a problem. Indeed, antiferromagnetism was an artifact of the static
mean-field approximation. Bethe [6] had found the general solution of the one-dimensional
Heisenberg spin chain, which shows that, in the case of antiferromagnetic coupling between the
spins, the ground state has a total spin zero, and thus it is not the antiferromagnetic state. Sev-
eral years later, Anderson understood [7] that the original SU(2) symmetry of the Hamiltonian
in spin space, broken in the antiferromagnetic state, is recovered once quantum fluctuations
are taken into account; this lead to broken-symmetry theory and ultimately to the postulation
of the famous Anderson-Higgs boson [8, 9]. While all this was happening, other effects that
involved local magnetic moments were discovered. A low-temperature minimum in the re-
sistance of some metals puzzled scientists for long, until in 1964 Kondo understood [10] that
it is caused by local spins (magnetic impurities) coupled antiferromagnetically to conduction-
electron spins. The theoretical efforts to understand the Kondo effect, described via the Kondo
model or the more general Anderson model, fueled the development of new powerful non-
perturbative many-body techniques, among which the numerical renormalization group. Exper-
imentally, many f -electron compounds were identified as lattices of Kondo impurities. In 1975,
the discovery of a huge electronic specific heat in CeAl3 below 0.2 K [11] brought a new cate-
gory of strongly correlated materials to light, the heavy fermions [12]. These are dense Kondo
systems with low-temperature Fermi liquid properties but extremely large quasielectron masses.
To complicate the scenario, in such materials the Kondo effect competes with long-range mag-
netic order, and both phenomena are mediated by the same interaction. Furthermore, several
members of the heavy-fermion family, such as CeCu2Si2, become unconventional supercon-
ductors at low temperature. Later on in 1986, a novel class of unconventional superconductors,
high-temperature superconducting cuprates, was found [13]; these systems are believed to be
doped Mott insulators, described, at least to first approximation, by the two-dimensional single-
band Hubbard model. Around the same time, with the development of the dynamical mean-field
theory (DMFT) [14], it emerged that the Anderson model and the Kondo effect are intimately
connected with the Mott metal-insulator transition [15, 16] and thus with the Hubbard model.
In these lecture notes we will discuss some of the models and methods that made this exciting
piece of the history of modern physics [12, 15–22].
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Magnetism ultimately arises from the intrinsic magnetic moment of electrons, µ = −gµBs,
where µB is the Bohr magneton and g ' 2.0023 is the electronic g-factor. It is, however,
an inherently quantum mechanical effect, the consequence of the interplay between the Pauli
exclusion principle, the Coulomb electron-electron interaction, and the hopping of electrons.
To understand this let us consider the simplest possible system, an isolated atom or ion. In the
non-relativistic limit electrons in a single ion are typically described by the Hamiltonian

HNR
e = −1

2

∑
i

∇2
i −

∑
i

Z

ri
+
∑
i>j

1

|ri − rj|
,

where Z is the atomic number and {ri} are the coordinates of the electrons with respect to the
ionic nucleus. Here, as in the rest of this lecture, we use atomic units. If we consider only the
external atomic shell with quantum numbers nl, for example the 3d shell of transition-metal
ions, we can rewrite this Hamiltonian as follows

HNR
e = εnl

∑
mσ

c†mσcmσ +
1

2

∑
σσ′

∑
mm̃m′m̃′

U l
mm′m̃m̃′c

†
mσc

†
m′σ′cm̃′σ′cm̃σ. (1)

The parameter εnl is the energy of the electrons in the nl atomic shell and m the degenerate
one-electron states in that shell. For a hydrogen-like atom

εnl = −
1

2

Z2

n2
.

The couplings U l
mm′m̃m̃′ are the four-index Coulomb integrals. In a basis of atomic functions

the bare Coulomb integrals are

U iji′j′

mm′m̃m̃′ =

∫
dr1

∫
dr2

ψimσ(r1)ψjm′σ′(r2)ψj′m̃′σ′(r2)ψi′m̃σ(r1)

|r1 − r2|
,

and U l
mm′m̃m̃′ = U iiii

mm′m̃m̃′ , where m,m′, m̃, m̃′ ∈ nl shell. The eigenstates of Hamiltonian (1)
for fixed number of electronsN are the multiplets [23,24]. Since inHNR

e the Coulomb repulsion
and the central potential are the only interactions, the multiplets can be labeled with S and L,
the quantum numbers of the electronic total spin and total orbital angular momentum operators,
S =

∑
i si, and L =

∑
i li. Closed-shell ions have S = L = 0 in their ground state. Ions

with a partially-filled shell are called magnetic ions; the value of S and L for their ground state
can be obtained via Hund’s rules. The first and second Hund’s rules say that the lowest-energy
multiplet is the one with

1. the largest value of S

2. the largest value of L compatible with the previous rule

The main relativistic effect is the spin-orbit interaction, which has the form HSO
e =

∑
i λi li·si.

For not-too-heavy atoms it is a weak perturbation. For electrons in a given shell, we can rewrite
HSO
e in a simpler manner using the first and second Hund’s rule. If the shell filling is n < 1/2,
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the ground-state multiplet has spin S = (2l + 1)n = N/2; thus si = S/N = S/2S. If,
instead, n > 1/2, since the sum of li vanishes for the electrons with spin parallel to S, only
the electrons with spin antiparallel to S contribute. Their spin is si = −S/Nu = −S/2S
where Nu = 2(2l + 1)(1− n) is the number of unpaired electrons. We therefore obtain the LS
Hamiltonian

HSO
e ∼

[
2Θ(1− 2n)− 1

]
gµ2

B

2S

〈
1

r

d

dr
vR(r)

〉
︸ ︷︷ ︸

λ

L · S = λ L · S, (2)

where Θ is the Heaviside step function and vR(r) is the effective potential, which includes, e.g.,
the Hartree electron-electron term [25]. For a hydrogen-like atom, vR(r) = −Z/r. Because of
the LS coupling (2) the eigenstates have quantum numbers L, S and J , where J = S+L is the
total angular momentum. Since L · S = [J2 −L2 − S2] /2, the value of J in the ground-state
multiplet is thus (third Hund’s rule)

• total angular momentum J =


|L− S| for filling n < 1/2

S for filling n = 1/2

L+ S for filling n > 1/2

In the presence of spin-orbit interaction a given multiplet is then labeled by 2S+1LJ , and its
states can be indicated as |JJzLS〉. If we consider, e.g., the case of the Cu2+ ion, characterized
by the [Ar] 3d9 electronic configuration, Hund’s rules tell us that the 3d ground-state multiplet
has quantum numbers S = 1/2, L = 2 and J = 5/2. A Mn3+ ion, which is in the [Ar] 3d4

electronic configuration, has instead a ground-state multiplet with quantum numbers S = 2,
L = 2 and J = 0. The order of the Hund’s rules reflects the hierarchy of the interactions. The
strongest interactions are the potential vR(r), which determines εnl, and the average Coulomb
interaction, the strength of which is measured by the average direct Coulomb integral,

Uavg =
1

(2l + 1)2

∑
mm′

U l
mm′mm′ .

For an N -electron state the energy associated with these two interactions is E(N) = εnlN +

UavgN(N − 1)/2, the same for all multiplets of a given shell. The first Hund’s rule is instead
due to the average exchange Coulomb integral, Javg, defined as

Uavg − Javg =
1

2l(2l + 1)

∑
mm′

(
U l
mm′mm′ − U l

mm′m′m

)
,

which is the second-largest Coulomb term; for transition-metal ions Javg ∼ 1 eV. Smaller
Coulomb integrals determine the orbital anisotropy of the Coulomb matrix and the second
Hund’s rule.1 The third Hund’s rule comes, as we have seen, from the spin-orbit interaction
which, for not-too-heavy atoms, is significantly weaker than all the rest.

1For more details on Coulomb integrals and their averages see Ref. [25].
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The role of Coulomb electron-electron interaction in determining S and L can be understood
through the simple example of a C atom, electronic configuration [He] 2s2 2p2. We consider
only the p shell, filled by two electrons. The Coulomb exchange integrals have the form

Jpm,m′ = Up
mm′m′m =

∫
dr1

∫
dr2

ψimσ(r1)ψim′σ(r2)ψimσ(r2)ψim′σ(r1)

|r1 − r2|

=

∫
dr1

∫
dr2

φimm′σ(r1)φimm′σ(r2)

|r1 − r2|
. (3)

If we express the Coulomb potential as

1

|r1 − r2|
=

1

V

∑
k

4π

k2
eik·(r1−r2),

we can rewrite the Coulomb exchange integrals in a form that shows immediately that they are
always positive

Jpm,m′ =
1

V

∑
k

4π

k2
|φimm′σ(k)|2 > 0.

They generate the Coulomb-interaction term

−1

2

∑
σ

∑
m6=m′

Jpm,m′c
†
mσcmσc

†
m′σcm′σ = −1

2

∑
m6=m′

2Jpm,m′

[
Smz S

m′

z +
1

4
nmnm′

]
.

This exchange interaction yields an energy gain if the two electrons occupy two different p
orbitals with parallel spins, hence it favors the state with the largest spin (first Hund’s rule). It
turns out that for the p2 configuration there is only one possible multiplet with S = 1, and such
a state has L = 1. There are instead two excited S = 0 multiplets, one with L = 0 and the other
with L = 2; the latter is the one with lower energy (second Hund’s rule).
To understand the magnetic properties of an isolated ion we have to analyze how its levels are
modified by an external magnetic field h. The effect of a magnetic field is described by

HH
e = µB (gS +L) · h+

h2

8

∑
i

(
x2
i + y2

i

)
= HZ

e +HL
e . (4)

The linear term is the Zeeman Hamiltonian. If the ground-state multiplet is characterized by
J 6= 0 the Zeeman interaction splits its 2J + 1 degenerate levels. The second-order term yields
Larmor diamagnetism, which is usually only important if the ground-state multiplet has J = 0,
as happens for ions with closed external shells. The energy µBh is typically very small (for a
field as large as 100 T it is as small as 6 meV); it can however be comparable with or larger
than the spin-orbit interaction if the latter is tiny (very light atoms). Taking all interactions into
account, the total Hamiltonian is

He ∼ HNR
e +HSO

e +HH
e .
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In a crystal the electronic Hamiltonian is complicated by the interaction with other nuclei and
their electrons. The non-relativistic part of the Hamiltonian then takes the form

HNR
e = −1

2

∑
i

∇2
i +

1

2

∑
i6=i′

1

|ri − ri′ |
−
∑
iα

Zα
|ri −Rα|

+
1

2

∑
α6=α′

ZαZα′

|Rα −Rα′ |
,

where Zα is the atomic number of the nucleus located at position Rα. In a basis of localized
Wannier functions [25] this Hamiltonian can be written as

HNR
e = −

∑
ii′σ

∑
mm′

ti,i
′

m,m′c
†
imσci′m′σ +

1

2

∑
ii′jj′

∑
σσ′

∑
mm′

∑
m̃m̃′

U iji′j′

mm′m̃m̃′c
†
imσc

†
jm′σ′cj′m̃′σ′ci′m̃σ, (5)

where

ti,i
′

m,m′ = −
∫
dr ψimσ(r)

[
−1

2
∇2 + vR(r)

]
ψi′m′σ(r).

The terms εm,m′ = −ti,im,m′ yield the crystal-field matrix and ti,i
′

m,m′ with i 6= i′ the hopping
integrals. The label m indicates here the orbital quantum number of the Wannier function. In
general, the Hamiltonian (5) will include states stemming from more than a single atomic shell.
For example, in the case of strongly correlated transition-metal oxides, the set {im} includes
transition-metal 3d and oxygen 2p states. The exact solution of the many-body problem de-
scribed by (5) is an impossible challenge. The reason is that the properties of a many-body
system are inherently emergent and hence hard to predict ab-initio in the absence of any un-
derstanding of the mechanism behind them. In this lecture, however, we want to focus on
magnetism. Since the nature of cooperative magnetic phenomena in crystals is currently to a
large extent understood, we can find realistic approximations to (5) and even map it onto simpler
models that still retain the essential ingredients to explain long-range magnetic order.
Let us identify the parameters of the electronic Hamiltonian important for magnetism. The first
is the crystal-field matrix εm,m′ . The crystal field at a given site i is a non-spherical potential
due to the joint effect of the electric field generated by the surrounding ions and of covalent-
bond formation [24]. The crystal field can split the levels within a given shell and therefore
has a strong impact on magnetic properties. We can identify three ideal regimes. In the strong-
crystal-field limit the crystal-field splitting is so large that it is comparable with the average
Coulomb exchange responsible for the first Hund’s rule. This can happen in 4d or 5d transition-
metal oxides. A consequence of an intermediate crystal field (weaker than the average Coulomb
exchange but larger than Coulomb anisotropy and spin-orbit interaction) is the quenching of the
angular momentum, 〈L〉 = 0. In this limit the second and third Hund’s rule are not respected.
This typically happens in 3d transition-metal oxides. In 4f systems the crystal-field splitting
is usually much weaker than the spin-orbit coupling (weak-crystal-field limit) and mainly splits
states within a given multiplet, leaving a reduced magnetic moment. In all three cases, because
of the crystal field, a magnetic ion in a crystal might lose – totally or partially – its spin, its
angular momentum, or its total momentum. Or, sometimes, it is the other way around. This
happens for Mn3+ ions, which should have a J = 0 ground state according to the third Hund’s
rule. In the perovskite LaMnO3, however, they behave as S = 2 ions because of the quenching
of the angular momentum.
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Even if the crystal field does not suppress the magnetic moment of the ion, the electrons might
delocalize to form broad bands, completely losing their original atomic character. This happens,
e.g., if the hopping integrals ti,i

