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The Hubbard model

• This model was introduced in the 60’s to describe 3d transition metal compounds

• It was very intensively studied following the discovery of cuprate superconductors
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A very important additional parameter in this model is the density of electrons

We callN the number of sites, Ne = N↑+N↓ the number of electrons - densities are denotes by n: n↑ = N↑/N

For cuprate supercondutors the important range of densities is 1 ≥ ne ≥ 0.7 and U/t ≈ 10

ne = 1 means n↑ = n↓ =
1
2 - i.e. a metal with a half-filled band for noninteracting electrons

In contrast to this the cuprates are insulators for ne = 1 - i.e. Mott insulators



The Hubbard-I approximation

• We consider the Hubbard model at half-filling, Ne = N , and the nonmagnetic case N↑ = N↓ = N/2

• We set t = 0, U finite

• The GS has one electron/site and is highly degenerate

ndeg =

⎛

⎝

N

N/2

⎞

⎠

• We ignore this degeneracy and assume that there is a single ground state |Ψ0⟩

• |Ψ0⟩ may be thought of as a superposition of all the degenerate states with one electron per site

• Our main assumption is that |Ψ0⟩ is ‘disordered’

• Next we assume that a finite t ≪ U is switched on

• This will result in charge fluctuations



Charge fluctuations as Fermionic Particles
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∑
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Fourier transformation gives
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∑
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)

This is a quadratic form which can be solved by Bogoliubov transformation

γ−,k,σ = uk dk,σ + vk h†
−k,−σ

γ+,k,σ = −vk dk,σ + uk h†
−k,−σ (1)
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⎨
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Example: U/t = 10

Particle-hole-symmetry : µ = U/2 = 5

Comparison with Hartree-approximation:

Ek = U
2 + ϵk
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Rigorous Derivation: Equation of motion method

We split the electron annihilation operator into the part which reduces the number of double occupancies

by one and the part which leaves the number of double occupancies constant

ci,↑ = ci,↑ ni,↓ + ci,↑(1− ni,↓) = d̂i,↑ + ĉi,↑

ich bin bloss platzhalter

d

c



Rigorous Derivation: Equation of motion method

We split the electron annihilation operator into the part which reduces the number of double occupancies

by one and the part which leaves the number of double occupancies constant

ci,↑ = ci,↑ ni,↓ + ci,↑(1− ni,↓) = d̂i,↑ + ĉi,↑

Accordingly these operators obey

[d̂i,σ, HU ] = U d̂i,σ [ĉi,σ, HU ] = 0

Define the time-ordered Green’s functions for these operators (with α, β ∈ {ĉ, d̂})

Gα,β(k, t) = −i⟨ T αk,σ(t) β
†
k,σ ⟩

These obey the equations of motion (! = 1)

i∂t Gα,β(k⃗, t) = δ(t) ⟨ {β†
k,σ,αk,σ} ⟩ − i⟨ T [αk,σ, H](t) β†

k,σ ⟩.



Consider the hopping term between the sites i and j: Ti,j = ti,j
∑

σ

(

c†i,σcj,σ + c†j,σ ci,↑

)

with

[ci,σ, Ti,j] = ti,j cj,σ [c†i,σ, Ti,j] = −ti,j c
†
j,σ

Then (remember: ĉi,↑ = ci,↑ (1− ni,↓) = ci,↑ ci,↓ c
†
i,↓)

[ĉi,↑, Ti,j] = [ci,↑ ci,↓ c
†
i,↓ , Ti,j]

= ci,↑ ci,↓ [c
†
i,↓, Ti,j] + ci,↑ [ci,↓, Ti,j] c

†
i,↓ + [ci,↑, Ti,j] ci,↓ c

†
i,↓ .
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†
j,↓ + ci,↑ cj,↓ c

†
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†
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†
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†
j,↓ + S−

i cj,↓ + cj,↑ ( 1− ni,↓ ) )

= ti,j(−ci,↑ ci,↓ c
†
j,↓ + S−

i cj,↓ + cj,↑ ( 1− (
ni

2
− Sz

i ) ) )

= ti,j(−ci,↑ ci,↓ c
†
j,↓ + ( S−

i cj,↓ + Sz
i cj,↑ ) + cj,↑ ( ( 1−

⟨ni⟩
2

)− (
ni

2
−

⟨ni⟩
2

) )



Collecting terms and writing ⟨ni⟩ = ne we find

[ĉi,↑, Ht] =
∑

j

tij

[

(1−
ne

2
) cj,↑ + (cj,↑S

z
i + cj,↓S

−
i )−

1

2
cj,↑(ni − ne) + c†j,↓ci,↓ci,↑

]

[d̂i,↑, Ht] =
∑

j

tij

[

ne

2
cj,↑ − (cj,↑S

z
i + cj,↓S

−
i ) +

1

2
cj,↑(ni − ne)− c†j,↓ci,↓ci,↑

]

The various terms describe

Coherent propagation from i → j with reduced hopping element

Hopping i → j while leaving a spin excitation at i

Hopping i → j while leaving a density excitation at i

Hopping i → j while leaving a pair excitation at i (important only for U < 0)

The Hubbard-I approximation corresponds to a rather crude truncation:

[ĉi,↑, Ht] =
∑
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tij (1−
ne

2
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2
)
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∑
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2
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Spatial Fourier transformation and adding the commutator with HU gives

[ ĉk,↑, H] = (1−
ne

2
) ϵk (ĉk,↑ + d̂k,↑)

[d̂k,↑, H] =
ne

2
ϵk (ĉk,↑ + d̂k,↑) + U d̂k,↑

The anticommutators are (remember: ĉ†i,σ = c†i,σ (1− ni−σ))

{ĉ†i,σ, ĉi,σ} = {c†i,σ, ci,σ} (1− ni−σ)
2 = 1− ni−σ

{d̂†i,σ, d̂i,σ} = ni−σ

Now we have every ingredient to set up the equations of motion

i∂t Gα,β(k⃗, t) = δ(t) ⟨ {β†
k,σ,αk,σ} ⟩ − i⟨ T [αk,σ, H](t) β†

k,σ ⟩.

For example α = d̂, β = d̂:

i∂t Gd̂,d̂(k⃗, t) = δ(t) ⟨n−σ⟩ +
ne

2
ϵk
(

Gĉ,d̂(k⃗, t) + Gd̂,d̂(k⃗, t)
)

+ U Gd̂,d̂(k⃗, t)



After Fourier transformation with respect to time (i∂t → ω) we obtain the system of equations

⎛

⎝
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⎠
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Now we can use ....
⎛

⎝

a b

c d

⎞

⎠

−1

=
1

ad− bc

⎛

⎝

d −b

−c a

⎞

⎠

... to solve for the 2× 2 matrix G(k,ω)

Since ck,σ = ĉk,σ + d̂k,σ the electron Green’s function

G(k, t) = −i⟨ Tck,σ(t) c
†
k,σ ⟩,

can be obtained as G = Gĉ,ĉ +Gĉ,d̂ +Gd̂,ĉ +Gd̂,d̂



After some algebra this can be brought to the familiar-looking form...

