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13.2 David Sénéchal

1 Introduction

1.1 The Hubbard model and Green functions

Quantum cluster methods are schemes used to obtain approximate solutions of models of in-
teracting electrons on a lattice. These models are used to describe classes of materials, such
as high-temperature superconductors, in which electron-electron interactions are strong and for
which the – otherwise successful – ideas behind Fermi liquid theory do not seem useful. The
prototype of such models is the one-band Hubbard model. Other lectures in this volume offer
extensive background material on this model; let us nevertheless write its Hamiltonian once
more, in order to establish notation:

H = H0 +H1 H0 =
∑
r,r′,σ

trr′ c†rσcr′σ H1 = U
∑
r

nr↑nr↓ (1)

H0 is the one-body term, which defines the band structure of the model, whereas H1 is the
electron-electron interaction. Sites of the Bravais lattice are indexed by the associated lattice
vectors r. The operator crσ destroys an electron in a Wannier orbital of spin projection σ

centered at site r. The number of electrons in that orbital is nrσ = c†rσcrσ and the total number
of electrons at that site is nr = nr↑ + nr↓. The Hermitian hopping matrix trr′ defines the band
structure; its Fourier transform is the dispersion relation ε(k):

trr′ =
1

N

∑
k

eik·(r−r
′) ε(k) . (2)

Periodic boundary conditions are used, and the number N of sites in the system is assumed to
be very large. For convenience, we will include the chemical potential in the one-body part H0,
i.e., trr = −µ.
A more general model might include more than one band; a band index n is then needed to
label one-body states: (r, σ) → (n, r, σ). The hopping matrix then becomes a more general
hybridization matrix tnr,n′r′ , and there may be inter-band Coulomb interactions, Hund’s cou-
plings, and so on. The methods presented in this chapter may also be applied to such cases,
but we will base our arguments on model (1), possibly augmented by longer-range Coulomb
interactions (Sect. 6). In order to keep the discussion as general as possible, we will introduce
a general index α = (n, r, σ) that is a composite of position, spin and band indices. The first
letters of the Greek alphabet (α, β, . . . ) will be used for that purpose.

The one-particle Green function A complete solution to model (1) at zero temperature
would be provided by the many-body ground state |Ω〉. Such an object, even if it were known,
would be too unwieldy and would contain much more information than what is necessary to
make useful predictions. We will instead seek approximate solutions for the one-particle Green
function, defined at zero-temperature and as a function of complex frequency z as

Gαβ(z) =

〈
Ω

∣∣∣∣cα 1

z −H + E0

c†β

∣∣∣∣Ω〉+

〈
Ω

∣∣∣∣c†β 1

z +H − E0

cα

∣∣∣∣Ω〉 , (3)
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whereE0 is the ground state energy associated with the HamiltonianH , which, let us not forget,
includes the chemical potential. Gαβ(z) contains dynamical information about one-particle
excitations, such as the spectral weight measured in ARPES experiments. We will generally
use a boldface matrix notation (G) for quantities carrying two one-body indices (Gαβ).
A finite-temperature expression for the Green function (3) is obtained by simply replacing the
ground state expectation value by a thermal average. Practical computations at finite tempera-
ture are mostly done using Monte Carlo methods, which rely on the path integral formalism and
are performed as a function of imaginary time, not directly as a function of real frequencies. In
the limited scope of this chapter, we will confine ourselves to the zero-temperature formalism.

Green function in the time domain The expression (3) may be unfamiliar to those used to
a definition of the Green function in the time domain. Let us just mention the connection. We
define the spectral function in the time domain and its Fourier transform as

Aαβ(t) = 〈{cα(t), c†β(0)}〉 Aαβ(ω) =

∫ ∞
−∞

dt eiωtAαβ(t) (4)

where {·, ·} is the anticommutator and z is a complex frequency. The time dependence is
defined in the Heisenberg picture, i.e., cα(t) = eiHtcα(0)e−iHt, where H includes the chemical
potential. Then it can be shown that the Green function is related to Aαβ(z) by

Gαβ(z) =

∫ ∞
−∞

dω

2π

Aαβ(ω)

z − ω . (5)

The retarded Green function GR
αβ(t) is defined in the time domain as

GR
αβ(t) = −iΘ(t)〈{cα(t), c†β(0)}〉 = −iΘ(t)Aαβ(t) (6)

where Θ(t) is the Heaviside step function. Since the Fourier transform of the latter is

F(Θ)(ω) =

∫ ∞
0

dt eiωt =
1

ω + i0+
, (7)

a simple convolution shows that

GR
αβ(ω) =

∫ ∞
−∞

dω′

2π

Aαβ(ω′)

ω − ω′ + i0+
= Gαβ(ω + i0+) . (8)

In fact, this connection can be established easily from the spectral representation, introduced
next.

Spectral representation Let {|r〉} be a complete set of eigenstates of H with one particle
more than the ground state, where r is a positive integer label. Likewise, let us use negative
integer labels to denote eigenstates of H with one particle less than the ground state. Then, by
inserting completeness relations,

Gαβ(z) =
∑
r>0

〈Ω|cα|r〉
1

z − Er + E0

〈r|c†β|Ω〉+
∑
r<0

〈Ω|c†β|r〉
1

z + Er − E0

〈r|cα|Ω〉 . (9)
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By setting

Qαr =

〈Ω|cα|r〉 (r > 0)

〈r|cα|Ω〉 (r < 0)
and ωr =

Er − E0 (r > 0)

E0 − Er (r < 0)
(10)

we write

Gαβ(z) =
∑
r

QαrQ
∗
βr

z − ωr
. (11)

This shows how the Green function is a sum over poles located at ωr ∈ R, with residues that
are products of overlaps of the ground state with energy eigenstates with one more (ωr > 0) or
one less (ωr < 0) particle. The sum of residues is normalized to the unit matrix, as can be seen
from the anticommutation relations:∑

r

QαrQ
∗
βr =

∑
r>0

〈Ω|cα|r〉〈r|c†β|Ω〉+
∑
r<0

〈Ω|c†β|r〉〈r|cα|Ω〉

= 〈Ω|
(
cαc
†
β + c†βcα

)
|Ω〉 = δαβ .

(12)

Thus, in the high-frequency limit,G(z →∞) = 1/z (1 stands for the unit matrix).
The same procedure applied to the spectral function (4) leads easily to

Aαβ(ω) = 2π
∑
r

QαrQ
∗
βr δ(ω − ωr) , (13)

and this demonstrates the connection (5) between Aαβ(ω) and Gαβ(z). The property (12)
amounts to saying that Aαα(ω) is a probability density:

Aαα(ω) = 2π
∑
r

|Qαr|2 δ(ω − ωr)
∫ ∞
−∞

dω

2π
Aαα(ω) = 1 (14)

The identity

− 1

π
Im

1

ω + i0+
= δ(ω) (15)

implies that
Aαα(ω) = −2 ImGαα(ω + i0+) . (16)

From the definition ofQαr, one sees thatAαα(ω) is the probability density for an electron added
or removed from the ground state in the one-particle state α to have an energy ω. The density
of states ρ(ω) is simply the trace

ρ(ω) =
1

N

∑
α

Aαα(ω) = − 2

N
Im trG(ω + i0+) . (17)

Self-energy In the absence of interactions (H1 = 0) the Hamiltonian reduces to H0 =∑
α,β tαβ c

†
αcβ . Since the matrix t is Hermitian, there exists a basis {|`〉} of one-body states

that diagonalizes it: H0 =
∑

` ε` c
†
`c`. The ground state is then the filled Fermi sea:

|Ω〉 =
∏
ε`<0

c†`|0〉 (18)
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and one-particle excited states are c†`|Ω〉 (ε` > 0) with E` − E0 = ε` and c`|Ω〉 (ε` < 0) with
E` − E0 = −ε`. The spectral representation is in that case extremely simple and the matrix
G = G0 is diagonal:

G0,``′(z) =
δ``′

z − ε`
. (19)

In any other basis of one-body states in which t is not diagonal, the expression is simply

G0(z) =
1

z − t . (20)

In the presence of interactions, the Green function takes the following general form:

G(z) =
1

z − t−Σ(z)
, (21)

where all the information related to H1 is buried within the self-energyΣ(z). The relation (21),
called Dyson’s equation, may be regarded as a definition of the self-energy. It can be shown
that the self-energy has a spectral representation similar to that of the Green function:

Σαβ(z) = Σ∞αβ +
∑
r

SαrS
∗
βr

z − σr
, (22)

where the σr are poles located on the real axis (they are zeros of the Green function). By contrast
with the Green function, the self-energy may have a frequency-independent piece Σ∞αβ , which
has the same effect as a hopping term; in fact, within the Hartree-Fock approximation, this is
the only piece of the self-energy that survives.