′

m,m′ are much larger than the average on-site Coulomb interaction
Uavg. Surprisingly, magnetic instabilities arise even in the absence of localized moments. This
itinerant magnetism is mostly due to band effects, i.e., it is associated with a large one-electron
linear static response-function χ0(q; 0). In this limit correlation effects are typically weak. To
study them we can exploit the power of the standard model of solid-state physics, the density-
functional theory (DFT), taking into account Coulomb interaction effects beyond the local-
density approximation (LDA) at the perturbative level, e.g., in the random-phase approximation
(RPA). With this approach we can understand and describe Stoner instabilities.
In the opposite limit, the local-moments regime, the hopping integrals are small with respect
to Uavg. This is the regime of strong electron-electron correlations, where complex many-body
effects, e.g., those leading to the Mott metal-insulator transition, play an important role. At low
enough energy, however, only spins and spin-spin interactions matter. Ultimately, at integer
filling we can integrate out (downfold) charge fluctuations and describe the system via effective
spin Hamiltonians. The latter typically take the form

HS =
1

2

∑
ii′

Γ i,i′ Si · Si′ + · · · = HH
S + . . . . (6)

The term HH
S given explicitly in (6) is the Heisenberg Hamiltonian, and Γ i,i′ is the Heisenberg

exchange coupling, which can be antiferromagnetic (Γ i,i′ > 0) or ferromagnetic (Γ i,i′ < 0).
The Hamiltonian (6) can, for a specific system, be quite complicated, and might include long-
range exchange interactions or anisotropic terms. Nevertheless, it represents a huge simplifica-
tion compared to the unsolvable many-body problem described by (5), since, at least within very
good approximation schemes, it can be solved. Spin Hamiltonians of type (6) are the minimal
models that still provide a realistic picture of long-range magnetic order in strongly correlated
insulators. There are various sources of exchange couplings. Electron-electron repulsion itself
yields, via Coulomb exchange, a ferromagnetic Heisenberg interaction, the Coulomb exchange
interaction. The origin of such interaction can be understood via a simple model with a single
orbital, m. The inter-site Coulomb exchange coupling has then the form

J i,i
′
= U ii′i′i

mmmm =

∫
dr1

∫
dr2

ψimσ(r1)ψi′mσ(r2)ψimσ(r2)ψi′mσ(r1)

|r1 − r2|
,

and it is therefore positive, as one can show by following the same steps that we used in Eq. (3)
for Jpm,m′ . Hence, the corresponding Coulomb interaction yields a ferromagnetic Heisenberg-
like Hamiltonian with

Γ i,i′ = −2J i,i′ < 0.

A different source of magnetic interactions are the kinetic exchange mechanisms (direct ex-
change, super-exchange, double exchange, Ruderman-Kittel-Kasuya-Yosida interaction . . . ),
which are mediated by the hopping integrals. Kinetic exchange couplings are typically (with
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a few well understood exceptions) antiferromagnetic [26]. A representative example of kinetic
exchange will be discussed in the next section.
While the itinerant and local-moment regime are very interesting ideal limiting cases, correlated
materials elude rigid classifications. The same system can present features associated with
both regimes, although at different temperatures and/or energy scales. This happens in Kondo
systems, heavy fermions, metallic strongly correlated materials, and doped Mott insulators.
In this lecture we will discuss in representative cases the itinerant and localized-moment regime
and their crossover, as well as the most common mechanisms leading to magnetic cooperative
phenomena. Since our target is to understand strongly correlated materials, we adopt the for-
malism typically used for these systems. A concise introduction to Matsubara Green functions,
correlation functions, susceptibilities, and linear-response theory can be found in the Appendix.

2 The Hubbard model

The simplest model that we can consider is the one-band Hubbard model

H = εd
∑
i

∑
σ

c†iσciσ︸ ︷︷ ︸
Hd

−t
∑
〈ii′〉

∑
σ

c†iσci′σ︸ ︷︷ ︸
HT

+U
∑
i

ni↑ni↓︸ ︷︷ ︸
HU

= Hd +HT +HU , (7)

where εd is the on-site energy, t is the hopping integral between first-nearest neighbors 〈ii′〉, and
U the on-site Coulomb repulsion; c†iσ creates an electron in a Wannier state with spin σ centered
at site i, and niσ = c†iσciσ. The Hubbard model is a simplified version of Hamiltonian (5) with
m = m′ = m̃ = m̃′ = 1 and 

εd = −ti,i1,1

t = t
〈i,i′〉
1,1

U = U iiii
1111

.

In the U = 0 limit the Hubbard model describes a system of independent electrons. The
Hamiltonian is then diagonal in the Bloch basis

Hd +HT =
∑
kσ

[
εd + εk

]
c†kσckσ. (8)

The energy dispersion εk depends on the geometry and dimensionality d of the lattice. For a
hypercubic lattice of dimension d

εk = −2t
d∑

ν=1

cos(krνa),

where a is the lattice constant, and r1 = x, r2 = y, r3 = z. The energy εk does not depend on
the spin. In Fig. 1 we show εk in the one-, two- and three-dimensional cases.
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Fig. 1: The band structure of the one-band tight-binding model (hypercubic lattice). The
hopping integral is t = 0.4 eV. From left to right: one-, two-, and three-dimensional case. At
half filling (n = 1) the Fermi level is at zero energy.

In the opposite limit (t = 0) the Hubbard model describes a collection of isolated atoms. Each
atom has four electronic many-body states

|N,S, Sz〉 N S E(N)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1
2
, ↑〉 = c†i↑|0〉 1 1/2 εd

|1, 1
2
, ↓〉 = c†i↓|0〉 1 1/2 εd

|2, 0, 0〉 = c†i↑c
†
i↓|0〉 2 0 2εd + U

(9)

where E(N) is the total energy, N the total number of electrons and S the total spin. We can
express the atomic Hamiltonian Hd +HU in a form in which the dependence on Ni, Si, and Siz
is explicitly given

Hd +HU = εd
∑
i

ni + U
∑
i

[
−
(
Siz
)2

+
n2
i

4

]
, (10)

where Siz = (ni↑ − ni↓)/2 is the z component of the spin operator and ni =
∑

σ niσ = Ni.
In the large t/U limit and at half filling we can downfold charge fluctuations and map the
Hubbard model into an effective spin model of the form

HS =
1

2
Γ
∑
〈ii′〉

[
Si · Si′ −

1

4
nini′

]
. (11)

The coupling Γ can be calculated by using second-order perturbation theory. For a state in
which two neighbors have opposite spin, |↑, ↓ 〉 = c†i↑c

†
i′↓|0〉, we obtain the energy gain

∆E↑↓ ∼ −
∑
I

〈 ↑, ↓ |HT |I〉〈I
∣∣∣∣ 1

E(2) + E(0)− 2E(1)

∣∣∣∣ I〉〈I|HT | ↑, ↓ 〉 ∼ −
2t2

U
.
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Here |I〉 ranges over the excited states with one of the two neighboring sites doubly occupied
and the other empty, | ↑↓, 0〉 = c†i↑c

†
i↓|0〉, or |0, ↑↓ 〉 = c†i′↑c

†
i′↓|0〉; these states can be occupied

via virtual hopping processes. For a state in which two neighbors have parallel spins, | ↑, ↑ 〉 =
c†i↑c

†
i′↑|0〉, no virtual hopping is possible because of the Pauli principle, and ∆E↑↑ = 0. Thus

1

2
Γ ∼ (∆E↑↑ −∆E↑↓) =

1

2

4t2

U
. (12)

The exchange coupling Γ = 4t2/U is positive, i.e., antiferromagnetic.
Canonical transformations [28] provide a scheme for deriving the effective spin model system-
atically at any perturbation order. Let us consider a unitary transformation of the Hamiltonian

HS = eiSHe−iS = H + [iS,H] +
1

2

[
iS, [iS,H]

]
+ . . . .

We search for a transformation operator that eliminates, at a given order, hopping integrals
between states with a different number of doubly occupied states. To do this, first we split the
kinetic term HT into a component H0

T that does not change the number of doubly occupied
states and two terms that either increase it (H+

T ) or decrease it (H−T ) by one

HT = −t
∑
〈ii′〉

∑
σ

c†iσci′σ = H0
T +H+

T +H−T ,

where

H0
T = −t

∑
〈ii′〉

∑
σ

ni−σ c
†
iσci′σ ni′−σ − t

∑
〈ii′〉

∑
σ

[
1− ni−σ

]
c†iσci′σ

[
1− ni′−σ

]
,

H+
T = −t

∑
〈ii′〉

∑
σ

ni−σ c
†
iσci′σ

[
1− ni′−σ

]
,

H−T =
(
H+
T

)†
.

The term H0
T commutes with HU . The remaining two terms fulfill the commutation rules

[H±T , HU ] = ∓UH±T .

The operator S can be expressed as a linear combination of powers of the three operators
H0
T , H

+
T , and H−T . The actual combination, which gives the effective spin model at a given

order, can be found via a recursive procedure [28]. At half filling and second order, however,
we can simply guess the form of S that leads to the Hamiltonian (11). By defining

S = − i

U

(
H+
T −H−T

)
we obtain

HS = HU +H0
T +

1

U

( [
H+
T , H

−
T

]
+
[
H0
T , H

−
T

]
+
[
H+
T , H

0
T

] )
+O(U−2).
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Fig. 2: Left: The crystal structure of HgBa2CuO4 showing the two-dimensional CuO2 layers.
Spheres represent atoms of Cu (blue), O (red), Ba (yellow), and Hg (grey). Right: A CuO2 layer.
The first-nearest-neighbor hopping integral between neighboring Cu sites t is roughly given by
∼ 4t2pd/∆dp, where tpd is the hopping between Cu d and O p states and ∆dp = εd − εp their
charge-transfer energy.

If we restrict the Hilbert space of HS to the subspace with one electron per site (half filling),
no hopping is possible without increasing the number of occupied states; hence, only the term
H−T H

+
T contributes. After some algebra, we obtain HS = H

(2)
S +O(U−2) with

H
(2)
S =

1

2

4t2

U

∑
ii′

[
Si · Si′ −

1

4
nini′

]
.

The Hubbard model (7) is rarely realized in Nature in this form. To understand real mate-
rials one typically has to take into account orbital degrees of freedom, long-range hopping
integrals, and sometimes longer-range Coulomb interactions or perhaps even more complex
many-body terms. Nevertheless, there are very interesting systems whose low-energy proper-
ties are, to first approximation, described by (7). These are strongly correlated organic crystals
(one-dimensional case) and high-temperature superconducting cuprates, in short HTSCs (two-
dimensional case). An example of HTSC is HgBa2CuO4, whose structure is shown in Fig. 2.
It is made of CuO2 planes well divided by BaO-Hg-BaO blocks. The x2 − y2-like states stem-
ming from the CuO2 planes can be described via a one-band Hubbard model. The presence of
a x2 − y2-like band at the Fermi level is a common feature of all HTSCs.
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Fig. 3: Top: Density of states (DOS) per spin, ρ(ε)/2, for a hypercubic lattice in one, two,
and three dimensions. The energy dispersion is calculated for t = 0.4 eV. The curves exhibit
different types of Van-Hove singularities. Bottom: Effect of ρ(εF ) on the temperature depen-
dence of χR = χP (T )/χP (0). Up to ∼ 1000 K only the logarithmic Van-Hove singularity
(two-dimensional case) yields a sizable effect.

2.1 Weak-correlation limit
2.1.1 The U = 0 case: Pauli paramagnetism

Let us consider first the non-interacting limit of the Hubbard model, Hamiltonian (8). In the
presence of an external magnetic field h = hz ẑ the energy εk of a Bloch state is modified by
the Zeeman interaction (4) as follows

εk → εkσ = εk +
1

2
σgµBhz,

where we take the direction of the magnetic field as quantization axis and where on the right-
hand side σ = 1 or−1 depending if the spin is parallel or antiparallel to h. Thus, to linear order
in the magnetic field, the T = 0 magnetization of the system is

Mz = −
1

2
(gµB)

1

Nk

∑
k

[nk↑ − nk↓] ∼
1

4
(gµB)

2 ρ(εF )hz,
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l

m

Fig. 4: Band-structure trend in hole-doped cuprates and correlation with Tc max, the maximum
value of the critical temperature for superconductivity. From Ref. [29].

where nkσ = 〈c†kσckσ〉 and Nk is the number of k points; ρ(εF ) is the total density of states
(DOS) at the Fermi level εF . The T = 0 susceptibility is then given by the Pauli formula

χP (0) =
1

4
(gµB)

2 ρ(εF ).

In linear-response theory (see Appendix) the magnetization induced along ẑ by an external
magnetic field hz(q;ω)ẑ oscillating with vector q is given by

Mz(q;ω) = χzz(q;ω)hz(q;ω).

The Pauli susceptibility χP (0) is thus the static (ω = 0) and uniform (q = 0) linear response
function to an external magnetic field. At finite temperature the Pauli susceptibility takes the
form

χP (T ) =
1

4
(gµB)

2

∫
dερ(ε)

(
−dn(ε)

dε

)
,

where n(ε) = 1/(1 + e(ε−µ)β) is the Fermi distribution function, β = 1/kBT , and µ the chem-
ical potential. χP (T ) depends weakly on the temperature; its temperature dependence is more
pronounced, however, in the presence of Van-Hove singularities close to the Fermi level (Fig. 3).
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2.1.2 The Fermi liquid regime

In some limit the independent-particle picture still holds even when the Coulomb interaction
is finite. Landau’s phenomenological Fermi liquid theory suggests that, at low-enough energy
and temperature, the elementary excitations of a weakly interacting system can be described
by almost independent fermionic quasiparticles, fermions with effective mass m∗ and finite
lifetime τQP

εQP
nk =

m

m∗
εnk,

τQP ∝ (aT 2 + bω2)−1.