G(k,ω) =
1

ω − ϵk − Σ(ω)

...where the k-independent self-energy Σ(ω) is given by

Σ(ω) =
ne

2
U +

ne

2
(1−

ne

2
)

U 2

ω − (1− ne
2 ) U

=
ne

2
U +

σ

ω − ζ

This is the sum of the Hartree-Fock potential and a term with a single pole



Relation to the heuristic derivation: set ne = 1
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Relation to the heuristic derivation: set ne = 1

⎛

⎝

i∂t − 1
2 ϵk , i∂t − 1
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i∂t − 1
2 ϵk , i∂t − 1
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⎠

Now introduce

d†i,σ =
√
2 d̂†i,σ

h†
i,−σ =

√
2 ĉi,σ

⎡

⎣i∂t −

⎛

⎝

1
2 ϵk , 1

2 ϵk
1
2 ϵk , 1

2ϵk + U

⎞

⎠

⎤

⎦

⎛

⎝

−i⟨T h†
−k,↓(t) h−k,↓⟩ −i⟨T h†

−k,↓(t) d
†
k,↑⟩

−i⟨T dk,↑(t) h−k,↓⟩ −i⟨T dk,↑(t) d
†
k,↑⟩

⎞

⎠ = δ(t)

These would also be obtained from the Hamiltonian for the charge fluctuations

H =
∑

k,σ

(

(
ϵk
2
+ U) d†k,σdk,σ −

ϵk
2
h†
k,σhk,σ

)

+
∑

k,σ

ϵk
2

(

d†k,σh
†
−k,−σ +H.c.

)



After fixing the Fermi energy in the usual way we obtain the spectral function
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Note the transfer of spectral weight upon decreasing electron density

(Experimental data on La2−xSrxCuO4 by C.T. Chen et al., Phys. Rev. Lett. 66, 104 (1991))



For small doping the Fermi surface is a small pocket around (π, π) - the Fermi surface volume depends on

electron density in a strange nonlinear way - this is a well-known deficiency of the Hubbard-I approximation
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Comparison to A(k,ω) obtained by

QMC on an 8× 8 cluster, U/t = 8, ne =
1
2

C. Gröber et al, PRB 62, 4336 (2000).



QMC at kBT = t - Fermi surface volume



Rough estimate for fractional Fermi surface volume
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Summary: the Hubbard-I approximation

• Basic step: introduce half-filled state as ‘vacuum’

• Charge fluctuations are interpreted as hole-like and double occupany-like ‘particles’

• The particles have energies 0 and U ⇒ two Hubbard-bands

• For less than half-filling the lower Hubbard band is ‘hole doped’

• Fermi surface is a small hole pocket at the maximum of the lower Hubbard band (usually (π, π))

• Fermi surface volume → 0 as ne → 1

• Nonlinear dependence of Fermi surface volume on electron density

• Comparison with QMC: soso....



The Gutzwiller wave function

Basic idea: With increasing U/t the probability to find doubly occupied sites will decrease

This may be described by the following variational wave function

|ΦG⟩ =
∏

i

(1− λ ni,↑ni,↓) |FS⟩

• |FS⟩ is the free electron ground state i.e. the Fermi sea

• λ is a variational parameter - to be determined from ⟨ΦG|H|ΦG⟩/⟨ΦG|ΦG⟩ → min

The operator 1− λ n↑n↓ acts like this

(1− λ n↑n↓) |0⟩ = |0⟩

(1− λ n↑n↓) | ↑⟩ = | ↑⟩

(1− λ n↑n↓) | ↓⟩ = | ↓⟩

(1− λ n↑n↓) | ↑↓⟩ = (1− λ)| ↑↓⟩

A state with Nd double occupancies gets a factor of (1− λ)Nd ≪ 1



Rewriting the Fermi sea |FS⟩

We use (spin index suppressed!)

c†k =
1√
N

N
∑

j=1

eik·Rj c†j

Then

M
∏

j=1

c†kj |0⟩ =
1

√
N

M

∑

i1,i2,i3,...iM

exp

⎛

⎝ i
M
∑

j=1

kj ·Rij

⎞

⎠ c†i1c
†
i2
. . . c†iM |0⟩

Here we sum over all M -tuples of site indices

We may as well sum over all ordered M -tuples and then sum over all permutations of M indizes

M
∏

j=1

c†kj |0⟩ =
1

√
N

M

∑

i1>i2>i3···>iM

∑

σ

exp

⎛

⎝ i
M
∑

j=1

kj ·Riσ(j)

⎞

⎠ c†iσ(1)c
†
iσ(2)

. . . c†iσ(M)
|0⟩



We had

M
∏

j=1

c†kj |0⟩ =
1

√
N

M

∑

i1>i2>i3···>iM

∑

σ

exp

⎛

⎝ i
M
∑

j=1

kj ·Riσ(j)

⎞

⎠ c†iσ(1)c
†
iσ(2)

. . . c†iσ(M)
|0⟩

The product of creation operators can be brought back to the original ordered sequence

c†iσ(1)c
†
iσ(2)

. . . c†iσ(M)
|0⟩ = (−1)σ

′
c†i1c

†
i2
. . . c†iM |0⟩

Since obviously σ′ = σ−1 we have (−1)σ
′
= (−1)σ we finally have

M
∏

j=1

c†kj |0⟩ =
1

√
N

M

∑

i1>i2>i3···>iM

∑

σ

(−1)σ exp

⎛

⎝ i
M
∑

j=1

kj ·Riσ(j)

⎞

⎠ c†i1c
†
i2
c†iM |0⟩

=
1

√
N

M

∑

i1>i2>i3···>iM

D(k1,k2, . . . ,kM |i1, i2, . . . iM) c†i1c
†
i2
c†iM |0⟩



Assuming this procedure carried out for both spin directions, the Fermi sea |FS⟩ therefore may be thought of

as the superposition of all real space configurations

D(k1, . . . ,kN↑|i1, . . . iN↑) D(k′
1, . . . ,k

′
N↓|j1, . . . jN↓) c

†
i1,↑ . . . c

†
iN↑ ,↑

c†j1,↓ . . . c
†
jN↓,↓

|0⟩

In the Gutzwiller wave function each of these configurations gets an additional factor of (1− λ)Nd < 1 where

Nd is the number of sites belonging to {i1, . . . iN↑} ∩ {j1, . . . jN↓}

Why do we insist on ordered M-tuples (i1, . . . iN↑) and (j1, . . . jN↓)?

Because then each real-space configuration of electrons is included only once and all real space configurations

are mutually orthogonal



The Gutzwiller wave function can be decomposed into components with fixed number of double occupancies

|ΦG⟩ =
∑

Nd

|Φ(Nd)⟩

Since the overlap of any two states with different Nd is zero we have ⟨Φ(Md)|Φ(Nd)⟩ = 0 for Md ̸= Nd

⟨ΦG|ΦG⟩ =
∑

Nd

⟨Φ(Nd)|Φ(Nd)⟩

Question: which Nd has the largest weight W (Nd) = ⟨Φ(Nd)|Φ(Nd)⟩ in this sum?

Put another way: Which number of double occupancies is the most probable one?



Remember: |Φ(Nd)⟩ is the sum over all ordered N↑-tuples i1, i2, . . . iN↑ and N↓-tuples j1, j2, . . . jN↓ of

D(k1, . . . ,kN↑|i1, . . . iN↑) D(k′
1, . . . ,k

′
N↓|j1, . . . jN↓) c

†
i1,↑ . . . c

†
iN↑ ,↑

c†j1,↓ . . . c
†
jN↓,↓

|0⟩

such that {i1, . . . iN↑} ∩ {j1, . . . jN↓} comprises Nd sites - additional prefactor: (1− λ)Nd 1√
N

N↑+N↓

Since any two configurations are orthogonal we only need D∗(kj|ij) D(kj|ij)

D(k1,k2, . . . ,kM |i1, i2, . . . iM) =
∑

σ

(−1)σ exp

⎛

⎝ i
M
∑

j=1

kj ·Riσ(j)

⎞

⎠

D∗(kj|ij) D(kj|ij) =
∑

σ,σ′

(−1)σ (−1)σ
′
exp

⎛

⎝ i
M
∑

j=1

kj · (Riσ(j) −Riσ′(j)
)

⎞

⎠

=
∑

σ

1 +
∑

σ ̸=σ′

(−1)σ (−1)σ
′
exp

⎛

⎝ i
M
∑

j=1

kj · (Riσ(j) −Riσ′(j)
)

⎞

⎠

= M !



