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FIG. 3: Fermi surface and dispersion maps of SmB6. (a) Fermi surface plot of SmB6

measured by 7 eV LASER source at temperature of 7 K. A small � pocket and a large X pocket

are observed. A big elliptical and a small circular shaped black dash lines around X and � points

are guide for the eyes. Inset shows a schematic plot of Fermi surface in the first Brillouin zone. (b)

Electronic dispersion map (left) and its energy distribution curves (EDCs) for � pocket. (c) same

as (b) for X band. (d) Comparison of integrated EDC for � and X band. A gap value of about 15

meV is observed in both cases.
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FIG. 1: a. Upper critical field Hc2 of the superconduct-
ing state in URu2Si2 determined from the onset of resistiv-
ity at ⇡ 30 mK. An example trace is shown in the inset.
b. Schematic representation of the angle-dependent magnetic
quantum oscillations adapted from Fig. 18 of reference [22],
with the indices of the spin zeroes indicated. In order to show
the oscillatory behavior, the sign of the amplitude is negated
on crossing each spin zero.

fermion condensate [20] for all orientations of the mag-
netic field � the exception being a narrow range of angles
within ⇠ 10� of the [100] axis in Fig. 2 (likely associated
with the dominant role of diamagnetic screening currents
once g⇤

e↵

is strongly suppressed [19]).
A further key observation is that the field orientation-

dependence of g⇤
e↵

in Fig. 2 is very di↵erent from the
usual isotropic case of g⇤ ⇡ 2 for band electrons (dotted
line), indicating the spin susceptibility of the quasipar-
ticles in URu

2

Si
2

to di↵er along the two distinct crys-
talline axes. Since the Zeeman splitting of the quasi-
particles is given by the projection M · Ĥ of the spin

magnetizationM = ⇢
µ

2
B
2

(g2
a

cos ✓, 0, g2
c

sin ✓)H alongH =
H(cos ✓, 0, sin ✓) [where ⇢ is the electronic density-of-

states], setting M · Ĥ = ⇢
µBg

⇤
eff

2

H defines an e↵ective
g-factor

g⇤
e↵

=
q
g2
c

sin2 ✓ + g2
a

cos2 ✓ (3)

that (in the case of a strong anisotropy) traces the form

FIG. 2: Polar plot of the field orientation-dependence of g⇤e↵
estimated using equations (1) and (2) represented by open
and closed circles respectively. Also shown, is a fit (solid line)
to equation (3) to g⇤e↵ , and the isotropic g⇤ ⇡ 2 (dotted line)
expected for conventional band electrons. In Fig. 1a we as-
sumeHc2 ⇡ Hp. In extracting g⇤e↵ from the index assignments
of g⇤e↵(m

⇤/me↵) in Fig. 1b, the weakly angle-dependent m⇤

is interpolated from the measured values in reference [22].

of a figure of ‘8.’ A fit to equation (3) in Fig. 2 (solid
line) yields g

c

= 2.65 ± 0.05 and g
a

= 0.0 ± 0.1, implying

a large anisotropy in the spin susceptibility �c

�a
=

�
gc

ga

�
2

.

To obtain a lower bound for the anistropy, we plot g
e↵

(circles) in Fig. 3 extracted from quantum oscillation ex-
periments [22] versus sin ✓ (in the vicinity of the cusp in
Fig. 2) together with the prediction (lines) for di↵erent

values of �a

�b
=

�
gc

ga

�
2

made using equation (3). The ob-
servation of a spin zero in Fig. 1 at angles as small as 3�

implies a lower bound �a

�b
& 1000. A smaller anisotropy

would be expected to lead to the observation of fewer spin
zeroes and nonlinearity in the plot with an upturn in g

e↵

at small values of sin ✓ (as shown in the simulations).

A large anisotropy in the magnetic susceptibility is the
behavior expected for local magnetic moments of large
angular momenta whose confinement within a crystal
lattice gives rise to an Ising anisotropy. Kondo cou-
pling provides the means by which such an anisotropy
can be transferred to itinerant electrons [8]. In the case
of an isolated magnetic impurity (i.e. an isolated mag-
netic moment), Kondo singlets can be considered the re-
sult of an antiferromagnetic coupling between the impu-
rity and conduction electron states expanded as partial
waves of the same angular momenta [26]. A Fermi liquid
composed of ‘composite heavy quasiparticles’ with heavy
e↵ective masses and local angular momentum quantum
numbers is one of the anticipated outcomes in a lattice
of moments should such partial states overlap and sat-
isfy Bloch’s theorem at low temperatures [27, 28], as ap-
pears to be the case in URu

2

Si
2

. The finding of a large
anisotropic impurity susceptibility (�c

�a
⇠ 140) in the di-

URu2Si2
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FIGURE 1. Depicting localized 4 f , 5 f and 3d atomic wavefunctions.

represented by a single, neutral spin operator

�S=
h̄

2
�σ

where �σ denotes the Pauli matrices of the localized electron. Localized moments de-

velop within highly localized atomic wavefunctions. The most severely localized wave-

functions in nature occur inside the partially filled 4 f shell of rare earth compounds

(Fig. 1) such as cerium (Ce) or Ytterbium (Yb). Local moment formation also occurs

in the localized 5 f levels of actinide atoms as uranium and the slightly more delocal-

ized 3d levels of first row transition metals(Fig. 1). Localized moments are the origin

of magnetism in insulators, and in metals their interaction with the mobile charge car-

riers profoundly changes the nature of the metallic state via a mechanism known as the
“Kondo effect”.

In the past decade, the physics of local moment formation has also reappeared in

connection with quantum dots, where it gives rise to the Coulomb blockade phenomenon

and the non-equilibrium Kondo effect.
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Mott Mechanism.
Anderson U (Anderson 1959)

• No double occupancy: strongly correlated
• Residual valence fluctuations induce AFM Superexchange.

U
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5.4 Piers Coleman

Fig. 2: (a) In isolation, the localized atomic states of an atom form a stable, sharp excitation
lying below the continuum. (b) In a crystal, the 2 j+1 fold degenerate state splits into multiplets,
typically forming a low lying Kramers doublet. (c) The inverse of the Curie-Weiss susceptibility
of local moments ��1 is a linear function of temperature, intersecting zero at T = �✓.

predicted by Philip W. Anderson [4, 5], which results from high energy valence fluctuations.
Jun Kondo [6] first analyzed the e↵ect of this scattering, showing that as the temperature is
lowered, the e↵ective strength of the interaction grows logarithmically, according to

J ! J(T ) = J + 2J2⇢ ln
D
T

(4)

where ⇢ is the density of states of the conduction sea (per spin) and D is the band-width. The
growth of this interaction enabled Kondo to understand why in many metals at low temperatures,
the resistance starts to rise as the temperature is lowered, giving rise to resistance minimum.

Fig. 3: (a) Schematic temperature-field phase diagram of the Kondo e↵ect. At fields and tem-
peratures large compared with the Kondo temperature TK, the local moment is unscreened with
a Curie susceptibility. At temperatures and fields small compared with TK, the local moment is
screened, forming an elastic scattering center within a Landau Fermi liquid with a Pauli sus-
ceptibility � ⇠ 1

TK
. (b) Schematic susceptibility curve for the Kondo e↵ect, showing cross-over

from Curie susceptibility at high temperatures to Pauli susceptibility at temperatures below the
Kondo temperature TK. (c) Specific heat curve for the Kondo e↵ect. Since the total area is the
full spin entropy R ln 2 and the width is of order TK, the height must be of order � ⇠ R ln 2/TK.
This sets the scale for the zero temperature specific heat coe�cient.

Today, we understand this logarithmic correction as a renormalization of the Kondo coupling
constant, resulting from fact that as the temperature is lowered, more and more high frequency

Chapter 16. c⃝Piers Coleman 2010

where the density of conduction electron states ρ(ϵ) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H⟩

⎡
⎢⎢⎢⎢⎢⎢⎣
H(I)aλH

(I)
λb

E − EHλ

⎤
⎥⎥⎥⎥⎥⎥⎦

where the energy of state |λ⟩ lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram

’"’’"

k
k’’

"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

ϵk′′ ∈[D−δD,D]

[
1

E − ϵk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

ϵk′′ ∈[−D,−D+δD]

[
1

E − (ϵk + ϵk′ − ϵk′′)

]
J2(σbσa)βα(S aS b)σ′σ

38

⇡ J2⇥�D

D
(⇤a⇤b)⇥�(SaSb)⇤0⇤
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Heavy Fermions + Kondo “Kondo temperature”

Spin (4f,5f): 
“quark” of heavy 
electron physics.
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Fig. 2: (a) In isolation, the localized atomic states of an atom form a stable, sharp excitation
lying below the continuum. (b) In a crystal, the 2 j+1 fold degenerate state splits into multiplets,
typically forming a low lying Kramers doublet. (c) The inverse of the Curie-Weiss susceptibility
of local moments ��1 is a linear function of temperature, intersecting zero at T = �✓.

predicted by Philip W. Anderson [4, 5], which results from high energy valence fluctuations.
Jun Kondo [6] first analyzed the e↵ect of this scattering, showing that as the temperature is
lowered, the e↵ective strength of the interaction grows logarithmically, according to

J ! J(T ) = J + 2J2⇢ ln
D
T

(4)

where ⇢ is the density of states of the conduction sea (per spin) and D is the band-width. The
growth of this interaction enabled Kondo to understand why in many metals at low temperatures,
the resistance starts to rise as the temperature is lowered, giving rise to resistance minimum.