Averages of one-body operators Many physical observables are one-body operators, of the
form

O =
∑
α,β

sαβ c
†
αcβ . (23)

The ground-state expectation value of such operators can be computed from the Green function
Gαβ(z). Let us explain how.
From the spectral representation (11) of the Green function, we see that 〈c†αcβ〉 is given by the
integral of the Green function along a contour C< surrounding the negative real axis counter-
clockwise:

〈c†αcβ〉 =

∫
C<

dz

2πi
Gβα(z) . (24)

Therefore the expectation value we are looking for is

Ō =
1

N

∑
α,β

sαβ 〈c†αcβ〉 =
1

N

∫
C<

dz

2πi
tr [sG(z)] (25)

(we divide by N to find an intensive quantity). The trace includes a sum over lattice sites, spin
and band indices.
The contour C< can be taken as the imaginary axis (from −iR to iR), plus the left semi-circle
of radius R. Since G(z) → 1/z as z → ∞, the semi-circular part will contribute, but this



13.6 David Sénéchal

Fig. 1: Tiling of the triangular lattice by 6-site triangular clusters. The super-cells are delimited
by dashed lines.

contribution may be canceled by subtracting from G(z) a term like 1/(z − p), with p > 0: the
added term does not contribute to the integral, since its only pole lies outside the contour, yet
it cancels the dominant z−1 behavior as z → ∞, leaving a contribution that vanishes on the
semi-circle as R→∞. We are left with

Ō =
1

N

∫ ∞
−∞

dω

2π

{
tr [sG(iω)]− tr s

iω − p

}
. (26)

If the operator O is Hermitian, so is the matrix s. By virtue of the property G(z)† = G(z∗),
easily seen from (11), we have tr [sG(−iω)] = tr [sG(iω)]∗; this implies that Ō is real.

1.2 Clusters

How can we compute G(z) if the many-body ground state |Ω〉 is not known? Quantum cluster
methods provide an approximate solution by dividing the original system into smaller parts.
The original lattice γ is tiled into small, manageable and disconnected clusters. For instance,
the triangular lattice may be tiled by 6-site clusters, as illustrated in Fig. 1; in that case, two
distinct clusters are included in each repeated unit, or super-cell. On a cluster labeled j, a
Hamiltonian H(j) is defined, whose interaction part H(j)

1 coincides with that of the original
problem:

H1 =
∑
j

H
(j)
1 , (27)

but whose one-body part H(j)
0 will depend on the particular quantum cluster method used. In

order to stay general, we have left open the possibility that the cluster Hamiltonians H(j) are all
different from one another, for instance because of a position-dependent potential added to the
basic Hubbard model. However, in most cases, they will all be identical to one or a few clusters
forming a repeated super-cell.
Each cluster’s one-particle Green function G(j)(z) needs to be computed. Various numerical
methods may be harnessed for this task. At zero temperature, exact diagonalization techniques
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are generally used; this entails computing the many-body ground state |Ω(j)〉 of H(j) and ap-
plying the definition (3) to findG(j), as explained summarily in Sect. 3.
Then the self-energy Σ(j)(z) associated with G(j)(z) is extracted from Dyson’s equation, and
the following approximation for the lattice self-energy is assembled:

Σ =


Σ(1) 0 · · · 0

0 Σ(2) · · · 0
...

... . . . ...
0 0 · · · Σ(n)

 . (28)

This equation defines the basic assumption behind quantum cluster methods: the self-energy
can be approximated by the direct sum of the self-energies of all clusters. The lattice Green
function is then constructed from the Dyson equation (21). Note that in the simple case of a
super-cell made of a single cluster, all self-energiesΣ(j) are identical.
Many relevant physical properties of the model can be extracted from the one-particle Green
function, as shown in Eq. (26), but not all. Other functions of interest relevant to experiments
are the dynamical susceptibilities, where the creation and annihilation operators of Eq. (3) are
replaced by one-body operators, such as the spin or electron densities. However, the methods
described in this chapter will not provide us with approximate ways to compute these properties,
beyond computing them within each cluster.

1.3 Cluster Perturbation Theory

The simplest of all quantum cluster methods is Cluster Perturbation Theory (CPT) [1, 2]. In
CPT, each cluster’s one-body Hamiltonian H(j)

0 is simply the restriction to the cluster of the full
one-body Hamiltonian H0. If hopping terms connecting sites located on cluster i to those of
cluster j are collected into a matrix t(i,j), then the full one-body matrix may be expressed as

t =


t(1,1) t(1,2) · · · t(1,n)

t(2,1) t(2,2) · · · t(2,n)

...
... . . . ...

t(n,1) t(n,2) · · · t(n,n)

 (29)

The one-body matrix defining H(j)
0 in CPT is then simply the diagonal block t(j,j) and each

cluster’s interacting Green function obeys the relation

G(j)−1
(z) = z − t(j,j) −Σ(j)(z) (30)

The basic approximation (28), when combined with Eqs (21) and (29), leads to the following
formula for the approximate, or CPT, Green function:

G−1
cpt(z) =

⊕
j

G(j)−1
(z)− tic , (31)
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where⊕ stands for the direct sum, and the matrix tic is obtained from t in Eq. (29) by removing
all diagonal blocks; it is the inter-cluster hopping matrix.
One may collectively denote by H ′ the sum of cluster Hamiltonians and by G′ the direct sum
of cluster Green functions:

H ′ =
∑
j

H(j) G′(z) =
⊕
j

G(j)(z) (32)

We may then write simpler-looking formulas:

H = H ′ +
∑
α,β

(tic)αβ c
†
αcβ (33)

G−1
cpt(z) = G′

−1
(z)− tic (34)

Cluster Perturbation Theory is called this way because it can be derived by treating the second
term of Eq. (33) as a perturbation on H ′. It can be shown that, at lowest order in tic, the Green
function is indeed given by Eq. (34) [2, 3].
Cluster Perturbation Theory has the following characteristics:

1. Although it is derived using strong-coupling perturbation theory, it is exact in the U → 0

limit, since the self-energy disappears in that case.
2. It is also exact in the strong-coupling limit trr′/U → 0.
3. It provides an approximate lattice Green function for arbitrary wave-vectors, as explained

in Sect. 2.2 below, hence its usefulness in comparing with ARPES data.
4. Although formulated as a lowest-order result of strong-coupling perturbation theory, it is

not controlled by including higher-order terms in that perturbation expansion – this would
be extremely difficult – but rather by increasing the cluster size.

5. It cannot describe broken-symmetry states. This is accomplished by more sophisticated
approaches like the Variational Cluster Approximation (VCA) and Cluster Dynamical
Mean Field Theory (CDMFT), which can both be viewed as extensions or refinements of
CPT. But even in these approaches, formula (34) still applies. The difference lies in the
use of different cluster Hamiltonians H(j)

0 and therefore different cluster Green functions
G(j).