We want to calculate ⟨Φ(Nd)|Φ(Nd)⟩

Remember: |Φ(Nd)⟩ is the sum over all ordered N↑-tuples i1, i2, . . . iN↑ and N↓-tuples j1, j2, . . . jN↓ of

D(k1, . . . ,kN↑|i1, . . . iN↑) D(k′
1, . . . ,k

′
N↓|j1, . . . jN↓) c

†
i1,↑ . . . c

†
iN↑ ,↑

c†j1,↓ . . . c
†
jN↓,↓

|0⟩

such that {i1, . . . iN↑} ∩ {j1, . . . jN↓} comprises Nd sites - additional prefactor: (1− λ)Nd 1√
N

N↑+N↓

We have just seen that

D∗(kj|ij) D(kj|ij) = M !

The total weight of all states with Nd double occupancies therefore is the norm of each state times the number

of states

W (Nd) = ⟨Φ(Nd)|Φ(Nd)⟩ =
N↑! N↓!

NN↑+N↓
(1− λ)2Nd C(N↑, N↓, Nd)

C(N↑, N↓, Nd): number of ways in which N↑ ↑-electrons and N↓ ↓-electrons can be distributed over the N

lattice sites such as to generate Nd double occupancies



We seek: C(N↑, N↓, Nd): the number of ways in which N↑ ↑-electrons and N↓ ↓-electrons can be distributed

over the N lattice sites such as to generate Nd double occupancies

All in all we have N sites - these N sites have to be divided into

• Nd sites with double occupancy

• N↑ −Nd sites with ↑-electron only

• N↓ −Nd sites with ↓-electron only

• N −Nd − (N↑ −Nd)− (N↓ −Nd) = N −N↑ −N↓ +Nd empty sites

The answer then is the multinomial coefficient

C(N↑, N↓, Nd) =
N !

Nd! (N↑ −Nd)! (N↓ −Nd)! (N −N↑ −N↓ +Nd)!



We briefly remember what we are currently working on....

|ΦG⟩ =
∑

Nd

|Φ(Nd)⟩

⟨ΦG|ΦG⟩ =
∑

Nd

⟨Φ(Nd)|Φ(Nd)⟩

Question: which Nd gives the largest contribution W (Nd) = ⟨Φ(Nd)|Φ(Nd)⟩ to this sum?



Now we just found

W (Nd) =
N↑! N↓!

NN↑+N↓
(1− λ)2Nd

N !

Nd! (N↑ −Nd)! (N↓ −Nd)! (N −N↑ −N↓ +Nd)!

Now: form log(W (Nd)), use Stirling formula...

log(N !) ≈ N log(N)−N

d log(N !)

dN
≈ log(N) =

log((N + 1)!)− log(N !)

1

...and differentiate with respect to Nd:

d

dNd
log (W (Nd)) = log

(

(1− λ)2
(N↑ −Nd) (N↓ −Nd)

Nd (1−N↑ −N↓ +Nd)

)

d2

dN2
d

log (W (Nd)) = −
(

1

Nd
+

1

N↑ −Nd
+

1

N↓ −Nd
+

1

1−N↑ −N↓ +Nd

)



We had

d

dNd
log (W (Nd)) = log

(

(1− λ)2
(N↑ −Nd) (N↓ −Nd)

Nd (1−N↑ −N↓ +Nd)

)

d2

dN2
d

log (W (Nd)) = −
(

1

Nd
+

1

N↑ −Nd
+

1

N↓ −Nd
+

1

1−N↑ −N↓ +Nd

)

Now switch to densities nα = Nα/N , α ∈ ↑, ↓, d

d

dNd
log (W (Nd)) = log

(

(1− λ)2
(n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)

)

d2

dN2
d

log (W (Nd)) = −
1

N

(

1

nd
+

1

n↑ − nd
+

1

n↓ − nd
+

1

1− n↑ − n↓ + nd

)

The first equation gives us the value of nd = Nd/N where ⟨Φ(Nd)|Φ(Nd)⟩ is a maximum:

(1− λ)2
(n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)
= 1



The first equation gives us the value of nd = Nd/N where ⟨Φ(Nd)|Φ(Nd)⟩ is a maximum:

(1− λ)2
(n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)
= 1

For general nσ this is involved - so put n↑ = n↓ =
1
2 (half-filling!):

(1− λ)2
(12 − nd)2

n2
d

= 1 → nd =
1− λ

2(2− λ)

Check: λ → 0 - i.e. no projection - implies nd = 1/4 = n↑ · n↓ - correct at half-filling!



The second equation was

d2

dN2
d

log (W (Nd)) = −
1

N

(

1

nd
+

1

n↑ − nd
+

1

n↓ − nd
+

1

1− n↑ − n↓ + nd

)

= −
c

N

Here c is of order unity

Taylor expansion of the logarithm gives (remember: nd = Nd/N → Nd = N · nd)

log (W (Nd)) = log (W (Nd,max))−
1

2

c

N
(Nd −Nd,max)

2 + . . .

W (Nd) = W (Nd,max) · exp
(

−
c

2N
(Nd −Nd,max)

2
)

= W (Nd,max) · exp
(

−
c N

2
(nd − nd,max)

2

)

→ W (nd) is a Gaussian with a width ∝ N−1/2 as N → ∞ the width becomes zero

→ The whole Gutzwiller wave function consists exclusively of configurations with Nd = N · nd,max!



We saw: The whole Gutzwiller wave function consists exclusively of configurations with a fixed Nd = N · nd

and nd is shifted by varying λ

ich bin bloss

platzhalter
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This means, however, that the expectation value of HU is completely trivial: ⟨HU⟩ = U ·N · nd

The expectation value of Ht is more difficult....



Basic idea: Reducing the number of double occupancies reduces the number of ‘hopping possibilities’



Basic idea: Reducing the number of double occupancies reduces the number of ‘hopping possibilities’



The Gutzwiller Approximation

Basic assumption: the expectation value of the kinetic energy can be obtained from that of free electrons

by multiplying by suitable renormalization factors ησ which account for the reduced probability for hopping

⟨ΦG|Ht|ΦG⟩
⟨ΦG|ΦG⟩

=
∑

σ

ησ(n↑, n↓, nd) ⟨FS, σ|Ht|FS, σ⟩

|FS, σ⟩: Fermi sea for σ-electrons

ησ(n↑, n↓, nd) =
Number of hopping possibilities with nd double occupancies

Number of hopping possibilities with nd = n↑ · n↓

The evaluation of the ησ(n↑, n↓, nd) then is a combinatorical problem - this is discussed very understandably

by Ogawa et al. Progr. Theor. Phys. 53, 614 (1975).



Introduce 4 ‘book-keeping kets’ for every site i: |i, 0⟩, |i, ↑⟩, |i, ↓⟩ and |i, ↑↓⟩

Define the wave function of a single site i (with ασ, β real).....

|Bi⟩ =
|i, 0⟩ + α↑ |i, ↑⟩ + α↓ |i, ↓⟩ + β |i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

⟨Bi| Bi⟩ = 1

... and the wave function of the whole lattice

|Ψ⟩ =
∏

i

|Bi⟩

⟨Ψ|Ψ⟩ = 1



We had

|Bi⟩ =
|i, 0⟩ + α↑ |i, ↑⟩ + α↓ |i, ↓⟩ + β |i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

|Ψ⟩ =
∏

i

|Bi⟩

If |Ψ⟩ were a true electron state we would have

⟨N↑⟩ = N
α2
↑ + β2

1 + α2
↑ + α2

↓ + β2
,

⟨Nd⟩ = N
β2

1 + α2
↑ + α2

↓ + β2
.

which can be reverted to give

ασ =

√

nσ − nd

1− n↑ − n↓ + nd
,

β =
√

nd

1− n↑ − n↓ + nd
.