Fig. 3: (a) Schematic temperature-field phase diagram of the Kondo e↵ect. At fields and tem-
peratures large compared with the Kondo temperature TK, the local moment is unscreened with
a Curie susceptibility. At temperatures and fields small compared with TK, the local moment is
screened, forming an elastic scattering center within a Landau Fermi liquid with a Pauli sus-
ceptibility � ⇠ 1

TK
. (b) Schematic susceptibility curve for the Kondo e↵ect, showing cross-over

from Curie susceptibility at high temperatures to Pauli susceptibility at temperatures below the
Kondo temperature TK. (c) Specific heat curve for the Kondo e↵ect. Since the total area is the
full spin entropy R ln 2 and the width is of order TK, the height must be of order � ⇠ R ln 2/TK.
This sets the scale for the zero temperature specific heat coe�cient.

Today, we understand this logarithmic correction as a renormalization of the Kondo coupling
constant, resulting from fact that as the temperature is lowered, more and more high frequency

“Kondo Resistance Minimum”
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Heavy Fermions + Kondo “Kondo temperature”

Spin screened by 
conduction 
electrons: entangled

TK = W
p
J⇢e�

1
2J⇢

H =
X

k�

✏kc
†
k�ck� + J ~S · ~�(0)

J. Kondo, 1962

Heavy Fermions and the Kondo Lattice 5.5

quantum spin fluctuations become coherent, and these strengthen the Kondo interaction. The
e↵ect is closely analogous to the growth of the strong-interaction between quarks, and like
quarks, the local moment in the Kondo e↵ect is asymptotically free at high energies. However,
as you can see from the above equation, once the temperature becomes of order

TK ⇠ D exp
"
� 1

2J⇢

#

the correction becomes as large as the original perturbation, and at lower temperatures, the
Kondo interaction can no longer be treated perturbatively. In fact, non-perturbative methods
tell us that this interaction scales to strong coupling at low energies, causing electrons in the
conduction sea to magnetically screen the local moment to form an inert Kondo singlet denoted
by

|GS i = 1p
2

(| *#i � | +"i) , (5)

where the thick arrow refers to the spin state of the local moment and the thin arrow refers to the
spin state of a bound-electron at the site of the local moment. The key features of the impurity
Kondo e↵ect are are:

• The electron fluid surrounding the Kondo singlet forms a Fermi liquid, with a Pauli sus-
ceptibility � ⇠ 1/TK .

• The local moment is a kind of qubit which entangles with the conduction sea to form
a singlet. As the temperature T is raised, the entanglement entropy converts to thermal
entropy, given by the integral of the specific heat coe�cient,

S (T ) =
Z T

0
dT 0

CV(T 0)
T 0
.

Since the total area under the curve, S (T ! 1) = R ln 2 per mole is the high tempera-
ture spin entropy, and since the characteristic width is the Kondo temperature, it follows
that the the characteristic zero temperature specific heat coe�cient must be of order the
inverse Kondo temperature: � = CV

T (T ! 0) ⇠ R ln 2
TK

. (See Fig. 3 b)

• The only scale in the physics is TK . For example, the resistivity created by magnetic
scattering o↵ the impurity has a universal temperature dependence

R(T )
RU
= ni�

 
T
TK

!
(6)

where ni is the concentration of magnetic impurities, �(x) is a universal function and ⇢U

is the unit of unitary resistance (basically resistance with a scattering rate of order the
Fermi energy),

RU =
2ne2

⇡m⇢
(7)

Experiment confirms that the resistivity in the Kondo e↵ect can indeed be scaled onto a
single curve that fits forms derived from the Kondo model (see Fig 4).
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where the density of conduction electron states ρ(ϵ) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
integrating out the electron states at the edge of the conduction band. In the Poor Man’s procedure,
the band-width is not rescaled to its original size after each renormalization, which avoids the need
to renormalize the electron operators so that instead of Eq. (16.81), H(D′) = H̃L.

To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations
using the t-matrix formulation for the induced interaction Hint, derived in the last section. Formally,
the induced interaction is given by

δHint
ab =

1
2
[Tab(Ea) + Tab(Eb)]

where
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λ∈|H⟩

⎡
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(I)
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⎤
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where the energy of state |λ⟩ lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
scattered directly, or (II) a virtual electron hole-pair is created in the intermediate state. In process
(I), the T-matrix can be represented by the Feynman diagram
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k
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"

#
$ %k’

for which the T-matrix for scattering into a high energy electron state is

T (I)(E)k′βσ′;kασ =

∑

ϵk′′ ∈[D−δD,D]

[
1

E − ϵk′′

]
J2(σaσb)βα(S aS b)σ′σ

≈ J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.102)

In process (II),

k$

’’"
" ’"

%k’

k’’#

the formation of a particle-hole pair involves a conduction electron line that crosses itself, leading
to a negative sign. Notice how the spin operators of the conduction sea and antiferromagnet reverse
their relative order in process II, so that the T-matrix for scattering into a high-energy hole-state is
given by

T (II)(E)k′βσ′;kασ = −
∑

ϵk′′ ∈[−D,−D+δD]

[
1

E − (ϵk + ϵk′ − ϵk′′)

]
J2(σbσa)βα(S aS b)σ′σ
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where the density of conduction electron states ρ(ϵ) is taken to be constant. The Poor Man’s renor-
malization procedure follows the evolution of J(D) that results from reducing D by progressively
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1
2
[Tab(Ea) + Tab(Eb)]
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Tab(E) =
∑

λ∈|H⟩

⎡
⎢⎢⎢⎢⎢⎢⎣
H(I)aλH

(I)
λb

E − EHλ

⎤
⎥⎥⎥⎥⎥⎥⎦

where the energy of state |λ⟩ lies in the range [D′,D]. There are two possible intermediate states
that can be produced by the action of H(I) on a one-electron state: (I) either the electron state is
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= −J2ρδD
[

1
E − D

]
(σaσb)βα(S aS b)σ′σ (16.103)

where we have assumed that the energies ϵk and ϵk′ are negligible compared with D. Adding (Eq.
16.102) and (Eq. 16.103) gives

δHint
k′βσ′;kασ = T̂ I + T II = −

J2ρδD
D

[σa,σb]βαS aS b

=
J2ρδD
D
σ⃗βαS⃗ σ′σ. (16.104)

In this way we see that the virtual emission of a high energy electron and hole generates an antifer-
romagnetic correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thus antiscreen the antiferrromagnetic interaction. If we introduce
the coupling constant g = ρJ, we see that it satisfies

∂g
∂ lnD

= β(g) = −2g2 + O(g3).

This is an example of a negative β function: a signature of an interaction which is weak at high
frequencies, but which grows as the energy scale is reduced. The local moment coupled to the
conduction sea is said to be asymptotically free. The solution to this scaling equation is

g(D′) =
go

1 − 2go ln(D/D′)
(16.105)

and if we introduce the scale
TK = D exp

[
−
1
2go

]
(16.106)

we see that this can be written
2g(D′) =

1
ln(D′/TK)

This is an example of a running coupling constant- a coupling constant whose strength depends on
the scale at which it is measured. (See Fig. 16.14).

Were we to take this equation literally, we would say that g diverges at the scale D′ = TK . This
interpretation is too literal, because the above scaling equation has only been calculated to order g2,
nevertheless, this result does show us that the Kondo interaction can only be treated perturbatively
at energy scales large compared with the Kondo temperature. We also see that once we have written
the coupling constant in terms of the Kondo temperature, all reference to the original cut-off energy
scale vanishes from the expression. This cut-off independence of the problem is an indication that
the physics of the Kondo problem does not depend on the high energy details of the model: there is
only one relevant energy scale, the Kondo temperature.
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Heavy Fermions and the Kondo Lattice 5.5

quantum spin fluctuations become coherent, and these strengthen the Kondo interaction. The
e↵ect is closely analogous to the growth of the strong-interaction between quarks, and like
quarks, the local moment in the Kondo e↵ect is asymptotically free at high energies. However,
as you can see from the above equation, once the temperature becomes of order

TK ⇠ D exp
"
� 1

2J⇢

#

the correction becomes as large as the original perturbation, and at lower temperatures, the
Kondo interaction can no longer be treated perturbatively. In fact, non-perturbative methods
tell us that this interaction scales to strong coupling at low energies, causing electrons in the
conduction sea to magnetically screen the local moment to form an inert Kondo singlet denoted
by

|GS i = 1p
2

(| *#i � | +"i) , (5)

where the thick arrow refers to the spin state of the local moment and the thin arrow refers to the
spin state of a bound-electron at the site of the local moment. The key features of the impurity
Kondo e↵ect are are:

• The electron fluid surrounding the Kondo singlet forms a Fermi liquid, with a Pauli sus-
ceptibility � ⇠ 1/TK .

• The local moment is a kind of qubit which entangles with the conduction sea to form
a singlet. As the temperature T is raised, the entanglement entropy converts to thermal
entropy, given by the integral of the specific heat coe�cient,

S (T ) =
Z T

0
dT 0

CV(T 0)
T 0
.

Since the total area under the curve, S (T ! 1) = R ln 2 per mole is the high tempera-
ture spin entropy, and since the characteristic width is the Kondo temperature, it follows
that the the characteristic zero temperature specific heat coe�cient must be of order the
inverse Kondo temperature: � = CV

T (T ! 0) ⇠ R ln 2
TK

. (See Fig. 3 b)

• The only scale in the physics is TK . For example, the resistivity created by magnetic
scattering o↵ the impurity has a universal temperature dependence

R(T )
RU
= ni�

 
T
TK

!
(6)

where ni is the concentration of magnetic impurities, �(x) is a universal function and ⇢U

is the unit of unitary resistance (basically resistance with a scattering rate of order the
Fermi energy),

RU =
2ne2

⇡m⇢
(7)

Experiment confirms that the resistivity in the Kondo e↵ect can indeed be scaled onto a
single curve that fits forms derived from the Kondo model (see Fig 4).
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• The scattering o↵ the Kondo singlet is resonantly confined to a narrow region of order
TK , called the Kondo or Abriksov-Suhl resonance.