2 Periodic systems

2.1 Cluster kinematics

Typically, the clusters that ‘tile’ the lattice are repeated: one or a few of them form a repeated
super-cell, like the two 6-site clusters of Fig. 1. Mathematically, this corresponds to introducing
a super-lattice Γ , whose sites form a subset of the original lattice γ that will be labeled by the
positions r̃. This super-lattice is generated by basis vectors {e1, e2, e3}: every site r̃ of the
super-lattice may be expressed as an integer combination of these basis vectors. Associated
with each site of Γ is a super-cell containing L sites. The super-cell is made of one cluster, or
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Fig. 2: Left panel: Tiling of the square lattice with identical ten-site clusters (L = 10). The
vectors e1,2 define a super-lattice of clusters. Right panel: the corresponding Brillouin zones.
The reduced Brillouin zone (tilted black square) is associated with the super-lattice andL copies
of it can be fitted within the original Brillouin zone (large square).

sometimes of a few clusters, as in Fig. 1. Note that the shape of these clusters is not uniquely
determined by the super-lattice structure. The sites within each super-cell will be labeled by
their vector position (in capitals): R, R′, etc. Each site r of the original lattice γ can therefore
be expressed uniquely as r = r̃ +R.
The Brillouin zone of the original lattice, denoted BZγ , contains L points belonging to the
reciprocal super-lattice Γ ∗. The Brillouin zone of the super-lattice BZΓ has a volume L times
smaller than that of BZγ . Any wave-vector k of the original Brillouin zone can be uniquely
expressed as k = K + k̃ , where K belongs both to the reciprocal super-lattice and to BZγ ,
and k̃ belongs to BZΓ (see Fig. 2).
The passage between momentum space and real space, via discrete Fourier transforms can be
done either directly (r ↔ k) or independently for cluster and super-lattice sites (r̃ ↔ k̃ and
R↔K). This can be encoded into unitary matrices U γ , UΓ and U c defined as follows:

Uγ
k,r =

1√
N
e−ik·r , UΓ

k̃r̃
=

√
L

N
e−ik̃·r̃ , U c

K,R =
1√
L
e−iK·R , (35)

where again N is the (large) number of sites in the original lattice γ, which can be treated with
periodic boundary conditions at the edges. The matrix U γ is of order N , UΓ is of order N/L
and U c of order L.
The discrete Fourier transforms on a generic one-index quantity f are then

f(k) =
∑
r

Uγ
k,rfr , f(k̃) =

∑
r̃

UΓ
k̃,r̃
fr̃ , fK =

∑
R

U c
K,RfR (36)

or, in reverse,

fr =
∑
k

Uγ∗
k,rf(k) , fr̃ =

∑
k̃

UΓ∗
k̃,r̃
f(k̃) , fR =

∑
K

U c∗
K,RfK (37)
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These discrete Fourier transforms close by virtue of the following identities

1

N

∑
k

eik·r = δr
L

N

∑
k̃

eik̃·r̃ = δr̃
1

L

∑
K

eiK·R = δR (38)

1

N

∑
r

e−ik·r = δk
L

N

∑
r̃

e−ik̃·r̃ = δk̃
1

L

∑
R

e−iK·R = δK (39)

where δr is the usual Kronecker delta, used for all labels (since they are all discrete):

δα =

1 if α = 0

0 otherwise
δαβ ≡ δα−β , (40)

It is implicit that the Kronecker deltas are periodic, i.e., that δk̃ = δk̃+K , for instance.1

A one-index quantity like the destruction operator cr = cr̃+R can be represented in a variety of
ways through partial Fourier transforms:

cR(k̃) =
∑
r̃

UΓ
k̃r̃
cr̃+R

cr̃,K =
∑
R

U c
KR cr̃+R

cK(k̃) =
∑
r̃,R

UΓ
k̃r̃
U c
KR cr̃+R

c(k) =
∑
r

Uγ
kr cr

(41)

Note that

k · r = (k̃ +K) · (r̃ +R) = k̃ · r̃ +K ·R+ k̃ ·R+K · r̃ . (42)

By definition, the last term is a multiple of 2π (K is an element of the reciprocal lattice γ∗).
Therefore the two representations c(k) and cK(k̃) are not identical, since the phases involved in
(41), k ·r and k̃ · r̃+K ·R, differ by k̃ ·R. These two representations are obtained respectively
by applying the unitary matrices S ≡ UΓ⊗U c andU γ on the r basis, and these two operations
are different since the N ×N matrix Λ ≡ U γS−1 is not trivial:

Λkk′ = δk̃k̃′ Λ
c
KK′(k̃) where ΛcKK′(k̃) =

1

L

∑
R

e−iR·(k̃+K−K′) . (43)

The matrix Λc(k̃) is L× L and connects the (K, k̃) basis to the k = k̃ +K basis:

c(k̃ +K) =
∑
K′

ΛcKK′(k̃) cK′(k̃) . (44)

A two-index quantity like the hopping matrix trr′ or the Green function Grr′ has a number of
different representations. The first index transforms like cr and the second like c†r′ . For instance,

t(k,k′) =
∑
r,r′

Uγ
kr U

γ∗
k′r′ trr′ . (45)

1Such periodic Kronecker deltas are sometimes called Laue functions.
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Due to translation invariance on the lattice, this matrix is diagonal when expressed in momen-
tum space: t(k,k′) = ε(k) δk,k′ , ε(k) being the dispersion relation (2). However, in practice
we most often use the mixed representation

tRR′(k̃) =
∑
r̃

eik̃·r̃ trr′ where r = R and r′ = r̃ +R′ . (46)

For instance, if we tile the one-dimensional lattice with clusters of length L = 2, the nearest-
neighbor hopping matrix, corresponding to the dispersion relation ε(k) = −2t cos(k) − µ, has
the following mixed representation:

t(k̃) = −
(

µ t(1 + e−2ik̃)

t(1 + e2ik̃) µ

)
. (47)

Finally, let us point out that the space E of one-electron states is larger than the space of lattice
sites γ, as it also includes spin and maybe band degrees of freedom, which form a set B. We
could therefore write E = γ⊗B. The transformation matrices defined above (U γ ,UΓ andU c)
should, as necessary, be understood as tensor products (U γ ⊗ 1, UΓ ⊗ 1 and U c ⊗ 1) acting
trivially in B. This should be clear from the context. The total number of degrees of freedom
in the super-cell is therefore an integer multiple of L, which we shall denote by Msc.

2.2 The CPT Green function and periodization

The most convenient representation for periodic systems is the (R, k̃) scheme, which uses real-
space indices in the super-cell and reduced wave-vectors. Because of translational invariance,
the inter-cluster hopping matrix of Eq. (34) is diagonal in k̃ and tic, becoming effectively a
Msc-dimensional, k̃-dependent matrix tic(k̃). If the super-cell contains more than one cluster,
like the example of Fig. 1, the matrix tic also contains k̃-independent terms from the hopping
terms between those. Likewise, the restriction of G′ (32) to the super-cell is Msc-dimensional,
the same for all super-cells, and therefore k̃-independent. We will also denote it by G′, even
though this is a slight abuse of notation. Therefore, Eq. (34) becomes

G−1
cpt(z, k̃) = G′−1(z)− tic(k̃) (48)

In that relation, all matrices are of size Msc. The super-cell Green functionG′ is either a single
cluster Green function G(j), directly computed from the impurity solver, or a direct sum of the
cluster Green functions making up the super-cell.
Relation (48) is the most convenient way to compute the CPT Green function. The cluster
self-energies do not need to be extracted explicitly.
A supplemental ingredient of CPT is the periodization formula, which provides a fully k-
dependent Green function out of the mixed representation GRR′(k̃, z). It was proposed in
Ref. [2] to define the following periodized Green function:2

Gper.(k, z) =
1

L

∑
R,R′

e−ik·(R−R
′) GRR′(k̃, z) . (49)

2In the following the spin and band indices are muted: the left hand side is still a matrix in those indices, but
we will focus here on the spatial and wave-vector indices only, in order to lighten the notation.
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Let us explain. Treating intra-cluster and inter-cluster hopping terms differently breaks the
original translational symmetry of the model: The Green function (48) is not translationally
invariant on the original lattice γ. This means that it is not diagonal when expressed in the
k-scheme, i.e., G(k,k′) 6= 0 if k 6= k′. However, because of the residual super-lattice trans-
lational invariance, k′ and k must correspond to the same k̃ and differ by an element of the
reciprocal super-lattice: k′ = k+K. Thus, in the (K, k̃) basis, the matrixG has the following
form:

GKK′(k̃, z) =
1

L

∑
R,R′

e−i(K·R−K
′·R′) GRR′(k̃, z) . (50)

Since an element of the reduced Brillouin zone is defined up to a vector belonging to the recipro-
cal super-lattice Γ ∗, one may replace k̃ by k inGRR′(k̃, z), i.e.,GRR′(k̃, z) = GRR′(k̃+K, z).
This form can be further converted to the full wave-vector basis (k = K + k̃) by use of the
unitary matrix Λc of Eq (43):