Our auxilliary wave function was (remember: (α↑,α↓, β) ↔ (n↑, n↓, nd))

|Bi⟩ =
|i, 0⟩ + α↑|i, ↑⟩ + α↓|i, ↓⟩ + β|i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

|Ψ⟩ =
∏

i

|Bi⟩

|Ψ⟩ has norm 1 and as many ‘empty sites’, ‘singly occupied sites’ and ‘doubly occupied sites’ as the true

Gutzwiller wave function if we adjust ασ and β correctly

But: |Ψ⟩ does not have fixed electron number ⇒ in principle we should instead use

|Ψ′⟩ = P(N↑, N↓, Nd) |Ψ⟩

where P projects onto the component of |Ψ⟩ which has precisely ⟨N↑⟩ ↑-electrons etc.



But2: It is straightforward to show that the values of Nα - with α ∈ {↑, ↓, d} have a Gaussian distribution

around their mean values N̄α with a width which is again ∝ N−1/2

More precisely: if we decompose |Ψ⟩ into components |Ψ(Nα)⟩ of fixed Nα the weight of |Ψ(Nα)⟩ can be

shown to be

W (Nα) = A · exp
(

−c
(Nα − N̄α)2

N

)

Therefore, in calculating expectation values we may replace |Ψ′⟩ → |Ψ⟩

(compare J. Bardeen, L. N. Cooper, and J. R. Schrieffer Phys. Rev. 106, 162 (1957))



Our auxilliary wave function was (remember: (α↑,α↓, β) ↔ (n↑, n↓, nd))

|Bi⟩ =
|i, 0⟩ + α↑|i, ↑⟩ + α↓|i, ↓⟩ + β|i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

|Ψ⟩ =
∏

i

|Bi⟩

Now we ‘translate’ the electron operators (note: this ignores the Fermi sign)

c̃i,↑ = |i, 0⟩ ⟨i, ↑ | + |i, ↓⟩ ⟨i, ↑↓ |

Then we estimate the number of hopping possibilities per bond as

h(↑, n↑, n↓, nd) =
⟨Ψ|c̃†i,↑ c̃j,↑|Ψ⟩

⟨Ψ|Ψ⟩
= ⟨Ψ|c̃†i,↑ c̃j,↑|Ψ⟩ = ⟨Bi|c̃†i,↑|Bi⟩ ⟨Bj|c̃j,↑|Bj⟩

= |⟨Bi|c̃i,↑|Bi⟩|2 =

(

α↑ + α↓β

1 + α2
↑ + α2

↓ + β2

)2



We remember:



Our auxilliary wave function was (remember: (α↑,α↓, β) ↔ (n↑, n↓, nd))

|Bi⟩ =
|i, 0⟩ + α↑|i, ↑⟩ + α↓|i, ↓⟩ + β|i, ↑↓⟩

√

1 + α2
↑ + α2

↓ + β2

|Ψ⟩ =
∏

i

|Bi⟩

Now we ‘translate’ the electron operators (note: this ignores the Fermi sign)

c̃i,↑ = |i, 0⟩ ⟨i, ↑ | + |i, ↓⟩ ⟨i, ↑↓ |

Then we estimate the number of hopping possibilities per bond as

h(↑, n↑, n↓, nd) =
⟨Ψ|c̃†i,↑ c̃j,↑|Ψ⟩

⟨Ψ|Ψ⟩
= ⟨Ψ|c̃†i,↑ c̃j,↑|Ψ⟩ = ⟨Bi|c̃†i,↑|Bi⟩ ⟨Bj|c̃j,↑|Bj⟩

= |⟨Bj|c̃j,↑|Bj⟩|2 =

(

α↑ + α↓β

1 + α2
↑ + α2

↓ + β2

)2



h(σ, n↑, n↓, nd) =

(

ασ + α−σβ

1 + α2
↑ + α2

↓ + β2

)2

But we found earlier that ασ and β can be expressed by nσ and nd....

ασ =

√

nσ − nd

1− n↑ − n↓ + nd
, β =

√

nd

1− n↑ − n↓ + nd
.

.... and inserting this we find

h(σ, n↑, n↓, nd) =
( √

nσ − nd

√

1− n↑ − n↓ + nd +
√
nd

√
n−σ − nd

)2

The final renormalization factor then is obtained by dividing

η(σ, n↑, n↓, nd) =
h(σ, n↑, n↓, nd)

h(σ, n↑, n↓, n↑n↓)
=

(√
nσ − nd

√

1− n↑ − n↓ + nd +
√
nd

√
n−σ − nd

√

nσ(1− nσ)

)2



Collecting everything

We decomposed the Gutzwiller wave function into components with fixed number of double occupancies

|ΦG⟩ =
∑

Nd

|Φ(Nd)⟩

and found the terms of the sum ‘infinitely sharply peaked’ around Nd = N · nd with

(1− λ)2
(n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)
= 1

This equation allows to switch from λ → nd as variational parameter!



The expectation value of HU then becomes trivial

⟨HU⟩ = N · U · nd

The expectation value of the kinetic energy was approximated as

⟨Ht⟩ =
∑

σ

η(σ, n↑, n↓, nd) ⟨FS, σ|Ht|FS, σ⟩

where the renormalization factors ησ are again functions of n↑, n↓ and nd

η(σ, n↑, n↓, nd) =

(√
nσ − nd

√

1− n↑ − n↓ + nd +
√
nd

√
n−σ − nd

√

nσ(1− nσ)

)2

.

We thus have calculated the expectation value of the energy as a function of nd



We had

E = ⟨Ht⟩ + ⟨HU⟩ =
∑

σ

η(σ, n↑, n↓, nd) ⟨FS, σ|Ht|FS, σ⟩+N · U · nd

We specialize to the paramagnetic case n↑ = n↓ and divide by N (i.e. we consider the energy per site)

e = η(nσ, nd) t0 + nd U

where t0 is the noninteracting kinetic energy per site - which can be obtained by numerical integration

t0 =
2

N

∑

k

ϵk Θ(EF − ϵk)

We further specialize to nσ = 1
2

η(nd) = 16 nd (
1

2
− nd)

e(nd) = 16 nd (
1

2
− nd) t0 + U nd

Then we find the optimal nd

nd =
1

4
−

U

32|t0|



The nd which minimizes the energy was

nd =
1

4
−

U

32|t0|

This decreases linearly with U and becomes zero for

Uc = 8|t0|

This is the famous Brinkman-Rice transition

For the 2D square lattice with nearest neigbor hopping we obtain t0 = −1.621 t → Uc = 12.969 t



Quasiparticle Dispersion

The Gutzwiller wave function was

|ΦG⟩ =
∏

i

(1− λ ni,↑ni,↓) |FS⟩,

The wave function for a state with a hole-like quasiparticle then would be

|ΦG(k)⟩ =
∏

i

(1− λ′ ni,↑ni,↓) ck,↑ |FS⟩,

The ‘quasiparticle dispersion’ then can be obtained from

ϵ̃k =
⟨ΦG|H|ΦG⟩
⟨ΦG|ΦG⟩

−
⟨ΦG(k)|H|ΦG(k)⟩
⟨ΦG(k)|ΦG(k)⟩



|ΦG(k)⟩ =
∏

i

(1− λ′ ni,↑ni,↓) ck,↑ |FS⟩,

The condition on nd (i.e. λ′) was the minimization of the energy per site

e = η(nσ, nd) t0 + nd U ⇒ 0 =
∂η

∂nd
t0 + U

The variational procedure for |ΦG(k)⟩ amounts to

e → e−
1

N
ϵ̃k

t0 → t0 −
1

N
ϵk

n↑ → n↑ −
1

N

nd → nd +
1

N
δnd

Inserting and expanding gives

e−
1

N
ϵ̃k =

(

η(nσ, nd)−
1

N

∂η

∂n↑
+

1

N

∂η

∂nd
δnd

)(

t0 −
1

N
ϵk

)