Fig. 4: Temperature dependence of resistivity associated with scattering from an impurity
spin from [7, 8]. The resistivity saturates at the unitarity limit at low temperatures, due to the
formation of the Kondo resonance. Adapted from [7].

1.3 The Kondo lattice

In heavy fermion material, containing a lattice of local moments, the Kondo e↵ect develops
coherence. In a single impurity, a Kondo singlet scatters electrons without conserving momen-
tum, giving rise to a huge build-up of resistivity at low temperatures. However, in a lattice, with
translational symmetry, this same elastic scattering now conserves momentum, and this leads to
coherent scattering o↵ the Kondo singlets. In the simplest heavy fermion metals, this leads to a
dramatic reduction in the resistivity at temperatures below the Kondo temperature.
As a simple example, consider CeCu6 a classic heavy fermion metal. Naively, CeCu6 is just
a copper alloy, in which 14% of the copper atoms are replaced by cerium, yet this modest
replacement radically alters the metal. In this material, it actually proves possible to follow the
development of coherence from the dilute single ion Kondo limit, to the dense Kondo lattice, by
forming the alloy La1�xCexCu6. Lanthanum is iso-electronic to cerium, but has an empty f-shell,
so the limit x! 0 corresponds to the dilute Kondo limit, and in this limit the resistivity follows
the classic Kondo curve. However, as the concentration of cerium increases, the resistivity
curve starts to develop a coherence maximum, an in the concentrated limit drops to zero with a
characteristic T 2 dependence of a Landau Fermi liquid (see Fig. 6).
CeCu6 displays the following classic features of a heavy fermion metal:

• A Curie-Weiss susceptibility � ⇠ (T + ✓)�1 at high temperatures.

• A paramagnetic spin susceptibility � ⇠ cons at low temperatures.
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The main result ... is that there should be a second-
order transition at zero temperature, as the 
exchange is varied, between an antiferromagnetic 
ground state for weak J and a Kondo-like state in 
which the local moments are quenched.
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Entangled spins and electrons 

→ AFM/Superconductivity

SC anomaly at Tc reveals only a strong sensitivity to imper-
fections, for example due to a mismatch between incommen-
surate magnetic ordering !AFI" and SC or due to additional
nodes in the gap function of the SC state caused by the
crossing of the FS with the magnetic Brillouin zone.27 Direct
evidences on the inhomogenous superconducting transition
below pc

! are given by the large discrepancy between Tc de-
tected by resistivity Tc

!,8 ac susceptibility Tc
",11 and the

present specific heat measurements Tc
C with a sequence

Tc
!#Tc

"#Tc
C. Up to 1.5 GPa, the resistivity anomaly at Tc

!

may not be a bulk property; a similar case is reported for
CeIrIn5.3,28 By contrast, the specific heat measurement
clearly shows a sharp and very large superconducting
anomaly at p=2.17 GPa indicating a pure superconducting
ground state, basically gapped. At p=2.07 GPa no extra AF
transition can be detected below Tc. Above pc

!, an eventual
domain of a coexistence of AF and SC will be extremely
narrow in pressure and experimentally very difficult to point
out.

The !p ,T" phase diagram of CeRhIn5 in zero field is sum-
marized in Fig. 2 !data from Ref. 11 have been included".
The low temperature specific heat measurements clearly
show the interplay of AF and SC in the pressure range from
1.6–1.9 GPa. A first order transition seems to emerge at
pc

!=1.95 GPa, where Tc#TN. A linear p extrapolation of
TN to zero temperature indicates that TN may be fully
suppressed near the pressure of the maximum of Tc at
pc#2.4±0.1 GPa and the maxima of some of the effective
masses.12 If Tc#TN, the ground state in zero field seems
purely superconducting with d-wave symmetry10 as in
CeCoIn5.4,5 The opening of a superconducting gap on large
parts of the main FS leads to the suppression of the magnetic
ordering.

Figure 3 shows the specific heat for various fields H $ab at
different pressures below and above pc

!. The !H ,T" phase
diagrams obtained from these data are displayed in Fig. 4. At
1.2 GPa, in the normal AF state, three magnetic transitions
appear for H#3 T. By comparison to p=0 results21 the mag-
netic phase diagram is only weakly p dependent %see Fig.

4!a"&. For p=2.07 GPa the superconducting transition at 0 T
is still rather broad, but above Hc2 another phase transition at
TM appears in the normal state %Fig. 4!b"&. At 2.2 GPa the
transition has a width less than 0.1 K at H=0. For H#4 T,
the additional transition develops on cooling already inside
the superconducting phase and survives entering in the
normal phase. No second transition can be detected below
H#4 T. For H$4 T two well separated anomalies inside
the superconducting state become obvious at 2.41 GPa,
almost as observed in UPt3.29 For higher pressures
!p=2.73 GPa", only a unique superconducting phase
persists.

The assignment of the superconducting anomaly under
magnetic field is unambiguously given by the form of the
Hc2!T" curve, also in comparison to previous resistivity
data.30 There are strong indications that the observed second
anomaly is associated to AF. This transition at TM is almost
H independent, at least for H#4 T, as the antiferromagnetic
transition at p=0 and p=1.2 GPa. The inset of Fig. 2 shows
the p dependence of the crossing temperature corresponding
to Tc!H"'TM!H" for p# pc

!. Its extrapolation to zero is ob-
tained for p#2.6 GPa, slightly higher than pc. That can in-
dicate the enhancement of TN when AF and SC coexist in
this mixed state. In the simplest model, weak coupling in a
clean limit, the p dependence of the effective mass m! of the
quasiparticles can be estimated from the initial slope
Hc2! =dHc2 /dT% !m!"2Tc.32 For p=2.07 GPa we find
Hc2! =20 T/K, near 2.41 GPa Hc2! increases to 33 T/K and
decreases to 25 T/K for 2.73 GPa while Tc is almost
unchanged.33 This, as well as the size of the specific heat
jump at Tc, indicates that m! has its maximum near 2.4 GPa
in agreement with the expected variation of m! at pc for an
antiferromagnetic QCP.35

The new phase presumably with AF and SC appears for
p# pc

! only above some critical field of the order H#4 T.31

FIG. 1. !Color online" Temperature dependence of the ac spe-
cific heat divided by temperature for different pressures. Arrows
indicate the superconducting transition temperatures Tc !↑" and the
Néel temperature TN !↓", respectively. Below pc

!#1.95 GPa the su-
perconducting anomaly is very small. For p slightly above pc

! a nice
superconducting anomaly appears. !Data are normalized to 1 at
4 K."

FIG. 2. !Color online" !p ,T" phase diagram of CeRhIn5 from
specific heat !!, !", susceptibility !", Ref. 11", and resistivity
measurements !&, Ref. 8". Below 1.5 GPa CeRhIn5 orders in an
incommensurable structure AFI, the hatched area indicates an inho-
mogeneous superconducting state, and AFI+SC corresponds to the
region where SC appears in the specific heat experiment in the
magnetically ordered state below TN. A pure superconducting state
SC is realized above pc

!. The vertical line marks a possible first
order transition from AFI+SC to SC. The inset shows the extrapo-
lation of TN to zero in the absence of SC. !"" indicates the tem-
perature where TM!H" crosses Tc!H", and corresponds to TN if SC is
suppressed !see also Fig. 4".
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Simplest)Kondo)LaFceSimplest)Kondo)LaFce

Hybridization picture.  

Mott Phil Mag, 30,403,1974

kEf

E(k)

unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic

4

Maple + Wohlleben, 1972

Allen and Martin, 1979

“In SmB6 and high-pressure SmS a very small gap separates occupied from 
unoccupied states, this in our view being due to hybridization of 4f and 4d 
bands.” Mott 1974
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Detailed calcn.

c⃝2010 Piers Coleman Chapter 17.