G(k̃ +K, k̃ +K ′) =
(
Λc(k̃)GΛc†(k̃)

)
KK′

=
1

L2

∑
R,R′,K1,K′

1

e−i(k̃+K−K1)·R ei(k̃+K′−K′
1)·R′

GK1K′
1

=
1

L

∑
R,R′

e−i(k̃+K)·R ei(k̃+K′)·R′
GRR′(k̃, z) . (51)

The periodization formula (49) amounts to picking the diagonal piece of the Green function
(K = K ′, or k = k′) and discarding the rest. This makes sense since the density of states ρ(ω)

is the trace of the imaginary part of the Green function:

ρ(ω) = − 2

N
Im
∑
r

Grr(ω + i0+) = − 2

N
Im
∑
k

G(k, ω + i0+) , (52)

and the spectral function A(k, ω), as a partial trace, involves only the diagonal part. Moreover,
because of the sum rule (12), which is basis independent, the frequency integral of the imaginary
part of the off-diagonal components of the Green function vanishes.
Another possible formula for periodization is to apply relation (49) to the self-energyΣ instead.
This is appealing sinceΣ is an irreducible quantity, as opposed toG, and amounts to throwing
out the off-diagonal components ofΣ before applying Dyson’s equation to getG, as opposed to
discarding the off-diagonal part at the last step, once the matrix inversion towards G has taken
place. Unfortunately, this turns out not to work, which is not surprising given the nonlinear
relation between Σ and the spectral function. As Fig. 3 shows, periodizing the Green function
(Eq. (49)) reproduces the expected features of the spectral function of the one-dimensional
Hubbard model: In particular, the Mott gap that opens at arbitrarily small U (as known from the
exact solution). On the other hand, periodizing the self-energy leaves spectral weight within the
Mott gap for an arbitrarily large value of U . This illustrates the correctness of Green function
periodization.
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Fig. 3: Left: CPT spectral function of the one-dimensional, half-filled Hubbard model with
U = 4, t = 1, with Green function periodization (L = 16). Right: the same, with self-energy
periodization instead; notice the important spectral weight in the middle of the Mott gap.
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Fig. 4: Spectral function of the two-dimensional Hubbard model with band parameters t = 1,
t′ = −0.3 and t′′ = 0.2. Top panel: different values of U for hole doping 1/6. Bottom panel: the
same for electron doping 1/6. The pseudo-gap phenomenon manifests itself as the disappearance
of the quasi-particle peak at the Fermi level along the side (π, 0)−(π, π) in the hole-doped case,
and along the diagonal (0, 0)− (π, π) in the electron-doped case. Adapted from [4].
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As an illustration of what can be revealed by the periodized CPT Green function, Fig. 4 shows
the spectral function of the two-dimensional Hubbard model, with band parameters appropriate
for cuprate superconductors: t′/t = −0.3 and t′′/t = 0.2, where t′ and t′′ are second (diagonal)
and third-neighbor hopping amplitudes, respectively. Several values of U were used, and two
values of electron density: 5/6 (top) and 7/6 (bottom). We can see the emergence of the Hub-
bard bands and how the chemical potential (ω = 0) is pinned to the lower and upper Hubbard
bands, respectively. In the top panel, the quasi-particle weight at the Fermi surface disappears
along the direction (π, 0) − (π, π), whereas a well-defined quasi-particle peak remains along
the diagonal direction (0, 0)− (π, π). This is accentuated as U increases. In the electron-doped
case, the roles of the two directions are reversed.

Averages of one-body operators In the (R, k̃) basis, Formula (26) for the ground state aver-
age of a one-body operator (23) becomes

Ō =
1

N

∑
k̃

∫ ∞
−∞

dω

2π

{
tr
[
s(k̃)G(k̃, iω)

]
− tr s(k̃)

iω − p

}
(53)

where all matrices are now of size Msc and we assume that the matrix s is diagonal in k̃ (trans-
lational invariance over the super-lattice).
The result (25) is quite general and could formally by expressed as Ō = Tr(sG) where the
symbol Tr (with a capital ‘T’) stands for a functional trace, i.e., includes an integral over fre-
quencies as well as a trace over site and band indices, including even the convergence correction
(the last term of Eq. (53)). The above expression is basis-independent; in the full wave-vector
basis of one-particle states, the frequency summand would take the following form:

1

N

∑
k̃,k̃′,K,K′

s(k̃ +K, k̃′ +K ′)G(k̃′ +K ′, k̃ +K, iω) (54)

If the operator O is translationally invariant, as it usually is, then

s(k̃ +K, k̃′ +K ′) = δKK′ δk̃k̃′ s(k) = δkk′ s(k) , (55)

and the above reduces to ∑
k

s(k)Gper.(k, iω) , (56)

where Gper.(k, iω) is the periodized Green function (49). This means that expectation values
of translationally invariant, one-body operators, computed in the periodization scheme (49),
coincide with those computed without periodization, i.e., with Eq. (53). This does not hold
for other periodization schemes (e.g. periodizing the self-energy), as it crucially depends on
our discarding the off-diagonal elements of G in the full wave-vector basis, which is possible
because we take the trace ofG against a matrix s that is itself diagonal in that basis.
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3 The exact diagonalization method

This lecture is not about numerics. Nevertheless, it is important to understand some basic
facts about the exact diagonalization technique for correlated systems at zero temperature in
order to understand some of the constraints imposed on quantum cluster methods by computing
resources.
Let us therefore consider a single cluster with M degrees of freedom labeled α, β, etc. and
Hamiltonian Hc. The essential steps involved in computing the cluster Green function Gαβ(z)

in the exact diagonalization method are the following:

1. Coding the basis states. States in the Hilbert space are represented as |ψ〉 =
∑

i ψi|bi〉,
where the |bi〉 form a basis in which it must be convenient to compute the matrix elements
of Hc, i.e., the matrix elements should not be too numerous. Because of the local two-
body interaction term, the most convenient basis is local, i.e., is defined by occupation
numbers of the Wannier orbitals:

|b(nα)〉 = (c†1)n1(c†2)n2 · · · (c†M)nM |0〉 nα = 0 or 1 (57)

For M degrees of freedom (spin included), there are 2M such states. However, various
symmetries will make the Hamiltonian block-diagonal in this basis. The most obvious
ones are particle number and spin conservation, if applicable. Then only a subset of di-
mension D of the 2M basis states is needed. The actual states are then specified by a
D-dimensional array ψi. If point group symmetries are taken into account, then things
are slightly more complicated, but easily manageable if we only take care of Abelian
symmetries. The important point is that the dimension of the Hilbert space grows expo-
nentially with M and therefore only small clusters can be used. Even though a ground
state computation can be performed on the Hubbard model with slightly over 20 sites if
all symmetries are used in the normal state, such a size is not realistic for quantum cluster
methods, in which the Green function must also be computed and where many sequen-
tial solutions are needed within self-consistent or variational procedures. At this time the
sweet spot still lies around 12 sites (i.e. M = 24 with spin).

2. Building the Hamiltonian. The matrix elements of Hc must be computed. In principle
they need not be stored in memory, i.e., they could be computed ‘on the fly’, as needed.
However, if memory is less a problem than computing time, it is advantageous to store
them and to build a sparse matrix for Hc, especially in a way that allows the matrix to be
quickly updated when the parameters ofHc (the coefficients of the various terms) change,
for instance between successive iterations of a self-consistent procedure.

3. Computing the ground state. Once a representation of the Hamiltonian Hc is at hand,
the ground state |Ω〉 is typically computed using the Lanczos method. The latter is an
iterative procedure that starts from a random vector in the Hilbert space and, through suc-
cessive applications of the matrix Hc, finds the lowest eigenvector of Hc with numerical
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accuracy. For instance, if the dimension of the Hilbert space is D ∼ 106, an accurate
ground state is found with only a few hundred iterations. The procedure actually builds
an orthonormal basis in theK-dimensional Krylov space based on a random initial vector
|φ0〉:

K = span
{
|φ0〉, Hc|φ0〉, H2

c |φ0〉, . . . , HK−1
c |φ0〉

}
(58)

In that basis, the Hamiltonian Hc is truncated into a simple tridiagonal form that is easily
diagonalized. It can be shown that extreme eigenvectors are very well represented in K.