+ nd U +
1

N
δnd U



|ΦG(k)⟩ =
∏

i

(1− λ′ ni,↑ni,↓) ck,↑ |FS⟩,

The condition on nd (i.e. λ′) was the minimization of the energy per site

e = η(nσ, nd) t0 + nd U ⇒ 0 =
∂η

∂nd
t0 + U

The variational procedure for |ΦG(k)⟩ amounts to

e → e−
1

N
ϵ̃k

t0 → t0 −
1

N
ϵk

n↑ → n↑ −
1

N

nd → nd +
1

N
δnd

Inserting and expanding gives

ϵ̃k = η(nσ, nd) ϵk + t0
1

2

(

∂η↑
∂n↑

+
∂η↓
∂n↑

)

− δnd

(

∂η

∂nd
t0 + U

)



We thus find that the quasiparticle dispersion is renormalized by the same factor η as the expectation value

of the kinetic energy (the constant can be compensated by a shift of µ)

ϵ̃k = η(nσ, nd) ϵk + t0
1

2

(

∂η↑
∂n↑

+
∂η↓
∂n↑

)

Moreover:

ich bin bloss platzhalter
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At the Brinkman-Rice transition (for half-filling) we had η → 0

The Gutzwiller wave function describes the metal insulator transition by the vanishing of the bandwidth



Suppose we have a ratio U/t such that the system is a Mott-insulator at half-filling

What happens in the lightly doped Mott-insulator i.e we start from the doped case ne < 1 and let ne → 1?

The condition on nd continues to be minimization of the GS-energy per site...

e = η(nσ, nd) t0 + nd U

... but this now has to be done numerically - the result is (2D square lattice, U/t = 16 > Uc/t = 12.969)
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Intermediate Summary: Hubbard-I versus Gutzwiller

We consider the case of large U/t where the system is a Mott-insulator at half-filling

Then we ask: how does the system behave as ne → 1 from below?

Interestingly Hubbard-I approximation and Gutzwiller wave function describe two completely different scenarios

ich bin bloss platzhalter
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Experimentally it seems that Hubbard-I is closer to reality....

(Data from W. J. Padilla et al., PRB 72,060511 (2005) - remember: ne = 1− x)



The Hubbard-I and Gutzwiller approximation are highly oversimplified

We have seen in the derivation of the Hubbard-I approximation that the coupling to spin- and density-excitations

- or more generally: the collective excitations of the system - is ignored

This is in fact probably the key problem to be solved.....

For the remainder of the lecture we will discuss this coupling to collective excitations for a special case where

a reasonably accurate solution is possible

We will proceed in three steps:

Derive an effective Hamiltonian for the lower Hubbard band

Discuss the collective excitations for the antiferromegnetic phase: magnons

Discuss the effect of the coupling of the magnons to a single mobile hole

It will be seen that the modifications as compared to Hubbard-I are drastic.....



Strong coupling expansion

We consider the Hubbard model in the limit of large U/t

Low energy states will have few double occupancies - another way to say this is that double occupancies exist

only as short-lived ‘virtual states’

Our goal is to derive an ‘effective Hamiltonian’ which operates in the subspace of the Hilbert space without

double occupancies but takes into account the effect of the short-lived ‘virtual states’ by suitable correction

terms

To that end we use a canonical transformation plus perturbation theory



The Hilbert space can be decomposed into ‘sectors’ with fixed number of double occupancies

The Hamiltonian can be decomposed into terms which operate within the sectors and terms which connect

the sectors

We recall the decomposition of the electron operator familiar from Hubbard-I

ci,σ = ci,σ ni,−σ + ci,σ(1− ni,−σ) = d̂i,σ + ĉi,σ

H = H0 +H1

H0 =
∑

i,j

∑

σ

ti,j (ĉ
†
i,σĉj,σ + d̂†i,σd̂j,σ) + U

∑

i

ni,↑ni,↓

H1 =
∑

i,j

∑

σ

ti,j (d̂
†
i,σĉj,σ + ĉ†i,σd̂j,σ) H0

H 1

H0

H 1

0

U

2U



We consider canonical transformations of the Hilbert space

|Ψ′⟩ = eS |Ψ⟩

Ô′ = eS Ô e−S = Ô + [S, Ô] +
1

2!
[S, [S, Ô]] +

1

3!
[S, [S, [S, Ô]]] + . . . ,

Unitarity of eS requires S† = −S

Example: for S = i
!
H t this is the transformation Schrödinger picture → Heisenberg picture



The transformation was

|Ψ′⟩ = eS |Ψ⟩

Ô′ = eS Ô e−S = Ô + [S, Ô] +
1

2!
[S, [S, Ô]] +

1

3!
[S, [S, [S, Ô]]] + . . . ,

Our goal: Find an S such that ‘connecting part’ H1 is eliminated from H ′

Insert Ô → H0 +H1:

H ′ = H0 +H1 + [S,H0] + [S,H1] +
1

2!
[S, [S,H0]] +

1

2!
[S, [S,H1]] + . . .



The transformation was

|Ψ′⟩ = eS |Ψ⟩

Ô′ = eS Ô e−S = Ô + [S, Ô] +
1

2!
[S, [S, Ô]] +

1

3!
[S, [S, [S, Ô]]] + . . . ,

Our goal: Find some S such that ‘connecting part’ H1 is eliminated from H ′

Insert Ô → H0 +H1:

H ′ = H0 +H1 + [S,H0] + [S,H1] +
1

2!
[S, [S,H0]] +

1

2!
[S, [S,H1]] + . . .

Now choose S such that

H1 + [S,H0] = 0



Then H ′ becomes (using [S,H0] = −H1)

H ′ = H0 + [S,H1] +
1

2!
[S, [S,H0]] +

1

2!
[S, [S,H1]] +

1

3!
[S, [S, [S,H0]]] + . . .

= H0 +
1

2
[S,H1] +

1

3
[S, [S,H1]] + . . .

Obviously this makes sense only if S is ‘small’ in some sense so that higher order terms can be neglected



In our application to the Hubbard model we had (remember: U ≫ ti,j)

H0 =
∑

i,j

∑

σ

ti,j (ĉ
†
i,σĉj,σ + d̂†i,σd̂j,σ) + U

∑

i

ni,↑ni,↓ ≈ U
∑

i

ni,↑ni,↓ = HU

H1 =
∑

i,j

∑

σ

ti,j (d̂
†
i,σĉj,σ + ĉ†i,σd̂j,σ).

The requirement on S was

H1 + [S,H0] = 0 ⇒ H1 + [S,HU ] = 0

We recall the commutator relation for the Hubbard-operators

[d̂i,σ, HU ] = U d̂i,σ [ĉi,σ, HU ] = 0

and guess easily (?)

S =
∑

i,j

∑

σ

ti,j
U

(

d̂†i,σĉj,σ − ĉ†i,σd̂j,σ

)

[S,HU ] =
∑

i,j

∑

σ

ti,j
U

(

[d̂†i,σ, HU ] ĉj,σ − ĉ†i,σ[d̂i,σ, HU ]
)

= −
∑

i,j

∑

σ

ti,j (d̂
†
i,σĉj,σ + ĉ†i,σd̂j,σ) = −H1



In our application to the Hubbard model we had (remember: U ≫ ti,j)

H0 =
∑

i,j

∑

σ

ti,j (ĉ
†
i,σĉj,σ + d̂†i,σd̂j,σ) + U

∑

i

ni,↑ni,↓ ≈ U
∑

i

ni,↑ni,↓ = HU

H1 =
∑

i,j

∑

σ

ti,j (d̂
†
i,σĉj,σ + ĉ†i,σd̂j,σ).