17.1.4 Mean-field theory of the Kondo Lattice

Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity problem, to the lattice. Most of the
methods described in the last subsection generalize very naturally from the impurity to the lattice:
the main difficulty is to understand the underlying physics. The mean-field Hamiltonian for the
lattice[49? ] takes the form

HMFT =
∑

k⃗σ

ϵk⃗c
†
k⃗σck⃗σ +

∑

j,α

(
f † jαψ jαVo + V̄oψ† jβ f jβ + λo f † jα f jα

)
+ Nn

(
V̄oVo
J
− λoq

)
,

where n is the number of sites in the lattice. Notice, before we begin, that the composite f-state
at each site of the lattice is entirely local, in that hybridization occurs at one site only. Were the
composite f-state to be in any way non-local, we would expect that the hybridization of one f-
state would involve conduction electrons at different sites. We begin by rewriting the mean field
Hamiltonian in momentum space, as follows

HMFT =
∑

k⃗σ

(
c†k⃗σ, f

†
k⃗σ

) ( ϵk⃗ Vo
Vo λo

) (
ck⃗σ
f⃗kσ

)
+ Nn

(
V̄oVo
J
− λoq

)

where

f †k⃗σ =
1
√
n

∑

j
f † jσei⃗k·R⃗ j

is the Fourier transform of the f−electron field. The absence of k− dependence in the hybridization
is evident that each composite f−electron is spatially local. This Hamiltonian can be diagonalized
in the form

HMFT =
∑

k⃗σ

(
a†k⃗σ, b

†
k⃗σ

) (Ek⃗+ 0
0 Ek⃗−

) (
ak⃗σ
bk⃗σ

)
+ Nn

(
V̄oVo
J
− λoq

)

where a†k⃗σ and b
†
k⃗σ are linear combinations of c

†
k⃗σ and f

†
k⃗σ, playing the role of “quasiparticle op-

erators” of the theory and the momentum state eigenvalues Ek⃗± of this Hamiltonian are determined
by the condition

Det
[
Ek⃗±1 −

(
ϵk⃗ Vo
Vo λo

)]
= 0,

which gives

Ek⃗± =
ϵk⃗ + λo

2
±
⎡
⎢⎢⎢⎢⎢⎣

(
ϵk⃗ − λo
2

)2
+ |Vo|2

⎤
⎥⎥⎥⎥⎥⎦

1
2

(17.44)

are the energies of the upper and lower bands. The dispersion described by these energies is shown
in Fig. 17.8 . A number of points can be made about this dispersion:
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28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ

)
+ NNs

( |V |2
J
− λq

)
(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or

Ek± =
ϵk + λ

2
±

[( ϵk − λ
2

)2
+ |V |2

] 1
2

, (18.115)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2
± (ϵk − λ)/2

2
√(

ϵk−λ
2

)2
+ |V |2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

. (18.116)
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We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.
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Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues
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30 Heavy electrons

enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)

PQ =
∏

j

PQ( j) =
∫ 2π

0

∏

j

dα j

2π
ei

∑
j α j(n̂ f j−Q). (18.122)

The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain

FMF = −NT
∑

k,iωr

Tr ln
[

−G−1
k (iωr)︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

−iωr +

(
ϵk V
V λ

)]
+Ns

(
N|V |2

J
− λQ

)
, (18.123)

whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
a sum over k. Let us remind ourselves of the steps taken between (18.69) and (18.70 ). We begin by re-writing
the trace of the logarithm as a determinant, which we then factorize in terms of the energy eigenvalues,

Tr ln
[
−iωr1 +

(
ϵk V
V λ

)]
= ln det

[
−z1 +

(
ϵk V
V λ

)]
= ln

[ (Ek+−iωr)(Ek−−iωr)︷!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!︷
(ϵk − iωr)(λ − iωr) − V2

]

=
∑

n=±
ln(Ekn − iωr). (18.124)
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We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
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18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
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30 Heavy electrons

enlarged Fermi surface volume now counts the total number of occupied quasiparticle states

Ntot = ⟨
∑

kλσ

nkλσ⟩ = ⟨n̂ f + n̂c⟩ (18.118)

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total number of
conduction electrons. This means

Ntot = N
VFS a3

(2π)3 = Q + nc, (18.119)

where a3 is the volume of the unit cell. This is rather remarkable, for the expansion of the Fermi surface
implies an increased charge density in the Fermi sea. Since charge is conserved, we are forced to con-
clude there is a compensating +Q|e| charge density per unit cell provided by the Kondo singlets formed
at each site, as illustrated in Fig. 18.10.

• We can construct the mean-field ground-state from the quasiparticle operators as follows:

|MF⟩ =
∏

|k|<kFσ

b†kσ|0⟩ =
∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩. (18.120)

However, this state only satisfies the constraint on the average. We can improve it by imposing the
constraint, forming a “Gutzwiller” wavefunction[?, ?, ?]

|GW⟩ = PQ

∏

|k|<kFσ

(−vkckσ + uk f †kσ)|0⟩, (18.121)

where, using (18.48)

PQ =
∏

j

PQ( j) =
∫ 2π

0

∏

j

dα j

2π
ei

∑
j α j(n̂ f j−Q). (18.122)

The action of the constraint gives rise to a highly incompressible Fermi liquid, in which the compress-
ibility is far smaller than the density of states.

18.6.2 Mean Field Free Energy and Saddle point

Let us now use the results of the last section to calculate the mean-field free energy FMFT and determine,
self-consistently the parameters λ and V which set the scales of the Kondo lattice. Using 18.69 we obtain

FMF = −NT
∑

k,iωr

Tr ln
[

−G−1
k (iωr)︷!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!︷

−iωr +

(
ϵk V
V λ

)]
+Ns

(
N|V |2

J
− λQ

)
, (18.123)

whereNs is the number of sites in the lattice. Note that translational invariance means that momentum is con-
served and the Green’s function is diagonal in momentum, so we can re-write the trace over the momentum as
a sum over k. Let us remind ourselves of the steps taken between (18.69) and (18.70 ). We begin by re-writing
the trace of the logarithm as a determinant, which we then factorize in terms of the energy eigenvalues,

Tr ln
[
−iωr1 +

(
ϵk V
V λ

)]
= ln det

[
−z1 +

(
ϵk V
V λ

)]
= ln

[ (Ek+−iωr)(Ek−−iωr)︷!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!︷
(ϵk − iωr)(λ − iωr) − V2

]

=
∑

n=±
ln(Ekn − iωr). (18.124)
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!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain

F
N
= −T

∑

k,±
ln

[
1 + e−βEk±

]
+Ns

(
V2

J
− λq

)
. (18.125)

Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:

Eo

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
(18.126)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
. (18.127)

Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS
(2π)3

= Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
N
= −T

∑

k⃗,±

ln
[
1 + e−βEk⃗±

]
+ ns
(
V̄V
J
− λq
)

Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form

Eo
Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq
)

where we have introduced the density of heavy electron states ρ∗(E) =
∑
k⃗,± δ(E − E

(±)
k⃗
). Now

the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by

E = ϵ +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of states ρ by

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
(17.46)

The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo
Nns
=
D2ρ
2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2

+

(
V̄V
J
− λq
)

(17.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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!Fig. 18.10 (a) High temperature state: small Fermi surface with a background of spins; (b)Low
temperature state where large Fermi surface develops against a background of
positive charge. Each spin “ionizes” into Q heavy electrons, leaving behind a
background of Kondo singlets, each with charge +Qe.

Next, by carrying out the summation over Matsubara frequencies, using the result −T
∑

iωr ln(Ekn − iωr) =
−T ln(1 + e−βEkn ), we obtain

F
N
= −T

∑

k,±
ln

[
1 + e−βEk±

]
+Ns

(
V2

J
− λq

)
. (18.125)

Let us discuss the ground-state, in which only the lower-band contributes to the Free energy. As T → 0,
we can replace −T ln(1+ e−βEk )→ θ(−Ek)Ek, so the ground-state energy E0 = F(T = 0) involves an integral
over the occupied states of the lower band:

Eo

NNs
=

∫ 0

−∞
dEρ∗(E)E +

(
V2

J
− λq

)
(18.126)

where we have introduced the density of heavy electron states ρ∗(E) =
∑

k,± δ(E −E(±)
k ). Now by (18.114) the

relationship between the energy E of the heavy electrons and the energy ϵ of the conduction electrons is

E = ϵ +
V2

E − λ .

As we sum over momenta k within a given energy shell, there is a one-to-one correspondence between each
conduction electron state and each quasiparticle state, so we can write ρ∗(E)dE = ρ(ϵ)dϵ, where the density
of heavy electron states

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
. (18.127)

Here we have approximated the underlying conduction electron density of states by a constant ρ = 1/(2D).
The originally flat conduction electron density of states is now replaced by a “hybridization gap”, flanked by
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28 Heavy electrons

18.6 Mean-field theory of the Kondo Lattice

18.6.1 Diagonalization of the Hamiltonian

We can now make the jump from the single impurity problem to the lattice. The virtue of the large N method
is that while approximate, it can be readily scaled up to the lattice. We’ll now recompute the effective action
for the lattice, using equation 18.69. Let us assume that the hybridization and constraint fields at the saddle
point are uniform, with Vj = V and λ j = λ at every site. Infact, even if we start with a Vj = Ve−iφ j with
a different phase at each site, we can always use the phase φ j using the Read Newns gauge transformation
(18.56) to absorb the additional phase onto the f-electron field. We then have a translationally invariant mean-
field Hamiltonian. We begin by rewriting the mean field Hamiltonian in momentum space as follows

HMFT =
∑

kσ

(
c†kσ, f †kσ

)
h(k)︷!!!︸︸!!!︷(

ϵk V
V̄ λ

) (
ckσ
fkσ

)
+ NNs

( |V |2
J
− λq

)
(18.111)

=
∑

kσ
ψ†kσ h(k) ψkσ + NNs

( |V |2
J
− λq

)
.

Here, f †kσ =
1√Ns

∑
j f † jσeik·R j is the Fourier transform of the f−electron field and we have introduced the

two component notation

ψkσ =

(
ckσ
fkσ

)
, ψ†kσ =

(
c†kσ, f †,kσ

)
, h(k) =

(
ϵk V
V̄ λ

)
. (18.112)

We should think about HMFT as a renormalized Hamiltonian, describing the low energy quasiparticles,
moving through a self-consistently determined array of resonant scattering centers. Later, we will see that the
f-electron operators are composite objects, formed as bound-states between spins and conduction electrons.