Remarkably, a very large number of materials do exhibit low-energy Fermi liquid behavior,
and the actual violation of the Fermi liquid picture is typically an indication that something
surprising is going on. How are quasiparticles related to actual particles, however? Landau
postulated that the low-lying states of a weakly-correlated system are well-described by the
energy functional

E = E0 +
∑
kσ

εkσδnkσ +
1

2

∑
kσ

∑
k′σ′

fkσk′σ′δnkσδnk′σ′ ,

where E0 is the ground-state energy, δnkσ = nkσ − n0
kσ gives the number of quasiparticles

(or quasi-holes), nkσ is the occupation number in the excited state, and n0
kσ is the occupation

number of the non-interacting system at T = 0. The idea behind this is that δnkσ is small with
respect to the number of particles and therefore can be used as an expansion parameter. The
low-lying elementary excitations are thus fermions with dispersion

εQP
nk =

δE

δnkσ
= εkσ +

∑
k′σ′

fkσk′σ′δnk′σ′ ,

so that

E = E0 +
∑
kσ

εQP
nk δnkσ,

i.e., the energy of quasiparticles is additive. Remarkably, by definition

fkσk′σ′ =
δ2E

δnkσδnk′σ′
.

Hence, fkσk′σ′ is symmetric in all the arguments. If the system has inversion symmetry, fkσk′σ′ =
f−kσ−k′σ′; furthermore, if the system has time-reversal symmetry, fkσk′σ′ = f−k−σ−k′−σ′ . It is
therefore useful to rewrite it as the sum of a symmetric and an antisymmetric contribution,
fkσk′σ′ = f skk′ + σσ′fakk′ , where

f skk′ =
1

4

∑
σσ′

fkσk′σ′

fakk′ =
1

4

∑
σσ′

σσ′fkσk′σ′ .
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Only the symmetric term contributes to the energy of the quasiparticles. Let us consider for
simplicity a Fermi gas, the dispersion relation of which has spherical symmetry. Since quasi-
particles are only well defined close to the Fermi level, we can assume that |k| ∼ |k′| ∼ kF ;
therefore, f skk′ and fakk′ depend essentially only on the angle between k and k′, while the de-
pendence on the k vector’s length is weak. Next, let us expand f skk′ and fakk′ in orthogonal
Legendre polynomials Pl(cos θkk′), where θkk′ is the angle between k and k′. We have

f
s/a
kk′ = ρ(εF )

∞∑
l=0

F
s/a
l Pl(cos θkk′),

where F s
l and F a

l are dimensionless parameters. One can then show that the mass renormaliza-
tion is given by

m∗

m
= 1 +

1

3
F s

1 > 1, F s
1 > 0.

Quasiparticles are less compressible than particles, i.e., if κ is the compressibility

κ

κ0

=
m∗

m

1

1 + F s
0

< 1, F s
0 > 0.

They are, however, more spin-polarizable than electrons; correspondingly the system exhibits
an enhanced Pauli susceptibility

χ

χP
=
m∗

m

1

1 + F a
0

> 1, F a
0 < 0.

It has to be noticed that, because of the finite lifetime of quasiparticles and/or non-Fermi liquid
phenomena of various nature, the temperature and energy regime in which the Fermi liquid
behavior is observed can be very narrow. This happens, e.g., for heavy-fermion or Kondo
systems; we will come back to this point again in the last part of the lecture.

2.1.3 Stoner instabilities

In the presence of the Coulomb interaction U 6= 0, finding the solution of the Hubbard model
requires many-body techniques. Nevertheless, in the small-U limit, we can already learn a lot
about magnetism from Hartree-Fock (HF) static mean-field theory. In the simplest version of
the HF approximation we make the following substitution

HU = U
∑
i

ni↑ni↓ → HHF
U = U

∑
i

[ni↑〈ni↓〉+ 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉] .

This approximation transforms the Coulomb two-particle interaction into an effective single-
particle interaction. Let us search for a ferromagnetic solution and set therefore

〈niσ〉 = nσ =
n

2
+ σm,
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Fig. 5: Top: Effect of r = t′/t on the band structure of the two-dimensional tight-binding
model. Black line: Fermi level at half filling. Bottom: corresponding density of states per spin.

where m = (n↑ − n↓)/2 and n = n↑ + n↓. It is convenient to rewrite the mean-field Coulomb
energy as in (10), i.e., as a function of m, n and Siz

HHF
U = U

∑
i

[
−2mSiz +m2 +

n2

4

]
. (13)

The solution of the problem defined by the HamiltonianH0+H
HF
U amounts to the self-consistent

solution of a non-interacting electron system with Bloch energies

εUkσ = εk + n−σ U = εk +
n

2
U − σmU .

In a magnetic field we additionally have to consider the Zeeman splitting. Thus

εkσ = εUkσ +
1

2
gµBhzσ .

In the small-U limit and for T → 0 the magnetization Mz = −gµBm is then given by

Mz ∼ χP (0)

[
hz −

2

gµB
Um

]
= χP (0)

[
hz + 2(gµB)

−2UMz

]
.

Solving for Mz we find the Stoner expression

χS(0; 0) =
χP (0)

1− 2 (gµB)
−2 UχP (0)

.
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Fig. 6: Doubling of the cell due to antiferromagnetic order and the corresponding folding
of the Brillouin zone (BZ) for a two-dimensional hypercubic lattice. The antiferromagnetic
Q2 = (π/a, π/a, 0) vector is also shown.

Thus with increasing U the q = 0 static susceptibility increases and at the critical value

Uc = 2/ρ(εF )

diverges, i.e., even an infinitesimal magnetic field can produce a finite magnetization. This
means that the ground state becomes unstable against ferromagnetic order.
Let us consider the case of the half-filled d-dimensional hypercubic lattice whose density of
states is shown in Fig. 3. In three dimensions the DOS is flat around the Fermi level, e.g.,
ρ(εF ) ∼ 2/W where W is the band width. For a flat DOS ferromagnetic instabilities are likely
only when U ∼ W , a rather large value of U , which typically also brings in strong-correlation
effects not described by static mean-field theory. In two dimensions we have a rather different
situation because a logarithmic Van-Hove singularity is exactly at the Fermi level (Fig. 3); a
system with such a density of states is unstable towards ferromagnetism even for very small U .
In real materials distortions or long-range interactions typically push the Van-Hove singularities
away from the Fermi level. In HTSCs the electronic dispersion is modified as follows by the
hopping t′ between second-nearest neighbors

εk = −2t[cos(kxa) + cos(kya)] + 4t′ cos(kxa) cos(kya) .

As shown in Fig. 4, the parameter r ∼ t′/t ranges typically from ∼ 0.15 to 0.4 [29]. Fig. 5
shows that with increasing r the Van-Hove singularity moves downwards in energy.
It is at this point natural to ask ourselves if ferromagnetism is the only possible instability.
For a given system, magnetic instabilities with q 6= 0 might be energetically favorable com-
pared to ferromagnetism; an example of a finite-q instability is antiferromagnetism (see Fig. 6).
To investigate finite-q instabilities we generalize the Stoner criterion. Let us consider a mag-
netic excitation characterized by the vector q commensurate with the reciprocal lattice. This
magnetic superstructure defines a new lattice; the associated supercell includes j = 1, . . . , Nj
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Fig. 7: The ratio χ0(q; 0)/χ0(0; 0) in the xy plane for a hypercubic lattice with t = 0.4 eV
(T ∼ 230 K) at half filling. From left to right: one, two, and three dimensions.

magnetically inequivalent sites. We therefore define the quantities

Siz(q) =
∑
j

eiq·RjSjiz ,

〈Sjiz 〉 = m cos(q ·Rj),

where j runs over the magnetically inequivalent sites {Rj} and i over the supercells in the
lattice. In the presence of a magnetic field oscillating with vector q and pointing in the z
direction, hj = hz cos(q ·Rj)ẑ, the mean-field Coulomb and Zeeman terms can be written as

HHF
U +HZ =

∑
i

[
gµB
2

(
hz −

2

gµB
mU

)[
Siz(q) + Siz(−q)

]
+m2 +

n2

4

]
,

where m has to be determined self-consistently. This leads to the generalized Stoner formula

χS(q; 0) =
1

2
(gµB)

2 χ0(q; 0)

[1− Uχ0(q; 0)]
, (14)

χ0(q; 0) = −
1

Nk

∑
k

nk+q − nk
εk+q − εk

.

Expression (14) is also known as the RPA (acronym for random-phase approximation) suscep-
tibility. For q = 0 in the T → 0 limit we recover the ferromagnetic RPA susceptibility with

χ0(0; 0) = 2 (gµB)
−2 χP (0) ∼ 1

2
ρ(εF ) .

Figure 7 shows the non-interacting susceptibility in the xy plane for our d-dimensional hy-
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Fig. 8: The ratio χ0(q; 0)/χ0(0; 0) in the xy plane for the two-dimensional hypercubic lattice
with t = 0.4 eV (230 K) at half filling. Left: t′ = 0.2t. Right: t′ = 0.4t.

percubic lattice. The figure shows that in the one-dimensional case the susceptibility diverges
at the antiferromagnetic vector Q1 = (π/a, 0, 0); in two dimensions this happens at Q2 =

(π/a, π/a, 0); in three dimension at Q3 = (π/a, π/a, π/a), not shown in the figure. The en-
ergy dispersion at these vectors exhibits the property of perfect nesting

εk+Qi = −εk .

Remarkably, the T = 0 non-interacting susceptibility χ0(Qi; 0) diverges logarithmically at the
nesting vector unless the density of states is zero at the Fermi level (ε→ 0)

χ0(Qi; 0) ∝
1

4

∫ εF=0

−∞
dε ρ(ε)

1

ε
→∞ .

Under these conditions an arbitrarily small U can cause a magnetic transition with magnetic
vector Qi. In the two-dimensional case we have reached a similar conclusion for the T =

0 ferromagnetic (q = 0) instability. The finite-temperature susceptibility χ0(q; 0), however,
shows that the antiferromagnetic instability is the strongest (Fig. 7). Perfect nesting at Q2 is
suppressed by t′ 6= 0

εk+Q2 = −εk + 8t′ cos(kxa) cos(kya).

Figure 8 shows how the susceptibility is modified by t′ 6= 0 (half filling). The Q2 instability is
important even for t′ ∼ 0.4t, but instabilities at incommensurate vectors around it are stronger.
As a last remark it is important to notice that the RPA expression (14) depends on the filling
only through the density of states, i.e., magnetic instabilities described by the Stoner formula
can exist at any filling. This is very different from the case of the local-moment regime that we
will discuss starting with the next section.
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Ion n S L J 2S+1LJ

V4+ Ti3+ 3d1 1/2 2 3/2 2D3/2

V3+ 3d2 1 3 2 3F2

Cr3+ V2+ 3d3 3/2 3 3/2 4F3/2

Mn3+ Cr2+ 3d4 2 2 0 5D0

Fe3+ Mn2+ 3d5 5/2 0 5/2 6S5/2

Fe2+ 3d6 2 2 4 5D4

Co2+ 3d7 3/2 3 9/2 4F9/2

Ni2+ 3d8 1 3 4 3F4

Cu2+ 3d9 1/2 2 5/2 2D5/2

Table 1: Quantum numbers of the ground-state multiplet for several transition-metal ions with
partially filled d shells. In transition-metal oxides the angular momentum is typically quenched
because of the crystal field and therefore only the total spin matters.

2.2 Atomic limit
2.2.1 Paramagnetism of isolated ions

As we have seen, the ground-state multiplet of free ions with partially occupied shells can be
determined via Hund’s rules. In Tab. 1 and Tab. 2 we can find the values of the S, L, and
J quantum numbers for the ground-state multiplets of the most common transition-metal and
rare-earth ions. If t = 0 and n = 1, the Hubbard model (7) describes precisely a collection of
idealized free ions with an incomplete shell. For such idealized ions the only possible multiplet
is the one with quantum numbers J = S = 1/2, L = 0. In the presence of a uniform external
magnetic field hz ẑ we can then obtain the magnetization per atom as

Mz = 〈M i
z〉 = −gµB

Tr [e−gµBhzβS
i
zSiz]

Tr [e−gµBhzβSiz ]
= gµBS tanh (gµBhzβS) ,

and thus
∂Mz

∂hz
= (gµBS)

2 1

kBT

[
1− tanh2 (gµBhzβS)

]
.

The static uniform susceptibility is then given by the h→ 0 limit

χzz(0; 0) = (gµBS)
2 1

kBT
=
C1/2

T
, (15)

where C1/2 is the S = 1/2 Curie constant. If S = 1/2, the relation S2 = S(S + 1)/3 holds.
Thus, for reasons that will become clear shortly, the Curie constant is typically expressed as

C1/2 =
(gµB)

2 S(S + 1)

3kB
.

If the ions have ground-state total angular momentum J , we can calculate the susceptibility
with the same technique, provided that we replace g with the Landé factor gJ

gJ =
〈JJzLS|(gS +L) · J |JJzLS〉
〈JJzLS|J · J |JJzLS〉

∼ 3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
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Ion n S L J 2S+1LJ gJ

Ce3+ 4f 1 1/2 3 5/2 2F5/2 6/7
Pr3+ 4f 2 1 5 4 3H4 4/5
Nd3+ 4f 3 3/2 6 9/2 4I9/2 8/11
Pm3+ 4f 4 2 6 4 5I4 3/5
Sm3+ 4f 5 5/2 5 5/2 6H5/2 2/7
Eu3+ 4f 6 3 3 0 7F0 0
Gd3+ 4f 7 7/2 0 7/2 8S7/2 2
Tb3+ 4f 8 3 3 6 7F6 3/2
Dy3+ 4f 9 5/2 5 15/2 6H15/2 4/3
Ho3+ 4f 10 2 6 8 5I8 5/4
Er3+ 4f 11 3/2 6 15/2 4I15/2 6/5
Tm3+ 4f 12 1 5 6 3H6 7/6
Yb3+ 4f 13 1/2 3 7/2 2F7/2 8/7

Table 2: Quantum numbers of the ground-state multiplet for rare-earth ions with partially filled
f shells and corresponding gJ factor. In 4f materials the crystal field is typically small; thus
the ground-state multiplet is to first approximation close to that of the corresponding free ion.

and calculate the thermal average of the magnetization M = −gJµBJ , accounting for the
2J + 1 degeneracy of the multiplet. The result is

Mz = 〈M i
z〉 = gJµBJ BJ (gJµBhzβJ) ,

where BJ(x) is the Brillouin function

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
.