The requirement on S was

H1 + [S,H0] = 0 ⇒ H1 + [S,HU ] = 0

We recall the commutator relation for the Hubbard-operators

[d̂i,σ, HU ] = U d̂i,σ [ĉi,σ, HU ] = 0

and guess easily (?)

S =
∑

i,j

∑

σ

ti,j
U

(

d̂†i,σĉj,σ − ĉ†i,σd̂j,σ

)

[S,HU ] =
∑

i,j

∑

σ

ti,j
U

(

−U d̂†i,σ ĉj,σ − ĉ†i,σU d̂i,σ

)

= −
∑

i,j

∑

σ

ti,j (d̂
†
i,σĉj,σ + ĉ†i,σd̂j,σ) = −H1



We just found

S =
∑

i,j

∑

σ

ti,j
U

(d̂†i,σĉj,σ − ĉ†i,σd̂j,σ)

It follows that S ∝ ti,j/U ≪ 1 so that the truncation of the expansion of H ′ is justified

H ′ = H0 +
1

2
[S,H1] +

1

3
[S, [S,H1]] + . . .

≈ H0 +
1

2
[S,H1]

The lowest order correction term then becomes

H ′
c =

1

2
[S,H1] =

1

2

∑

i,j,l,m

∑

σ,σ′

ti,j tl,m
U

[ d̂†i,σĉj,σ − ĉ†i,σd̂j,σ , d̂†l,σ′ ĉm,σ′ + ĉ†l,σ′d̂m,σ′ ]

= −
1

2

∑

i,j,l

∑

σ,σ′

ti,j tl,i
U

ĉ†l,σ′d̂i,σ′ d̂
†
i,σĉj,σ −

1

2

∑

i,j,m

∑

σ,σ′

ti,j tj,m
U

ĉ†i,σd̂j,σ d̂†j,σ′ĉm,σ′

= −
∑

i,j,l

∑

σ,σ′

ti,l tl,j
U

ĉ†i,σ′d̂l,σ′ d̂
†
l,σĉj,σ



After a straightforward but lengthy calculation we find

Hsc =
∑

i,j

∑

σ

ti,j ĉ
†
i,σĉj,σ +

∑

i,j

Ji,j
(

Si · Sj −
ninj

4

)

−
∑

i,j,l

ti,l tl,j
U

(

(ĉ†i,↓nl,↑ĉj,↓ − ĉ†i,↑S
−
l ĉj,↓ ) + (↓↔↑)

)



After a straightforward but lengthy calculation we find

Hsc =
∑

i,j

∑

σ

ti,j ĉ
†
i,σĉj,σ +

∑

i,j

Ji,j

( (

Sz
i S

z
j +

1

2

(

S+
i S−

j + S−
i S+

j

)

)

−
ninj

4

)

−
∑

i,j,l

ti,l tl,j
U

(

(ĉ†i,↓nl,↑ĉj,↓ − ĉ†i,↑S
−
l ĉj,↓ ) + (↓↔↑)

)

i

j

i

j

i

j

H0

H 1

H0

H 1

0

U

2U



After a straightforward but lengthy calculation we find

Hsc =
∑

i,j

∑

σ

ti,j ĉ
†
i,σĉj,σ +

∑

i,j

Ji,j

( (

Sz
i S

z
j +

1

2

(

S+
i S−

j + S−
i S+

j

)

)

−
ninj

4

)

−
∑

i,j,l

ti,l tl,j
U

(

(ĉ†i,↓nl,↑ĉj,↓ − ĉ†i,↑S
−
l ĉj,↓ ) + (↓↔↑)

)

i l

j

i l

j

i l

j

H0

H 1

H0

H 1

0

U

2U



Spin waves

The strong coupling Hamiltonian in the sector without double occupancies was

Hsc =
∑

i,j

∑

σ

ti,j ĉ
†
i,σĉj,σ +

∑

i,j

Ji,j
(

Si · Sj −
ninj

4

)

−
∑

i,j,l

ti,l tl,j
U

(

(ĉ†i,↑nl,↓ĉj,↑ − ĉ†i,↓S
+
l ĉj,↑ ) + (↑↔↓)

)

• We specialize to the case Ne = N - the Mott insulator

• In the sector of the Hilbert space without double occupancies all states have precisely one electron/site

• Every ĉ†i,σ acting on a state with one electron/site gives zero

• All hopping terms are inoperative

• The Hamiltonian reduces to

Hsc =
∑

i,j

Ji,j
(

Si · Sj −
ninj

4

)



Remember

Hsc =
∑

i,j

Ji,j
(

Si · Sj −
ninj

4

)

Further simplifications:

• Ji,j ̸= 0 only between nearest neighbors

• Drop the term −J
ninj
4 → −N · J

2

In the end we obtain the Heisenberg antiferromagnet (
∑

⟨i,j⟩ denotes sum over nearest neighbor pairs)

Hsc = J
∑

⟨i,j⟩

Si · Sj

= J
∑

⟨i,j⟩

(

Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j

)

= J
∑

⟨i,j⟩

(

Sz
i S

z
j +

1

2

(

S+
i S−

j + S−
i S+

j

)

)



The Heisenberg antiferromagnet

Hsc = J
∑

⟨i,j⟩

Si · Sj = J
∑

⟨i,j⟩

(

Sz
i Sz

j +
1

2

(

S+
i S−

j + S−
i S+

j

)

)

If only the first term were present the ground state would be the Néel state with energy −2 ·N · J
4

i j i j i j

However, the Néel state is not an eigenstate of the full Hamiltonian because the transverse part can produce

quantum fluctuations



To deal with the quantum fluctuations we represent the inverted spins as Bosons

i j i j i j i j

• Consider the Néel state as vacuum |0⟩

• Represent an inverted spin at the site i on the ↑-sublattice as a Boson created by a†i

• Represent an inverted spin at the site j on the ↓-sublattice as a Boson created by b†j

• For example the state on the right would be a†i b
†
j |0⟩

• Why Bosons? - Spin operators on different sites commute!

• States like (a†i)
2|0⟩ are meaningless - additional constraint: at most one Boson/site - ‘hard core constraint’



Hamiltonian for the Bosons

i j i j i j i j

The transverse part creates/annihilates pairs of inverted spins on nearest neighbors

J
∑

⟨i,j⟩

1

2

(

S−
i S+

j + S+
i S−

j

)

=
J

2

∑

i∈↑−SL

∑

j∈N(i)

(

S−
i S+

j + S−
j S+

i

)

=
J

2

∑

i∈↑−SL

∑

j∈N(i)

(

a†i b†j + bj ai

)



Geometry of the lattice



Hamiltonian for the Bosons

i j i j i j i j

The transverse part creates/annihilates pairs of inverted spins on nearest neighbors

J
∑

⟨i,j⟩

1

2

(

S−
i S+

j + S+
i S−

j

)

=
J

2

∑

i∈↑−SL

∑

j∈N(i)

(

S−
i S+

j + S−
j S+

i

)

=
J

2

∑

i∈↑−SL

∑

j∈N(i)

(

a†i b†j + bj ai

)



Each inverted spin icreases the expectation value of the term J
∑

⟨i,j⟩ Sz
i S

z
j

i

• The inverted spin is parallel rather than antiparallel to its z = 4 neighbors

• For each bond the energy increases from −J
4 to J

4

• The total increase of energy is zJ
2

• We interpret this as the energy of the boson:

J
∑

⟨i,j⟩

Sz
i S

z
j =

zJ

2

⎛

⎝

∑

i∈↑−SL

a†iai +
∑

j∈↑−SL

b†jbj

⎞

⎠



In this way we have ‘translated’ the Hamiltonian of the Heisenberg antiferromagnet into the Boson formulation