The mean-field Hamiltonian can be diagonalized in the form

HMFT =
∑

kσ

(
a†kσ, b†kσ

) (Ek+ 0
0 Ek−

) (
akσ
bkσ

)
+ Nn

(
V̄V
J
− λq

)
. (18.113)

Here a†kσ = ukc†kσ+ vk f †kσ and b†kσ = −vkc†kσ+uk f †kσ are linear combinations of c†kσ and f †kσ, playing
the role of “quasiparticle operators” with corresponding energy eigenvalues

Det
[
E±k 1 −

(
ϵk V
V̄ λ

)]
= (Ek± − ϵk)(Ek± − λ) − |V |2 = 0, (18.114)

or

Ek± =
ϵk + λ

2
±

[( ϵk − λ
2

)2
+ |V |2

] 1
2

, (18.115)

and eigenvectors taking the BCS form

{
uk
vk

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2
± (ϵk − λ)/2

2
√(

ϵk−λ
2

)2
+ |V |2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

. (18.116)
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two sharp peaks of width approximately πρV2 ∼ TK (Fig. 18.9). Note that the lower band-width is lowered
by an amount −V2/D. With this information, we can carry out the integral over the energies, to obtain

Eo

NNs
= ρ

∫ 0

−D−V2/D
dEE

(
1 +

V2

(E − λ)2

)
+

(
V2

J
− λq

)
(18.128)

where we have assumed that the upper band is empty, and the lower band is partially filled. Carrying out the
integral we obtain

Eo

NNs
= −ρ

2

(
D +

V2

D

)2

+
∆

π

∫ 0

−D
dE

(
1

E − λ +
λ

(E − λ)2

)
+

(
V2

J
− λq

)

= −D2ρ

2
+
∆

π
ln

( λ
D

)
+

(
V2

J
− λq

)
(18.129)

where we have replaced ∆ = πρV2 and have dropped terms of order O(∆2/D). We can rearrange this expres-
sion, absorbing the band-width D and Kondo coupling constant into a single Kondo temperature TK = De−

1
Jρ

as follows
E0

NNs
= −D2ρ

2
+
∆

π
ln

( λ
D

)
+

(
πρV2

πρJ
− λq

)

= −D2ρ

2
+
∆

π
ln

( λ
D

)
+

(
∆

πρJ
− λq

)

= −D2ρ

2
+
∆

π
ln

(
λ

De−
1
Jρ

)
− λq

= −D2ρ

2
+
∆

π
ln

(
λ

TK

)
− λq. (18.130)

This describes the energy of a whole scaling trajectory of Kondo lattice models with different J(D) and cuttoff
D, but fixed Kondo temperature. If we impose the constraint ∂E0

∂λ = ⟨n f ⟩ − Q = 0 we obtain ∆
πλ − q = 0, so

Eo(V)
NNs

=
∆

π
ln

(
∆

πqeTK

)
− D2ρ

2
, (∆ = πρ|V |2) (18.131)

Let us pause for a moment to consider this energy functional qualitatively. There are two points to be made

!Fig. 18.11 Mexican hat potential for the Kondo Lattice, evaluated at constant ⟨n f ⟩ = Q as a
function of a complex hybridization V = |V |eiφ
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bands. The new Fermi surface volume now counts the total number of particles. To see this
note that

Ntot = ⟨
∑

kλσ
nkλσ⟩ = ⟨n̂ f + nc⟩

where nkλσ = a†kλσakλσ is the number operator for the quasiparticles and nc is the total
number of conduction electrons. This means

Ntot = N
VFS
(2π)3

= Q + nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by
the Kondo effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear
In other words, they are electronic states that have only depend on the rotational degrees of
freedom of the local moments.

The Free energy of this system is then

F
N
= −T

∑

k⃗,±

ln
[
1 + e−βEk⃗±

]
+ ns
(
V̄V
J
− λq
)

Let us discuss the ground-state energy, Eo- the limiting T → 0 of this expression. We can write this
in the form

Eo
Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq
)

where we have introduced the density of heavy electron states ρ∗(E) =
∑
k⃗,± δ(E − E

(±)
k⃗
). Now

the relationship between the energy of the heavy electrons (E) and the energy of the conduction
electrons (ϵ) is given by

E = ϵ +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of states ρ by

ρ∗(E) = ρ
dϵ
dE
= ρ

(
1 +

V2

(E − λ)2

)
(17.46)

The originally flat conduction electron density of states is now replaced by a “hybridization
gap”, flanked by two sharp peaks of width approximately πρV2 ∼ TK . With this information, we
can carry out the integral over the energies, to obtain

Eo
Nns
=
D2ρ
2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2

+

(
V̄V
J
− λq
)

(17.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we
impose the constraint ∂F∂λ = ⟨n f ⟩ − Q = 0 we obtain

∆

πλ
− q = 0
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so that the ground-state energy can be written

Eo
Nns
=
∆

π
ln
(
∆e
πqTK

)
(17.48)

where TK = De−
1
Jρ as before.

Let us pause for a moment to consider this energy functional qualitatively. The Free energy
surface has the form of “Mexican Hat” at low temperatures. The minimum of this functional will
then determine a familiy of saddle point values V = Voeiθ, where θ can have any value. If we
differentiate the ground-state energy with respect to V2, we obtain

0 =
1
π
ln
(
∆e2

πqTK

)

or
∆ =
πq
e2
TK

confirming that ∆ ∼ TK .

Composite Nature of the heavy quasiparticle in the Kondo lattice.

We now turn to discuss the nature of the heavy quasiparticles in the Kondo lattice. Clearly, at an
operational level, the composite f−electrons are formed in the same way as in the impurity model,
but at each site, i.e

1
N
Γαβ( j, t)ψ jα(t) −→

(
V̄
J

)
f jα(t)

This composite object admixes with conduction electrons at a single site- site j. The bound-state
amplitude in this expression can be written

−
Vo
J
=
1
N
⟨ f †βψβ⟩ (17.49)

To evaluate the contributions to this sum, it is useful to notice that the condition ∂E/∂V̄ = 0 can be
written

1
N
∂E
∂V̄o

= 0 =
Vo
J
+
1
N
⟨ f †βψβ⟩

=
Vo
J
+ Vo

∫ 0

−D
dEρ

E
(E − λ)2

(17.50)

where we have used (17.47) to evaluate the derivative. From this we see that we can write

Vo
J
= −Vo

∫ 0

−D
dEρ
(
1

E − λ
+

λ

(E − λ)2

)

= −Voρ ln
[λe
D

]
(17.51)
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This describes the energy of a whole scaling trajectory of Kondo lattice models with different J(D) and cuttoff
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electrons that span decades of energy up to a cutoff, beit the Debye energy ωD in superconductivity or the
(much larger) bandwidth D in the Kondo effect [32, 33].

To follow this analogy in greater depth, recall that in the path integral the Kondo interaction factorizes as

J
N

c†βS αβcα −→ V̄
(
c†α fα

)
+

(
f †αcα

)
V + N

V̄V
J
, (18.143)

so by comparing the right and left hand side, we see that the composite operators S βαcβ and c†βS αβ behave
as a single fermion denoted by the contractions:

1
N

∑

β

S βαcβ =
(

V̄
J

)
fα,

1
N

∑

β

c†βS αβ =
(V

J

)
f †α, (18.144)

Composite Fermion

Physically, this means that the spins bind high energy electrons, transforming themselves into composites
which then hybridize with the conduction electrons. The resulting “heavy fermions” can be thought of as
moments ionized in the magnetically polar electron fluid to form mobile, negatively charged heavy electrons
while leaving behind a positively charged “Kondo singlet”.

Microscopically, the many body amplitude to scatter an electron off a local moment develops a bound-state
pole, which for large N we can denote by the diagrams:

Γ ≡
O(1)

V V̄
+

O(1/N)

The leading diagram describes a kind of “condensation” of the hybridization field; the second and higher
terms describe the smaller O(1/N) fluctuations around the mean-field theory.

The temporal correlations between spin-flips and conduction electrons extend over a finite time, described
by the contraction

1
N

∑

β

cβ(τ)S βα(τ′) = g(τ − τ′) f̂α(τ′). (18.145)

Here the spin-flip correlation function g(τ − τ′) is an analogue of the Gor’kov function, extending out to a
coherence time τK ∼ !/TK . Notice that in contrast to the Cooper pair, this composite object is a fermion and
thus requires a distinct operator f̂α for its expression. The Fourier (Laplace) decomposition of g(τ) describes
the Spectral distribution of electrons and spin-flips inside the composite f-electron which we may calculate
as follows:

1
N

∑

β

cβ(τ)S βα(τ′) =
1
N

∑

β

cβ(τ) f †β(τ′) fα(τ′)

=
1
N

∑

β

⟨Tcβ(τ) f †β(τ′)⟩ fα(τ′)

5.22 Piers Coleman

1
N

X

�

S �↵c� =
 
V̄
J

!
f↵,

1
N

X

�

c†�S ↵� =
✓V

J

◆
f †↵, (58)

Composite Fermion

Physically, this means that the spins bind high energy electrons, transforming themselves into
composites which then hybridize with the conduction electrons. The resulting “heavy fermions”
can be thought of as moments ionized in the magnetically polar electron fluid to form mobile,
negatively charged heavy electrons while leaving behind a positively charged “Kondo singlet”.
Microscopically, the many body amplitude to scatter an electron o↵ a local moment develops a
bound-state pole, which for large N we can denote by the diagrams:

� ⌘
O(1)

V V̄
+

O(1/N)
+ . . .

The leading diagram describes a kind of “condensation” of the hybridization field; the second
and higher terms describe the smaller O(1/N) fluctuations around the mean-field theory.
By analogy with superconductivity, we can associate a wavefunction associated with the tem-
poral correlations between spin-flips and conduction electrons, as follows

1
N

X

�

c�(⌧)S �↵(⌧0) = g(⌧ � ⌧0) f̂↵(⌧0). (59)

where the spin-flip correlation function g(⌧�⌧0) is an analogue of the Gor’kov function, extend-
ing over a coherence time ⌧K ⇠ ~/TK . Notice that in contrast to the Cooper pair, this composite
object is a fermion and thus requires a distinct operator f̂↵ for its expression.

