Introduction 0000000	Wilson's NRG	Complete Basis Set	Recent Developments	Summary

Numerical renormalization group and multi-orbital Kondo physics

Theo Costi

Institute for Advanced Simulation (IAS-3) and Institute for Theoretical Nanoelectronics (PGI-2) Research Centre Jülich

25th September 2015 Autumn School on Correlated Electrons: "From Kondo to Hubbard"

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summary
Outline				

- 2 Wilson's NRG
- 3 Complete Basis Set
- 4 Recent Developments

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summary
Collabo	rations			

- Dr Hoa Nghiem (Postdoc, Juelich), Lukas Merker (PhD, Juelich)
- RWTH Aachen colaborators Dr Dante Kennes, Prof. Volker Meden (complementary methods, FRG/DMRG), Uni. Tuebingen, Prof. Sabine Andergassen (FRG)

Introduction Wilson's NRG

Complete Basis Set

Recent Developments

Summary

References on NRG and codes

- K.G. Wilson, Rev. Mod. Phys. 1975 [Kondo model]
- Krishna-murthy et al, PRB 1980 [Anderson model]
- R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 2008 [further developments/models]
- A. C. Hewson, The Kondo Problem to Heavy Fermions, C.U.P. (1997)
- Recommended public domain NRG codes:
 - "flexible DM-NRG" code (G. Zarand, et al., Budapest)
 - "NRG-Ljubljana" code (R. Zitko, Ljubljana)

Introduction •••••	Wilson's NRG 000000000000	Complete Basis Set	Recent Developments	Summary		
Quantum impurity systems						
Quantum impurity systems						

- Impurity: small system, discrete spectrum
- Environment: large system, quasi-continuous spectrum
- Coupling: hybridization, Kondo exchange,...
- General structure:

$$H = H_{\rm imp} + H_{\rm int} + H_{\rm bath}$$

• Single-level Anderson impurity model ($n_{d\sigma} = d_{\sigma}^{\dagger} d_{\sigma}$):

We take constant hybridization function:

$$\Delta(\omega) = \pi \sum_{k} V_{kd}^2 \delta(\omega - \epsilon_k) \approx \Delta(\epsilon_F = 0)$$

 non-constant hybridization can also be dealt with in NRG (e.g., for applications to DMFT, pseudogap systems,...)

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summary
000000				

Quantum impurity systems

Multi-orbital and multi-channel Anderson Model

• Rotationally symmetric case, e.g., for transition metal ions l = 2, and m = -2, -1, 0, +1, +2

$$\begin{split} H &= \sum_{m\sigma} \varepsilon_{dm} n_{m\sigma} + \frac{1}{2} U \sum_{m\sigma} n_{m\sigma} n_{m-\sigma} + \frac{1}{2} U' \sum_{m\neq m'\sigma} n_{m\sigma} n_{m'-\sigma} \\ &+ \frac{1}{2} (U' - J) \sum_{m\neq m'\sigma} n_{m\sigma} n_{m'\sigma} - \frac{J}{2} \sum_{m\neq m'\sigma} d^{\dagger}_{m\sigma} d_{m-\sigma} d^{\dagger}_{m'-\sigma} \\ &- \frac{J'}{2} \sum_{m\neq m'\sigma} d^{\dagger}_{m\sigma} d^{\dagger}_{m-\sigma} d_{m'-\sigma} d_{m'\sigma} \\ &+ \sum_{km\sigma} V_{km\sigma} (c^{\dagger}_{km\sigma} d_{m\sigma} + h.c.) + \sum_{km\sigma} \epsilon_{km\sigma} c^{\dagger}_{km\sigma} c_{km\sigma} \end{split}$$

- Crystal field and spin-orbit interactions \Rightarrow
- Further lowering of symmetry, fewer channels

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summa
000000				

Experiments

Magnetic impurities in non-magnetic metals

- de Haas et al: resistivity minimum and increase as $T \rightarrow 0$!
- Kondo 1964: explanation in terms of magnetic impurities
- Kondo 1964: $R_{\rm K}(T) = -c_{\rm imp} \ln(k_{\rm B}T/D) \rightarrow \infty$ as $T \rightarrow 0 \parallel$

Wilson's NRG

Complete Basis Set

Recent Developments

Experiments

Quantum dots, Kondo effect and nanoscale size SET's

- $T_{\rm K} = \sqrt{\Delta U/2} e^{\pi \varepsilon_d (\varepsilon_d + U)/2\Delta U} \Rightarrow$ exponential sensitivity
- Single-electron transistor based on Kondo effect