H =
zJ

2

⎛

⎝

∑

i∈↑−SL

a†iai +
∑

j∈↑−SL

b†jbj

⎞

⎠ +
J

2

∑

i∈↑−SL

∑

j∈N(i)

(

a†i b
†
j + bj ai

)

Fourier transformation yields

HSW =
zJ

2

∑

k

(

a†kak + b†kbk + γk (a†kb
†
−k + b−kak)

)

γk =
1

z

∑

n

eik·n =
1

4
( 2 cos(kx) + 2 cos(ky) )

Thereby k is a momentum from the antiferromagnetic Brillouin zone:

(π,0)

(π,π)

(0,0)



HSW =
zJ

2

∑

k

(

a†kak + b†kbk + γk (a†kb
†
−k + b−kak)

)

,

γk =
1

z

∑

n

eik·n =
1

4
( 2 cos(kx) + 2 cos(ky) )

This is a quadratic form - but the Bosons have to obey the hard-core constraint of infinite repulsion

However, we now simply ignore the constraint and treat the a† and b† as free Bosons

Then H can be diagonalized by a Bosonic Bogoliubov transformation

γ†
a,k = uk a†k + vk b−k

γ†
b,−k = uk b†−k + vk ak.

Demanding that the magnon operators γa,k are Bosons: [γa,k, γ
†
a,k] = 1, requires u2k − v2k = 1 and demanding

[H, γ†
a,k] = ωk γ†

a,k gives

ωk =
zJ

2

√

1− γ2
k, uk =

√

1 + νk
2νk

, vk =

√

1− νk
2νk

with γk = 1
4 ( 2 cos(kx) + 2 cos(ky) ), νk =

√

1− γ2
k
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Application: Dispersion and spectral weight of magnons in La2CuO4

We had: ωk = zJ
2

√

1− γ2
k

Ik ∝ (uk ± vk)2

Inelastic neutron scattering results from

R. Coldea et al.,PRL 86, 5377 (2001)
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Reminder: in our derivation we have simply ignored the hard-core constraint and treated the Bosons as free

particles - is this justified? Using the reverse Bogoliubov transformation....

a†k = uk γ†
a,k − vk γb,−k

b−k = −vk γ†
a,k + uk γb,−k

...we compute the density of a-type Bosons in the ground state |GS⟩ (which obeys γa,k|GS⟩ = 0)

na =
2

N

∑

k

⟨GS|a†k ak|GS⟩

=
2

N

∑

k

⟨GS| (uk γ†
a,k − vk γb,−k) (uk γa,k − vk γ†

b,−k) |GS⟩

=
2

N

∑

k

v2k

• Numerical evaluation for a 2D square lattice gives na = 0.19

• The probability to have two Bosons on one site would be ∝ n2
a = 0.04 ≪ 1

• Enforcing the constraint (e.g. by Gutzwiller projection) would not change much...



Analogy: Equilibrium in a solution

ich bin bloss platzhalter
H  O2

Na Cl



Single hole problem

We return to the strong coupling Hamiltonian:

Hsc = −t
∑

⟨i,j⟩

∑

σ

ĉ†i,σĉj,σ + J
∑

⟨i,j⟩

(

Si · Sj −
ninj

4

)

−
∑

i,j,l

ti,l tl,j
U

(

(ĉ†i,↑nl,↓ĉj,↑ − ĉ†i,↓S
+
l ĉj,↑ ) + (↑↔↓)

)

• We specialize to the case Ne = N − 1 - a single hole in the Mott insulator

• For simplicity we discard the three-site hopping terms

• In addition we assume hopping ti,j and exchange Ji,j only between nearest neighbors

• The remaining Hamiltonian is called the t-J model



• Basic assumption: a single hole will not destroy antiferromagnetic order

• We continue to use the Néel state as a starting point of the discussion

• Assume that the electron on site i ∈↑ −SL of the Néel state has been removed

ich bin bloss

platzhalter i j

(a) (b)

• The term −t ĉ†i,↓ ĉj,↓ can transport the hole

• But thereby an inverted spin on site i is left behind

• This is a magnon as introduced in the preceeding discussion

•
The hole ‘radiates off’ magnons as it propagates



Collecting terms and writing ⟨ni⟩ = ne we find

[ĉi,↑, Ht] =
∑

j

tij

[

(1−
ne

2
) cj,↑ + (cj,↑S

z
i + cj,↓S

−
i )−

1

2
cj,↑(ni − ne) + c†j,↓ci,↓ci,↑

]

[d̂i,↑, Ht] =
∑

j

tij

[

ne

2
cj,↑ − (cj,↑S

z
i + cj,↓S

−
i ) +

1

2
cj,↑(ni − ne)− c†j,↓ci,↓ci,↑

]

The various terms describe

Coherent propagation from i → j

Hopping i → j while leaving a spin excitation at i

Hopping i → j while leaving a density excitation at i

Hopping i → j while leaving a pair excitation at i (important only for U < 0)

The Hubbard-I approximation corresponds to a rather crude truncation:

[ĉi,↑, Ht] =
∑

j

tij (1−
ne

2
) cj,↑ = (1−

ne

2
)
∑

j

tij (ĉj,↑ + d̂j,↑)

[d̂i,↑, Ht] =
∑

j

tij
ne

2
cj,↑ =

ne

2

∑

j

tij (ĉj,↑ + d̂j,↑)



• Basic assumption: a single hole will not destroy antiferromagnetic order

• We continue to use the Néel state as a starting point of the discussion

• Assume that the electron on site i ∈↑ −SL of the Néel state has been removed

ich bin bloss

platzhalter i j

(a) (b)

• The term −t ĉ†i,↑ ĉj,↑ can transport the hole

• But thereby an inverted spin on site i is left behind

• This is a magnon as introduced in the preceeding discussion

•
The hole ‘radiates off’ magnons as it propagates



• We introduce Fermions h†
a,i for i ∈↑-SL and h†

b,j for j ∈↑-SL

• we continue to use a†i (inverted spin at site i ∈↑-SL) and b†j (inverted spin at site j ∈↓-SL)

ich bin bloss

platzhalter i j

(a) (b)

This is described by the Hamiltonian

Hint = t
∑

i∈A

∑

n

(

h†
b,i+nha,i a

†
i +H.c.

)

+ t
∑

j∈B

∑

n

(

h†
a,j+nhb,j b

†
j +H.c.

)

.



We had

Hint = t
∑

i∈A

∑

n

(

h†
b,i+nha,i a

†
i +H.c.

)

+ t
∑

j∈B

∑

n

(

h†
a,j+nhb,j b

†
j +H.c.

)

.

Fourier transformation gives ( with ϵk = 2t( cos(kx) + cos(ky) ))

Hint =

√

2

N

∑

k,q

((

ϵk−q h†
b,k−qha,k a†q +H.c.

)

+ (a ↔ b)
)

.

Now we recall the Bogoliubov transformation which diagonalized the spin wave Hamiltonian

γ†
a,k = uk a†k + vk b−k

γ†
b,−k = uk b†−k + vk ak.

Replacing (a†k, b
†
k) → (γ†

a,k, γ
†
b,k) and adding the Hamiltonian for the γ’s we finally obtain

Htot =

√

2

N

∑

k,q

((

M(k,q) h†
b,k−q ha,k γ†

a,q +H.c.
)

+ (a ↔ b)
)

+
∑

q

ωq

(

γ†
a,qγa,q + γ†

b,qγb,q

)



Collecting everything

Htot =

√

2

N

∑

k,q

((

M(k,q) h†
b,k−q ha,k γ†

a,q +H.c.
)

+ (a ↔ b)
)

+
∑

q

ωq

(

γ†
a,qγa,q + γ†

b,qγb,q

)

• M(k,q) = ϵk−q uq − ϵk vq

• ϵk = 2t ( cos(kx) + cos(ky) )

γ†
a,k = uk a†k + vk b−k

γ†
b,−k = uk b†−k + vk ak.