4 Heavy Fermion Superconductivity

We now take a brief look at heavy fermion superconductivity. There are a wide variety of
heavy electron superconductors, almost all of which are nodal superconductors, in which the
pairing force derives from the interplay of magnetism and electron motion. In the heavy
fermion compounds, as in many other strongly correlated electron systems superconductiv-
ity frequently develops at the border of magnetism, near the quantum critical point where the
magnetic transition temperature has been suppressed to zero. In some of them, such as UPt3

(Tc=0.5K) [36] the superconductivity develops out of a well-developed heavy Fermi liquid,
and in these cases, we can consider the superconductor to be paired by magnetic fluctuations
within a well-formed heavy Fermi liquid. However, in many other superconductors, such as
UBe13(Tc=1K) [37, 38], the 115 superconductors CeCoIn5 (Tc=2.3K) [39], CeRhIn5 under
pressure (Tc=2K) [17], NpAl2Pd5(Tc=4.5K) [40] and PuCoGa5 (Tc=18.5K) [41, 42], the su-
perconducting transition temperature is comparable with the Kondo temperature. In many of
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Figure 1. Energy diagram illustrating how the energy of a spin liquid can be lowered below 
that of an antiferromagnetic state by Kondo compensation. 

states [ 6 ] ,  and x may be large due to frustrationt. A combination of these two factors 
will then tend to suppress development of conventional local moment magnetism. 

A useful way to visualise the formation of a Kondo-stabilised spin liquid is to use 
Anderson’s resonating valence bond picture [7] (figure 2). A pure spin liquid is visualised 
by linking pairs o f f  spins together into singlets or valence bonds. Spin exchange be- 
tween sites causes the ends of the valence bonds to resonate throughout the spin system 
forming a sort of ‘quantum spaghetti’. When we introduce Kondo coupling to the con- 
duction electrons, the ends of the valence bonds occasionally link up with a conduction 
electron lying within an energy TK of the Fermi level, resonantly scattering the electrons 
close to the Fermi energy. Typically, the number of conduction electrons within this 
energy is far smaller than the number of f spins, and in keeping with the Nozieres 
exhaustion principle, most of the valence bonds must stay within the spin liquid. 

Conduction e- 

f spins 

L e -  I b i  

Figure 2. Illustrating how Kondo compensation of a spin liquid results in an escape of 
the valence bonds into the conduction sea, generating singlet pairs of conduction electrons, 
thereby inducing a pairing component to the resonant Kondo scattering of conduction 
electrons. 

Occasionally however, spin exchange will occur between two valence bonds that link 
conduction electrons to f moments, causing the momentary escape of one valence 
bond entirely into the conduction sea. Such brief excursions of valence bonds into the 
conduction sea will produce resonant singlet pairing amongst low-energy conduction 
electrons, and as we shall see, this generates superconductivity in the heavy fermion 
system. 

In this paper we examine this hypothesis within a new path integral formalism, using 
a lattice model for heavy fermions that contains both RKKY and Kondo interactions. 

t In the 2D cuprate superconductors we believe a similar effect may also be taking place, where in this case 
TK should be replaced by JK and a is very close to unity. See [ 7 ] .  
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these materials, the entropy of condensation

S c =

Z Tc

0

CV

T
dT (60)

can be as large as (1/3)R ln 2 per rare earth ion, indicating that the spin is, in some-way entan-
gling with the conduction electrons to build the condensate. In this situation, we need to be able
to consider the Kondo e↵ect and superconductivity on an equal footing.

Fig. 12: (a) Phase diagram of 115 compounds CeMIn5, adapted from [43], showing magnetic
and superconducting phases as a function of alloy concentration. (b) Sketch of specific heat co-
e�cient of CeCoIn5, (with nuclear Schottky contribution subtracted), showing the large entropy
of condensation associated with the superconducting state. (After Petrovic et al 2001 [39]).

4.1 Symplectic spins and SP (N).

Although the SU(N) large N expansion provides a very useful description of the normal state
of heavy fermion metals and Kondo insulators, there is strangely, no superconducting solution.
This short-coming lies in the very structure of the S U(N) group. S U(N) is perfectly tailored
to particle physics, where the physical excitations - the mesons and baryons appear as color
singlets, with the meson a a qq̄ quark-antiquark singlet while the baryon is an N-quark singlet
q1q2 . . . qN , (where of course N = 3 in reality). In electronic condensed matter, the meson
becomes a particle-hole pair, but there are no two-particle singlets in S U(N) beyond N = 2. The
origin of this failure can be traced back to the absence of a consistent definition of time-reversal
symmetry in S U(N) for N > 2. This means that singlet Cooper pairs and superconductivity can
not develop at the large N limit.
A solution to this problem which grew out an approach developed by Read and Sachdev [44] for
frustrated magnetism, is to use the symplectic group S P(N), where N must be an even number
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Baryons
q1q2 . . . qN
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4.2 Superconductivity in the Kondo Heisenberg Model

Let us take a look at the way this works in a nearest neighbor “Kondo Heisenberg model” [47],

H = Hc + HK + HM. (63)

Here Hc =
P

k� ✏kc†k�ck� describes the conduction sea, whereas HK and HM are the Kondo and
Heisenberg (RKKY) interactions, respectively. These take the form
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where we’ve introduced the notation ↵̃ = Sgn(↵) and have shown how the interactions are
expanded in into particle-hole and particle-particle channels. Notice how the interactions are
equally divided between particle-hole and particle-particle channels. When we carry out the
Hubbard Stratonovich decoupling, in each of these terms, we obtain
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At each site, we can always rotate the f-electrons in particle-hole space to remove the “Kondo
pairing” component and set �K

j = 0, but the pairing terms in the Heisenberg component can
not be eliminated. This mean-field theory describes a kind of Kondo stabilized spin-liquid [47].
The physical picture is as follows: in practice, a spin-liquid is unstable to magnetism, but its
happy co-existence with the Kondo e↵ect brings its energy below that of the antiferromagnet.
The hybridization of the f with the conduction sea converts the spinons of the spin-liquid into
charged fermions. The ti j terms describe various kind of exotic density waves. The �i j terms
now describe pairing amongst the composite fermions.
To develop a simple theory of the superconducting state, we restrict our attention to uniform,
static saddle points, dropping the ti j. Lets look at the resulting mean-field theory. In two dimen-
sions, this becomes
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where
c̃†k↵ = (c†k↵, ↵̃c�k,�↵), f̃ †k↵ = ( f †k↵, ↵̃ f�k,�↵) (67)

are Nambu spinors for the conduction and f-electrons. The vector ~Wof Lagrange multipliers
couples to the isospin of the f-electrons: stationarity of the Free energy with respect to this
variable imposes the mean-field constraint that h f̃ †~⌧ f i = 0. The function �Hk = �k(cos kx �
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[45, 46]. This little-known group is a subgroup of S U(N). In fact for N = 2, S U(2) = S P(2)
are identical, but they diverge for higher N. For example, S U(4) has 15 generators, but its
symplectic sub-group S P(4) has only 10. At large N, S P(N) has approximately half the number
of generators of S U(N). The symplectic property of the group allows it to consistently treat
time-reversal symmetry of spins and it also allows the formation of two-particle singlets for any
N.
One of the interesting aspects of S P(N) spin operators, is their relationship to pair operators.
Consider S P(2) ⌘ S U(2): the pair operator is  † = f †" f †# and since this operator is a sin-
glet, it commutes with the spin operators, [ , ~S ] = [ †, ~S ] = 0 which, since  and  † are
the generators of particle-hole transformations, implies that the S U(2) spin operator is particle-
hole symmetric. It is this feature that is preserved by the S P(N) group, all the way out to
N ! 1. In fact, we can use this fact to write down an S P(N) spins as follows: an S U(N)
spin is given by SS U(N)

↵� = f †↵ f�. Under a particle hole transformation f↵ ! Sgn(↵) f�↵. If we
take the particle-hold transform of the S U(N) spin and add it to itself we obtain an S P(N) spin,

S ↵� = f †↵ f� + Sgn(↵�) f�� f †�↵, (61)

Symplectic Spin operator
where the values of the spin indices are ↵, � 2 {±1/2, . . . ,±N/2}. This spin operator commutes
with the three isospin variables

⌧3 = nf � N/2, ⌧+ =
X

↵>0

f †↵ f †�↵, ⌧� =
X

↵>0

f�↵ f↵. (62)

With these local symmetries, the spin is continuous invariant under SU (2) particle-hole rota-
tions f↵ ! u f↵ + vSgn↵ f †�↵, where |u2| + |v2| = 1, as you can verify. To define an irreducible
representation of the spin, we also have to impose a constraint on the Hilbert space, which in its
simplest form is ⌧3 = ⌧± = 0, equivalent to Q = N/2 in the S U(N) approach. In other-words,
the s-wave part of the f-pairing must vanish identically.

Fig. 13: Phase diagram for the two-dimensional Kondo Heisenberg model, derived in the
S P(N) large N approach, adapted from [47], courtesy Rebecca Flint.
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Dirac cone surface states.

Figure 3

Showing (a) topologically trivial band insulator with Z
2

= +1 (b) band-crossing of even and odd
parity states at an odd number of high symmetry points leads to a topological insulator with
Z
2

= �1. Each band crossing generates a Dirac cone of spin-momentum locked surface states.

