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Forschungszentrum Jülich, 2015, ISBN 978-3-95806-074-6
http://www.cond-mat.de/events/correl15

http://www.cond-mat.de/events/correl15


2.2 Kurt Schönhammer

1 Introduction

The electronic properties of mixed valence lanthanide materials, like Ce compounds, were stud-
ied experimentally over a long period of time. In addition to thermodynamic and transport
measurements various “high energy” spectroscopies like valence photoemission, inverse pho-
toemission, and core level spectroscopies were used to understand the electronic properties of
the f -levels of such systems [1]. It took some time until it was realized that electronic correla-
tions play an essential role for the understanding of the f -spectra. As a first step in the attempt
at theoretical understanding, a single rare-earth atom in a simple metal can be studied using the
single-impurity Anderson model [2]. In this model, discussed in detail in the following, the en-
ergy εf of the f -level, the coupling∆ to the conduction electrons, and the Coulomb repulsion U
between two electrons in the f -level are the essential parameters that determine quantities like
the total f -level occupancy nf . If spin-orbit coupling and crystal-field splitting are neglected
the degeneracy of the f -level is given by Nf = 14.

The f -electron spectral function of the Anderson impurity model was a long-standing issue. If
the coupling ∆ is weak, and the Fermi level balls between εf and εf + U , the spectrum has a
peak near εf (seen in photoemission) and a peak near εf +U (seen in inverse photoemission). It
was further realized that the spectrum has resonance close to εF = 0 usually called the Kondo
resonance [3, 4]. Except for some special cases [5] it was, however, for a long time hard to
determine even the qualitative properties of the Kondo resonance.

A historically important progress in the treatment of the Anderson impurity model was the
realization in the early eighties that 1/Nf can be treated as a small parameter [6, 7]. Using
this idea O. Gunnarsson and the author developed a method for calculating zero-temperature
spectral properties (intermediate states method), which becomes exact in the limit Nf → ∞
[8–11]. In particular, this method makes it possible to study the Kondo peak quantitatively for
large values of Nf . Analytical results in the infinite-U limit obtained to leading order in 1/Nf

are presented in the following sections. Higher-order calculations that require numerical work
usually converge quickly for Nf = 14. They were successfully used for a comparison to the
experimental spectra of Ce compounds [9, 10, 12].

Apart from second quantization, the intermediate states method uses only basic quantum me-
chanics. The knowledge of more sophisticated many-body techniques, like Feynman diagrams,
is not necessary to understand it. This is presumably one of the reasons why it is used frequently
by experimental groups for the interpretation of their measured spectra.

At about the same time as the intermediate states method, large Nf approaches (for infinite U )
were proposed that allow an extension to finite temperatures [13–16]. Some of the ideas in these
papers can be traced back to earlier work [17,18]. Using different many-body techniques, these
approaches lead to the same set of integral equations in the so-called non-crossing approxima-
tion (NCA). Usual Feynman diagram techniques can be used in the derivation if a slave boson
is introduced [16]. There is a chapter on the slave-boson technique in this book.
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At the time of these developments Wilson’s numerical renormalization group method (NRG) to
calculate ground state properties of the spin-degenerate Anderson impurity model numerically
to arbitrary accuracy was known [19], but the extension to calculate the impurity spectral func-
tion came more than ten years after Wilson’s work [20,21]. There are two chapters on the NRG
in this book. Therefore it is not further discussed here.
Later the NCA was generalized to finite values of U [22–24] and further improved [25, 26]
to correctly obtain the Kondo scale for Nf = 2. Another approach that circumvents many
of the earlier deficiencies in the treatment of the spin-degenerate single-impurity Anderson
model (SIAM) is the local moment approach [27]. It was later extended to include orbital
degeneracy [28].
Exact results for ground-state and thermodynamic properties of the spin-degenerate Anderson
impurity model were presented using the Bethe ansatz [29, 30]. Later, this approach was ex-
tended to models with large orbital degeneracy in the limit U →∞ [31]. Unfortunately results
for spectral properties by this method do not (yet) exist.
Additional motivation for simple accurate calculational schemes for the impurity spectral func-
tion came later from the development of the dynamical mean-field theory (DMFT) [32], in
which an extended lattice model of correlated electrons is mapped onto a SIAM with a cou-
pling to a bath whose structure has to be determined self-consistently. Then the coupling of the
impurity to the conduction band can have an arbitrary energy dependence.
In section 2 the Anderson impurity model in its basic form as well as the minimal model for
an impurity with a core level in a metal are introduced. Important new aspects arising when
the orbital degeneracy is taken into account are discussed in section 3. As a first example of
the ideas of the 1/Nf expansion presented in the following, the ground state of the impurity
system is discussed. In section 4 the intermediate states method is introduced and applied to
the description of various spectroscopies. The comparison with spectroscopic measurements of
mixed-valence compounds is briefly addressed in section 5.

2 Basic impurity models

2.1 Spin-degenerate single-impurity Anderson model

In order to study a single magnetic impurity in simple metals, P.W. Anderson proposed the
Hamiltonian [2]

HA =
∑
σ

[
εdndσ +

∑
k

εknkσ +
∑
k

Vdk

(
ψ†dσψkσ +H.c.

)]
+ Und↑nd↓ , (1)

where ψd,σ is the annihilation operator of the localized impurity |d〉-state with energy εd, and
the ψk,σ are the annihilation operators of the delocalized band states |k〉 with energy εk. The
ndσ = ψ†dσψdσ (and d → k) are particle number operators. In the body of his 1961 paper
Anderson used the “physically unrealistic case” with only spin degeneracy and treated the case
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of a doubly degenerate d-orbital in an appendix [2]. As a “physically realistic” case the spin-
degenerate model was later used to describe hydrogen chemisorption on metal surfaces (d→ a

for “adsorbate”), where |a〉 corresponds to the hydrogen 1s-level [33]. The last term of the
Anderson Hamiltonian describes the local Coulomb repulsion U , which acts when the d-level
is doubly occupied. This two-body interaction makes the model highly non-trivial.
Experimentally relevant spectral functions are obtained from the one-particle Green’s functions.
The general definition of the retarded functions [34] is

〈〈A;B〉〉z ≡ −i
∫ ∞
0

〈[A(t), B]±〉 eizt dt , (2)

where A(t) = eiHtAe−iHt is the operator A in the Heisenberg picture, 〈 〉 denotes the average
over the grand canonical ensemble, and z is a complex variable with Im z > 0 in order to
ensure the convergence of the time integral. For operatorsA involving products of an odd (even)
number of fermion field operators the anticommutator [ , ]+ (commutator [ , ]−) is chosen. The
Heisenberg equation of motion (EOM) for A(t) and a partial integration yields the EOM

z〈〈A;B〉〉z − 〈〈[A,H];B〉〉z = 〈[A,B]±〉 . (3)

This EOM is very useful for discussing the exactly solvable limits of the Anderson impurity
model.
The retarded one-particle Green’s functions Gij(z) is obtained by A→ ψi, B → ψ†j

Gij(z) ≡ 〈〈ψi;ψ†j〉〉z . (4)

At zero temperature the local Green’s function takes the form

Gdσ,dσ(z) ≡
〈
E0(N)

∣∣∣∣ψ†dσ 1

z +H − E0(N)
ψdσ + ψdσ

1

z −H + E0(N)
ψ†dσ

∣∣∣∣E0(N)

〉
(5)

≡ G<
dσ,dσ(z) +G>

dσ,dσ(z) .