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Sumr
0000000				

Experiments

High/low spin molecules in nanogaps

- Asymmetric lead couplings: partial screening of $S = 1 \Rightarrow$
- Underscreened Kondo effect (N. Roch et al PRL 2009)

Wilson's NRG

Complete Basis Set

Recent Developments

Experiments

Magnetic atoms on surfaces: Kondo + spin anisotropy

- $H_{\rm imp} = -g\mu_B S_z + DS_z^2$ for Co adatom with S=3/2
- $D > 0 \Rightarrow m = 1/2 \leftrightarrow -1/2$ transitions \Rightarrow Kondo effect
- $m = \pm 1/2 \rightarrow \pm 3/2$ transitions, side-bands to Kondo

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summary
Linear chain form				

NRG: linear chain form of the Anderson model

$$H_{AM} = \sum_{\sigma} \varepsilon_{d} n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} + \underbrace{V \sum_{\sigma} (f_{0\sigma}^{\dagger} d_{\sigma} + d_{\sigma}^{\dagger} f_{0\sigma})}_{\sigma} + \sum_{k\sigma} \epsilon_{k} c_{k\sigma}^{\dagger} c_{k\sigma}$$

Tridiagonalize $H_{\text{bath}} = \sum_{k\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma}$ using Lanczos with starting vector defined by $Vf_{0\sigma} = \sum_k V_{k\sigma} c_{k\sigma}$ to obtain linear chain form:

$$H_{AM} = \sum_{\sigma} \varepsilon_{d} n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} + V \sum_{\sigma} (f_{0\sigma}^{\dagger} d_{\sigma} + d_{\sigma}^{\dagger} f_{0\sigma})$$

+
$$\sum_{n=0,\sigma}^{\infty} \epsilon_{n} f_{n\sigma}^{+} f_{n\sigma} + \sum_{n=0,\sigma}^{\infty} t_{n} (f_{n\sigma}^{+} f_{n+1\sigma} + H.c.)$$

...suitable for numerical treatment by adding one orbital at a time, starting with d_{σ} , then f_0 , then f_1 , ...

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summary
	000000000000000000000000000000000000000			

Linear chain form

Atomic and zero-bandwidth limits

$$\begin{split} H_{AM}^{m=-1}(V=0) &= \sum_{\sigma} \varepsilon_{d} n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} \\ H_{AM}^{m=0}(\epsilon_{k}=0) &= \sum_{\sigma} \varepsilon_{d} n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} + V \sum_{\sigma} (f_{0\sigma}^{\dagger} d_{\sigma} + d_{\sigma}^{\dagger} f_{0\sigma}) \\ A_{\sigma}(\omega) &= \frac{1}{Z} \sum_{\rho,q} |\langle p | d_{\sigma}^{\dagger} | q \rangle|^{2} (e^{-\beta E_{q}} + e^{-\beta E_{\rho}}) \delta(\omega - (E_{q} - E_{\rho})) \end{split}$$

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summary
Linear chain form				

Anderson model: the Kondo resonance

$$H_{AM} = \sum_{\sigma} \varepsilon_{d} n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} + V \sum_{k\sigma} (f_{0\sigma}^{\dagger} d_{\sigma} + d_{\sigma}^{\dagger} f_{0\sigma})$$
$$+ \sum_{n=0,\sigma}^{\infty} \epsilon_{n} f_{n\sigma}^{+} f_{n\sigma} + \sum_{n=0,\sigma}^{\infty} t_{n} (f_{n\sigma}^{+} f_{n+1\sigma} + H.c.)$$

Finite bandwidt

- Add $f_{1\sigma}, f_{2\sigma}, \dots$
- \Rightarrow broadening $O(\Delta)$ of ε_d , and $\varepsilon_d + U$ excitations
- \Rightarrow Kondo resonance $T_{\rm K} \sim e^{-1/J\rho}, J \sim V^2/U$

ω 2Δ $T_{\rm K} \sim e^{-1/J\rho}$ $\varepsilon_d + U$ ϵ_F ε_d 2Δ $A(\omega)$ JÜLICH