4. Computing the Green function. Once the ground state |Ω〉 is known, we need to apply
definition (3) to compute the Green function. Once again, Krylov spaces are constructed.
Two variants of the Lanczos method may be used, leading to two different data repre-
sentations of the Green function. The first one proceeds by applying the usual Lanczos
procedure, but on the states cα|Ω〉 and (cα + cβ)|Ω〉 (and their creation operator equiv-
alent) instead of a random state. The Krylov spaces thus constructed provide a good
representation of the action of the operator (z ± H)−1 of Eq. (3). The second variant,
called the band Lanczos method, constructs a generalized Krylov space generated from
the set {cα|Ω〉} (or {c†α|Ω〉}) by successive application ofHc, and then uses the projection
of Hc on that space to compute (3). It requires more memory than the first method but
is faster. It also provides a spectral representation (11) of the Green function, albeit with
a few hundred poles ωr instead of a number of the order of the dimension of the Hilbert
space, as in the exact result. Both representations of the cluster Green function allow it to
be computed at any complex frequency z, provided we avoid the poles ωr located on the
real axis.

4 Cellular Dynamical Mean-Field Theory

Let us go back to the cluster decomposition (32) of the Hamiltonian. The main problem with
CPT, i.e., with the prescription that H(j)

0 is simply the restriction of H0 to the cluster, is that the
corresponding self-energy does not feel the effect of the lattice at all. It is the self-energy of a
small system and thus cannot account for complex phenomena, such as phase transitions and
spontaneously broken symmetry.
Therefore the main thrust of quantum cluster methods is to define H(j)

0 in such a way as to
represent as well as possible the effect of the lattice on the cluster. Perhaps the most elegant
way to describe this is through the path integral formalism. The material of Sect. 4.1 is meant
for readers familiar with that formalism. Others may skip straight to Sect. 4.2 if they wish.

4.1 The dynamical mean field

In the path integral formulation, the basic object is the partition function, whose expression is

Z =

∫ ∏
α

[dcαdc̄α] exp(iS[c, c̄]) (59)
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where the action S is

S[c, c̄] =

∫
dt

{∑
α,β

c̄α(t) (iδαβ∂t − tαβ) cβ(t)−H1(c, c̄)

}
. (60)

The integral is carried out over a continuum of conjugate Grassmann variables cα(t) and c̄α(t).
An imaginary-time formulation is also possible and is necessary when dealing with finite tem-
peratures; it is used to apply Monte Carlo sampling techniques.
In terms of the noninteracting Green functionG0 in the time domain, this may be written as

S[c, c̄] =

∫
dt dt′

{∑
α,β

c̄α(t)G−1
0,αβ(t− t′) cβ(t′)−H1(c, c̄) δ(t− t′)

}
. (61)

Following a tiling of the lattice with clusters, that action may be expressed as

S =
∑
j

S(j) +
∑
i,j

S(i,j) , (62)

where S(j) is the restriction of S to the cluster labeled j, and S(i,j) involve sites belonging to
clusters i and j, typically inter-cluster hopping terms contained in the matrix t(i,j) of Eq. (29).
CDMFT assumes that the effect of the environment of each cluster can be well approximated
by an effective action ∑

i∈Γ

S(i,j) → S(j)
env. . (63)

Replacing the sum on the left by a single term for each cluster effectively decouples them. This
contribution from the environment is assumed to be uncorrelated, i.e., to be quadratic in c. Thus,
the total effective action for a given cluster takes the general form

Seff [c, c̄] =

∫
dt dt′

∑
α,β

c̄α(t) G −1
0,αβ(t− t′) cβ(t′) +

∫
dtH1(c, c̄) (64)

where GG 0 is the dynamical mean field. The indices α, β are now restricted to the same cluster,
and likewise for the interaction Hamiltonian H1.
In the frequency domain the dynamical mean field can be written, in matrix form, as

GG −1
0 (ω) = ω − tc − Γ (ω) , (65)

where tc is the restriction of the hopping matrix to the cluster and Γ (ω), the hybridization
function, represents the dynamical hybridization of the cluster orbitals with their effective envi-
ronment. This is better expressed in terms of an Anderson impurity model [5]; let us explain.
In order for this effective action to make sense, the dynamical mean field GG 0 must be causal.
This implies that it must have the analytic properties of a Green function: The poles and zeros
of its eigenvalues must lie on the real axis and the associated residues must be positive. In
addition, GG 0(ω) must behave like 1/ω at large frequencies. In other words, GG 0(ω) must have
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a spectral representation like Eq. (11). Consequently, the hybridization function must have a
spectral representation (22) like that of a self-energy: 3

Γαβ(z) =

Nb∑
r

θαrθ
∗
βr

z − εr
(66)

as a function of a complex frequency z, where εr and θαr form a collection of parameters that
can be adjusted to fit any causal hybridization function as closely as needed. Nb is the number
of poles deemed necessary to adequately represent the hybridization function.

4.2 The equivalent Anderson impurity model

Now, let us connect back with the Hamiltonian formalism. The effect of the cluster’s environ-
ment, which is modeled by the hybridization function (66), may equivalently be represented by
coupling the cluster with a set of Nb ancillary orbitals labeled by r, with annihilation operators
ar. The orbitals are uncorrelated, and form a bath in which the cluster is immersed, so to speak.
The cluster dynamics is then described by the following Anderson impurity model:

HAIM =
∑
α,β

tc,αβ c
†
αcβ +

∑
α,r

(
θαr c

†
αar + H.c.

)
+

Nb∑
r

εr a
†
rar +H1 . (67)

Electrons can hop between the cluster sites labeled α, β and the bath orbitals.
Let us show how the hybridization function (66) emerges from this model. The Green function
associated with the noninteracting Anderson model (if we drop H1 from (67)) is simply

Gfull
0 (z) =

1

z − T (68)

where the full hopping matrix T for the combined cluster and bath system is

T =

(
tc θ

θ† ε

)
. (69)

tc is the M × M hopping matrix within cluster degrees of freedom only, θ is the M × Nb

hopping matrix between bath and cluster orbitals, and ε the diagonal Nb × Nb matrix of bath
energies εα. The Green function obtained by tracing out the bath degrees of freedom is simply
the restriction of Gfull to the cluster degrees of freedom only. The mathematical problem at
hand is simply to invert a 2× 2 block matrix(

A11 A12

A21 A22

)
=

(
B11 B12

B21 B22

)−1

(70)

whereA11 = z−tc, A12 = A†21 = θ, A22 = z−ε, andB11 is the Green function we are looking
for. By working out the inverse matrix condition, we find in particular that

A11B11 + A12B21 = 1 B21 = −A−1
22 A21B11 (71)

3Γ could also have a frequency-independent piece Γ∞, but that piece turns out to be always zero in CDMFT,
although this is not so in Potthoff’s dynamical impurity approximation (DIA).
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Fig. 5: Example cluster-bath systems used in the ED implementation of CDMFT. (A) and (B):
2-site, 4-bath systems used to study the one-dimensional Hubbard model. (C): a 4-site, 8-bath
system used for the two-dimensional Hubbard model. See text for explanations.

and therefore (
A11 − A12A

−1
22 A21

)
B11 = 1 . (72)

The noninteracting Green function of the cluster,G0 c, is thus given by

G−1
0 c = z − tc − Γ (z) Γ (z) = θ

1

z − ε θ
† (73)

where we recognize the hybridization function (66) in the last term. Note that the bath energy
matrix ε can always be chosen to be diagonal, but does not have to be; Eq. (73) is valid even if
ε is not diagonal.
In the interacting case, the only difference lies in the existence of the self-energy, which has no
component in the bath since the latter is uncorrelated. We then have the relations

G−1
c (z) = z − tc − Γ (z)−Σ(z) = GG −1

0 (z)−Σ(z) (74)