The first term is relevant for photoemission and the second one for inverse photoemission. At
finite temperature T the spectral functions are obtained as

ρ<dd(ε) = −
1

π
f(ε) ImGdσ,dσ(ε+ i0) and ρ>dd(ε) = −

1

π
(1− f(ε)) ImGdσ,dσ(ε+ i0) , (6)

where f(ε) = 1/(eβε + 1) is the Fermi function with β = 1/kBT and the chemical potential is
chosen as the zero of energy. This leads to

ρ>dd(ε) = eβερ<dd(ε) . (7)

This relation can be read as “photoemission determines inverse photoemission.” It has been
used in the present context to get information about a Kondo resonance above the chemical
potential by means of photoemission [35]. Unfortunately the relation is of limited practical use.
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For U = 0 the Anderson impurity model describes noninteracting electrons and is exactly
solvable. The generally valid EOMs follow from Eq. (3)

(z − εd)Gdσ,dσ(z)− U 〈〈ψdσnd−σ;ψ†dσ〉〉z −
∑
k

VdkGkσ,dσ(z) = 1 , (8)

(z − εk)Gkσ,dσ(z)− V ∗dkGdσ,dσ(z) = 0 .

For U = 0 these equations close and one obtains

GU=0
dσ,dσ(z) =

1

z − εd − Γ (z)
, with Γ (z) =

∑
k

|Vdk|2

z − εk
. (9)

For finite systems Γ (z) has poles on the real axis. In the thermodynamic limit they go over to a
branch cut on the real axis.
Using ρdσ,dσ(ε) = −ImGdσ,dσ(ε + i0)/π one obtains the impurity spectral function. The only
information about the band states that enters is the coupling function Γ (ε+i0). It determines the
width and location of the resonance resulting from the coupling. An often-used approximation
for the coupling function is the wide-band limit Γ (ε ± i0) = ∓iΓ with a constant Γ . Then
the U = 0 impurity spectral function ρdσ,dσ(ε) has a Lorentzian peak of half-width Γ at εf .
The mathematical structure of the results of the noninteracting limit of the Anderson model first
appeared in earlier models by K.O. Friedrichs [36] and T.D. Lee [37].
A long history exists of attempts to solve the Anderson impurity model for finite values of the
Coulomb interaction U. It started with Anderson using the Hartree-Fock (HF) approximation [2]

U nd↑nd↓ → U
(
nd↑〈nd↓〉HF + nd↓〈nd↑〉HF − 〈nd↑〉HF 〈nd↓〉HF

)
, (10)

which corresponds to a noninteracting model with the bare f -level position given by the re-
placement εd → εHFdσ = εd + U 〈nd−σ〉HF . This leads to

GHF
dσ,dσ(z) =

1

z − εd − U 〈nd−σ〉 − Γ (z)
. (11)

In the language of the EOMs the HF-approximation corresponds to the factorization of the
retarded function 〈〈ψdσnd−σ;ψ†dσ〉〉z → 〈nd−σ〉〈〈ψdσ;ψ

†
dσ〉〉z. The discussion of the results of

the HF-approximation simplifies in the particle-hole-symmetric case εd + U/2 = µ = εF = 0

for a symmetric band around the chemical potential. Then 〈nd−σ〉RHF = 1/2 = 〈nd,−σ〉exact

and the R(estriced)HF resonance is at the chemical potential. The shape and position of this
RHF spectral function is independent of the value of U in this particle-hole symmetric case.
At a critical value U/Γ = π solutions of the HF-equations occur where the occupancies of the
impurity level for spin-up and spin-down differ [2]. These “unrestricted Hartree-Fock” (UHF)
solutions are an artifact of the approximation as no spontaneous symmetry breaking can occur
when the interaction acts in a zero dimensional system. Therefore the spin variable in the
Green’s function is suppressed in (most of) the following (e.g. dσ → d).
In order to properly describe the U -dependence of Gdd, a better treatment of the self-energy
Σ(z) defined in the usual way

Gdd(z) =
1

z − εd − Γ (z)−Σ(z)
(12)
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is necessary. The first order contribution in U to the self-energyΣ is just the HF-term U〈nd,−σ〉.
In the particle-hole symmetric case and the wide-band limit the spectral function takes the form
(Σ̃ ≡ Σ − U 〈nd,−σ〉)

ρdd(ε) =
1

π

Γ + |ImΣ̃(ε+ i0)|(
ε− ReΣ̃(ε))2 + (Γ + |ImΣ̃(ε+ i0)|

)2 (13)

with Re Σ̃(ε) an even function of ε. At zero temperature the Fermi liquid property holds:
ImΣ̃(ε + i0) ∼ ε2 for ε → 0. This can be seen easily for the self-energy to second order in U
and has been discussed to arbitrary order by Yamada and Yoshida [38]. This implies the exact
result for the particle-hole symmetric case at T = 0:

ρdd(0) = ρRHFdd (0) =
1

πΓ
. (14)

Important additional insights into the energy dependence of ρdd(ε) are obtained by considering
the exactly solvable atomic limit, in which Vdk = 0 for all values of k. Again the EOMs close,
as (z − εd − U)〈〈ψdσnd−σ;ψ†dσ〉〉z = 〈nd−σ〉 holds for vanishing coupling to the conduction
band. Keeping the spin indices one obtains

GV=0
dσ,dσ(z) =

1− 〈nd−σ〉
z − εd

+
〈nd−σ〉

z − (εd + U)
. (15)

Here we only discuss the most interesting case when εd is below the Fermi energy and εd +
U is above it. Then the total occupancy of the impurity level is approximately one, which
holds exactly in the particle-hole symmetric case. If an electron is removed from the impurity
level the empty impurity state created can decay by the tunneling back in of a spin-up or spin-
down electron, which gives the “atomic peaks” a width twice as large as the width of the RHF-
Lorentzian:

Gdd(z) ≈
1/2

z − U/2− 2Γ (z)
+

1/2

z + U/2− 2Γ (z)
. (16)

A formal way to obtain this result is to calculate a properly defined self-energy matrix to second
order in the hybridization V [39]. For U � Γ most of the spectral weight is in the atomic peaks
that are assumed to be well described. At the chemical potential, the spectral weight vanishes
in this large-U limit as ∼ Γ/U2 instead of yielding the exact result 1/(πΓ ). This implies that a
very narrow peak at the Fermi energy is missing.
Both approximations for the local spectral function in the particle-hole symmetric case pre-
sented so far are unable to properly describe this Kondo resonance at the Fermi energy. An
exact (numerical) calculation was only presented in the eighties with the help of the numerical
renormalization group (NRG) [20]. The exact NRG result in the wide band limit for U/Γ = 4π

is shown in Fig. 1. The RHF result agrees with the exact NRG result only for ε = 0 but oth-
erwise fails badly. The naive perturbation theory around the atomic limit fails badly in the low
energy region. For larger values of U/Γ than shown in Fig. 1 the high energy features near
±U/2 agree better with the NRG-result.
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Fig. 1: Result for the impurity spectral function of the spin-symmetric Anderson model in the
particle-hole symmetric case in the wide band limit for U/Γ = 4π: exact result from the
numerical renormalization group (NRG) with the Kondo peak at the Fermi energy (full line);
restricted Hartree-Fock approximation (dashed line); perturbation theory around the atomic
limit (dashed-dotted line)

The simple arguments presented in favor of the Kondo resonance in the particle-hole symmetric
case give no information about its width and its precise location if |εd| 6= |εd + U |. Before the
NRG results were available, it was therefore useful to obtain partial answers to these questions
in the limit of large additional orbital degeneracy of the impurity level. This is discussed in
detail in the following sections.

There is a long history of attempts to obtain a controlled approximation for Gdd and the corre-
sponding spectral function that cannot presented here in detail. We shortly mention decoupling
schemes of higher order Green’s functions that appear in the EOM of 〈〈ψdσnd−σ;ψ†dσ〉〉z or in
the EOMs of higher order [40–44]. The quality of the results for Gdd is generally hard to judge.
The resulting spectral functions can have frequency regions with negative spectral weight [43].
Special attention to the large Nf limit has been given by Czycholl [44]. To leading order in
1/Nf , he obtains at zero temperature a sharp peak at the correct Kondo energy.

Additional information on the attempts to understand the physics of the SIAM can be found in
the book by A. Hewson [45].
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2.2 Impurity models involving core levels

X-ray absorption spectroscopy and X-ray photoemission spectroscopy (XPS) of the core levels
of an impurity are useful tools for obtaining information about the properties of the valence
electrons. In a minimal model, a single nondegenerate core level of the impurity with energy
εc is considered, which is filled in the initial state. The creation of the core hole in the photoe-
mission process leads to an additional attractive potential for the valence level of the impurity
which lowers it by an amount Udc. The corresponding model Hamiltonian reads

Htot = HA + εcnc − Udc(1− nc)
∑
σ

ndσ . (17)

As the ground state of the combined system has the form ψ†c |E0(N)〉, with |E0(N)〉 the ground
state of the valence system with the core hole present, the time evolution of the remaining
pure valence system after removing the core electron is described by the modified Anderson
Hamiltonian H̃A, with the energy εd of the impurity level replaced by εd−Udc. The creation of
the core hole acts as a quantum quench for the valence system. The core spectral function is

ρcc(ε) =
〈
E0(N)

∣∣∣ δ(ε− εc − E0(N) + H̃A

)∣∣∣E0(N)
〉
. (18)

For the case of noninteracting valence electrons, i.e., U = 0 in Eq. (1), this problem falls into the
class of the famous X-ray edge singularity problem [46]. The sharp core-level spectrum without
the presence of the valence electrons is replaced by a continuum with a power law singularity
at the high-energy edge. This is closely related to the Anderson orthogonality catastrophe [47]
which states that the overlap of the ground states of HA and H̃A vanishes with a power law
in 1/N when the number of electrons N tends to infinity. The core-level spectrum can show
satellite peaks corresponding to higher-energy eigenstates of H̃A due to physical processes that
occur on a finite time scale [48–50]. This has been addressed in detail, e.g., for core levels of
adsorbates at metal surfaces [50]. For small coupling Γ a high energy resonance dominates the
core level spectrum if the adsorbate level, initially well above the chemical potential, is pulled
well below it when the core hole is created. For finite Coulomb interaction U , the problem
cannot be solved exactly, and various approximations were proposed [51, 52]. The treatment
within the large-degeneracy limit is discussed in section 4.

3 Anderson impurity model with large orbital degeneracy

Despite the fact that Anderson proposed his model to treat transition-metal impurities in simple
metals, the five-fold orbital degeneracy of d-orbitals was not treated explicitly. The degeneracy
of f -orbitals is given by Nf = 14 if spin degeneracy is included and spin-orbit coupling and
crystal-field splitting is neglected. As mentioned in the introduction, an important progress in
the treatment of the Anderson model was the realization that the treatment of 1/Nf as a small
parameter allows new approximation schemes [6, 7]. In the SIAM Hamiltonian, Eq. (1), the
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non-degenerate orbital label d is replaced by the orbital quantum number m and Vkd by Vkm.
We assume that in the thermodynamic limit∑

k

V ∗kmVkm′ δ(ε− εk) = V (ε)2 δmm′ (19)

holds [9, 10]. It is useful to introduce new one-particle states

|ε,mσ〉 ≡ V (ε)−1
∑
k

Vkm δ(ε− εk) (20)

and to use the combined degeneracy index ν ≡ mσ. The orthogonality relation of these states
reads 〈ε, ν|ε′, ν ′〉 = δνν′ δ(ε− ε′).
Despite the fact that it is mathematically more appropriate to write down the many-body Hamil-
tonian for finite systems and take the thermodynamic limit in the end of the calculation, in the
following we formally write it down using creation and annihilation operators of the states de-
fined in Eq. (20). To avoid problems, one can discretize the energies ε and replace the Dirac
delta functions δ(ε − ε′) by Kronecker deltas δεε′ . This is done anyway in the higher order
numerical treatment of the 1/Nf scheme presented in the following sections [9]. Alternatively,
one has to subtract the (infinite) energy of the filled Fermi sea.
Keeping these precautions in mind, the Nf -fold-degenerate single-impurity Anderson Hamilto-
nian used in the following reads

H =

Nf∑
ν=1

[
εfψ

†
νψν +

∫
ε ψ†νεψνε dε+

∫ (
V (ε)ψ†νψνε +H.c.