Introduction Wilson's NRG Complete Basis Set Recent Developments Summary

Linear chain form

Iterative diagonalization/recursion relation

• Define truncated Hamiltonian (*m* conduction orbitals):

$$\mathcal{H}_{AM} \approx \quad \mathcal{H}_{m} = \varepsilon_{d} n_{d} + U n_{d\uparrow} n_{d\downarrow} + V \sum_{\sigma} (f_{0\sigma}^{+} d_{\sigma} + d_{\sigma}^{+} f_{0\sigma})$$

$$+ \qquad \sum_{\sigma,n=0}^{m} \epsilon_{n} f_{n\sigma}^{+} f_{n\sigma} + \sum_{\sigma,n=0}^{m-1} t_{n} (f_{n\sigma}^{+} f_{n+1\sigma} + f_{n+1\sigma}^{+} f_{n\sigma})$$

• satisfying recursion relation:

$$H_{m+1} = H_m + \sum_{\sigma} \epsilon_{m+1} f^{\dagger}_{m+1\sigma} f_{m\sigma} + t_m \sum_{\sigma} (f^+_{m\sigma} f_{m+1\sigma} + f^+_{m+1\sigma} f_{m\sigma}).$$

- diagonalize $H_m = \sum_{\rho} E_{\rho}^m |\rho\rangle_{mm} \langle \rho|$
- use product basis $|r, e_{m+1}\rangle \equiv |r\rangle_m |e_{m+1}\rangle$ with $|e_{m+1}\rangle = |0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle$ to set up matrix of H_{m+1} via recursion relation and diagonalize, ...

Introduction	Wilson's NRG ○○○○●○○○○○○○	Complete Basis Set	Recent Developments	Summary			
Iterative diagonalization/truncation							
Iterative diagonalization							

- Exact, if all states retained.
- In practice, no. states of H_m is $O(4^{m+1})$ (= 4096 at m = 5)
- Symmetries help $H_m = \sum \oplus H^m_{N_e,S,Sz}$ $([\hat{N}_e, H_m] = [\vec{S}^2, H_m] = [S_z, H_m] = 0)$
- For m > 5, truncate to O(1000) lowest eigenstates
- Truncation works, provided t_m decay sufficiently fast with m

Introduction 0000000	Wilson's NRG	Complete Basis Set	Recent Developments	Summary		
Iterative diagonalizatio	Iterative diagonalization/truncation					
Logarithmic discretization						

- Logarithmic discretization of band

 ϵ_{kn}/D = ±Λ⁻ⁿ, n = 0, 1, ... with Λ > 1, e.g. Λ = 2
- $\Rightarrow t_m \sim \Lambda^{-m/2}, \epsilon_m \sim \Lambda^{-m}$
- For $\Lambda \gg 1$, average over discretizations (Oliveira), $\epsilon_{k_n}/D = \pm \Lambda^{-n-z+1}, n = 1, \dots (\pm 1, n = 0)$

Introduction 0000000	Wilson's NRG ○○○○○●○○○○○○	Complete Basis Set	Recent Developments	Summary			
Iterative diagonalization/truncation							
NRG for multiple-channels							

• Transition metal ions I = 2, and m = -2, -1, 0, +1, +2

$$H = H_{imp}(\{\varepsilon_{dm}\}, U, U', J) + \sum_{km\sigma} \underbrace{V_{m}f_{0m\sigma} = \sum_{k} V_{km}c_{km\sigma}}_{V_{km}(c_{km\sigma}^{\dagger}d_{m\sigma} + h.c.)}$$

$$+\sum_{km\sigma}\epsilon_{km\sigma}c^{\dagger}_{km\sigma}c_{km\sigma}$$

Convert to linear chain form using Lanczos:

$$H = H_{imp}(\{\varepsilon_{dm}\}, U, U', J) + \sum_{m\sigma} V_m(f_{0m\sigma}d_{m\sigma} + h.c.)$$
$$+ \sum_{n=0}^{+\infty} \sum_{m\sigma} \epsilon_{nm} f_{nm\sigma}^{\dagger} f_{nm\sigma} + \sum_{n=0}^{+\infty} \sum_{m\sigma} t_{nm}(f_{nm\sigma}^{\dagger} f_{n+1m\sigma} + h.c.)$$

 NRG: Hilbert space increases by 4^{2l+1} = 1024 per shell added !