In the low-temperature (x → ∞) limit BJ(x) ∼ 1, and thus the magnetization approaches its
saturation value in which all atoms are in the ground state

Mz ∼ gJµBJ ≡M0 .

In the high-temperature (x→ 0) limit

BJ(x) ∼ x
J + 1

3J

[
1− 2J2 + 2J + 1

30J2
x2

]
,

and thus the susceptibility exhibits the Curie high-temperature behavior

χzz(0; 0) ∼
CJ
T

=
µ2
J

3kBT
,

where the generalized Curie constant is

CJ =
(gJµB)

2J(J + 1)

3kB
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Fig. 9: Left: Mz/M0 = BJ(x) as a function of x = hzM0/kBT . The different lines correspond
to J = 1/2 (blue), J = 1 (green) and J = 3/2 (red). Right: The ratio Mz/M0hz for finite
magnetic field in the small x limit; the slope is (J + 1)/3J .

and where µJ = gJµB
√
J(J + 1) is the total magnetic moment. Correspondingly, the suscep-

tibility decreases as 1/T with increasing T (Fig. 9). We have thus the three limiting cases

χzz(0; 0) ∼


0 kBT/|M0|hz → 0

CJ/T |M0|hz/kBT → 0

CJ/T hz → 0

.

Remarkably, the T → 0 and hz → 0 limit cannot be interchanged. If hz is finite the suscepti-
bility goes to zero in the T → 0 limit; if we instead perform the hz → 0 limit first it diverges
with the Curie form 1/T . The point hz = T = 0 is a critical point in the phase space.
Let us return to the S = 1/2 case, i.e., the one relevant for the Hubbard model. It is interesting
to calculate the inter-site spin correlation function Si,i′

Si,i′ = 〈(Si − 〈Si〉) · (Si′ − 〈Si′〉)〉 = 〈Si · Si′〉 − 〈Si〉 · 〈Si′〉 .

We express 〈Si·Si′〉 in the form [S(S+1)−Si(Si+1)−Si′(Si′+1)]/2, where Si = Si′ = 1/2 and
S = Si + Si′ is the total spin. Then, since in the absence of a magnetic field 〈Si〉 = 〈Si′〉 = 0,

Si,i′ = [S(S + 1)− 3/2]/2 =

{
1/4 S = 1

−3/4 S = 0
.

The ideal paramagnetic state is however characterized by uncorrelated sites. Hence

Si,i′ = 〈Si · Si′〉 ∼
{
〈Si〉 · 〈Si′〉 ∼ 0 i 6= i′

〈Si · Si〉 = 3/4 i = i′
. (16)

The (ideal) paramagnetic phase is thus quite different from a spatially disordered state, i.e., a
situation in which each ion has a spin oriented in a given direction but spin orientations are
randomly distributed. In the latter case, in general, 〈Si · Si′〉 6= 0 for i′ 6= i, even if, e.g., the
sum of 〈Siz · Si

′
z 〉 over all sites i′ with i′ 6= i is zero∑

i′ 6=i

〈Siz · Si
′

z 〉 ∼ 0 .
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The high-temperature static susceptibility can be obtained from the correlation function Eq. (16)
using the fluctuation-dissipation theorem and the Kramers-Kronig relations (see Appendix).
The result is

χzz(q; 0) ∼
(gµB)

2

kBT

∑
j

S i,i+jzz eiq·(Ri−Ri+j) = χizz(T ) =
M2

0

kBT
=
C1/2

T
. (17)

This shows that χzz(q; 0) is q-independent and coincides with the local susceptibility χizz(T )

χzz(0; 0) = lim
hz→0

∂Mz

∂hz
= χizz(T ) .

How can the spin susceptibility (17) be obtained directly from Hamiltonian (10), the atomic
limit of the Hubbard model? To calculate it we can use, e.g., the imaginary-time and Matsubara-
frequency formalism (see Appendix). Alternatively at high temperatures we can obtain it from
the correlation function as we have just seen. The energies of the four atomic states are given
by (9) and, at half filling, the chemical potential is µ = εd + U/2. Therefore

χzz(0; 0) ∼
(gµB)

2

kBT

Tr
[
e−β(Hi−µNi) (Siz)

2
]

Tr [e−β(Hi−µNi)]
−
[
Tr
[
e−β(Hi−µNi) Siz

]
Tr [e−β(Hi−µNi)]

]2
 =

C1/2

T

eβU/2

1 + eβU/2
.

Thus, the susceptibility depends on the energy scale

U = E(Ni + 1) + E(Ni − 1)− 2E(Ni).

If we perform the limit U → ∞, we effectively eliminate doubly occupied and empty states.
In this limit, we recover the expression that we found for the spin S = 1/2 model, Eq. (17).
This is a trivial example of downfolding, in which the low-energy and high-energy sector are
decoupled in the Hamiltonian from the start. In the large-U limit the high-energy states are
integrated out leaving the system in a magnetic S = 1/2 state.

2.2.2 Larmor diamagnetism and Van Vleck paramagnetism

For ions with J = 0 the ground-state multiplet, in short |0〉, is non-degenerate and the lin-
ear correction to the ground-state total energy due to the Zeeman term is zero. Remarkably,
for open-shell ions the magnetization nevertheless remains finite because of higher-order cor-
rections. At second order there are two contributions for the ground state. The first is the
Van-Vleck term

MVV
z = 2hzµ

2
B

∑
I

|〈0|(Lz + gSz)|I〉|2
EI − E0

,

where EI is the energy of the excited state |I〉 and E0 the energy of the ground-state multiplet.
The Van Vleck term is weakly temperature-dependent and typically small. The second term is
the diamagnetic Larmor contribution

ML
z = −1

4
hz〈0|

∑
i

(x2
i + y2

i )|0〉.

The Larmor and Van Vleck terms have opposite signs and typically compete with each other.
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2.3 Strong-correlation limit
2.3.1 From the Hubbard model to the Heisenberg model

In the large-U limit and at half filling we can map the Hubbard model onto an effective Heisen-
berg model. In this section we solve the latter using static mean-field theory. In the mean-field
approximation we replace the Heisenberg Hamiltonian (11) with

HMF
S =

1

2
Γ
∑
〈ii′〉

[
Si · 〈Si′〉+ 〈Si〉 · Si′ − 〈Si〉 · 〈Si′〉 −

1

4
nini′

]
.

In the presence of an external magnetic field h we add the Zeeman term and have in total

H = gµB
∑
i

[Si · (h+ hmi ) + const.] ,

hmi = n〈ii′〉Γ 〈Si′〉/gµB ,

where n〈ii′〉 is the number of first nearest neighbors and hmi is the molecular field at site i.
We define the quantization axis z as the direction of the external magnetic field, h = hz ẑ,
and assume that ẑ is also the direction of the molecular field, hmi = ∆hiz ẑ. Since Γ > 0 and
hypercubic lattices are bipartite, the likely magnetic order is two-sublattice antiferromagnetism.
Thus we set MA

z = −gµB〈Siz〉, MB
z = −gµB〈Si′z 〉, where A and B are the two sublattices,

i ∈ A and i′ ∈ B. In the absence of an external magnetic field, the total magnetization per
formula unit, Mz = (MB

z +MA
z )/2, vanishes in the antiferromagnetic state (MB

z = −MA
z ).

We define therefore as the order parameter σm = 2m = (MB
z −MA

z )/2M0, which is zero only
above the critical temperature for antiferromagnetic order. We then calculate the magnetization
for each sublattice and find the system of coupled equations{

MA
z /M0 = B1/2

[
M0(hz +∆hAz )β

]
MB

z /M0 = B1/2

[
M0(hz +∆hBz )β

] , (18)

where {
∆hAz = −(MB

z /M0)S
2Γn〈ii′〉/M0

∆hBz = −(MA
z /M0)S

2Γn〈ii′〉/M0

.

For hz = 0 the system (18) can be reduced to the single equation

σm = B1/2

[
σmS

2Γn〈ii′〉β
]
. (19)

This equation always has the trivial solution σm = 0. Figure 10 shows that, for small-enough
temperatures it also has a non-trivial solution σm 6= 0. The order parameter σm equals ±1 at
zero temperature, and its absolute value decreases with increasing temperature. It becomes zero
for T ≥ TN with

kBTN =
S(S + 1)

3
n〈ii′〉Γ.
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Fig. 10: The self-consistent solution of Eq. (20) for σm ≥ 0. The blue line shows the right-
hand side of the equation, the Brillouin function B1/2(x), with x = σmTN/T . The red lines
show the left-hand side of the equation, σm(x) = αx, with α = T/TN; the three different
curves correspond to representative T/TN values.

If T ∼ TN, we can find the non-trivial solution by first rewriting (19) as

σm = B1/2

[
TN

T
σm

]
. (20)

The inverse of this equation yields T/TN as a function of σm

T

TN

=
σm

B−1
1/2 [σm]

.

If T ∼ TN, the parameter σm is small. We then expand the right-hand-side in powers of σm

σm

B−1
1/2(σm)

∼ σm
σm + σ3

m/3 + . . .
∼ 1− σ2

m/3 + . . . .

This leads to the following expression

σm =
√
3

(
1− T

TN

)1/2

,

which shows that the order parameter has a discontinuous temperature derivative at T = TN.
It is interesting to derive the expression of the static uniform susceptibility. For this we go back
to the system of equations (18) and calculate from it the total magnetization Mz. In the weak
magnetic field limit, MA

z ∼ −σmM0 + χzz(0; 0)hz, and MB
z ∼ σmM0 + χzz(0; 0)hz. Then, by

performing the first derivative of Mz with respect to hz in the hz → 0 limit, we obtain

χzz(0; 0) =
C1/2(1− σ2

m)

T + (1− σ2
m)TN

.
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The uniform susceptibility vanishes at T = 0 and reaches the maximum at T = TN, where it
takes the value C1/2/2TN. In the high-temperature regime σm = 0 and

χzz(0; 0) ∼
C1/2

T + TN

,

which is smaller than the susceptibility of free S = 1/2 magnetic ions.
The magnetic linear response is quite different if we apply an external field h⊥ perpendicular
to the spins in the antiferromagnetic lattice. The associated perpendicular magnetization is

M⊥ ∼M0
σm(gµBh⊥)√

(gµBh⊥)2 + (4σm)2(kBTN)2
,

and therefore the perpendicular susceptibility is temperature-independent for T ≤ TN

χ⊥(0; 0) = lim
h⊥→0

dM⊥
dh⊥

=
C1/2

2TN

.

Hence, for T < TN the susceptibility is anisotropic, χzz(0; 0) = χ‖(0; 0) 6= χ⊥(0; 0); at
absolute zero χ‖(0; 0) vanishes, but the response to h⊥ remains strong. For T > TN the order
parameter is zero and the susceptibility isotropic, χ‖(0; 0) = χ⊥(0; 0).
We have up to now considered antiferromagnetic order only. What about other magnetic insta-
bilities? Let us consider first ferromagnetic order. For a ferromagnetic spin arrangement, by
repeating the calculation, we find

χzz(0; 0) =
C1/2(1− σ2

m)

T − (1− σ2
m)TC

,

where TC = −S(S + 1)n〈ii′〉Γ/3kB is, if the exchange coupling Γ is negative, the critical
temperature for ferromagnetic order. Then, in contrast to the antiferromagnetic case, the high-
temperature uniform susceptibility is larger than that of free S = 1/2 magnetic ions.
For a generic magnetic structure characterized by a vector q and a supercell with j = 1, . . . , Nj

magnetically inequivalent sites we make the ansatz

〈M ji
z 〉 = −σmM0 cos(q ·Rj) = −gµBm cos(q ·Rj) ,

where σm is again the order parameter, i identifies the supercell, andRj the position of the j-th
inequivalent site. We consider a magnetic field rotating with the same q vector. By using the
static mean-field approach we then find

kBTq =
S(S + 1)

3
Γq, Γq = −

∑
ij 6=0

Γ 00,ijeiq·(Ti+Rj), (21)

where Γ 00,ij is the exchange coupling between the spin at the origin and the spin at site Ti+Rj

(ij in short); {Rj} are vectors inside a supercell and {Ti} are lattice vectors. In our example,
T0 = TC and TqAF

= TN = −TC. Thus we have

χzz(q; 0) =
C1/2(1− σ2

m)

T − (1− σ2
m)Tq

, (22)



Magnetism in Correlated Matter 3.27

which diverges at T = Tq. The susceptibility χzz(q; 0) reflects the spatial extent of correlations,
i.e., the correlation length ξ; the divergence of the susceptibility at Tq is closely related to the
divergence of ξ. To see this we calculate ξ for a hypercubic three-dimensional lattice, assuming
that the system has only one instability with vector Q. First we expand Eq. (21) around Q
obtaining Tq ∼ TQ + α(q −Q)2 + . . . , and then we calculate χ00,ji

zz , the Fourier transform of
Eq. (22). We find that χ00,ji

zz decays exponentially with r = |Ti + Rj|, i.e., χ00,ji
zz ∝ e−r/ξ/r.

The range of the correlations is ξ ∝ [TQ/(T − TQ)]1/2, which becomes infinite at T = TQ.
It is important to notice that in principle there can be instabilities at any q vector, i.e., q need
not be commensurate with reciprocal lattice vectors. The value of q for which Tq is the largest
determines (within static mean-field theory) the type of magnetic order that is realized. The
antiferromagnetic structure in Fig. 6 corresponds to qAF = Q2 = (π/a, π/a, 0).
In real systems the spin S is typically replaced by an effective magnetic moment, µeff , and
therefore C1/2 → Ceff = µ2

eff/3kB. It follows that µeff is the value of the product 3kBTχzz(q; 0)
in the high-temperature limit (here T � Tq). The actual value of µeff depends, as we have
discussed in the introduction, on the Coulomb interaction, the spin-orbit coupling and the crystal
field. In addition, the effective moment can be screened by many-body effects, as happens for
Kondo impurities; we will discuss the latter case in the last section.