)
dε

]
+ U

∑
ν<µ

nνnµ . (21)

The Hamiltonian H̃0, which contains linear combinations of conduction states that do not couple
to the f -level, is not included. It can be neglected for the properties studied here.
As in the following V (ε) enters in the combinations NfV (ε)2 and V (ε)2, it is useful to define

Ṽ (ε) ≡
√
NfV (ε) (22)

and require that Ṽ (ε) is independent of the degeneracy Nf . This simplifies the discussion of the
large degeneracy limit Nf →∞.

3.1 Ground-state calculation

The ground-state calculation is performed variationally by classifying the many-electron states
shown in Fig. 2 in orders of 1/Nf .
In the state |0〉, all conduction states below the Fermi energy are filled, and the f -level is empty.
This state couples via H to the states denoted a in Fig. 2. They are of the form

|ε〉 = 1√
Nf

∑
ν

ψ†νψεν |0〉 (23)
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Fig. 2: Schematic representation of the many-electron basis states. Solid circles show electrons
and open circles show holes. The hatched part indicates the filled conduction bands and the
horizontal lines the f -level. The arrows show which states couple to each other. A solid line
indicates the strength Ṽ and a dashed line the strength Ṽ /

√
Nf .

in which a conduction electron has hopped into the f -level. These states couple to the b states
with two electrons in the f -level

|ε, ε′〉 = 1√
Nf (Nf − 1)

∑
ν 6=ν′

ψ†νψενψ
†
ν′ψε′ν′ |0〉 , (24)

and to the c states with a conduction electron-conduction hole pair

|Eε〉 = 1√
Nf

∑
ν

ψ†Eνψεν |0〉 , (25)

where E refers to a conduction electron state above the Fermi level (E > εF ). Further states in
Fig. 2 can easily be written down [10].
The matrix elements coupling these states are given by

〈ε|H|0〉 = Ṽ (ε) , (26)

〈ε, ε′|H|ε′′〉 =
√

1− 1/Nf

(
Ṽ (ε′) δ(ε− ε′′) + Ṽ (ε) δ(ε′ − ε′′)

)
, (27)

〈Eε|H|ε′〉 = Ṽ (E)/
√
Nf δ(ε− ε′) . (28)

These examples illustrate the general result that within each row in Fig. 2 there are states that
couple with strength Ṽ , while states in different rows at most couple with a strength Ṽ /

√
Nf .

This allows one to classify the states in orders of 1/Nf according to their contribution to the
ground state. The states in the first, second and third rows are of the orders (1/Nf )

0, (1/Nf )
1

and (1/Nf )
2, respectively.
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As an illustration, we calculate the ground state for U =∞ to lowest order in 1/Nf . It is written
as [53]

|E0〉(0) = A

[
|0〉+

∫ 0

−B
dε a(ε) |ε〉

]
, (29)

where the normalization constant A is related to the total occupancy nf of the f -level by A2 =

1 − nf . In contrast to the ground-state energy E(0)
0 , the difference ∆E0 ≡ E

(0)
0 − 〈0|H|0〉

is finite also in the thermodynamic limit. Using the coupling matrix elements Eq. (26) and
〈ε|(H − 〈0|H|0〉)|ε′〉 = (εf − ε)δ(ε− ε′), the Schrödinger equation leads to

∆E0 =

∫ 0

−B
Ṽ (ε) a(ε) dε and (∆E0 − εf + ε) a(ε) = Ṽ (ε) . (30)

Therefore ∆E0 obeys the implicit equation

∆E0 =

∫ 0

−B

Ṽ (ε)2

∆E0 − εf + ε
dε→ Ṽ 2 ln

εf −∆E0

εf −∆E0 +B
, (31)

where the energy integration was performed for the case of an energy-independent Ṽ . We
discuss the solution for the case of constant Ṽ and εf well below the Fermi energy. Defining
the (positive) δ ≡ εf − ∆E0, ∆̃ ≡ πṼ 2, and ε̃f ≡ εf + (∆̃/π) ln (πB/∆̃) the equation for δ
simplifies in the Kondo-limit −ε̃f � ∆̃ to

δ =
∆̃

π
eπ(ε̃f−δ)/∆̃ → δ ≈ ∆̃

π
eπε̃f/∆̃ . (32)

The coefficient

a(ε)2 =
∆̃

π

1

(ε− δ)2
(33)

grows on the energy scale δ as the Fermi energy is approached from below. The total f -
occupancy is determined by

∫
a(ε)2 dε. For the case of an energy-independent Ṽ , one obtains

nf = ∆̃/(∆̃ + πδ) [9]. The energy scale δ depends exponentially on πε̃f/∆̃, which suggests
that it can be, apart from a factor given by the Boltzmann constant kB, interpreted as the Kondo
temperature: TK = kBδ. This will be further examined in the following sections.
The infinite-U , lowest-order calculation presented above can be extended to the case when the
spin-orbit splitting ∆εf is taken into account [9]. The single f -level (with Nf = 14) is replaced
by two levels (with Nf1 = 6 and Nf2 = 8 for j = 5/2 and j = 7/2) at εf and εf +∆εf . For the
description of high-resolution experimental spectra of Ce compounds it is important to include
the spin-orbit splitting [54, 55].
The (1/Nf )

0 calculation of the ground state can also be extended to the finite U case. If an
infinite three-body interaction is assumed, one just has to take the b states in Fig. 2 into ac-
count with an additional term with coefficients b(ε, ε′) in Eq. (29). The Schrödinger equation
then leads to an integral equation for a(ε) that for U � B is of separable form [11]. For a
detailed discussion of the explicit bandwidth behavior of the energy difference δ(U) between
the nonmagnetic ground state and the lowest magnetic states that are not totally symmetric in
the degeneracy indices, see Ref. [11].
Numerical ground-state calculations of higher order in 1/Nf using the states shown in Fig. 2
quickly converge for Nf = 14 [9, 10].
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4 The intermediate states method for spectra