Iterative diagonalization/truncation

NRG for multiple-channels: exploiting symmetries

- For 3-channel S = 3/2 Kondo model, without symmetries, fraction of kept states $= 1/4^3 = 1/64$.
- implementing *SU*(3) symmetries (Hanl, Weichselbaum et al, PRB 2013) increased this fraction to $\approx 1/4^2 = 1/16$, making the 3-channel Kondo calculation equivalent to a 2-channel calculation
- allowed comparing to experimental resistivity (R(T)) and dephasing (τ_φ(T)) data for Fe/Au for

Wilson's NRG

Complete Basis Set

Recent Developments

Summary

Iterative diagonalization/truncation

Multi-channel fully screened/single-channel underscreened resistivities

Resistivity for 3 channel S = 3/2 Kondo model, Hanl et al PRB 2013

Resistivity for 1-channel spin $S \ge 1/2$ Kondo model, Parks et al Science 2010

Introduction 0000000	Wilson's NRG ○○○○○○○●○○○	Complete Basis Set	Recent Developments	Summary
Physical properties				
<u> </u>				

Output from NRG procedure

- Many-body eigenvalues E_p^m and eigenvectors $|p\rangle_m$ on all relevant energy scales $t_m \sim \Lambda^{-m/2}$, m = 0, 1, ..., N.
- From eigenvalues calculate $Z = \sum_{p} e^{-\beta E_{p}}$ and thermodynamics
- From eigenstates calculate matrix elements, hence Green functions and transport
- Discarded states not used in iterative diagonalization, but useful for calculating physical properties (see later)

Introduction	Wilson's NRG ○○○○○○○○●●○○	Complete Basis Set	Recent Developments	Summary
Physical properties				
Thermo	dynamics			

Entropy

$$S(T) = (E - F)/T$$
$$E = \langle H_{AM} \rangle,$$
$$F = -\frac{1}{\beta} \ln Z$$

•

Specific heat

 $C(T) = k_{\rm B}\beta^2 \langle H_{AM}^2 - \langle H_{AM} \rangle^2 \rangle$

Discretization oscillations at Λ ≫ 1 eliminated by z-averaging (here Λ = 4, n_z = 2).

Introduction	Wilson's NRG ○○○○○○○○○○●○	Complete Basis Set	Recent Developments	Summary
Physical properties				
Dynamic	S			

• NRG spectra are discrete $(\Delta E_{qq'} = E_{q'} - E_q)$:

$$A_{d\sigma}(\omega, T) = \sum_{q,q'} w_{qq'}(T) \delta\left(\omega - \Delta E_{qq'}\right)$$

• broaden with logarithmic Gaussians:

$$\delta(\omega - \Delta E_{q'q}) \
ightarrow rac{e^{-b^2/4}}{b|\Delta E_{q'q}|\sqrt{\pi}} e^{-(ln(\omega/\Delta E_{q'q})/b)^2}$$

Discretization oscillations at Λ ≫ 1 eliminated by z-averaging (here Λ = 10, n_z = 8).

Introduction 0000000	Wilson's NRG ○○○○○○○○○○●	Complete Basis Set	Recent Developments	Summary
Linear transport				
Linear tra	nsport			

• Linear response transport from spectral functions $A(\omega, T)$:

$$G(T) = \frac{e^2}{h} \int d\omega \left(-\frac{\partial f}{\partial \omega} \right) \sum_{\sigma} \underbrace{\mathcal{T}_{\sigma}(\omega, T)}_{\sigma},$$
$$S(T) = -\frac{1}{|e|T} \frac{\int d\omega \,\omega \left(-\frac{\partial f}{\partial \omega} \right) \sum_{\sigma} \mathcal{T}_{\sigma}(\omega, T)}{\int d\omega \left(-\frac{\partial f}{\partial \omega} \right) \sum_{\sigma} \mathcal{T}_{\sigma}(\omega, T)}$$

Introduction 0000000	Wilson's NRG	Complete Basis Set	Recent Developments	Summary

Kept states in NRG

- Use discarded states to build a complete set of eigenstates for summing up unambiguously contributions from different *H_m* (Anders & Schiller 2005)
- All states must reside in same Hilbert space: that of H_N

Wilson's NRG

Complete Basis Set

Recent Developments

Summary

Construction of the complete basis set

- $H_m |qm\rangle = E_q^m |qm\rangle$, q = (k, l) = (kept, discarded)
- Product states $|lem\rangle = |lm\rangle \otimes |e\rangle$ with $e = (e_{m+1}, ..., e_N\rangle, m = m_0, ..., N$ form a complete set (Anders & Schiller 2005)

$$\sum_{m=m_0}^{N}\sum_{le}|\textit{lem}
angle\langle\textit{lem}|=1$$

Allows unambiguous summation of contributions from different H_m

ntroduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summary
		00000		

Full density matrix

Full density matrix (FDM)