Solving the AIM on the cluster can be done in a variety of ways, for instance by exact diagonal-
ization, but also by more traditional quantum Monte Carlo (QMC) approaches like the Hirsch-
Fye method. Generally, the method used to compute G−1

c (z) is called the impurity solver,
because of the AIM context, even though the problem does not involve physical impurities.
The continuous-time quantum Monte Carlo solver [6, 7] (CT-QMC) has been developed espe-
cially for the purpose of DMFT and CDMFT. It is an exact method, free of systematic errors,
that works at finite temperature. It is however quite computationally intensive, and is also lim-
ited in practice to small clusters (but the bath is essentially infinite). All QMC methods are also
affected by the fermion sign problem.
When using an exact diagonalization solver, the number of bath orbitals is very limited. Ex-
amples of cluster-bath systems are illustrated on Fig. 5. In system (A), each of the two cluster
sites is hybridized with 2 bath orbitals exclusively. Left-right symmetry imposes the constraints
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ε3 = ε1, ε4 = ε2, θ3 = θ1 and θ4 = θ2. System (B) is more general: the bath orbitals are
not hybridized with specific cluster sites, but with combinations of a given symmetry (here,
even and odd orbitals c± = c1 ± c2). This approach, proposed in Ref. [8], is potentially more
accurate, since the number of variational parameters is generally larger. System (C) is a 4-site
cluster coupled to 8 bath orbitals. Again, symmetry considerations in the normal state will
impose constraints on the values of the 16 parameters εi and θi. In principle, one may also in-
troduce hopping terms between the bath orbitals (indicated by curved dashed lines); this would
introduce additional bath parameters and therefore a richer representation of the hybridization
function Γ (z). In practice, anomalous hopping will be introduced along the curved dashed lines
when studying superconductivity (see Sect. 5.2).

4.3 The self-consistency condition

How does one determine the hybridization function Γ (z) so as to best represent the effect of
the lattice environment on the cluster? Just like ordinary mean-field theory can be formulated
equivalently either as a variational principle (Hartree-Fock theory) or via a self-consistency
condition, so can dynamical mean-field theory. The variational approach is based on Potthoff’s
self-energy functional theory [9, 10] and is called the dynamical impurity approximation (DIA,
or CDIA for its cluster extension). It has many advantages, both from the formal point of view
and in practice, for some systems with small values of Nb solved by exact diagonalization,
but we will not describe it here for lack of space. Interested readers can turn to Refs [11–13]
for details. Historically and in most applications, the hybridization function is determined by
applying a self-consistency principle that we will now describe.4

The approximate Green function of the lattice model that follows from the effective Hamiltonian
(67) is constructed from the principle (28):

G−1(k̃, z) = z − t(k̃)−Σ(z) , (75)

where t(k̃) is the exact dispersion of the lattice model, expressed as a partial Fourier transform,
i.e., as matrix in cluster indices with a dependence on the reduced wave-vector k̃ defined in the
Brillouin zone of the super-lattice.
Let us assume, for the time being, that the super-cell is made of a single cluster, so thatΣ above
is computed from the cluster Green function Gc (we will treat the case of multiple clusters
later). Let us then Fourier transform G(k̃, z) back to real-space, in order to project it onto the
super-cell located at r̃ = 0:

Ḡ(z) =
L

N

∑
k̃

[
z − t(k̃)−Σ(z)

]−1

(76)

Ideally, this projected Green function Ḡ should coincide with the cluster Green function Gc

calculated from the dynamical mean field GG 0. The condition Ḡ = Gc closes a self-consistency
4Contrary to mean-field theory, where the variational and self-consistent approaches yield the same solution,

the self-consistent method followed in CDMFT does not yield the same solution as CDIA when the number of
bath sites is finite.
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Fig. 6: The CDMFT self-consistency loop.

loop, illustrated in Fig. 6, that hopefully converges towards an optimal dynamical mean field
GG 0. Let us summarize the elements of this loop:

1. An initial trial value of the dynamical mean field GG 0 is selected. With a QMC solver, this
means choosing a Matsubara-frequency-dependent matrix Γ (iωn). With an ED solver
applied to the Anderson impurity model (67), this means choosing an initial set of bath
parameters (θ, ε).

2. The impurity solver is applied, andGc is computed, as well as the associated self-energy
Σ, from Eq. (74).

3. The CPT Green function (75) is computed, as well as its projection Ḡ onto the cluster.
4. The next step depends on whether one uses a QMC or an ED solver to compute Gc. In

the QMC solver, one deals with the path integral formulation directly and the hybridiza-
tion function Γ (iωn) is defined at Matsubara frequencies without reference to a bath of
ancillary orbitals. Then the dynamical mean field is updated by substituting Gc → Ḡ

into Eq. (74):
GG −1

0 (iωn)← Ḡ
−1

(iωn) +Σ(iωn) (77)

In the ED solver, the hybridization function is only known through Eq. (73) and the
bath parameters θ and ε. Moreover, the number of adjustable bath parameters is finite,
and therefore the self-consistency condition Ḡ = Gc cannot be satisfied exactly for all
frequencies; it can only be optimized. This is done by minimizing the following “distance
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function”
d(θ, ε) =

∑
iωn

W (iωn) tr
∣∣∣G−1

c (iωn)− Ḡ−1(iωn)
∣∣∣2 (78)

where the sum is carried over a finite set of Matsubara frequencies associated with a
fictitious temperature T , with weights W (iωn) used to emphasize low frequencies. This
minimization is done numerically by any classic optimization method, simply by applying
Eq. (73), without recomputing Σ; it usually does not contribute appreciably to the total
computing time. The outcome is a new set of bath parameters (θ, ε), and therefore a new
hybridization function.

5. One goes back to step 2, until GG 0 (or Γ ) converges.

4.4 Inhomogeneous systems

Let us now consider a super-cell made of n > 1 clusters. This may be needed if a single
cluster does not tile the lattice, but two are necessary, like in Fig. 1. It is also needed for
inhomogeneous systems where translational invariance is lost, at least on a length scale that
involves many clusters. The notation of Eqs. (28) and (29) may still be used, except that n is no
longer the total number of clusters on the lattice, but the number of clusters in the super-cell, so
that each of the blocks t(i,j) will depend on the reduced wave-vector k̃. The inverse CPT Green
function therefore has the form

G−1(k̃, z) = z − t(k̃)−Σ(z)

=


z − t(11)(k̃)−Σ1(z) −t(12)(k̃) . . . −t(1n)(k̃)

−t(21)(k̃) z − t(22)(k̃)−Σ2(z) . . . −t(2n)(k̃)
...

... . . . ...
−t(n1)(k̃) −t(n2)(k̃) . . . z − t(nn)(k̃)−Σn(z)


(79)

Some of the clusters may be connected only to other clusters of the same super-cell, not to
clusters of the neighboring super-cells; therefore for those clusters, the matrix t(ij) is constant,
i.e., does not depend on k̃.
As before, we define the projected local Green function (76), but this time Ḡ has a block-matrix
structure like that of Eq. (79). Let Ḡ(j) denote the jth diagonal block of Ḡ. The self-consistency
condition is modified so as to match Ḡ(j) to the cluster Green functionG(j) computed from the
impurity solver. In particular, in the ED framework, the distance function (78) has the form

d(θ, ε) =
∑
iωn,j

W (iωn) tr
∣∣∣G(j)−1(iωn)− Ḡ(j)−1(iωn)

∣∣∣2. (80)

The bath parameters of all clusters in the super-cell contribute to any Ḡ(j), and thus all clusters
are coupled. The distance function is a sum over n separate terms (one for each cluster), each
with its own set of bath parameters and hybridization function Γ (j)(z). Thus minimizing each
of these terms separately will minimize their sum and vice versa.
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Fig. 7: Super-cell of 19 six-site clusters used in Ref. [14] in order to study the effect of a
repeated non-magnetic impurity (located at the central site) on the Hubbard model defined on
the graphene lattice. The local magnetization is indicated by filled red (up) and open blue
(down) circles respectively (the area of each circle is proportional to 〈Szr〉).