The theoretical description of photoemission simplifies considerably when the emitted electron
in the state |κ〉 is assumed to have no interaction with the remaining (N − 1)-electron system.
This sudden approximation becomes increasingly accurate as the kinetic energy of the emitted
electron is increased. In this approximation the photoelectron current can be calculated using
Fermi’s golden rule. For a weak energy dependence of the matrix elements τκi of the dipole
operator, where |i〉 is a valence state, the current is directly related to the spectral function of
one-particle Green’ functions G<

ii when interference effects are neglected [56, 10].
In Eq. (5) the zero-temperature local one-particle Green’s functions G< and G> are expressed
as an expectation value of the resolvent of the many body Hamiltonian H . One obtains the well
known Lehmann representation by inserting the complete set of (N ∓1)-electron eigenstates of
H . For G< one can alternatively use the resolution of unity made of an arbitrary complete set
{ |i〉} of (N − 1)-electron basis states

G<
νν(z) =

∑
ij

〈E0(N)|ψ†ν |i〉〈i|(z +H − E0(N))−1|j〉〈j|ψν |E0(N)〉 . (34)

The inversion of the matrix H̃(z)ij ≡ 〈i|(z +H −E0(N))|j〉 would lead to the exact result for
G<
νν(z)

G<
νν(z) =

∑
ij

〈E0(N)|ψ†ν |i〉(H̃(z)−1)ij〈j|ψν |E0(N)〉 (35)

if the procedure could actually be carried out for a complete set of states. Approximations can
be obtained by truncating the set {|i〉} of intermediate states. Useful results can be obtained
again using a classification of the states according to their contribution in orders of 1/Nf . For
the calculation of G> one can proceed the same way but with (N + 1)-electron intermediate
states {|i〉}.

4.1 Valence photoemission spectroscopy

Again, we first consider the U = ∞ case and work to lowest order in 1/Nf . Then the ground
state is described by Eq. (29). As ψν |E0〉(0) = A

∫
dε a(ε)ψεν |0〉/

√
Nf , we introduce the basis

states |εν〉 which via H couple to the states |εε′ν〉, where

|εν〉 ≡ ψεν |0〉, |εε′ν〉 ≡
1√
Nf

∑
ν′

ψ†ν′ψε′ν′ψεν |0〉 . (36)

The matrix H̃(z) defined before Eq. (35) has the matrix elements

H̃(z)ε,ε′ = (z −∆E0 − ε) δ(ε− ε′) , (37)

H̃(z)εε′,ε′′ = Ṽ (ε′) δ(ε− ε′′)− Ṽ (ε)/
√
Nf δ(ε

′ − ε′′), (38)

H̃(z)εε′,ε1ε2 = (z −∆E0 + εf − ε− ε′) δ(ε− ε1) δ(ε− ε2) . (39)
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In leading order we neglect the term ∼ 1/
√
Nf on the right-hand side of the second equation.

This leads to the simplification that for each |εν〉 one can treat the coupling of this state to a
continuum of states with an additional hole at ε′ < εF = 0 separately. This greatly simplifies
the leading-order calculation of G<

νν .
For the inversion of H̃(z), it is convenient to use a block matrix form with elements H̃11, H̃12, H̃21

and H̃22, where e.g. H̃11 refers to the H̃(z)ε,ε′ and H̃22 to H̃(z)εε′,ε1ε2 . The well known matrix
inversion formula (

H̃−1
)
11

=
(
H̃11 − H̃12H̃

−1
22 H̃21

)−1
(40)

simplifies the calculation. Since H̃22 is diagonal its inversion is trivial and one obtains

(H̃(z)−1)εε′ = g̃(z −∆E0 + εf − ε)δ(ε− ε′) , (41)

where

g̃(z) =
1

z − εf − Γ̃ (z)
with Γ̃ (z) =

∫ 0

−B

Ṽ (ε)2

z − ε
dε . (42)

Note that the energy integration in the definition of Γ̃ (z) only extends to εF = 0. The function
g̃(z) has the form of the f Green’s function of a noninteracting Anderson model with a sharp
band cut-off at ε = 0. Finally, performing one of the energy integrations with the help of the
delta function in Eq. (41), one obtains for G<

f to leading order in 1/Nf

G<
νν(z) =

1

Nf

A2

∫ 0

−B
a(ε′)2g̃(z −∆E0 + εf − ε′) dε′. (43)

The function Im g̃(ε ± i0) has a continuum part for −B ≤ ε ≤ 0 due to the imaginary part of
Γ̃ (ε ± i0). As the transcendental equation (31) for ∆E(0)

0 can be written as ∆E0 = −Γ̃ (δ),
the function g̃(z) has a pole at z = δ = εf − ∆E0. The strength of the pole (1 − dΓ̃ /dz)−1

evaluated at z = δ is given by 1 − nf . This pole of g̃ yields for the total f spectral function
ρ<f (ε) = −

∑
ν ImG<

νν(ε+ i0)/π using Eq. (33) and A2 = 1− nf the expression

ρ<f (ε) =
(1− nf )2Ṽ (ε)2

(δ − ε)2
for − δ ≤ ε ≤ 0 . (44)

There is also a (partial) contribution of this type to ρ<f (ε) for −B ≤ ε ≤ δ. As A2
∫
a(ε)2 dε =

nf , the total weight of ρ<f resulting from the pole of g̃(z) at z = δ is given by nf (1 − nf ). It
becomes very small in the Kondo limit nf ≈ 1.
For ε < −δ the continuum part of Im g̃(ε ± i0) also contributes to ρ<f (ε), and there can be a
split-off state below the conduction band in g̃(z).
The low-energy spectral weight described in Eq. (44) rises sharply as ε approaches εF = 0

from below. It is the tail of the Kondo resonance present at ε ≈ δ in the spectral function ρ>f (ε)
describing inverse photoemission. This is discussed in the next subsection. This low-energy
behavior is totally different from the noninteracting case for Nf = 1. When εf lies below the
Fermi energy, the f -spectral density in the Nf = 1 case has an ionization peak near εf and
the spectral density decreases when ε approaches εF = 0 from below. In the Kondo limit
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Fig. 3: Comparison of the leading order result for ρ<f (ε) (full lines) with the result of a Nf = 1

calculation where ∆ is replaced by ∆̃ (dotted lines) for two different values of εf .