Full density matrix and partition function (Weichselbaum & von Delft 2007):

$$\rho = \frac{1}{Z(T)} \sum_{m=m_0}^{N} \sum_{le} e^{-\beta E_l^m} |lem\rangle \langle lem|, \quad \text{Tr}\rho = 1 \Rightarrow$$
$$Z(T) = \sum_{m=m_0}^{N} 4^{N-m} \sum_{l} e^{-\beta E_l^m} \equiv \sum_{m=m_0}^{N} 4^{N-m} Z_m(T)$$

• Rewrite ρ as weighted sum of shell density matrices $\tilde{\rho}_m$:

$$\rho = \sum_{m=m_0}^{N} w_m \tilde{\rho}_m, \quad \tilde{\rho}_m = \sum_{le} |lem\rangle \frac{e^{-\beta E_l^m}}{\tilde{Z}_m} \langle lem|.$$

$$Tr [\tilde{\rho}_m] = 1, \quad w_m = 4^{N-m} \frac{Z_m}{Z}, \quad \sum_{m=m_0}^{N} w_m = 1$$

• Local observables
$$\hat{O} = n_d$$
, $n_{d\uparrow}n_{d\downarrow}$, $d_{\sigma}^{\dagger}f_{0\sigma}$, S_z ,...

$$\begin{split} \langle \hat{O} \rangle_{\rho} &= \operatorname{Tr} \left[\rho \hat{O} \right] = \sum_{l'e'm'} \langle l'e'm' | \rho \hat{O} | l'e'm' \rangle \\ &= \sum_{l'e'm'} \sum_{lem} w_m \overline{\langle l'e'm' | lem \rangle} \frac{e^{-\beta E_l^m}}{\widetilde{Z}_m} \overline{\langle lem | \hat{O} | l'e'm' \rangle} \\ &= \sum_{lem} w_m \frac{e^{-\beta E_l^m}}{\widetilde{Z}_m} O_{ll}^m = \sum_{lm} 4^{N-m} w_m O_{ll}^m \frac{e^{-\beta E_l^m}}{4^{N-m} Z_m} \\ &= \sum_{m=m_0,l}^N w_m O_{ll}^m \frac{e^{-\beta E_l^m}}{Z_m} \end{split}$$

Introduction 0000000	Wilson's NRG 0000000000000	Complete Basis Set	Recent Developments	Summary
Full density matrix				
Double	occupancy			

• Double occupancy: $\langle n_{d\uparrow}n_{d\downarrow}\rangle \rightarrow \langle n_{d\uparrow}\rangle \langle n_{d\downarrow}\rangle, U \rightarrow 0$

• Double occupancy: $\langle n_{d\uparrow} n_{d\downarrow} \rangle \ll 1, U \gg \Delta$

• FDM (lines) and conventional (symbols) in excellent agreement: FDM simpler, obviates need to chose best shell for given *T*

 Evaluation of equilibrium retarded Green function (Weichselbaum & von Delft 2007; Peters et al 2006):

 $G_{AB}(t) = -i\theta(t)\langle [A(t), B]_+ \rangle \equiv -i\theta(t) \operatorname{Tr} \left[\rho(A(t)B + BA(t)) \right]$ = $-i\theta(t) \left[C_{A(t)B} + C_{BA(t)} \right]$

• Consider correlation function $C_{A(t)B}$:

$$C_{A(t)B} = \operatorname{Tr} \left[\rho A(t)B\right] = \operatorname{Tr} \left[\rho A(t)B\right] = \operatorname{Tr} \left[\rho A(t)\widehat{1}B\right]$$
$$= \sum_{lem} \langle lem|e^{-iHt}Ae^{iHt}\sum_{l'e'm'}|l'e'm'\rangle \langle l'e'm'|B\rho|lem\rangle$$
$$= \sum_{lem} \sum_{l'e'm'} \underbrace{\langle lem|e^{-iHt}Ae^{iHt}|l'e'm'\rangle}_{e^{i(E_{l'}^{m'}-E_{l}^{m})t} \langle l'e'm'|A|lem\rangle}$$

• ... Peters et al 2006

$$C_{A(t)B}^{m'>m} = \sum_{lem} \langle lem|e^{-iHt}Ae^{iHt} \underbrace{\sum_{l'e'm'>m} |l'e'm'\rangle\langle l'e'm'|}_{l'e'm'>m} B\rho|lem\rangle$$