2.3.2 The Hartree-Fock approximation

We have seen that Hartree-Fock (HF) mean-field theory yields Stoner magnetic instabilities in
the weak-coupling limit. Can it also describe magnetism in the local-moment regime (t/U �
1)? Let us focus on the half-filled two-dimensional Hubbard model for a square lattice, and let
us analyze two possible magnetically ordered states, the ferro- and the antiferromagnetic state.
If we are only interested in the ferromagnetic or the paramagnetic solution, the HF approxima-
tion of the Coulomb term in the Hubbard model is given by Eq. (13). Thus the Hamiltonian is
H = Hd + HT + HHF

U with HHF
U = U

∑
i[−2mSiz + m2 + 1

4
n2]. For periodic systems it is

convenient to write H in k space. We then adopt as one-electron basis the Bloch states

Ψkσ(r) =
1√
Ns

∑
i

eik·Ti Ψiσ(r),

where Ψiσ(r) is a Wannier function with spin σ, Ti a lattice vector, and Ns the number of lattice
sites. The term HHF

U depends on the spin operator Siz, which can be written in k space as

Siz =
1

Nk

∑
kk′

ei(k−k
′)·Ti 1

2

∑
σ

σc†kσck′σ︸ ︷︷ ︸
Sz(k,k′)

=
1

Nk

∑
kk′

ei(k−k
′)·TiSz(k,k

′).

The term HHF
U has the same periodicity as the lattice and does not couple states with different

k vectors. Thus only Sz(k,k) contributes, and the Hamiltonian can be written as

H =
∑
σ

∑
k

εknkσ + U
∑
k

[
−2m Sz(k,k) +m2 +

n2

4

]
︸ ︷︷ ︸

HHF
U = U

∑
i[−2mSiz +m2 + 1

4
n2]

,
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Fig. 11: Ferromagnetism in Hartree-Fock. The chemical potential is taken as the energy zero.

where m = (n↑ − n↓)/2 and n = 1; for simplicity we set εd = 0. The HF correction splits the
bands with opposite spin, leading to new one-electron eigenvalues, εkσ = εk+

1
2
U − σUm; the

chemical potential is µ = U/2. The separation between εk↑ − µ and εk↓ − µ is 2mU , as can
be seen in Fig. 11. The system remains metallic for U smaller than the bandwidth W . In the
small-t/U limit and at half filling we can assume that the system is a ferromagnetic insulator
and m = 1/2. The total energy of the ground state is then

EF =
1

Nk

∑
k

[εkσ − µ] =
1

Nk

∑
k

[
εk −

1

2
U

]
= −1

2
U.

Let us now describe the same periodic lattice via a supercell which allows for a two-sublattice
antiferromagnetic solution; this supercell is shown in Fig. 6. We rewrite the Bloch states of the
original lattice as

Ψkσ(r) =
1√
2

[
ΨAkσ(r) + ΨBkσ(r)

]
, Ψαkσ(r) =

1√
Nsα

∑
iα

eiT
α
i ·k Ψiασ(r).

Here A and B are the two sublattices with opposite spins and T A
i and TB

i are their lattice vec-
tors; α = A,B. We take as one-electron basis the two Bloch functions Ψkσ and Ψk+Q2σ, where
Q2 = (π/a, π/a, 0) is the vector associated with the antiferromagnetic instability and the cor-
responding folding of the Brillouin zone, also shown in Fig. 6. Then, in the HF approximation,
the Coulomb interaction is given by

HHF
U =

∑
i∈A

[
−2mSiz +m2 +

n2

4

]
+
∑
i∈B

[
+2mSiz +m2 +

n2

4

]
.

This interaction couples Bloch states with k vectors made equivalent by the folding of the
Brillouin zone. Thus the HF Hamiltonian takes the form

H =
∑
k

∑
σ

εknkσ +
∑
k

∑
σ

εk+Q2nk+Q2σ + U
∑
k

[
−2m Sz(k,k +Q2) + 2m2 + 2

n2

4

]
︸ ︷︷ ︸

static mean-field correction HHF
U

.
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Fig. 12: Antiferromagnetism in Hartree-Fock. The chemical potential is taken as the energy
zero. Blue: εk. Red: εk+Q2 = −εk. The high-symmetry lines are those of the large BZ in Fig. 6.

The sum over k is restricted to the Brillouin zone of the antiferromagnetic lattice. We find the
two-fold degenerate eigenvalues

εk± − µ =
1

2
(εk + εk+Q2)±

1

2

√
(εk − εk+Q2)

2 + 4(mU)2. (23)

A gap opens where the bands εk and εk+Q2 cross, e.g., at the X point of the original Brillouin
zone (Fig. 12). At half filling and for mU = 0 the Fermi level crosses the bands at the X
point too; thus the system is insulator for any finite value of mU . In the small-t/U limit we can
assume that m = 1/2 and expand the eigenvalues in powers of εk/U . For the occupied states
we find

εk− − µ ∼ −
1

2
U − ε2

k

U
= −1

2
U − 4t2

U

(εk
2t

)2

.

The ground-state total energy for the antiferromagnetic supercell is then 2EAF with

EAF = −1

2
U − 4t2

U

1

Nk

∑
k

(εk
2t

)2

∼ −1

2
U − 4t2

U

so that the energy difference per pair of spins between ferro- and antiferro-magnetic state is

∆EHF = EHF
↑↑ − EHF

↑↓ =
2

n〈ii′〉
[EF − EAF] ∼

1

2

4t2

U
∼ 1

2
Γ, (24)

which is similar to the result obtained from the Hubbard model in many-body second order per-
turbation theory, Eq. (12). Despite the similarity with the actual solution, one has to remember
that the spectrum of the Hartree-Fock Hamiltonian has very little to do with the spectrum of
the Heisenberg model, the model that describes the actual low-energy behavior of the Hubbard
Hamiltonian. If we restrict ourselves to the antiferromagnetic solution, the first excited state is
at an energy∝ U rather than∝ Γ ; thus, we cannot use a single HF calculation to understand the
magnetic excitation spectrum of a given system. It is more meaningful to use HF to compare
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the total energy of different states and determine in this way, within HF, the ground state. Even
in this case, however, one has to keep in mind that HF suffers from spin contamination, i.e.,
singlet states and Sz = 0 triplet states mix [26]. The energy difference per bond EHF

↑↑ − EHF
↑↓

in Eq. (24) only resembles the exact result, as one can grasp by comparing it with the actual
energy difference between triplet and singlet state in the two-site Heisenberg model

∆E = ES=1 − ES=0 = Γ,

which is a factor of two larger. The actual ratio ∆E/∆EHF might depend on the details of
the HF band structures. Thus, overall, Hartree-Fock is not the ideal approach to determine the
onset of magnetic phase transitions. Other shortcomings of the Hartree-Fock approximation are
in the description of the Mott metal-insulator transition. In Hartree-Fock the metal-insulator
transition is intimately related to long-range magnetic order (Slater transition), but in strongly
correlated materials the metal-insulator transition can occur in the paramagnetic phase (Mott
transition). It is associated with a divergence of the self-energy at low frequencies rather than
with the formation of superstructures. This physics, captured by many-body methods such as
the dynamical mean-field theory [15], is completely missed by the Hartree-Fock approximation.

2.3.3 The dynamical mean-field theory approach

The modern approach for solving the Hubbard model is the so-called dynamical mean-field the-
ory method [14–16]. In DMFT the lattice Hubbard model is mapped onto a self-consistent quan-
tum impurity model describing an impurity coupled to a non-correlated conduction-electron
bath. The quantum impurity model is typically the Anderson model, which will be discussed
in detail in the next chapter. Here we do not want to focus on the specific form of the quantum
impurity model but rather on the core aspects of the DMFT approach and on the comparison of
DMFT with Hartree-Fock. In Hartree-Fock the effective mean field is an energy-independent
(static) parameter; in the example discussed in the previous section it is a function of the mag-
netic order parameter m. In DMFT the role of the effective mean-field is played by the bath
Green functionG0(iνn) where νn is a fermionic Matsubara frequency; it is frequency dependent
(dynamical) and related to the impurity Green function G(iνn) via the Dyson equation

[G(iνn)]
−1 = [G0(iνn)]

−1 −Σ(iνn) , (25)

where Σ(iνn) is the impurity self-energy. As in any mean-field theory, the effective field is
determined by enforcing a self-consistency condition. In DMFT the latter requires that the
impurity Green function G(iνn), calculated by solving the quantum impurity model, equals
Gii(iνn), the lattice Green function at a site i

Gii(iνn) = G(iνn),

with

Gii(iνn) =
1

Nk

∑
k

G(k; iνn) =
1

Nk

∑
k

1

iνn − εk −Σ(iνn) + µ
.
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Fig. 13: Idealized correlated crystal, schematically represented by a half-filled single-band
Hubbard chain. Sketch of the real-part of the self-energy in the insulating phase, as described
by Hartree-Fock (left-hand side) and DMFT (right-hand side). In HF the self-energy is a spin-
and site-dependent potential (Slater insulator). In DMFT it is spin and site independent; it is,
however, dynamical and its real part diverges at zero frequency (Mott insulator). The imaginary
part of the self-energy is always zero in Hartree-Fock (i.e., quasiparticles have infinite lifetimes).

The Green function on the real axis can be obtained from G(iνn) via analytic continuation;
in the non-interacting case, this can be done simply by replacing iνn with ω + i0+. The self-
energy in Eq. (25) is frequency dependent but local (i.e., site- or k-independent); the locality
of the self-energy is, of course, an approximation; it becomes an exact property, however, in
the limit of infinite coordination number. DMFT yields the exact result in two opposite limits,
t = 0 (atomic limit) and U = 0 (band limit). The first success of DMFT was the description of
the paramagnetic Mott metal-insulator transition in the half-filled one-band Hubbard model. It
is interesting to examine in more detail the nature of the Mott transition in DMFT and compare
it to the Slater transition described by Hartree-Fock. Let us start with analyzing DMFT results.
The poles of the Green function, i.e., the solutions of

ω − εk −Σ ′(ω) = 0 ,

where Σ ′(ω) is the real part of the self-energy, yield the excitations of our system. In the Fermi
liquid regime, the Green function has a pole at zero frequency. Around it, the self-energy has,
on the real axis, the following form

Σ(ω) ∼ 1

2
U +

(
1− 1

Z

)
ω − i

ZτQP
,
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where the positive dimensionless number Z yields the mass enhancement, m∗/m ∼ 1/Z, and
the positive parameter τQP ∼ 1/(aT 2 + bω2) is the quasiparticles lifetime; at higher frequency
the self-energy yields two additional poles corresponding to the Hubbard bands. In the Mott
insulating regime the central quasiparticle peak disappears, and only the Hubbard bands remain.
The self-energy has approximately the form

Σ(ω) ∼ rU2

4

[
1

ω
− iπδ(ω)− ifU(ω)

]
,

where fU(ω) is a positive function that is zero inside the gap and r is a model-specific renormal-
ization factor. Hence, the real-part of the self-energy diverges at zero frequency, and there are
no well defined low-energy quasiparticles. Furthermore, since we are assuming that the system
is paramagnetic, the self-energy and the Green function are independent of the spin

Σσ(ω) = Σ(ω)

Gσ(ω) = G(ω)

Gσ(k;ω) = G(k;ω).

Thus DMFT can be seen, to some extent, as a complementary approximation to Hartree-Fock.
If we write the Hartree-Fock correction to the energies in the form of a self-energy, the latter is
a real, static but spin- and site-dependent potential. More specifically, we have at site i

ΣHF
iσ (ω) = U

[
ni−σ −

1

2

]
,

where niσ is the site occupation for spin σ. Let us consider the antiferromagnetic case. For this,
as we have seen, we have to consider two sublattices or a two-site cluster; the magnetization at
sites j, nearest neighbors of site i, has opposite sign than at site i. Thus

ΣHF
jσ (ω) = −U

[
ni−σ −

1

2

]
.

This spatial structure of the self-energy is what opens the gap shown in Fig. 12; this picture of
the gap opening is very different from the one emerging from DMFT; as we have just seen, in
DMFT the gap opens via the divergence at zero frequency in the real-part of the self-energy;
this happens already in a single-site paramagnetic calculation, i.e., we do not have to assume
any long-range magnetic order. In HF the self-energy resulting from a non-magnetic (m = 0)
single-site calculation is instead a mere energy shift – the same for all sites and spins – and does
not change the band structure at all. Hartree-Fock is not, e.g., the large-U limit of DMFT but
merely the large frequency limit of DMFT (or of its cluster extensions). The differences among
the two approaches are pictorially shown in Fig. 13 for an idealized one-dimensional crystal.
Let us now focus on the magnetic properties of the Hubbard model, and in particular on the
magnetic susceptibility χzz(q; iωm). Since in DMFT we solve the quantum impurity model
exactly, we can directly calculate the local linear-response tensor, and therefore the local sus-
ceptibility χzz(iωm). If we are interested in magnetic order, however, we need also, at least
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Fig. 14: Diagrammatic representation of the Bethe-Salpeter equation. In the case of the
magnetic susceptibility, α = α′ = σ and γ = γ′ = σ′.

in an approximate form, the full q-dependent linear-response function, χzz(q; iωm). How can
we obtain it? It is tempting to think that χzz(q; iωm) can be approximated by the bare DMFT
susceptibility, χ0

zz(q; iωm). In the paramagnetic regime, for the one-band Hubbard model this
is given by (see Appendix)

χ0
zz(q; iωm) = −

(gµB)
2

4

1

βNk

∑
σkn

Gσ(k; iνn)Gσ(k + q; iνn + iωm), (26)

where ωm is a bosonic Matsubara frequency and Gσ(k; iνn) is the single-particle Green func-
tion for spin σ. Since χ0

zz(q; iωm) depends only on the single-particle Green function it can
be extracted from DMFT calculations with little additional effort. To approximate the actual
susceptibility with χ0

zz(q; iωm) would be, however, totally incorrect. Indeed, while χ0
zz(q; iωm)

is exact in the non-interacting limit (i.e., it correctly yields the Pauli susceptibility for U = 0), it
is incorrect in the atomic limit (t = 0) and hence in the whole local-moment regime. Let us see
what happens in the atomic limit. By summing Eq. (26) over q, we obtain the local χ0

zz(iωm),
proportional to the sum of products of local Green functions,

χ0
zz(iωm) = −

(gµB)
2

4

1

β

∑
nσ

Gσ(iνn)Gσ(iνn + iωm).