2.1. Topology meets strong correlation

In 2010, Maxim Dzero, Kai Sun, Victor Galitski and Piers Coleman (16) proposed that

Kondo insulators can form strongly interacting versions of the Z
2

topological insulator.

The key points motivating this idea were that:

• The spin orbit coupling of f-electrons in a Kondo insulator, of the order of 0.5eV, is

much larger than the characteristic 10meV gap of a Kondo insulator, making these

essentially infinite spin orbit coupled systems, ideal candidates for spin-orbit driven

topological order.

• f-states are odd-parity, whereas the predominantly d-band conduction bands that

hybridize with them are even parity, so that each time there is a band-crossing between

the two, the Z
2

index changes sign, leading to a topological insulator.

The TKI proposal provides an appealing potential resolution of a long-standing mystery

in the Kondo insulator SmB
6

, which for more than thirty years, had been known to exhibit

a low temperature resistivity plateau (54, 55) (see Fig. 7), which could be naturally under-

stood as a consequence of topologically protected surface states (16, 56). In 2012, teams at

the University of Michigan (17) and the University of California, Irvine (18), confirmed the

existence of robust surface states in SmB
6

. Most recently 2014 (57) Xu et al. have detected

the spin-polarized structure of the surface states in these materials that tentatively confirm

their topological character (see discussion in section 4.2).
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2

topological insulator.

The key points motivating this idea were that:

• The spin orbit coupling of f-electrons in a Kondo insulator, of the order of 0.5eV, is

much larger than the characteristic 10meV gap of a Kondo insulator, making these

essentially infinite spin orbit coupled systems, ideal candidates for spin-orbit driven

topological order.

• f-states are odd-parity, whereas the predominantly d-band conduction bands that

hybridize with them are even parity, so that each time there is a band-crossing between

the two, the Z
2

index changes sign, leading to a topological insulator.

The TKI proposal provides an appealing potential resolution of a long-standing mystery

in the Kondo insulator SmB
6

, which for more than thirty years, had been known to exhibit

a low temperature resistivity plateau (54, 55) (see Fig. 7), which could be naturally under-

stood as a consequence of topologically protected surface states (16, 56). In 2012, teams at

the University of Michigan (17) and the University of California, Irvine (18), confirmed the

existence of robust surface states in SmB
6

. Most recently 2014 (57) Xu et al. have detected

the spin-polarized structure of the surface states in these materials that tentatively confirm

their topological character (see discussion in section 4.2).
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Figure 4

(a) If we ignore the e↵ects of topology in a conventional Kondo insulator, the interaction can be
turned on adiabatically. When the interactions are turned on, the lower band is pushed into the
upper band. Two bands of the same parity will always repel one-another and will not cross when
the interactions are turned on. (b) When interactions are turned on in a topological insulator,
they can lead to band-crossing and a topological phase transition. Here, interactions cause an
f-band to push up into a d-band. Since the two bands have opposite parity, they do not hybridize
at the high symmetry point so band-crossing occurs, leading to a topological phase transition.

hybridization vanishes high symmetry points, and this opens up the possibility that interac-

tions will induce band-crossing, changing the topology of the ground-state. For example, let

us assume that in the non-interacting limit, the ALM Hamiltonian is topologically trivial,

with a completely filled band of f-states (See Fig. 4 b). For a system with time-reversal

and inversion symmetry, the Z
2

topological invariant ⌫ = 0, 1 is determined by the parity

operator eigenvalues (15). For the ALM and taking into account (19) it is simply given by

Z
2

= (�1)⌫ =
8Y

m=1

sign[✏
c

(k
m

)� ✏
f

(k
m

)], (20)

where k
m

is a momentum at one of the eight high-symmetry points of the 3D Brillouin zone

and ✏
c,f

(k) is the dispersion of the conduction and the f -electrons correspondingly. As we

switch the interaction U
f

adiabatically the conduction d-band and f-bands will renormalize,

with the f-level moving upwards relative to the conduction bands due to their stronger
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FIG. 2. The pressure dependences of the activation gap 5 (a)
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indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.
Our measurements indicate a gap instability at a critical

pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range

10
1 bar

10

10

24 kbar
e

~ Q5 kbar

(3
10E 33 kbar

10-

10-
45 kbar

B3 kbar
60 kbar

-4 '5 66 kbar
10 I I ( I

0.0 0.2 0.4 0.6 0.8 1.0
&/r (K')

FIG. 3. The absolute value of the Hall constant RH of SmB6
as a function of inverse temperature.

of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.
Since there is no evidence in SmB6 for a discontinuous

structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.
We have used Hall effect measurements to study the

evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].
We do not address the full temperature dependence

of RH here, instead limiting our discussion to the
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Three crossings: THREE DIRAC CONES

ON SURFACE. 54

at the � point. Away from the � point, the e
g

orbitals split into two Kramers doublets,

the lower one dipping down at the X point, where it dives through the the 4f bands.

Hybridization between the two bands forces 4f states from the valence to the conduction

band, forming heavy 4f electron band pockets at the X points. Once the d-band crosses

through the f-band at the three X points, so long as there are no other crossings, the

resulting non-interacting band-structure is innevitably topological, independently of the

details of the f-multiplets (See Fig. ??).

Figure 6

Schematic illustration of the band-crossing between d- and f- states at the X point in SmB
6

. (a)
Bands uncrossed. The filled 4f6 band of f-electrons is a conventional insulator. (b) Bands crossed:
the d-band cuts beneath the f-band at the X-point, displacing an odd parity f-state from the
valence band to the conduction band. The resulting (�1)3 sign reversal in the Z

2

index gives rise
to a topological insulator.

Infact, in the cubic environment, the six J = 5/2 4f orbitals of the Samarium split into

a �
7

doublet and a �
8

quartet. LDA studies (? ? ) suggest that the physics of the 4f

orbitals is governed by valence fluctuations involving electrons of the �
8

quartet and the

conduction e
g

states, e� + 4f5(�(↵)

8

) ⌦ 4f6. The �(↵)

8

(↵ = 1, 2) quartet consists of the

following combination of orbitals: |�(1)

8

i =
q

5

6

��± 5

2

↵
+
q

1

6

��⌥ 3

2

↵
, |�(2)

8

i =
��± 1

2

↵
. This then

leads to a simple physical picture in which the �
8

quartet of f -states hybridizes with an e
g

quartet of d-states to form a Kondo insulator.

In 2011, Takimoto (? ) introduced a tight-binding model for SmB
6

in which the

hopping amplitudes in the Hamiltonian (??) are non-zero for nearest- and next-nearest-

neighbors, while hybridization involves the nearest-neighbor overlap integrals only. The

values of the hopping amplitudes were adjusted to fit the LDA band structure results, while

the e↵ect of interactions between the f -electrons is modelled as a renormalization of the bare

f -energy level and the hybridization. In Takimoto’s model, a singlet d-like orbital inverts

with an f -like orbital at the X point of the bulk Brillouin zone, while the remaining two

bands remain inert. This band inversion at the X points implies the existence of three Dirac

cones on the surface: one at the surface � point and two at the X points. Interestingly,

the corresponding Fermi velocities for the electrons at the � point are the same, while the

Fermi velocities at the X are strongly anisotropic. (? )
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Dirac cone surface states.

Figure 3

Showing (a) topologically trivial band insulator with Z
2

= +1 (b) band-crossing of even and odd
parity states at an odd number of high symmetry points leads to a topological insulator with
Z
2

= �1. Each band crossing generates a Dirac cone of spin-momentum locked surface states.

2.1. Topology meets strong correlation

In 2010, Maxim Dzero, Kai Sun, Victor Galitski and Piers Coleman (16) proposed that

Kondo insulators can form strongly interacting versions of the Z
2

topological insulator.

The key points motivating this idea were that:

• The spin orbit coupling of f-electrons in a Kondo insulator, of the order of 0.5eV, is

much larger than the characteristic 10meV gap of a Kondo insulator, making these

essentially infinite spin orbit coupled systems, ideal candidates for spin-orbit driven

topological order.

• f-states are odd-parity, whereas the predominantly d-band conduction bands that

hybridize with them are even parity, so that each time there is a band-crossing between

the two, the Z
2

index changes sign, leading to a topological insulator.

The TKI proposal provides an appealing potential resolution of a long-standing mystery

in the Kondo insulator SmB
6

, which for more than thirty years, had been known to exhibit

a low temperature resistivity plateau (54, 55) (see Fig. 7), which could be naturally under-

stood as a consequence of topologically protected surface states (16, 56). In 2012, teams at

the University of Michigan (17) and the University of California, Irvine (18), confirmed the

existence of robust surface states in SmB
6

. Most recently 2014 (57) Xu et al. have detected

the spin-polarized structure of the surface states in these materials that tentatively confirm

their topological character (see discussion in section 4.2).
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Kondo insulators can form strongly interacting versions of the Z
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topological insulator.

The key points motivating this idea were that:

• The spin orbit coupling of f-electrons in a Kondo insulator, of the order of 0.5eV, is

much larger than the characteristic 10meV gap of a Kondo insulator, making these

essentially infinite spin orbit coupled systems, ideal candidates for spin-orbit driven

topological order.

• f-states are odd-parity, whereas the predominantly d-band conduction bands that

hybridize with them are even parity, so that each time there is a band-crossing between

the two, the Z
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index changes sign, leading to a topological insulator.