−εf � ∆̃, implying nf ≈ 1, a similar ionization peak near εf dominates ρ>f (ε). In this limit
the energy integration withA2a(ε′)2 in Eq. (43) for−ε� δ approximately acts like (one-sided)
delta function at the origin and ρ<f (ε) ≈ −Im g̃(ε+ i0)/π holds. The width of this peak is given
by ∆̃ = Nf∆, where ∆ = π V 2(εf ) is the half-width of the model for Nf = 1. After removing
an f -electron from the ground state given by Eq. (29), the probability that a conduction electron
in channel ν with energy ε ≈ εf hops into the f -level is given by ∆. Since there are Nf such
channels the width is given by Nf∆ = ∆̃.
In Fig. 3, we compare results for the leading order result of ρ>f (ε) with the result of a Nf = 1

calculation where ∆ is replaced by ∆̃. For both cases shown εf is below the Fermi level. In the
left part of the figure |εf | < ∆̃ and the ionization peak of the Nf = 1 spectrum only shows as
a shoulder in the leading-order result for ρ>f (ε). In the right half of the figure |εf | = 2∆ and
the ionization peak is more asymmetric than the Nf = 1 result. This is similar to Fig. 1 where
in the exact NRG result the atomic peaks are more asymmetric than the result from simple
perturbation theory around the atomic limit.
The leading order calculation ofG<

νν(z) can again be extended to the case of including spin-orbit
splitting [9] and the case of finite U [11].

4.2 Inverse Photoemission

In inverse photoemission, earlier called Bremsstrahlung isochromat spectroscopy (BIS), the
sample is bombarded by electrons that make radiative transitions into lower-lying (N + 1)-
electron states. Here we discuss transitions into the f -level. The theoretical description is in
terms of

G>
νν(z) =

〈
E0(N)

∣∣∣∣ψν 1

z −H + E0(N)
ψ†ν

∣∣∣∣E0(N)

〉
. (45)
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As the integrated weight of the total spectral function ρνν = ρ<νν+ρ
>
νν is unity and

∫
ρ<νν(ε) dε =

nf/Nf holds, with nf ≤ 1 in the infinite U case, the integrated weight of ρ>νν is given by
1 − nf/Nf , i.e., it is larger by a factor of Nf than the integrated weight of ρ<νν . This is a clear
hint that a 1/Nf approximation for the full Gνν is problematic. If it does not fulfill ρ<νν(0) =

ρ>νν(0), which is expected for an exact description at any finite Nf , this is an indication of the
requirement to treat G>

νν differently from G<
νν .

If in Eq. (45) the ground state to leading order in 1/Nf Eq. (29) is used, one has to calculate the
expectation value of the resolvent of the many-body Hamiltonian with

ψ†ν |E0〉(0) = A

ψ†ν |0〉+ 1√
Nf

∑
ν′(6=ν)

∫
dε a(ε)ψ†νψ

†
ν′ψεν′|0〉

 . (46)

In the first state on the right-hand side the f -level is singly occupied (f 1), while in the states
in the second term it is doubly occupied (f 2). Integrating the corresponding expectation values
of δ(ε − H + E0(N)) shows that the total weight of the f 1 contribution is given by 1 − nf
and the f 2 weight by nf (1 − 1/Nf ). For large values of U the two different contribution are
energetically well separated.
In a first attempt, one would take the states on the right-hand side of Eq. (46) as the intermediate
states to calculate G>

νν . If one focuses on the f 1-peak in the U → ∞ limit, only the state
|ν〉 = ψ†ν |0〉 plays a role, and one obtains

G>
νν(z) ≈

1− nf
z +∆E0 − εf

=
1− nf
z − δ

. (47)

In this approximation ρ>νν has a delta peak at εf − ∆E0 = δ. For εf well above the Fermi
energy εF = 0 one has nf � 1, and |∆E0| is small compared to εf . This leads to a Delta peak
of weight ≈ 1 close to εf . This is the atomic limit of the trivial empty-level case. Lowering
εf lowers the peak position but it stays above the Fermi energy. For εf well below the Fermi
energy the peak is very close to the Fermi energy as δ/∆̃ is exponentially small in πε̃f/∆ (see
Eq. (32)). As 1 − nf � 1, the weight of the peak is very small. In fact, in this approximation
the Kondo peak has zero width.
Obviously when using this leading order description for the calculation of ρ<νν , the condition
ρ<νν(0) = ρ>νν(0) is not fulfilled. In order to achieve this, one has to go one order higher in 1/Nf

for the intermediate states inserted in Eq. (45). For εf well above the Fermi level, the state
|ν〉 decays into states |Eν〉 ≡ ψ†Eν |0〉 with E ≈ εf , which leads to a peak with a half-width
πV (εf )

2 = πṼ (εf )
2/Nf . The states |Eν〉 couple to the states |Eεν〉 ≡

∑
ν′ ψ

†
Eνψ

†
ν′ψεν′|0〉/

√
Nf

with a matrix element Ṽ (ε), i.e., of order (1/Nf )
0. In the infinite-U case these are the additional

states to be included. The calculation is similar to the leading-order calculation for G<
νν pre-

sented in the previous subsection but using the inversion formula (40) twice. It leads to [9, 10]

G>
νν(z) =

1− nf
z +∆E0 − εf − µ(z)

with µ(z) =

∫ B

0

V (E)2

z +∆E0 − E + Γ̃ (−z −∆E0 + E + εf )
dE.

(48)
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The additional term Γ̃ in the denominator of the integrand of µ(z) results from including the
states |Eεν〉 with a hole in the conduction band. Neglecting Γ̃ gives the result for the width of
the peak near εf well above the Fermi energy, mentioned above. For εf well below the Fermi
energy it is essential to include Γ̃ . Then the integrand on the right-hand side has a pole at z = E

of strength 1− nf leading to −Imµ(ε+ i0) = (1− nf )πV (ε)2. This leads to

ρ>f (ε) =
(1− nf )2 Ṽ (ε)2

(ε− δ − Reµ(ε))2 + ((1− nf )πV (ε))2
for 0 ≤ ε ≤ δ . (49)

In a strict 1/Nf expansion of ρ>f , the contributions from µ in the denominator are of order
1/Nf and can be neglected. With this assumption ρ>f (ε) joins smoothly to the low-energy result
ρ<f (ε) in Eq. (44). The steep rise found there for −δ ≤ ε ≤ 0 continues for ρ>f (ε). In the region
ε ≈ δ the strict 1/Nf expansion fails, and the full expression in Eq. (49) has to be used. This
gives the Kondo peak a half-width (1 − nf )πV (δ)2 ≈ πnfδ/Nf . The correct treatment of the
energy range ε ≥ δ within the approximation given by Eq. (48) requires the inclusion of the
“continuum part” of µ. Unfortunately the approximation Eq. (48) for G>