If we replace the local Green functions with the corresponding atomic Green functions (see
Appendix) and then perform the Matsubara sums we find the expression

χ0
zz(0) =

(gµB)
2

4

βeβU/2

1 + eβU/2

[
1

1 + eβU/2
+

1

Uβ

1− e−βU
1 + e−βU/2

]
∼

βU→∞

(gµBS)
2

U
,
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Green Function Susceptibility

local self-energy approximation local vertex approximation

local Dyson equation local Bethe-Salpeter equation

k-dependent Dyson equation matrix q-dependent Bethe-Salpeter equation matrix

G(k; i⌫n) = G0(k; i⌫n) + G0(k; i⌫n)⌃(k; i⌫n)G(k; i⌫n)

G(i⌫n) = G0(i⌫n) + G0(i⌫n)⌃(i⌫n)G(i⌫n)

� (q; i!m) ! � (i!m)

�(q; i!m) = �0(q; i!m) + �0(q; i!m)� (q; i!m)�(q; i!m)

�(i!m) = �0(i!m) + �0(i!m)� (i!m)�(i!m)

⌃(k; i⌫n) ! ⌃(i⌫n)

Fig. 15: Analogies between the Green function G(k; iνn) in the local-self-energy approxima-
tion (left) and the response function χ(q; iωm) in the local vertex approximation (right). Each
term in the Bethe-Salpeter equation is a square matrix of dimension Lα = NαNkNn, where Nk
is the number of k points, Nn the number of fermionic Matsubara frequencies, Nα the number
of flavors (here: the spin degrees of freedom). The elements of, e.g., the matrix χ(q; iωm) can
be written as [χ(q; iωm)]σkνn,σ′k′νn′ .

where the exact result is

χzz(0) =
1

4
(gµB)

2 βeβU/2

1 + eβU/2
∼

βU→∞

(gµBS)
2

kBT
.

Since χ0
zz(0) is incorrect in the large βU limit, it also does not interpolate properly between the

two regimes, weak and strong coupling. Let us then take a step back. The local susceptibility
χzz(iωm) can be obtained, as we have already mentioned, by solving exactly the self-consistent
quantum impurity model, e.g., via quantum Monte Carlo. In a similar way, the q-dependent
response function χzz(q;ω) could in principle be calculated from the solution of the full lattice
Hubbard model; the problem is that, unfortunately, the exact solution of the Hubbard model
is not available in the general case. If many-body perturbation theory converges, however, we
can calculate χzz(q;ω) by solving the Bethe-Salpeter equation – the analogon of the Dyson
equation for the Green function – with χ0

zz(q; iωn) as bare susceptibility. The Bethe-Salpeter
equation is represented diagrammatically in Fig. 14. By summing up all diagrams in the series
we find

[χ(q; iωn)]
−1 = [χ0(q; iωn)]

−1 − Γ (q; iωn). (27)

Here each term is a square matrix with dimension Lα = NαNkNn, where Nα is the number of
flavors (here, the spin degrees of freedom), Nk is the number of k points and Nn the number
of fermionic Matsubara frequencies. The quantity Γ (q; iωn) is the vertex function and hides
all diagrams appearing in the many-body perturbation series. Finding the exact Γ (q; iωn) is of
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course as difficult as solving the full many-body problem; we therefore have to find a reasonable
approximation. In the spirit of DMFT, let us assume that the vertex entering the Bethe-Salpeter
equation can be replaced by a local function

Γ (q; iωn)→ Γ (iωn).

Furthermore, let us assume that the local vertex solves, in turn, a local version of the Bethe-
Salpeter equation

Γ (iωm) = [χ0(iωm)]
−1 − [χ(iωm)]

−1. (28)

The local vertex Γ (iωm), calculated via Eq. (28), can then be used to compute the susceptibility
from the q-dependent Bethe-Salpeter equation Eq. (27). The analogy between the calculation
of the susceptibility in the local vertex approximation and that of the Green function in the local
self-energy approximation is shown in Fig. 15.
Let us now qualitatively discuss the magnetic susceptibility of the one-band Hubbard model in
the Mott-insulating limit. For simplicity, let us now assume that the vertex is static and thus
that we can replace all susceptibility matrices in the Bethe-Salpeter equation with the physical
susceptibilities, which we obtain by summing over the fermionic Matsubara frequencies and
the momenta. For the magnetic susceptibility this means

χzz(q; iωm) =(gµB)
2 1

β2

1

4

∑
σσ′

σσ′
∑
nn′

1

N2
k

∑
kk′

1

β
[χ(q; iωm)]σkνn,σ′k′νn′

=(gµB)
2

∫
dτ eiωmτ 〈Sz(τ)Sz(0)〉.

In the high-temperature and large-U limit (βU →∞ and T � TN ) the static local susceptibility
is approximatively given by the static atomic susceptibility

χzz(0) ∼
µ2

eff

kBT
,

where µ2
eff = (gµB)

2S(S + 1)/3. Therefore the vertex is roughly given by

Γ (0) ∼ 1

χ0
zz(0)

− kBT

µ2
eff

.

The susceptibility calculated with such a local vertex is

χzz(q; 0) ∼
µ2

eff

kBT − µ2
effJ(q)

≡ µ2
eff

kB(T − Tq)
,

where the coupling is given by

J(q) = −
[

1

χ0
zz(q; 0)

− 1

χ0
zz(0)

]
.

Thus, in the strong-correlation limit, the Bethe-Salpeter equation, solved assuming the vertex
is local and, in addition, static, yields a static high-temperature susceptibility of Curie-Weiss
form. We had found the same form of the susceptibility by solving the Heisenberg model in
the static mean-field approximation. A more detailed presentation of the DMFT approach to
calculate linear-response functions can be found in Ref. [27].
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3 The Anderson model

The Kondo impurity is a representative case of a system that exhibits both local-moment and
Pauli-paramagnetic behavior, although in quite different temperature regimes [12]. The Kondo
effect was first observed in diluted metallic alloys, metallic systems in which isolated d or f
magnetic impurities are present, and it has been a riddle for decades. A Kondo impurity in a
metallic host can be described by the Anderson model

HA =
∑
σ

∑
k

εknkσ +
∑
σ

εfnfσ + Unf↑nf↓︸ ︷︷ ︸
H0

+
∑
σ

∑
k

[
Vkc

†
kσcfσ + h.c.

]
︸ ︷︷ ︸

H1

, (29)

where εf is the impurity level (occupied by nf ∼ 1 electrons), εk is the dispersion of the metallic
band, and Vk the hybridization. If we assume that the system has particle-hole symmetry with
respect to the Fermi level, then εf − µ = −U/2. The Kondo regime is characterized by the
parameter values εf � µ and εf + U � µ and by a weak hybridization, i.e., the hybridization
width

∆(ε) = π
1

Nk

∑
k

|Vk|2δ(εk − ε)

is such that ∆(µ) � |µ− εf |, |µ− εf − U |. The Anderson model is also used as the quantum
impurity problem in dynamical mean-field theory. In DMFT the bath parameters εk and Vk
have, in principle, to be determined self-consistently. If quantum Monte Carlo is used to solve
the Anderson model, it is sufficient to determine the bath Green function self-consistently.

3.1 The Kondo limit

Through the Schrieffer-Wolff canonical transformation [28] one can map the Anderson model
onto the Kondo model, in which only the effective spin of the impurity enters

HK = H ′0 + ΓSf · sc(0) = H ′0 +HΓ , (30)

where

Γ ∼ −2|VkF |2
[
1

εf
− 1

εf + U

]
> 0

is the antiferromagnetic coupling arising from the hybridization, Sf the spin of the impurity
(Sf = 1/2), and sc(0) is the spin-density of the conduction band at the impurity site. For
convenience we set the Fermi energy to zero; kF is a k vector at the Fermi level. The Schrieffer-
Wolff canonical transformation works as follows. We introduce the operator S that transforms
the Hamiltonian H into HS

HS = eSHe−S.
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We search for an operator S such that the transformed Hamiltonian HS has no terms of first
order in Vk. Let us first split the original Hamiltonian HA into two pieces: H0, the sum of all
terms except the hybridization term, and H1, the hybridization term. Let us choose S linear in
Vk and such that

[S,H0] = −H1. (31)

From Eq. (31) one finds that the operator S is given by

S =
∑
kσ

[
1− nf−σ
εk − εf

+
nf−σ

εk − εf − U

]
Vkc

†
kσcfσ − h.c..

The transformed Hamiltonian is complicated, as can be seen from explicitly writing the series
for a transformation satisfying Eq. (31)

HS = H0 +
1

2
[S,H1] +

1

3

[
S, [S,H1]

]
+ . . . .

In the limit in which the hybridization strength Γ is small this series can, however, be truncated
at second order. The resulting Hamiltonian has the form HS = H0 + H2, with H2 = HΓ +

Hdir +∆H0 +Hch. The first term is the exchange interaction

HΓ =
1

4

∑
kk′

Γkk′

[∑
σ1σ2

c†k′σ1〈σ1|σ̂|σ2〉ckσ2 ·
∑
σ3σ4

c†fσ3〈σ3|σ̂|σ4〉cfσ4

]

where

Γkk′ = V ∗k Vk′

[
1

εk − εf
+

1

εk′ − εf
+

1

U + εf − εk
+

1

U + εf − εk′

]
.

Let us assume that the coupling Γkk′ is weakly dependent on k and k′; then by setting |k| ∼ kF ,
and |k′| ∼ kF we recover the antiferromagnetic contact coupling in Eq. (30).
The second term is a potential-scattering interaction

Hdir =
∑
kk′

[
Akk′ −

1

4
Γkk′n̂f

] ∑
σ

ĉ†k′σ ĉkσ,

where

Akk′ =
1

2
V ∗k Vk′

[
1

εk − εf
+

1

εk′ − εf

]
.

This term is spin-independent, and thus does not play a relevant role in the Kondo effect. The
next term merely modifies the H0 term

∆H0 = −
∑
kσ

[
Akk −

1

2
Γkk n̂f−σ

]
n̂fσ.
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Finally, the last term is a pair-hopping interaction, which changes the charge of the f sites by
two electrons and thus can be neglected if nf ∼ 1

∆Hch = −1

4

∑
kk′σ

Γkk′c
†
k′−σc

†
kσcfσcf−σ + h.c..

The essential term in H2 is the exchange term HΓ , which is the one that yields the antiferro-
magnetic contact interaction in the Kondo Hamiltonian (30). Remarkably, the Schrieffer-Wolff
transformation generates a perturbation series in the hybridization; an analogous perturbation
series is also used in the hybridization-expansion continuous-time quantum Monte Carlo ap-
proach to solve the quantum impurity problem in dynamical mean-field theory.

3.1.1 The impurity susceptibility

The solution of the problem defined by (29) or (30) is not at all trivial and requires many-body
techniques such as the Wilson numerical renormalization group [30] or the Bethe ansatz [31].
Here we only discuss some important exact results concerning the magnetic properties. Let us
define the impurity susceptibility χfzz(T ) as the total susceptibility minus the contribution of the
metallic band in the absence of the impurity [30–32]. One can show that at high temperatures
χfzz(T ) has the following behavior

χfzz(T ) ∼
(gµB)

2Sf (Sf + 1)

3kBT

{
1− 1

ln (T/TK)

}
.

This expression resembles the Curie susceptibility, apart from the ln(T/TK) term. The scale TK

is the Kondo temperature, which, to first approximation, is given by

kBTK ∼ De−2/ρ(εF )Γ ,

where 2D = W is the band width of the host conduction band. Because of the ln (T/TK) term,
the susceptibility apparently diverges at T ∼ TK. In reality, however, around TK there is a
crossover to a new regime. For T � TK

χfzz(T ) ∼
C1/2

WTK

{
1− αT 2 + . . .

}
,

whereW is a (universal) Wilson number. Thus the low-temperature system has a Fermi liquid
behavior with enhanced density of states, i.e., with heavy masses m∗/m; furthermore χfzz(0) =
C1/2/WTK is the Curie susceptibility (Eq. (15)) with the temperature frozen at T = WTK. At
T = 0 the impurity magnetic moment is screened by the conduction electrons, which form
a singlet state with the spin of the impurity. In other words, the effective magnetic moment
formed by the impurity magnetic moment and its screening cloud,

µ2
eff(T ) ≡ 3kBTχ

f
zz(T ) ∝ 〈Sfz Sfz 〉+ 〈Sfz scz〉,

vanishes for T � TK. The Kondo temperature is typically 10–30 K or even smaller, hence the
Fermi liquid behavior is restricted to a very narrow energy and temperature region.
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3.1.2 Poor man’s scaling

We can understand the existence of a Fermi liquid regime by using a simple approach due to
Anderson called poor man’s scaling [33] and an argument due to Nozières. First we divide the
Hilbert space into a high- and a low-energy sector. We define as high-energy states those with
at least one electron or one hole at the top or bottom of the band; the corresponding constraint
for the high-energy electronic level εq is D′ < εq < D or −D < εq < −D′, where
D′ = D − δD. Next we introduce the operator PH , which projects onto the high-energy states,
and the operator PL = 1 − PH , which projects onto states with no electrons or holes in the
high-energy region. Then we downfold the high-energy sector of the Hilbert space. To do this
we rewrite the original Kondo Hamiltonian, H ≡ H ′0 +HΓ , as the energy-dependent operator
H ′, which acts only in the low-energy sector

H ′ = PLHPL + δHL = HL + δHL,

δHL = PLHPH

(
ω − PHHPH

)−1

PHHPL.

Here HL is the original Hamiltonian, however in the space in which the high-energy states
have been eliminated; the term δHL is a correction due to the interaction between low and
(downfolded) high-energy states. Up to this point, the operator H ′ has the same spectrum
of the original Hamiltonian. To make use of this expression, however, we have to introduce
approximations. Thus, let us calculate δHL using many-body perturbation theory. The first
non-zero contribution is of second order in Γ

δH
(2)
L ∼ PLHΓPH

(
ω − PHH ′0PH

)−1

PHHΓPL .