The TKI proposal provides an appealing potential resolution of a long-standing mystery

in the Kondo insulator SmB
6

, which for more than thirty years, had been known to exhibit

a low temperature resistivity plateau (54, 55) (see Fig. 7), which could be naturally under-

stood as a consequence of topologically protected surface states (16, 56). In 2012, teams at

the University of Michigan (17) and the University of California, Irvine (18), confirmed the
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the spin-polarized structure of the surface states in these materials that tentatively confirm

their topological character (see discussion in section 4.2).

8 Maxim Dzero et al.

Hybridization of f (P=+) and d (P=-) vanishes at X point.

Features)of)the)new)model
Dzero et al, Annual Reviews of Condensed Matter Physics (2016), arXiv 1506.05635

=3

H(k) =
�

�k V sk · ��
V sk · �� �

f k

�

sk = (sin k

x

, sin k

y

, sin k

z

) � k̂

Like He-3B: an adaptive insulator.

=3

H(k) =
�

�k V sk · ��
V sk · �� �

f k

�

sk = (sin k

x

, sin k

y

, sin k

z

) � k̂

d̂(k) = k̂ŝ(k) = k̂
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Heavy Fermions and the Kondo Lattice 5.27

a special significance for Kondo insulators, which contain odd parity f-electrons hybridizing
with even parity d-electrons. Each time an f-electron crosses through the band-gap, exchanging
with a conduction d-state, this changes the Z2 index, making it highly likely that certain Kondo
insulators are topological. The oldest known Kondo insulator SmB6, discovered almost 50 years
ago was well known to possess a mysterious low temperature conductivity plateau [60,61], and
the idea that this system might be a topological Kondo insulator provided an exciting way
of explaining this old mystery. The recent observation of robust [62, 63] conducting surface
states in the oldest Kondo insulator SmB6supports one of the key elements of this prediction,
prompting a revival of interest in Kondo insulators as a new route for studying the interplay of
strong interactions and topological order.
SmB6 is really a mixed valent system, which takes us a little beyond the scope of this lec-
ture. One of the other issues with SmB6, is that its local crystal field configuration is likely
to be a �8 quartet state [64], rather than a Kramers doublet. Nevertheless, key elements of its
putative topological Kondo insulating state are nicely illustrated by a spin-orbit coupled Kondo-
Heisenberg model, describing the interaction of Kramer’s doublet f-states with a d-band. The
model is essentially identical with (Eq. 63)

H =
X

k�

✏k 
†

k�ck� + JK

X

j

 † j↵ j�S �↵( j) + JH

X

i, j

S ↵�(i)S �↵( j) (69)

with an important modification that takes into account the large spin-orbit coupling and the
odd-parity of the f-states. This forces the local Wannier states  j↵ that exchange spin with the
local moment to be odd parity combinations of nearest neigbour conduction electrons, given by

 † j↵ =
X

i,�

c†i���↵(Ri � R j) (70)

We’ll consider a simplified model with the form factor

�(R) =

8>><
>>:
�iR̂ · ~�2 , R 2 n.n

0 otherwise
(71)

This form factor describes the spin-orbit mixing between states with orbital angular momentum
l di↵ering by one, such as f and d or p and s orbitals. The odd-parity of the form-factor
�(R) = ��(�R) derives from the odd-parity f - orbitals, while the prefactor �i ensures that
the hybridization is invariant under time-reversal. The Fourier transform of this Form factor,
�(k) =

P
R�(R)eik·R is then

�(k) = ~sk · ~� (72)

where the s-vector ~sk = (sin k1, sin k2, sin k3) is the periodic equivalent of the unit momentum
vector k̂. Notice how ~s(�i) = 0 vanishes at the high symmetry points.
The resulting mean-field Hamiltonian takes the form

HT KI =
X
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while ✏ f k = 2t f (cx+cy+cz)+� (cl ⌘ cos kl) is the dispersion of the f-state resulting from a mean-
field decoupling of the intersite Heisenberg coupling in the particle-hole channel. For small k,
the hybridization in Hamiltonian h(k) takes the form V~� · k, a form which closely resembles
the topologically non-trivial triplet p-wave gap structure of superfluid He-3B. Like He-3B, the
hybridization only develops at low temperatures, making SmB6 an adaptive insulator.

Fig. 14: (a) When the d-band is above the filled f-band, a trivial insulator is formed. (b) When
the d-band crosses the f-band at the three X-points, the Z2 parity changes sign, giving rise to a
topological insulator.

Let us for the moment treat h(k) as a rigid band structure. Suppose the f-band were initially
completely filled, with a completely empty d-band above it. (See Fig. 14 a). This situation
corresponds to a conventional band insulator with Z2 = +1 Next, let us lower the d-conduction
band until the two bands cross at a high symmetry point, causing the gap to close, and then
to re-open. We know, from dHvA studies of the iso-electronic material LaB6 [65] (whose
band-structure is identical to SmB6 but lacks the magnetic f-electrons), from ARPES studies
[?, 66–68], that in SmB6, the d-band crosses through the Fermi surface at at the three X points.
Once the d-band is lowered through the f-band around the three X points, the odd-parity f-states
at the X point move up into the conduction band, to be replaced by even-parity d-states. This
changes the sign of Z2 ! (�1)3 = �1, producing a topological ground-state. Moreover, since
there are three crossing, we expect there to be three spin-polarized surface Dirac cones.
We end by noting that at the time of writing, our understanding of the physics SmB6 is in
rapid flux on both the experimental and theoretical front. Spin resolved ARPES [69] mea-
surements have detected the presence of spin-textures in the surface Fermi surfaces around the
surface X̄ point, a strong sign of topologically protected surface states. Two recent theoreti-
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Magnetism meets Kondo
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FIG. 1. (Color online) (a) View of the ab plane of CePdAl. The
Ce and Pd(2) atoms form a plane at z = 0; the Al and Pd(1) atoms
form a plane at z = 1/2. (b) View of the ab plane, showing one
of the three symmetry-related magnetic structures as derived from
Ref. [25]. Only Ce atoms are shown for clarity. (c) Kagomé lattice
for comparison.

simulations [33]. Unfortunately, a model incorporating the
interplane coupling J⊥ to be compared with the experimentally
determined magnetic structure does not exist up to now. In
view of the incommensurate z component τ , even long-range
interactions might have to be taken into account. Previous work
on CePdAl showed that TN can be suppressed by hydrostatic
pressure [28] or partial substitution of Pd by Ni [34,35],
suggesting the possibility for a QCP.

II. EXPERIMENTAL DETAILS

Polycrystalline samples of CePd1−xNixAl were prepared
by arc-melting appropriate amounts of the pure elements Ce
(Ref. [36]), Pd(99.95), Ni(99.95), Al(99.999) under argon
atmosphere with titanium gettering. To achieve homogeneity,
the samples were remelted several times. The total weight
loss after preparation did not exceed 0.5%. The samples
were investigated in the as-cast state since annealing may
cause a structural change [37]. They were characterized by
powder x-ray diffraction, revealing the single-phase ZrNiAl
structure (P 62m) of the parent compounds. Atom absorption
spectroscopy was used to determine the actual Ni concen-
trations x that are quoted throughout this paper. The lattice
constants a and c and the unit-cell volume V approximately
follow Vegard’s law in the concentration range investigated
(x < 0.15). Specific-heat measurements were performed in the
temperature range 0.05 ! T " 2.5 K using the standard heat-
pulse technique. A Physical Properties Measurement System
(PPMS, Quantum Design) was used to obtain data at higher
temperatures for some samples. The dc magnetic susceptibility
χ was measured at 0.1 T in the zero-field-cooled field-heated

FIG. 2. (Color online) (a) Specific heat C of CePd1−xNixAl
plotted as C/T versus log T . (b) Specific heat C of CePd0.856Ni0.144Al
plotted as C/T versus T

1
2 .

mode in a vibrating sample magnetometer (VSM, Oxford
Instruments). A sample-dependent residual background con-
tribution χ0 ≈ 2 × 10−4 µB/T f.u. independent of T was
subtracted from the data. Below 20 K, χ0 corresponds to <1%
of the total susceptibility χ .

III. RESULTS

The specific heat C is shown as C/T vs log T in Fig. 2(a).
The pure CePdAl compound exhibits a sharp anomaly at the
Néel temperature TN = 2.7 K in agreement with literature
data [38]. The anomaly broadens and moves to lower T with
increasing Ni content x indicating a suppression of the antifer-
romagnetic (AF) transition. For x = 0.144, the C/T vs log T
data follow a straight line in Fig. 2(a) over almost two decades
of temperature in the range 0.05 ! T ! 3 K, i.e., C/T =
a log(T0/T ), with a = 0.705 J/mol K2 and T0 = 11.7 K.
The non-Fermi-liquid behavior in the form of a logarithmic
divergence of C/T versus T extends over nearly two orders
of magnitude in T (0.05–3 K). The HMM model [12–14]
predicts for 2D AF fluctuations a logarithmic dependence of
C/T near the QCP as observed for CePd1−xNixAl, while the
HMM prediction for 3D antiferromagnets, C/T ∝ γ − a

√
T

for T → 0, is clearly not compatible with our data, as can be
seen from the plot of C/T vs

√
T in Fig. 2(b).

We use the specific-heat data to obtain TN as the tem-
perature where C(T ) is a maximum for low x. For larger
Ni concentrations, however, the small specific-heat anomaly
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How to describe the generic HF phase diagram in its entirety?
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Results
Within a static mean field solution the free energy have the following closed form:

The energy will be minimized by 
different representations in different 

areas of the phase diagram

✦ Unusual critical behavior;

✦  2nd order transition F ➔ F+B;

✦ Fermionic modes go soft;
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