• ωq = zJ
2

√

1− γ2
q

• γk = 1
z

∑

n eik·n = 1
4 ( 2 cos(kx) + 2 cos(ky) )

M(k,q) h†
b,k−q ha,k γ†

a,q

M(k,q)

k

q

k−q



We have to use an approximation - widely used is the self-consistent Born approximation (SCBA)

This assumes that the self-energy for the holes is given in terms of the simplest diagrams possible

Define time ordered Green’s functions (⟨. . . ⟩: expectation value in the state with no hole and no magnons)

Gα(k, t) = −i⟨T hα,k(t)h
†
α,k(0)⟩

Bα(q, t) = −i⟨T γα,q(t)γ
†
,α,q(0)⟩,

Diagrams for the self-energy

ich bin bloss platzhalter

G (k+q,ω+ν)bG (k−q,ω−ν)b

B(q ,ν) B(q ,ν)

Σa(k,ω) =
i

2π

2

N

∑

q

∫

dν [ M 2(k,q) Ba(q, ν) Gb(k− q,ω − ν) +M 2(k + q,q) Ba(q, ν) Gb(k + q,ω + ν) ]



We had

Σa(k,ω) =
i

2π

2

N

∑

q

∫

dν [ M 2(k,q) Ba(q, ν)Gb(k− q,ω − ν) +M 2(k + q,q) Ba(q, ν)Gb(k + q,ω + ν) ]

Since we consider only a single hole in an infinite system we can replace the magnon Green’s function by that

of the system without a hole i.e. the Heisenberg antiferromagnet (whereby ⟨. . . ⟩: expectation value in the

state with no hole and no magnons)

B(0)
α (q, t) = −ie−iωqt

(

Θ(t) ⟨γα,qγ†
α,q⟩ + Θ(−t) ⟨γ†

α,qγα,q⟩
)

= −iΘ(t) e−iωqt,

with Fourier transform

B(0)
α (q,ω) =

1

ω − ωq + i0+

so that

Σa(k,ω) =
i

2π

2

N

∑

q

∫

dν

[

M 2(k,q)
Gb(k− q,ω − ν)

ν − ωq + i0+
+M 2(k + q,q)

Gb(k + q,ω + ν)

ν − ωq + i0+

]

.



Short digression: The Hamiltonian was

H =

√

2

N

∑

k,q

((

M(k,q) h†
b,k−q ha,k γ†

a,q +H.c.
)

+ (a ↔ b)
)

+
∑

q

ωq

(

γ†
a,qγa,q + γ†

b,qγb,q

)

→ The hole Green’s function is (α ∈ a, b)

Gα(q, t) = −i
(

Θ(t) ⟨ eiHt hα,q e−iHt h†
α,q ⟩ − Θ(−t) ⟨ h†

α,q eiHt hα,q e−iHt ⟩
)

= −i Θ(t) ⟨ hα,q(t) h
†
α,q ⟩



Short digression: The Hamiltonian was

H =

√

2

N

∑

k,q

((

M(k,q) h†
b,k−q ha,k γ†

a,q +H.c.
)

+ (a ↔ b)
)

+
∑

q

ωq

(

γ†
a,qγa,q + γ†

b,qγb,q

)

→ The hole Green’s function is (α ∈ a, b)

Gα(q, t) = −i
(

Θ(t) ⟨ eiHt hα,q e−iHt h†
α,q ⟩ − Θ(−t) ⟨ h†

α,q eiHt hα,q e−iHt ⟩
)

= −i Θ(t) ⟨ hα,q(t) h
†
α,q ⟩

It follows that

Gα(q,ω) =

∫ ∞

0
dt eiωt Gα(q, t)

is analytic in the upper ω-half plane: Let

ω = ω′ + iω′′ ⇒ eiωt = eiω
′t e−ω′′t

⇒ The hole Green’s function Gα(q,ω) is analytic in the upper ω half-plane



Now we can perform the integral over ν

Σa(k,ω) =
i

2π

2

N

∑

q

∫ ∞

∞
dν

[

M 2(k,q)
Gb(k− q,ω − ν)

ν − ωq + i0+
+M 2(k + q,q)

Gb(k + q,ω + ν)

ν − ωq + i0+

]

• Since G(ν) → 1
ν the integrand behaves like 1

ν2

• To perform the integral over ν we may therefore close the contour by a large semi-arc

• For the first term we choose the lower arc

ν = ωq − i 0+

Re ν

Im ν

Rν

Σa(k,ω) = (−2πi)
i

2π

2

N

∑

q

M 2(k,q) Gb(k− q,ω − ωq)



We had

Σa(k,ω) =
2

N

∑

q

M 2(k,q) Gb(k− q,ω − ωq)

and

Ga(k,ω) =
1

ω − Σa(k,ω)

Since Ga = Gb = G and Σa = Σb = Σ we obtain

Σ(k,ω) =
2

N

∑

q

M 2(k,q)

ω − ωq − Σ(k− q,ω − ωq)

With

• M(k,q) = ϵk−q uq − ϵk vq

• ωq = zJ
2

√

1− γ2
q

This is a self-consistency equation for Σ(k,ω) which has to be solved numerically for a discrete k- and ω-mesh



Outcome of such a calculation (G. Martinez and P. Horsch, PRB 44, 317 (1991))

compared Lanczos on a 32-site cluster (P.W. Leung and R.J. Gooding PRB 52, R15711 (1995))

(b)(a)

ω



Dispersion of the ‘quasiparticle peak’ from the SCBA compared to Lanczos

Hubbard-I:
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• Width of lower Hubbard band 4t → 0.6t - actually the bandwidth is ∝ J

• Change of dispersion - maximum shifted (π, π) → (π2 ,
π
2 )

• Bulk of spectral weight shifted to incoherent continua

• All in all: massive change of the photoemission spectrum



Comparison with experiment: ARPES spectra for Sr2CuO2Cl2 (B. O. Wells et al., PRL 74, 964 (1995))

(0,0)

(π,π)

By adding t′ and t′′ one can obtain good agreement

(O. Sushkov et al., PRB, 56, 11769 (1997))
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ARPES Data by B. O. Wells et al., Phys. Rev. Lett. 74, 964 (1995)



Summary: Problems to be solved

• A first major problem: what is the Fermi surface of a lightly doped Mott insulator? Hubbard-I vs.

Gutzwiller?

• The ‘holes’ have strong coupling to collective modes - even for the simplified case of a single hole a very

involved calculation was necessary leading to strong modification of the ‘band structure’

• A few percent of holes destroys antiferromagnetic order - we have no theory for the spin excitations of

such a disordered state that would be a simple and accurate as spin wave theory



Possible Scenario

Question: Which ‘true’ behaviour might the Hubbard-I approximation be ‘trying to approximate’?

ich bin bloss

platzhalter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

V F
er

m
i

ne

Hubbard-I
Gutzwiller

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

V F
er

m
i

ne

AF

Gutzwiller
Hole doped insulator
With phase transition

Perhaps a phase transition between two phases of different Fermi surface volume?



Does one see anything like this in experiment?
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Transport properties also are consistent with a ‘small’ Fermi surface

(Data from W. J. Padilla et al., PRB 72,060511 (2005) - remember: ne = 1− x)



Does one see anything like this in experiment?

(π,π)

(0,0)

Possible Scenario



Question: Which ‘true’ behaviour might the Hubbard-I approximation be ‘trying to approximate’?

ich bin bloss

platzhalter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

V F
er

m
i

ne

Hubbard-I
Gutzwiller

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
V F

er
m

i

ne

AF

Gutzwiller
Hole doped insulator
With phase transition

Perhaps a phase transition between two phases of different Fermi surface volume?