There are two types of processes that contribute at the second order, an electron and a hole
process, depending on whether the downfolded states have (at least) one electron or one hole in
the high-energy region. Let us consider the electron process. We set

PH ∼
∑
qσ

c†qσ|FS〉〈FS|cqσ, PL ∼
∑
kσ

c†kσ|FS〉〈FS|ckσ ,

where |εk| < D′ and |FS〉 =∏kσ c
†
kσ|0〉 is the Fermi sea, i.e., the many-body state correspond-

ing to the metallic conduction band. Thus

δH
(2)
L = −1

2
Γ 2
∑
q

1

ω − εq
Sf · sc(0) + . . . ∼ 1

4
ρ(εF )Γ

2 δD

D
Sf · sc(0) + . . . .

We find an analogous contribution from the hole process. The correction δH(2)
L modifies the

parameter Γ of the Kondo Hamiltonian as follows

Γ → Γ ′ = Γ + δΓ,

δΓ

δ lnD
=

1

2
ρ(εF )Γ

2, (32)
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Fig. 16: Sketch of the scaling diagrams for the two-channel Kondo model. Γ = −Jhyb and
ΓF = −Jsf . For Γ > 0 (antiferromagnetic) and ΓF < 0 (ferromagnetic), the antiferromag-
netic coupling scales to strong coupling and ferromagnetic one to weak coupling (right bottom
quadrant). From Ref. [34].

where δ lnD = δD/D. Equation (32) has two fixed points, Γ = 0 (weak coupling) and Γ →∞
(strong coupling). By solving the scaling equations we find

Γ ′ =
Γ

1 + 1
2
ρ(εF )Γ ln D′

D

.

If Γ is antiferromagnetic the renormalized coupling constant Γ ′ diverges for D′ = De−2/Γρ(εF ),
an energy proportional to the Kondo energy kBTK. This divergence (scaling to strong coupling)
indicates that at low energy the interaction between the spins dominates, and therefore the sys-
tem forms a singlet in which the impurity magnetic moment is screened. The existence of this
strong coupling fixed point is confirmed by the numerical renormalization group of Wilson [30].
Nozières [35] has used this conclusion to show that the low-temperature behavior of the sys-
tem must be of Fermi liquid type. His argument is the following. For infinite coupling Γ ′ the
impurity traps a conduction electron to form a singlet state. For a finite but still very large Γ ′,
any attempt at breaking the singlet will cost a very large energy. Virtual excitations (into the
nf = 0 or nf = 2 states and finally the nf = 1 triplet state) are however possible and they
yield an effective indirect interaction between the remaining conduction electrons surround-
ing the impurity. This is similar to the phonon-mediated attractive interaction in metals. The
indirect electron-electron coupling is weak and can be calculated in perturbation theory (1/Γ
expansion). Nozières has shown that, to first approximation, the effective interaction is between
electrons of opposite spins lying next to the impurity. It is of order D4/Γ 3 and repulsive, hence
it gives rise to a Fermi liquid behavior with enhanced susceptibility [35].



Magnetism in Correlated Matter 3.41

If Γ = ΓF < 0 (ferromagnetic coupling, as for example the coupling arising from direct
Coulomb exchange) the renormalized coupling constant Γ ′ goes to zero in the D′ → 0 limit
(scaling to weak coupling). This means that the local spin becomes asymptotically free and
yields a Curie-type susceptibility, which diverges for T → 0. For small but finite coupling we
can account for the ferromagnetic interaction perturbatively (expansion in orders of ΓF ). In
f -electron materials often both ferro and antiferromagnetic exchange couplings are present, the
first, ΓF , arising from the Coulomb exchange, the second, Γ , from the hybridization. There
are therefore two possibilities. If both exchange interactions couple the impurity with the same
conduction channel, only the total coupling ΓF + Γ matters. Thus a |ΓF | > Γ suppresses the
Kondo effect. If, however, ferromagnetic and antiferromagnetic exchange interaction couple
the impurity to different conduction channels, a |ΓF | > Γ does not suppress the Kondo effect
(Fig. 16) but merely reduces TK. In the infinite |ΓF | limit the model describes an undercompen-
sated Kondo effect [34].

3.2 The RKKY interaction

The Kondo Hamiltonian (30) describes a magnetic coupling between a local impurity and a bath
of conduction electrons. Thus, in the presence of several Kondo impurities coupled to the same
conduction electron bath, an indirect magnetic coupling between the local moments arises. Let
us start for simplicity from two Kondo impurities described by the Hamiltonian

H2K =
∑
kσ

εknkσ +
∑
i=1,2

ΓSif · sc(0). (33)

Let us calculate the effective magnetic coupling between the impurities by integrating out the
degrees of freedom of the conduction electrons; this can be done again via perturbation theory
or via a canonical transformation. At second order in Γ , the original Hamiltonian becomes

HRKKY = I12(R12) S
1
f · S2

f (34)

whereR12 = R1 −R2 and

I12(R12) ∼− Γ 2 1

Nk

∑
k

1

Nk

∑
q

Θ(εF − εk)Θ(εk+q − εF )
cos q ·R12

εk+q − εk
.

For a free-electron gas one finds

I12(R12) ∼−
Γ 2q4

F

π3

[
sin 2qFR12 − 2qFR12 cos 2qFR12

(2qFR12)4

]
,

where R12 = |R12|. The coupling I12(R12) decays as ∼ 1/R3
12 with the distance between

the two impurities. It oscillates with a behavior similar to Friedel oscillations; the sign of
the interaction at a certain distance between the impurities depend on the band filling, and
it is negative (ferromagnetic) for qF → 0. The exchange Hamiltonian HRKKY is known as
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and competes with the Kondo effect.
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We can understand this competition using the following – well known but naive – argument.
For simplicity, we assume I12 > 0 (antiferromagnetic) as it is often the case. The energy
gain obtained forming a singlet (antiferromagnetic state) is ES ∝ −I12 ∝ −Γ 2; the Kondo
energy gain is instead EK ∝ −kBTK ∼ −De−2/ρ(εF )Γ . If the coupling constant Γ is small
|ES| is larger than |EK |. In this case, the antiferromagnetic order is favored over the Kondo
effect, which would lead to the screening of local moments. In the opposite limit, i.e., when
Γ is large, the Kondo effect dominates, and the local moments are screened – thus the system
does not exhibit any long-range order. Although reality is more complex – the two effects
occur together – this simple argument gives a picture of the mechanisms at play in a lattice
of Kondo impurities. It is important to understand that the RKKY interaction is an indirect
coupling arising from the interaction of a correlated impurity with a conduction-electron bath;
the coupling I12 is proportional to Γ 2, and the coupling Γ itself was obtained by integrating
out high-energy doubly occupied states on the impurity, in a similar way as we have seen for
kinetic exchange. In the U = 0 limit the coupling Γ diverges and the full construction breaks
down. Finally, in a system in which non-perturbative effects – such as the Kondo effect – play a
key role, the second order Hamiltonian HRKKY is in general not even sufficient to describe the
actual nature of the magnetic phenomena; to obtain HRKKY we have actually integrated out the
very interaction leading to the Kondo effect, and this is clearly incorrect in the general case.

4 Conclusion

In this lecture we introduced some of the fundamental aspects of magnetism in correlated sys-
tems. We have seen two distinct regimes, the itinerant and the local-moment regime. In the
first regime we can, in most cases, treat correlation effects in perturbation theory. In the world
of real materials this is the limit in which density-functional theory (DFT), in the local-density
approximation or its simple extensions, works best. If the system is weakly correlated we can
calculate the linear-response function in the random-phase approximation and understand mag-
netism within this approach fairly well.
The opposite regime is the strong-correlation limit, in which many-body effects play a key role.
In this limit perturbation theory fails and we have in principle to work with many-body meth-
ods. If, however, we are interested only in magnetic phenomena, at integer filling a strong
simplification comes from mapping the original many-body Hamiltonian into an effective spin
model. The exact solution of effective spin models requires in general numerical methods such
as the Monte Carlo or quantum Monte Carlo approach, or, when the system is small enough,
exact diagonalization or Lanczos. To work with material-specific spin models we need to cal-
culate the magnetic exchange parameters. Typically this is done starting from total-energy DFT
calculations for different spin configurations, e.g., in the LDA+U approximation. The LDA+U
approach is based on the Hartree-Fock approximation, and therefore when we extract the pa-
rameters from LDA+U calculations we have to keep in mind the shortcomings of the method.
Furthermore if we want to extract the magnetic couplings from total energy calculations we
have to make a guess on the form of the spin model. More flexible approaches, which allow



Magnetism in Correlated Matter 3.43

us to account for actual correlation effects, are based on Green functions and the local-force
theorem [36], or on canonical transformations [28, 37].
In strongly correlated materials localized- and itinerant-moment physics can often be observed
in the same system, although in different energy or temperature regimes. This is apparent in the
case of the Kondo effect. For a Kondo impurity, the susceptibility exhibits a Curie behavior at
high temperature and a Fermi liquid behavior at low temperature. In correlated transition-metal
oxides Fermi liquid and local-spin magnetism can both play an important role but at different
energy scales. Furthermore, in the absence of a large charge gap, downfolding to spin mod-
els is not really justified. The modern method to bridge between the localized and itinerant
regimes and deal with the actual complications of real systems is the dynamical mean-field the-
ory (DMFT) [14–16]. Within this technique we directly solve generalized Hubbard-like models,
albeit in the local self-energy approximation. DMFT is the first flexible approach that allows us
to understand the paramagnetic Mott metal-insulator transition and thus also magnetism in cor-
related materials in a realistic setting. Modern DMFT codes are slowly but steadily becoming
as complex and flexible as DFT codes, allowing us to deal with the full complexity of strongly
correlated materials. While this is a huge step forward, we have to remember that state-of-
the-art many-body techniques have been developed by solving simple models within certain
approximations. We have to know these very well if we want to understand real materials and
further advance the field. In DMFT we self-consistently solve an effective quantum impurity
model, a generalization of the Anderson model. Thus a lot can be learnt from the solution of
the Anderson model in the context of the Kondo problem. Much can be understood alone with
simple arguments, as Anderson or Nozières have shown us, reaching important conclusions on
the Kondo problem with paper and pencil.
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Appendices

A Formalism

The formulas in this Appendix are in atomic units: The numerical value of e, m, and ~ is 1, that
of µB is either 1/2 (SI units) or α/2 (cgs-Gauss units), where α is the fine-structure constant;
the energies are in Hartree.

A.1 Matsubara Green functions
A.1.1 Imaginary-time and frequency Green functions

The imaginary-time Matsubara Green function is defined as

Gαα′(τ ) = −〈T cα(τ1)c
†
α′(τ2)〉 = −

1

Z
Tr
[
e−β(H−µN)T cα(τ1)c

†
α′(τ2)

]
,

where T is the time-ordering operator, τ = (τ1, τ2), Z = Tre−β(H−µN) is the partition function,
and the imaginary-time operators o(τ) = c(τ), c†(τ) are defined as

o(τ) = eτ(H−µN)o e−τ(H−µN).

The indices α and α′ are the flavors; they can be site and spin indices in the atomic limit and k
and spin indices in the non-interacting-electrons limit. Writing the action of the time-ordering
operator explicitly, we obtain

Gαα′(τ ) = −Θ(τ1 − τ2)〈cα(τ1)c
†
α′(τ2)〉+Θ(τ2 − τ1)〈c†α′(τ2)cα(τ1)〉.

Using the invariance of the trace of the product of operators under cyclic permutations, one can
show that the following properties hold

Gαα′(τ ) = Gαα′(τ1 − τ2),

Gαα′(τ) = −Gαα′(τ + β) for − β < τ < 0.

The Fourier transform on the Matsubara axis is

Gαα′(iνn) =
1

2

∫ β

−β
dτeiνnτGαα′(τ) =

∫ β

0

dτeiνnτGαα′(τ),

with νn = (2n+ 1)π/β. The inverse Fourier transform is given by

Gαα′(τ) =
1

β

+∞∑
n=−∞

e−iνnτGαα′(iνn).

The convergence of Gαα′(τ) is only guaranteed in the interval −β < τ < β. Finally, if nα is
the number of electrons for flavor α, one can show that

Gαα(τ → 0+) = −1 + nα, Gαα(τ → β−) = −nα. (35)
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Fig. 17: The function Gkσ(τ) defined in Eq. (37) for a state well below the Fermi level (red)
and at the Fermi level (blue) for β = 2 (eV)−1. The green line shows the atomic G(τ) from
Eq. (39) for U = 6 eV and magnetic field h = 0.

A.1.2 Non-interacting limit

For a non-interacting system described by the Hamiltonian

H0 =
∑
kσ

εknkσ (36)

we can show that the imaginary time Green function Gkσ(τ) is given by

Gkσ(τ) = −
〈
T
[
ckσ(τ)c

†
kσ(0)

]〉
= −

[
Θ(τ) (1− nσ(εk))−Θ(−τ)nσ(εk)

]
e−(εk−µ)τ , (37)

where nσ(εk) is the occupation number

nσ(εk) =
1

1 + eβ(εk−µ)
.

The Fourier transform of the Green function Gkσ(τ) at the Matsubara frequencies is

Gkσ(iνn) =
1

iνn − (εk − µ)
.

To obtain the analytic continuation of this Green function on the real axis we substitute

iνn → ω + i0+.
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A.1.3 Matsubara sums

The non-interacting Green function Gkσ(z) has a pole at zp = εk − µ; the Fermi function nσ(z)
has poles for z = iνn instead. Let us consider the integral

1

2πi

∮
C

Fkσ(z)nσ(z)ezτdz = 0,

where 0 < τ < β and where the function Fkσ(z) is analytic everywhere except at some poles
{zp}. The contour C is a circle in the full complex plane centered at the origin and including
the poles of the Fermi function (Matsubara frequencies) and the poles of Fkσ(z). The integral
is zero because the integrand vanishes exponentially for |z| → ∞. Furthermore

Res [nσ(iνn)] = −
1

β
.