• Avoid off-diagonal matrix elements $A_{ll'}^{m \neq m'}$ by using

$$1 = 1_{m}^{-} + 1_{m}^{+}$$

$$1_{m}^{-} = \sum_{m'=m_{0}}^{m} \sum_{l'e'} |l'e'm'\rangle\langle l'e'm'|$$

$$1_{m}^{+} = \sum_{m'=m+1}^{N} \sum_{l'e'} |l'e'm'\rangle\langle l'e'm'| = \sum_{ke} |kem\rangle\langle kem|.$$

- ... only shell diagonal matrix elements appear: A^m_{II}
- ... and reduced density matrices Hofstetter 2000: $R_{\text{red}}^m(k',k) = \sum_e \langle k'em | \rho | kem \rangle$

$$G_{AB}(\omega + i\delta) = \sum_{m} \frac{w_{m}}{Z_{m}} \sum_{ll'} A_{ll'}^{m} B_{l'l}^{m} \frac{e^{-\beta E_{l}^{m}} + e^{-\beta E_{l'}^{m}}}{\omega + i\delta - (E_{l'}^{m} - E_{l}^{m})} + \sum_{m} \frac{w_{m}}{Z_{m}} \sum_{lk} A_{lk}^{m} B_{kl}^{m} \frac{e^{-\beta E_{l}^{m}}}{\omega + i\delta - (E_{k}^{m} - E_{l}^{m})} + \dots + \sum_{m} \sum_{lkk'} A_{kl}^{m} B_{lk'}^{m} \frac{R_{red}^{m}(k', k)}{\omega + i\delta - (E_{l}^{m} - E_{k}^{m})} + \dots$$

Wilson's NRG

Complete Basis Set

Recent Developments

Summary

Time-dependent NRG (TDNRG)

Motivation: pump-probe spectroscopies

Wilson's NRG

 $H(t) = \theta(-t)H^{i} + \theta(t)H^{f}$

Complete Basis Set

Recent Developments

Summary

Time-dependent NRG (TDNRG)

Transient response following a sudden quench

$$O(t) = Tr \left[e^{-iH^{f}t} \rho e^{iH^{f}t} \hat{O} \right]$$
$$= \sum_{m=m_{0}}^{N} \sum_{rs \notin KK'} \rho_{sr}^{i \to f}(m) e^{-i(E_{s}^{m} - E_{r}^{m})t} O_{rs}^{m}$$
(Anders & Schiller 2005)

FDM gen.: Nghiem & Costi 2014)

$\varepsilon_d(t) = -\theta(t)U/2$: Nghiem et al 2014

- $O(t \rightarrow 0^+)$ exact in TDNRG (Nghiem et al PRB 2014)
- $O(t \rightarrow \infty)$ not exact in TDNRG (Anders & Schiller 2005, Nghiem et al PRB 2014)

Wilson's NRG

Complete Basis Set

Recent Developments

Summary

Time-dependent NRG (TDNRG)

Multiple quenches and general pulses

n-Quantum quenches

$$\rho(t) = e^{-iH^{Q_{p+1}}(t-\tilde{\tau}_p)}e^{-iH^{Q_p}\tau_p}...e^{-iH^{Q_1}\tau_1}\rho$$
$$\times e^{iH^{Q_1}\tau_1}...e^{iH^{Q_p}\tau_p}e^{iH^{Q_{p+1}}(t-\tilde{\tau}_p)}$$

$$O(t) = Tr \left[e^{-iH^{f}t} \rho e^{iH^{f}t} \hat{O} \right]$$

= $\sum_{mrs}^{\notin KK'} \rho_{rs}^{i \to Q_{p+1}}(m, \tilde{\tau}_{p}) e^{-i(E_{r}^{m} - E_{s}^{m})(t - \tilde{\tau}_{p})} O_{sr}^{m}$

- Formalism rests ONLY on NRG (truncation) approximation!
- Other approaches use hybrid (DMRG-TDNRG) and additional approximations (Eidelstein et al 2013)

Wilson's NRG

Complete Basis Set

Recent Developments

Summary

Time-dependent NRG (TDNRG)

General pulses and periodic switching

- Linear ramp: time-delay in occupation $n_d(t)$
- Periodic switching (U = 0): coherent control of nanodevices (qubits,...)

Introduction	Wilson's NRG	Complete Basis Set	Recent Developments	Summary
Summa	ry			

- NRG: powerful method for strongly correlated systems
- NRG: still in development for:
 - time-dependent & non-equilibrium phenomena
 - complex multi-channel models (see Mitchell et al PRB 2013)
- Plenty of work still to do for smart PhD students !