νν leads to an additional
weak, unphysical pole slightly below ε = 0. A different type of anomaly appears in the NCA at
zero temperature [57]. For large Nf , the NCA properly describes how the weight of the Kondo
resonance decreases with increasing T , where the scale is given by the Kondo temperature.
One can summarize the behavior of the f 1 peak as a function of εf as follows: Lowering εf from
well above the Fermi energy to well below it, its position goes from εf very close to εF = 0 Its
weight (1− nf )Nf and width (1− nf )πṼ (δ)2/Nf is reduced as nf goes from ≈ 0 to ≈ 1.
For a comparison with experiment, it is crucial to take into account that U is finite, since this
leads to a second f 2-like peak in the BIS spectrum. Using the leading-order, finite-U ground
state and additional intermediate states with a doubly occupied f level and a hole in the con-
duction band, the resulting matrix has to be inverted numerically [10, 11]. The f 2 peak has a
broadening of 2∆ (half-width), as the f 2 state can decay by the hopping of either of the two f
electrons into the conduction band. It shows a tailing towards higher energies. The reason is
that the intermediate states with two electrons in the f level have a hole in the conduction band.
This hole is likely to be close to the Fermi energy but can also be located further down.
In the spin-degenerate case Nf = 2 a half-filled symmetric band and 2εf + U = 0 lead to
particle-hole symmetry and the Kondo resonance is at ε = 0 as shown in Fig. 1. For Nf > 2

the Kondo resonance is above the Fermi level for 2εf + U = 0 [24]. In order to obtain the
Kondo resonance exactly at ε = 0 for Nf = 2 an infinite summation of skeleton diagrams in
the generating functional is necessary leading to the symmetrized finite-U NCA [25].
Let us summarize the behavior of the total spectral function ρf = ρ<f + ρ>f in the Kondo regime
−εf � ∆̃ for large values of U : The ionization peak near εf has weight nf ≈ 1; the weight of
the f 1 peak (Kondo peak) slightly above εF is (1 − nf )Nf , and the f 2 peak near εf + U has a
weight nf (Nf − 1) ≈ Nf − 1. Therefore, even for nf = 0.9 and Nf = 14, the weight of the
f 1 peak is higher than that of the ionization peak. Despite the fact that there is a small chance,
1− nf , to find the f level empty, there are Nf different ways to place the electron. The weight
of the Kondo peak in the BIS spectrum is a factorNf larger than the part seen in photoemission.
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4.3 Spectra involving core holes

As mentioned in section 2.2, core-level XPS and X-ray absorption spectroscopy provide ad-
ditional information about the valence electrons. The Hamiltonian used to describe core-level
spectra of mixed-valence systems takes the form presented in Eq. (17) with Udc → Ufc and HA

replaced by the valence Hamiltonian H of Eq. (21). With the assumptions explained in section
2.2 the core spectral function is given by

ρc(ε) =
〈
E0(N)

∣∣∣ δ(ε− εc − E0(N) + H̃)
∣∣∣E0(N)

〉
, (50)

where H̃ is the Hamiltonian of Eq. (21) with εf replaced by ε̃f ≡ εf − Ufc. In the infinite-U
case to order (1/Nf )

0 the ground state is given by Eq. (29), and the states |0〉 and |ε〉 defined in
Eq. (23) are used as intermediate states in the calculation of Gcc = G<

cc. The matrix elements
H̃(z)ij ≡ 〈i|(z+H̃−E0(N))|i〉 are easily written down. The 00, 0ε, ε0 and εε′ matrix elements
of the inverse matrix H̃(z)−1 are all needed. The calculation is analogous to obtaining the
Green’s functions of a noninteracting Anderson model. With z̃ ≡ z−εc−∆E0, this yields e.g.,
(H̃(z)−1)00 = (z̃ − Γ̃ (z̃ + ε̃f ))

−1 with Γ̃ defined in Eq. (42). After some algebra [9], the result
can be brought into the form

ρc(ε+ εc) = (1− nf )
(

Ufc
ε− Ufc

)2

ρ̃f (ε−∆E0 + εf − Ufc) , (51)

where
ρ̃f (ε) = −

1

π
Im

1

ε+ i0− εf + Ufc − Γ̃ (ε+ i0)
. (52)

The same type of expression is obtained in the exact solution of the Nf = 1 filled band model
[58]. In this leading order in 1/Nf approximation, the core spectrum is directly related to the
valence spectrum ρ̃f . This clearly shows that core-level spectroscopy gives information about
properties of the valence electrons, like nf , εf , and ∆. The multiplying factor [Ufc/(ε− Ufc)]2

changes the weights in ρ̃f but does not normally introduce new structures.
To test the accuracy of the 1/Nf method one can study the limit Nf = 1, where the exact solu-
tion can be obtained by solving the Nozières-de Dominicis integral equation [46] numerically.
A comparison of the 1/Nf result including the states 0, a, c, and d in Fig. 2 is shown in Fig. 4.
As mentioned in section 2.2 the exact result has a has an infrared singularity at threshold which
is not present in the 1/Nf result. To mimic lifetime broadening, the spectra shown were given
a Lorentzian broadening of 2Γ (full-width half-max). Despite the fact that the 1/Nf calcula-
tion includes at most two holes, the asymmetry of the exact solution, which includes an infinite
number of electron-hole pairs, is quite well described except very close to threshold.
X-ray absorption spectroscopy of 3d → 4f transitions has formal similarities with inverse
photoemission, as an electron is added to the f -level. The difference is that the final state has
the core hole present. The theoretical description therefore, as in core-hole XPS, has to use the
Hamiltonian H̃ with εf → εf − Ufc. If one works to lowest order in 1/Nf , it is possible to
obtain an analytical solution even if f 2 configurations are included [9].
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Fig. 4: The core-level spectrum forNf = 1, εf = 0, ∆ = 1.5, and Ufc = 9 and a semi-elliptical
form of V (ε)2 with B = 3. The spectra are shown with a Lorentzian broadening (FWHM) of
0.15: exact result (full line), using the states 0, a, c, and d of Fig. 2 as intermediate states
(dashed line)

5 Comparison with experiment

Model calculations for spectra using the impurity model are frequently used for a comparison
with experimental data of lanthanide materials. An example for systems with essentially zero f
occupancy in the ground state are La compounds. In Ce systems f 0 and f 1 play the important
role. Even in dense systems spectra calculated by the intermediate states method for the An-
derson impurity model are often in good agreement with experiment [9, 10, 12, 59]. Switching
from the number of electrons in the f level to the number of holes, the formalism presented is
easily extended to also describe Yb compounds, as there f 13 and f 11 play the same role as the
f 1 and f 0 configurations in Ce compounds [54]. To study, e.g., Pr or Nd compounds, the model
used here should be generalized.