Using Cauchy’s integral theorem we then have

1

β

∑
n

eiνnτFkσ(iνn) =
∑
zp

Res [Fkσ(zp)]nσ(zp)ezpτ .

We can use this expression and (35) to show that

1

β

∑
n

e−iνn0−Gkσ(iνn) = Gkσ(0−) = nσ(εk),

1

β

∑
n

e−iνn0+Gkσ(iνn) = Gkσ(0+) = nσ(εk)− 1.

In a similar way we can show that

1

β

∑
n

eiνn0+Gkσ(iνn)Gkσ(iνn) =
dnσ(εk)

dεk
= βnσ(εk)[−1 + nσ(εk)],

1

β

∑
n

eiνn0+Gkσ(iνn)Gk+qσ(iνn + iωm) =
nk+q − nk

−iωm + εk+q − εk
,

where in the last relation ωm = 2mπ/β is a bosonic Matsubara frequency.

A.1.4 Atomic limit

It is interesting to consider a half-filled idealized atom described by the Hamiltonian

H = εd
∑
σ

nσ + U

(
N2

4
− S2

z

)
+ gµBhSz. (38)

For τ > 0 we can calculate explicitly the Green function, obtaining

Gσ(τ) = −
1

2

1

1 + eβU/2 cosh (βgµBh/2)

[
eτ(U−gµBhσ)/2 + e(β−τ)(U+gµBhσ)/2

]
. (39)
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The Fourier transform of Gσ(τ) is

Gσ(iνn) =

[
w−

iνn + (U − gµBhσ)/2
+

w+

iνn − (U + gµBhσ)/2

]
,

where

w± =
1

2

1 + eβU/2e±βgµBhσ/2

1 + eβU/2 cosh (βgµBh/2)
.

Since the Green function is written as the sum of functions with one pole, the analytic continu-
ation is simple, as in the non-interacting case. We replace iνn with ω + i0+.

A.2 Linear-response theory
A.2.1 Theory

The response of a system described by the Hamiltonian H to a small magnetic field h(r, t) is
given by the linear correction to the Hamiltonian, i.e.,∑

ν

δHν(r; t) = −
∑
ν

Mν(r; t)hν(r; t), (40)

whereM (r; t) is the magnetization operator in the Heisenberg representation

Mν(r; t) = eiHtMν(r)e
−iHt

and ν = x, y, z. To linear order in the perturbation and assuming that the perturbation is turned
on adiabatically at t0 = −∞

〈Mν(r; t)〉 − 〈Mν(r)〉0︸ ︷︷ ︸
δ〈Mν(r; t)〉

= −i
∑
ν′

∫
dr′
∫ t

−∞
dt′〈[∆Mν(r; t), δHν′(r

′; t′)]〉0.

Here 〈Mν(r)〉0 is the (equilibrium) thermal average in the absence of the perturbation and
∆Mν(r; t) =Mν(r; t)− 〈Mν(r)〉0. By replacing

∑
ν′ δHν′(r

′; t′) with (40) we obtain

δ〈Mν(r; t)〉 = i
∑
ν′

∫
dr′
∫ t

−∞
dt′ 〈[∆Mν(r; t), ∆Mν′(r

′; t′)]〉0 hν′(r′; t′).

The function

χνν′(r, r
′; t, t′) = i 〈[∆Mν(r; t), ∆Mν′(r

′; t′)]〉0Θ(t− t′) (41)

is the so-called retarded response function. If the Hamiltonian H has time translational invari-
ance symmetry the retarded response function depends only on time differences t− t′. For the
Fourier transform, we have

δ〈Mν(r;ω)〉 =
∑
ν′

∫
dr′χνν′(r, r

′;ω)hν′(r
′;ω).
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For a system with translational invariance, we additionally have

δ〈Mν(q;ω)〉 =
∑
ν′

χνν′(q;ω)hν′(q;ω).

In the ω = 0 and q → 0 limit we have

χνν′(0; 0) = lim
hν′→0

∂Mν

∂hν′
,

where hν′ = hν′(0; 0). More details can be found in Ref. [27]. In the rest of the Appendix we
replace for simplicity the notation 〈· · · 〉0 with 〈· · · 〉.

A.2.2 Kramers-Kronig relations and thermodynamic sum rule

Important properties of the spin susceptibility are the Kramers-Kronig relations

Re[χ(q;ω)]− Re[χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im[χ(q;ω′)]

ω′ − ω dω′,

Im[χ(q;ω)] = − 1

π
P
∫ +∞

−∞

Re[χ(q;ω′)]− Re[χ(q;∞)]

ω′ − ω dω′,

where P is the Cauchy principal value, and Re and Im indicate the real and imaginary part.
The first Kramers-Kronig relation yields the sum rule

Re[χ(q;ω = 0)]− Re[χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im[χ(q;ω′)]

ω′
dω′. (42)

In the q = 0 limit, Eq. (42) is known as thermodynamic sum rule.

A.2.3 Fluctuation-dissipation theorem and static susceptibility

We define the spin-spin correlation function

Sνν′(q; t) = 〈∆Sν(q; t)∆Sν′(−q)〉

where ∆Sν(q; t) = Sν(q; t) − 〈Sν(q; 0)〉 and where the Sν are spin operators. The Fourier
transform of the correlation function in frequency space is Sνν′(q;ω). One can show that

Sνν′(q;ω) = eβωSν′ν(q;−ω).

The following formula, known as fluctuation-dissipation theorem, relates the spin-spin correla-
tion function with the magnetic susceptibility

Im[χνν′(q;ω)] =
1

2(1 + nB)
(gµB)

2Sνν′(q;ω), nB(ω) =
1

eβω − 1
.

Assuming kBT large and using Eq. (42) we find

Re[χνν′(q;ω = 0)]− Re[χνν′(q;∞)] ∼ (gµB)
2

kBT
Sνν′(q; t = 0).
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A.2.4 Imaginary-time and frequency response function

We define the susceptibility in imaginary time as

χνν′(q; τ, τ
′) = 〈T ∆Mν(q; τ)∆Mν′(−q; τ ′)〉

where ∆Mν(q; τ) =Mν(q; τ)−〈Mν(q; 0)〉. As in the case of the Green function, by using the
invariance properties of the trace one can show that

χνν′(q; τ, τ
′) = χνν′(q; τ − τ ′).

The response function in imaginary time is related to the response function at the bosonic Mat-
subara frequency iωm through the Fourier transforms

χνν′(q; τ) =
1

β

∑
n

e−iωmτχνν′(q; iωm),

χνν′(q; iωm) =

∫
dτeiωmτχνν′(q; τ).

A.3 Magnetic susceptibility
A.3.1 Spin and magnetization operators

The spin operators Sν are defined as

Sν =
1

2

∑
σσ′

c†σσνcσ′ ,

where ν = x, y, z and σν are the Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
.

The magnetization operators Mν are defined as Mν = −gµBSν .

A.3.2 Matsubara magnetic susceptibility

The magnetic susceptibility for a single-band system can be expressed as

χzz(q; τ ) =
(gµB)

2

4

∑
σσ′

σσ′ χqσσ
′
(τ ) =

(gµB)
2

4

∑
σσ′

σσ′
1

β

1

N2
k

∑
kk′

[χ(q; τ )]σk,σ′k′︸ ︷︷ ︸
χqσσ′

(τ )

(43)

where σ = 1 or −1 depending on whether the spin is up or down, τ = (τ1, τ2 τ3, τ4) and

[χ(q; τ )]σk,σ′k′ =〈T ckσ(τ1)c
†
k+qσ(τ2)ck′+qσ′(τ3)c

†
k′σ′(τ4)〉

−〈T ckσ(τ1)c
†
k+qσ(τ2)〉〈T ck′+qσ′(τ3)c

†
k′σ′(τ4)〉.
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In Fourier space

χzz(q; iωm) =
(gµB)

2

4

∑
σσ′

σσ′
1

β2

∑
nn′

χqσσ
′

n,n′ (iωm)

=
(gµB)

2

4

∑
σσ′

σσ′
1

β2

∑
nn′

1

β

1

N2
k

∑
kk′

[χ(q; iωm)]σkn,σ′k′n′︸ ︷︷ ︸
χqσσ′

n,n′ (iωm)

,

where ωm = 2mπ/β is a bosonic Matsubara frequency and

χqσσ
′

n,n′ (iωm) = χqσσ
′
(ν) =

β

8

∫∫∫
dτ eiν·τχqσσ

′
(τ ). (44)

The integral for each τ component is from −β to β and ν = (νn,−νn − ωm, νn′ + ωm,−νn′).

A.3.3 Symmetry properties

Let us now analyze the symmetry properties of (44). The complex conjugate is given by[
χqσσ

′

n,n′ (iωm)
]∗

= χqσσ
′

−n−1,−n′−1(−iωm),

with

χqσσ
′

n,n′ (iωm) =
β

8

∫∫∫
dτ ei(−ωmτ23+νnτ12+νn′τ34)χqσσ

′
(τ ).

By using the fact that, for the cases considered here, the response function is real in τ space and
by exchanging the indices 1 and 4, 2 and 3 in the integrand, we find

χqσσ
′

n,n′ (iωm) = χqσ
′σ

n′,n (iωm),

and hence if σ = σ′, νn = ν ′n is a reflection axis. An additional reflection axis can be found by
first shifting the frequency νn = νl − ωm

χqσσ
′

l,n′ (iωm) =
β

8

∫∫∫
dτ ei(−ωmτ13+νlτ12+νn′τ34)χqσσ

′
(τ )

and then exchanging in the integrand the indices 12 with 34 and vice versa. Hence

χqσσ
′

l,n′ (iωm) = χqσ
′σ

n′,l (−iωm)

so that, if σ = σ′, νn+m = −νn′ is a mirror line∣∣∣χqσσ′n+m,n′(iωm)
∣∣∣ = ∣∣∣χqσ′σ−n′−1,−n−m−1(iωm)

∣∣∣ .
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A.3.4 Non-interacting limit

For a non-interacting system described by Hamiltonian (36) Wick’s theorem yields

χqσσ
′
(τ ) = − 1

β

1

Nk

∑
k

〈T ckσ(τ1)c
†
k+qσ′(τ4)〉〈T ck+qσ′(τ3)c

†
kσ(τ2)〉

= − 1

β

1

Nk

∑
k

Gkσ(τ14)Gk+qσ′(−τ23)δσ,σ′ .

Then, in the paramagnetic case, the magnetic susceptibility is given by

χzz(q; τ ) = −(gµB)21

4

1

β

1

Nk

∑
kσ

Gkσ(τ14)Gk+qσ(−τ23).

Its Fourier transform is

χzz(q; iωm) = (gµB)
21

4

1

β2

∑
nn′

∑
σ

χqσσn,n′(iωm),

where ∑
σ

χqσσn,n′(iωm) = −β
1

Nk

∑
kσ

Gkσ(iνn)Gk+qσ(iνn + iωm)δn,n′ .

Thus, the static susceptibility is

χzz(q; 0) = − (gµB)
2 1

4

1

Nk

∑
kσ

nσ(εk+q)− nσ(εk)
εk+q − εk

.

Finally, in the q → 0 and T → 0 limit we find

χzz(0; 0) =
1

4
(gµB)

2 1

Nk

∑
kσ

[
−dnσ(εk)

dεk

]
T=0︸ ︷︷ ︸

ρ(εF )

=
1

4
(gµB)

2 ρ(εF ).

A.3.5 Atomic limit

In the atomic limit, we sum over q to obtain the local susceptibility tensor

χσσ
′
(τ ) =

1

Nk

∑
q

χqσσ
′
(τ ).

For Hamiltonian (38), in the sector τ+ such that τi > τi+1, the latter has the form

χσσ
′
(τ+) =

1

β

1

2(1 + eβU/2)

(
eτ12U/2+τ34U/2 + δσσ′e

(β−τ12)U/2−τ34U/2
)
.

The magnetic susceptibility for τi > τi+1 is then given by

χzz(τ
+) = (gµB)

2 1

4

∑
σσ′

σσ′χσσ
′
(τ+) =

(gµB)
2

4β

1

(1 + eβU/2)
e(β−τ12−τ34)U/2,
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which depends only on τ = τ12+τ34. In the remaining sectors (labeled with P ) the susceptibility
has a similar form after appropriate permutation of the imaginary times

χzz(τ
P ) = (gµB)

2 1

4

∑
σσ′

σσ′χσσ
′
(τ P ) = sP

(gµB)
2

4β
n(−sP y)e−sP (τ12+τ34)y,

where y = U/2 and sP = ±1; the derivation can be found in [27]. If we perform the Fourier
transform of χzz(τ ) we find χzz(iωn) = χzz(0)δωn,0. The static susceptibility is

χzz(0) = (gµB)
2 1

4kBT

eβU/2

1 + eβU/2
= (gµB)

2 1

4

1

β2

∑
nn′

∑
σσ′

σσ′ χσσ
′

n,n′(0).

Here, after setting

Mn =

[
1

iνn − y
− 1

iνn + y

]
we have∑

σσ′

σσ′ χσσ
′

n,n′(0) =
dMn′Mn

dy
− βn(y)

[
δn,n′

dMn

dy
+ δn,−n′−1

dMn′

dy

]
+ βn(−y)MnMn′

−1

y

[
Mn′−βn(y)δn,−n′−1 + βn(−y)δn,n′

]
Mn.

Most contributions cancel each other when the sums over the Matsubara frequencies are per-
formed. A detailed derivation can be found in Ref. [27]. For y = 0 only the terms proportional
to δn,n′ survive, as expected from the Wick theorem.
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http://www.cond-mat.de/events/correl11

[16] E. Pavarini, E. Koch, A. Lichtenstein, D. Vollhardt: DMFT at 25: Infinite Dimensions,
Reihe Modeling and Simulation, Vol. 4 (Forschungszentrum Jülich, 2014)
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