This approach was called I-CDMFT in Ref. [14]. In that work, it was applied to the problem of
a repeated, non-magnetic impurity in graphene. From previous mean-field calculations, it was
known that antiferromagnetic correlations arising from the impurity go well beyond nearest
neighbors [15, 16]. In order to isolate the magnetism resulting from a single impurity, and at
the same time avoid edge effects, the impurity was repeated periodically, i.e., a super-cell of
19 six-site clusters was defined (see Fig. 7). The impurity, characterized by a local energy
Himp. = hn0, where 0 labels the impurity site, is located on the middle cluster. Fig. 7 shows the
local magnetization induced by such an impurity on the Hubbard model defined on the graphene
lattice, with parameters U = 2 and h = 11 (the nearest-neighbor hopping amplitude t is set to
unity).

5 Applications

5.1 The Mott transition

A key success of Dynamical Mean-Field Theory is the picture it provides of the Mott metal-
insulator transition. Consider Fig. 8, which shows the qualitative phase diagram in the U–T
plane of the half-filled, particle-hole symmetric Hubbard model. The left panel shows the
prediction of single-site DMFT [17]. The Mott transition in the U–T plane is of first order,
indicated as a red line on the figure. This first-order line ends at a finite-temperature critical
point and at Uc1(0), with a region (colored area) where the metallic and insulating phases may
coexist. This single-site DMFT picture of the Mott transition has been criticized, mainly on
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Fig. 8: Schematic phase diagram of the half-filled, particle-hole symmetric Hubbard model
using single-site DMFT (left), CDMFT with a CT-QMC solver on a 2×2 plaquette (center) and
the Dynamical Impurity Approximation (right). The red dots are the end of the first-order lines
and therefore critical points. Adapted from [19].

the ground that the absence of feedback of magnetic correlations on single particle excitations
yields a nonzero ground-state entropy (S = N ln 2, N being the number of sites) in the Mott
phase, and that this exaggerates the stability of the insulating phase at nonzero temperature.
Cluster Dynamical Mean Field Theory modifies this picture by the addition of short-range cor-
relation effects or, said otherwise, by adding a momentum-dependence to the self-energy. This
provides a feedback of short-range antiferromagnetic fluctuations into single-particle proper-
ties. However, the main features of the DMFT picture are not affected by these refinements.
The middle diagram of Fig. 8 emerges from a CDMFT study using the continuous-time QMC
solver [18]. The essential difference with the single-site result is that the first-order line ends at
Uc2(0) instead of Uc1(0) at zero temperature. The zero-temperature points are the result of an
extrapolation, since QMC solvers were used in both cases. The right panel of Fig 8 is a mod-
ified scenario inspired by the Dynamical Impurity Approximation (DIA) [19], in which only
the zero-temperature axis was actually calculated, with an exact diagonalization solver. It was
shown in Ref. [19] that the transition is of first order even at zero temperature; the transition
(red line) occurs when the ground state energies of the metallic and insulating solutions cross.
As a function of U, a hysteresis loop was observed for the various bath parameters.

Regarding Fig. 8, we note that the slope of the first-order line is negative in the single-site DMFT
solution, but positive in the CDMFT solution. Through the Clausius-Clapeyron equation, this
implies that the entropy is larger in the Mott phase than in the metallic phase according to the
single-site solution, whereas the opposite is true according to the CDMFT solution. This is
another sign that the degeneracy of a single site exaggerates the entropy of the insulating state
in DMFT.

Figure 9 shows the evolution of the local density of statesA(ω) (DoS) across the Mott transition.
The DoS on the left half of each panel (U = 5.0 and U = 5.6) are computed in the metallic
solution, and those on the right (U = 5.4 and U = 5.8) in the insulating solution. The middle
points (U = 5.4 and U = 5.6) are in the coexistence region. The bath used in the CT-QMC
solution is effectively infinite, whereas the bath used with the ED solver has only 8 orbitals
and is based on the system illustrated in Fig. 5C. Accordingly, the spectral function contains
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Fig. 9: Evolution of the local density of states A(ω) across the Mott transition, for the square-
lattice Hubbard model. Left panel: CT-QMC solver, from Ref. [18]. Right panel, ED solver, but
with the CDIA, based on solutions found in Ref. [19].

traces of the discreteness of the bath, even though a Lorentzian broadening of the poles was
used. Nevertheless, the same physics occurs at the same value of U/t in the two methods. The
self-consistency condition Ḡ = G′, in the bath parametrization used in [19], does not show
a first-order transition (and a coexistence region) in that case; the latter can only be seen by
solving the more exact conditions defined in the CDIA.

5.2 Superconductivity

Many of the theoretical approaches described in this volume were motivated by the ambition to
explain the origin of high-temperature superconductivity, more specifically to answer the fol-
lowing question: does the Hubbard model contain the key elements to explain superconductivity
in the cuprates? Single-site DMFT alone cannot answer this question, as it lacks the short-range
correlation effects needed to even describe d-wave superconductivity. But the question has been
addressed by quantum cluster methods: DCA, VCA, and CDMFT.
First of all, let us explain how superconductivity may be incorporated in the Green function
formalism. The standard theoretical description of superconductivity involves a spontaneous
violation of charge conservation, which translates into a nonzero expectation value of the oper-
ator Ψ̂ that creates a uniform distribution of Cooper pairs. In a one-band model, this is

Ψ̂ =
1

N

∑
r,r′

grr′
[
cr↑cr′↓ − cr↓cr′↑

]
. (81)

In momentum space, this becomes

Ψ̂ =
1

N

∑
k

g(k)
[
c↑(k)c↓(−k)− c↓(k)c↑(−k)

]
, (82)

with the correspondence
g(k) =

∑
r

gr,0 e
−ik·r , (83)
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where the pairing amplitude grr′ is assumed to depend only on r − r′. This amplitude is,
roughly speaking, the Cooper pair’s wave-function as a function of the relative position of the
two electrons.
A nonzero value of 〈Ψ̂〉 can only be established if the anomalous Green function (the Gorkov
function) is nonzero:

Frr′(z) = 〈Ω|cr↑
1

z −H + E0

cr′↓|Ω〉+ 〈Ω|cr′↓
1

z +H − E0

cr↑|Ω〉 (84)

The order parameter ψ is then the frequency integral of the Gorkov function, just like ordinary
operators in Eq. (53):

ψ = 〈Ψ̂〉 =
1

N

∑
k̃

∫ ∞
−∞

dω

2π

[
gRR′(k̃)FR′R(k̃, iω)

]
(85)

(we have used the (R, k̃) basis in the above formula). In order to smoothly integrate the
Gorkov function into the formalism we have developed so far, the Nambu formalism is used:
we perform a particle-hole transformation on the spin down sector and work with the operators
drσ = (cr↑, c

†
r↓). These still obey the anticommutation relations {drσ, d†r′σ′} = δrr′δσσ′ . In

terms of these operators, the pairing operator Ψ̂ takes the form of a hopping term because only
destruction operators of opposite spins are multiplied. Thus, if we apply to the drσ and d†rσ the
definition (3) of the Green function and write it in block form to reveal the spin components,
we find

G(z) =

(
G↑(z) F (z)

F †(z) −G↓(z)

)
(86)

where G↑ and G↓ only involve up and down spins, respectively. As long as there are no spin-
flip terms in the Hamiltonian, the Gorkov function can be included in this way in the Green
function (spin-flip terms would spoil the process, as they would look like anomalous terms after
the particle-hole transformation).
In order to probe for superconductivity in CDMFT, the hybridization function (73) must contain
anomalous terms. Within the ED solver, this was at first accomplished as illustrated on Fig. 5C,
i.e., by adding to the bath Hamiltonian d-wave pairing terms between bath orbitals themselves
(the red dotted lines of Fig. 5C). In this parametrization, the bath is seemingly made of two
“ghost clusters” whose pairing terms mimic the broken symmetry state that could take place on
the cluster itself. Note that CDMFT does not tamper with the cluster Hamiltonian when probing
broken symmetries. The agents of symmetry breaking are rather concentrated in the bath.
Any study of d-wave superconductivity within the square-lattice Hubbard model must also take
into account the possibility of antiferromagnetic order in competition, or in coexistence with,
superconductivity. This requires a more general bath parametrization, with different bath en-
ergies and hybridization for the two magnetic sub-lattices and spin projections. The reduced
symmetry would translate into the following constraints on the parameters defined in Fig. 5C:

ε1σ = ε4σ = ε2−σ = ε3−σ and ε5σ = ε8σ = ε6−σ = ε7−σ (87)
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Fig. 10: Left panel top: d-wave order parameter ψ as a function of electron density n, for
various values of U and t′ = −0.3t, t′′ = 0.2t. Bottom: the same, scaled by J = 4t2/U . Right
panel: d-wave (ψ) and antiferromagnetic (M ) order parameters vs. n, from a common solution
where they are allowed to compete. Taken from Ref. [20].

and likewise for θi. The independent bath parameters would then be ε1,↑, ε1,↓, ε2,↑, ε2,↓, the
corresponding values of θi, and two in-bath pairing operators.
Figure 10, taken from Ref. [20], shows the result of a CDMFT computation on the one-band
Hubbard model with a tight binding dispersion appropriate for a cuprate superconductor like
YBCO, with diagonal hopping t′ = −0.3t and third-neighbor hopping t′′ = 0.2t. Both the
d-wave order parameter ψ and the antiferromagnetic order parameter M are shown, where

M = 〈M̂〉 M̂ =
1

N

∑
r

eiQ·r (nr↑ − nr↓) Q = (π, π) . (88)

There is a region of doping where the two phases compete and coexist at a microscopic scale
(right panel of Fig. 10). One sees (left panel of Fig. 10) that the superconducting order parameter
scales like J = 4t2/U , at least in the under-doped region.
The CT-QMC solver was applied to the superconductivity problem in Ref. [21], in the special
case t′ = 0. The CT-QMC allows for an estimate of Tc, but such a computation is very resource-
intensive because of critical slowing down. Of course, this Tc has a mean-field character: The
Mermin-Wagner theorem forbids the spontaneous breakdown of continuous symmetries in a
purely two-dimensional system at nonzero temperature. In a finite cluster, the long wavelength
pair fluctuations that would destabilize a superconducting phase at finite temperature are not at
work and cannot be accounted for by a fermionic bath.
A fair criticism of the above results on broken symmetries in the Hubbard model is the lack
of finite-size analysis. The existence of broken symmetry phases, such as antiferromagnetism
and d-wave superconductivity, can only be established firmly in the limit of infinite cluster size;
an infinite bath-size is not sufficient. In principle infinite-size extrapolations should be per-
formed in order to assess the robustness of CDMFT predictions in the thermodynamic limit. In
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practice, this requires vast amounts of computing resources and a solver that can accommodate
larger clusters, such as the Hirsch-Fye QMC or the auxiliary-field CT-QMC [22]. This was ac-
complished within the dynamical cluster approximation (DCA) in Ref. [23], with cluster sizes
ranging up to L = 32 and special attention paid to the cluster shape in relation to the periodic
boundary conditions used in DCA. The existence of a Kosterlitz-Thouless transition was con-
firmed in the square-lattice Hubbard model at Tc ≈ 0.023t for U = 4t and δ ≈ 10%. The cost
of these computations precluded a wider exploration of parameter space. The assumption un-
derlying current work on superconductivity using cluster approaches is that the thermodynamic
limit will bring important renormalizations but will not qualitatively affect the dependence of
the superconducting order upon band parameters, interaction strength, or doping. Thus, cluster
approaches are important tools in exploring the space of models that can potentially lead to
superconductivity or other broken symmetry phases.

6 Extended interactions

The cluster methods discussed above only apply to systems with on-site interactions, such as
the simple Hubbard model (1), as the interaction H(j)

1 on each cluster was supposed to be the
restriction to the cluster of the full interaction H1. This is no longer true in the extended Hub-
bard model, in which the Coulomb interaction between electrons residing on different Wannier
orbitals is included:

HV =
1

2

∑
r,r′

Vr′r nr′nr (89)

(the factor 1/2 is there to avoid double counting the pairs (r, r′)). Treating such a model
with quantum cluster approaches requires an additional approximation: One applies the Hartree
approximation on the extended interactions that straddle different clusters but treats exactly all
interactions within each cluster. This is called the dynamical Hartree approximation (DHA).
It has been used in Ref. [24, 25] in order to assess the effect of such interactions on strongly-
correlated superconductivity.
In the DHA, the extended interaction (89) is separated into two terms:

1

2

∑
r,r′

V c
r,r′nrnr′ +

1

2

∑
r,r′

V ic
r,r′nrnr′ (90)

where V c
r,r′ denotes the extended interaction between sites belonging to the same cluster and

V ic
r,r′ those interactions between sites belonging to different clusters. Each number operator

appearing in the second term is then written as nr = n̄r + δnr, where n̄r = 〈nr〉 is the average
value of nr and δnr, by definition, its fluctuation. The classic mean-field treatment is then
applied:

nrnr′ = n̄rn̄r′ + δnrn̄r′ + n̄rδnr′ + δnrδnr′ (91)

and the last term is dropped, as fluctuations are deemed small. Substituting δnr = nr − n̄r in
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Fig. 11: Phase diagram of the half-filled extended Hubbard model defined on the graphene
lattice. U and V are the on-site and nearest-neighbor repulsion, respectively. See text for
details. Adapted from Refs [25] and [26].

the rest, we end up with the replacement

1

2

∑
r,r′

V ic
r,r′ nrnr′ → V̂ ic =

1

2

∑
r,r′

V ic
r,r′ (n̄rnr′ + nrn̄r′ − n̄rn̄r′) . (92)

These are local, one-body terms only and therefore are included in the non-interacting pieceH0.
Because of translation symmetry on the super-lattice, the averages n̄r must be the same in each
super-cell, and therefore the above term can be determined within a super-cell only, and the
matrix V ic

r,r′ can be viewed as acting on the sites of the super-cell only. Of course, interactions
straddling different super-cells are “folded back” into a single super-cell.
The averages n̄r must be determined self-consistently. In a CPT computation, this calls for a
self-consistent procedure whereby n̄r is computed at each step with the help of Eq. (53) and its
value injected in a new H0, etc. In CDMFT, computing the averages can be done within the
existing self-consistency loop of Fig. 6, e.g., at the same step where Ḡ is computed. Thus, the
mean fields n̄r are converged at the same time as the hybridization function Γ and the DHA
adds very little overhead to the existing CDMFT procedure, although it is conceivable that more
iterations are needed for convergence.
Instead of treating each operator nr separately in the DHA, it is often advantageous to diagonal-
ize the symmetric matrix V ic

r,r′ and to express the mean field problem in terms of eigenoperators
mk, which are linear combinations of the different nr’s of the cluster:

V̂ ic =
∑
k

V ic
k

[
m̄kmk −

1

2
m̄2
k

]
(93)

where V ic
k is an eigenvalue of the matrix V ic

r,r′ defined in the super-cell. The use of eigenopera-
tors allows one to select or suppress different channels for charge-density-wave instabilities.
For instance, Fig. 11 shows the phase diagram of the extended Hubbard model on the graphene
lattice. Only on-site (U ) and nearest-neighbor (V ) interactions were considered. If V is large
enough, a charge-density-wave sets in with different densities on the A and B sub-lattices. The
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DHA was used to find the phase boundary between the homogeneous solution (N) and the
charge density wave (CDW), by including selectively the eigenoperator mk associated with the
CDW and by comparing the energy of the two solutions. The transition between the two phases
becomes discontinuous (first-order) at some value of U . The results of the DHA are compared
with those of DCA computations performed on larger clusters in Ref. [26]. The strong coupling
limit of the phase boundary is known to be the straight line U = 3V (dashed line on the figure).

Concluding remarks

Quantum cluster methods provide a unique window into the physics of strongly correlated mate-
rials. They capture short-distance correlations exactly in models of strongly correlated electrons
and thus can describe phenomena that are not accessible to mean-field-like approaches. For in-
stance, the effective, dynamic attraction between electrons located on nearest-neighbor sites in
the Hubbard model, which leads to pairing and superconductivity in that model, is captured by
CDMFT on a 4-site cluster. These methods are so far limited to rather small clusters or by other
issues affecting various impurity solvers, like the sign problem in QMC, etc. But they constitute
a framework that motivates continuous improvement in impurity solvers and that opens up lines
of inquiry that were previously limited.
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