As the ab-initio determination of parameters of model Hamiltonians is a problematic issue, one
alternatively adjusts them to experimental data. If, e.g., different spectroscopies are used, a part
of the data may suffice to obtain the parameters by fitting to peak positions and their widths.
Then additional data can be used as a consistency check. If this turns out to be satisfying for
a class of materials, the use of the model in conjunction with a first set of data has predictive
power for further measurements. This is what in fact happened with spectra of mixed-valence
systems [1]. As an example let us take core-level spectra. The leading peak in Fig. 4 corresponds
to final states of mainly f 1 character, while the satellite corresponds to f 0-like states. These are
the important final states for La compounds. For Ce compounds it is important to also take f 2

configurations into account. The core spectrum often has three peaks, corresponding to f 0, f 1

and f 2 states. The parameters are usually such that the high-energy f 2 peak (shoulder) has a
small but observable weight that strongly depends on the value of the coupling parameter∆ [10]
and is therefore suitable for its determination.
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Fig. 5: Comparison of experimental spectra (dots) for CeNi2 with theoretical results using the
impurity model. The results for inverse photoemission (BIS), valence photoemission (PES), 3d
X-ray photoemission (XPS), and 3d→ 4f X-ray absorption (XAS) are discussed in the text.

Fig. 5 shows as an example experimental spectra for CeNi2 and the attempts to fit them with a
single set of parameters using the Anderson impurity model and the methods discussed in sec-
tion 4. As the energy dependence of V (ε)2 has to be taken into account [12], the average value
∆av of πV (ε)2, extracted from 3d→ 4f X-ray absorption spectra, ∆av = 0.11 eV is presented.
The total f occupancy is inferred to be nf = 0.83. The two components of the XAS spectrum
in the figure are due to transitions from the spin-orbit-split 3d 3/2 and 3d 5/2 levels. Each com-
ponent shows an f 1 and f 2 peak with multiplet structure. The relative weights of the 3d 3/2

and 3d 5/2 components were adjusted to the experiment and a weak background was added as
shown. A Lorentzian broadening (FWHM=2.0 eV) was used to describe life-time broadening
and instrumental resolution. The parameters obtained from the 3d XPS spectrum differ only
slightly from the ones from the XAS data. The f 2 and f 1-Kondo peak of the shown BIS spec-
trum were obtained using these parameters. Using the same parameters, the valence-band PES
spectrum shows the onset of the Kondo peak at energies close to zero. The peak at ε ≈ −3 eV
is somewhat too low in energy and too narrow (εf = −1.6 eV was used ). Introducing different
features in V (ε)2 allows one to improve the agreement with experiment [12]. More information
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about the Coulomb parameters used can be found in Ref. [12]. It should be mentioned that for
CeNi2 and other Ce compounds the calculation of the static magnetic susceptibility with the
parameters from spectroscopy leads to results in good agreement with the measured values.
As mentioned, there were many theoretical developments in the last thirty years that go beyond
the methods presented in sections 3 and 4. The intermediate states method nevertheless has
remained a valuable tool in the hands of experimentalists.
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[26] S. Kirchner, J. Kroha, and P. Wölfle, Phys. Rev. B 70, 155301 (2004)

[27] D.E. Logan, M.P. Eastwood, and M.A. Tusch, J. Phys. Condens. Matter 10, 2673 (1998)

[28] M.R. Galpin, A.B. Gilbert, and D.E. Logan, J. Phys. Condens. Matter 21, 375602 (2009)

[29] P.W. Wiegmann, Phys. Lett. A 80, 163 (1980)

[30] N. Kawakami and A. Okiji, Phys. Lett. A 86, 483 (1981)

[31] P. Schlottmann, Phys. Rev. Lett. 50, 1697 (1983)

[32] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

[33] D. Newns, Phys. Rev. 178, 1123 (1969)

[34] D.N. Zubarev, Sov. Phys. Usp. 3, 320 (1960)

[35] F. Reinert et al., Phys. Rev. Lett. 87, 106401 (2001)

[36] K.O. Friedrichs, Comm. Pure and Appl. Math. 1, 361 (1948)

[37] T.D. Lee, Phys. Rev. 95, 1329 (1954)

[38] K. Yoshida and K. Yamada, Prog. Theor. Phys. 53, 1286 (1975)

[39] W. Brenig and K. Schönhammer, Z. Phys. B 267, 201 (1974)

[40] A.C. Hewson, Phys. Rev. 144, 120 (1966)

[41] A. Theumann, Phys. Rev. 178, 120 (1969)

[42] C. Lacroix, J. Phys. F11, 2389 (1981)

[43] S.-J. Oh and S. Doniach, Phys. Rev. B 26, 2085 (1982)

[44] G. Czycholl, Phys. Rev. B 31, 2867 (1985)

[45] A. Hewson, The Kondo Problem to Heavy Fermions, (Cambridge University Press, 1993)

[46] P. Nozières and C.T. de Dominicis, Phys. Rev. 178, 1097 (1969)

[47] P.W. Anderson, Phys. Rev . Lett. 18, 1049 (1967)



Impurity Spectra 2.23

[48] M. Combescot and P. Nozières, J. de Physique 32, 913 (1971)

[49] A. Kotani and Y. Toyozawa, J. Phys. Soc. Japan 35, 563 (1974); 35, 912 (1974)

[50] K. Schönhammer and O. Gunnarsson, Solid State Commun. 23, 691 (1977)

[51] K. Schönhammer and O. Gunnarsson, Solid State Commun. 26, 399 (1978)

[52] K. Schönhammer and O. Gunnarsson, Phys. Rev. B 18, 6606 (1978)

[53] C.M. Varma and Y. Yafet, Phys. Rev. B 13, 2950 (1976)

[54] N.E. Bickers, D.L. Cox, and J.W Wilkins, Phys. Rev. Lett. 54, 230 (1985)

[55] F. Patthey, B. Delley, W.-D. Schneider, and Y. Baer, Phys. Rev. Lett. 55, 1518 (1985)

[56] L. Hedin and S. Lundqvist, in Solid State Physics, Vol. 23,
H. Ehrenreich, D. Turnbull, and F. Seitz (eds.), (Academic Press, New York, 1969)

[57] E. Müller-Hartmann, Z. Phys. 57, 281 (1984)

[58] K. Schönhammer and O. Gunnarsson, Z. Phys. B 30, 297 (1978)

[59] Y. Baer and W.-D. Schneider,
High-Energy Spectroscopy of Lanthanide Materials – an Overview, in [1]




	Introduction
	Basic impurity models
	Spin-degenerate single-impurity Anderson model
	Impurity models involving core levels

	Anderson impurity model with large orbital degeneracy
	Ground-state calculation

	The intermediate states method for spectra
	Valence photoemission spectroscopy
	Inverse Photoemission
	Spectra involving core holes

	Comparison with experiment

