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Fundamental questions and applications

Traditional industrial applications: Cu, steels, Si, plastics, . . .

+ Mott Transition

+ Quantum critical points

+ Spin-charge separation

+ Competing Instabilities

+ High Tc superconductivity

+ Stripes

+ Colossal magnetoresistance

+ Magnetization steps

+ . . .

+ Thermoelectricity

+ CMR and magnetic recording

+ Transparent conductors

+ Ferroelectricity and multiferroics

+ Mott FET

+ Superconductors and superconductor
based electronics

+ Batteries and solid oxide fuel cells

+ Solar cells

+ . . .

Needed: tools to investigate these topics (exp. and th.).

Jülich, September 2015



Motivation: Hubbard Model, ferromagnetism and charge instabilities

+ The Hubbard model has been initially introduced, inter alia, to describe metallic mag-
netism. Hubbard, Kanamori, Gutzwiller
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+ From Stoner criterion a ferromagnetic instability develops for sufficiently large U.

+ Large strong coupling corrections usually suppress this instability.

+ No ferromagnetism in the Hubbard model on the cubic lattice at half-filling.

+ Connection with the Single Impurity Anderson Model in the DMFT context.

• Role of longer-ranged Coulomb interaction ?

• Magnetic and charge instabilities. Charge dynamics.

Needed: an approach that captures interaction effects beyond the physics of Slater
determinants.



Slave boson approaches to strongly interacting fermions

Strategy: Introduce constrained auxiliary particles in order to:

• work with actions that are bi-linear in fermionic fields.

• map degrees of freedom onto bosons (Radial slave bosons).

+ Barnes: U = ∞ Single impurity Anderson model aσ = e†fσ

+ Kotliar and Ruckenstein: Hubbard model

+ Wölfle et al.: Rotationally invariant formulations (t–J model)

+ Kotliar et al.: Multiband models

+ . . .

Read and Newns: The phase of the slave boson can be gauged away.
Bosonic field x without its phase degree of freedom. Artillery?

• What is the proper functional integral representation for such a field?

• Bose condensation? 〈e〉 vs 〈x〉

+ Singlets?

+ Entanglement?

S. E. Barnes, J. Phys. F 6 1375 (1976)
P. Coleman, PRB 29 3035 (1984)

G. Kotliar, A. Ruckenstein, PRL 57 1362 (1986)

RF, P. Wölfle, Int. J. Mod. Phys. B 6 685 (1992)

RF, G. Kotliar, PRB 56, 12 909 (1997)

N. Read, D. M. Newns, J. Phys. C 16, L1055 (1983)
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Slave boson approaches to strongly interacting fermions

Single impurity Anderson model

Diagrammatic techniques Green’s function S. Kirchner, J. Kroha, P. Wölfle, PRB 70 165102 (2004)

of the SIAM K. Baumgartner, H. Keiter, phys stat sol (b) 242 377 (2005)

Saddle-point Magnetic phases L. Lilly, A. Muramatsu, and W. Hanke, PRL 65, 1379 (1990)

Saddle-point Stripes G. Seibold, E. Sigmund, V. Hizhnyakov, PRB 57 6937 (1998)

M. Raczkowski, RF, A. M. Oleś, PRB 73 174525 (2006)

Saddle-point Interfaces N. Pavlenko, Th. Kopp, PRL 97 187001 (2006)

Fluctuations Correlation functions M. Lavagna, PRB 41 142 (1990)

Fluctuations Correlation functions Y. Bang, C. Castellani, M. Grilli, G. Kotliar, R. Raimondi, and

Z. Wang, Int. J. Mod. Phys. B 6, 531 (1992)

Fluctuations Structure factors W. Zimmermann, RF, P. Wölfle, PRB 56 10 097 (1997)

Structure factors E. Koch, PRB 64 165113 (2001)

Landau parameters G. Lhoutellier, RF, A. M. Oleś, PRB 91 224410 (2015)

Charge dynamics V. H. Dao, RF (2016)

Hubbard model



Slave boson approaches to strongly interacting fermions

Consider the single impurity Anderson model:
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in the U → ∞ limit. Barnes introduced the auxiliary fermionic (fσ) and bosonic (e) operators
in terms of which the physical electron operators aσ read,

aσ = e†fσ

The aσ-operators obey the ordinary Fermion anticommutation relations. Not automatically
preserved when using this representation, even when the auxiliary operators obey canonical
commutation relations. In addition there is a constraint that must be satisfied:

Q ≡ e†e+
X

σ
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σfσ = 1

A faithful representation of the physical electron operator is obtained in the sense that both
have the same matrix elements in the physical Hilbert subspace with Q = 1.

Operators : n̂ = 1 − e†e Ŝ =
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Slave boson approaches to strongly interacting fermions: Implementation

For the single impurity Anderson model:

H =
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and U → ∞, the partition function, projected onto the Q = 1 subspace, reads,
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Here the λ integration enforces the constraint, and the Lagrangian is bi-linear in the fermionic
fields. This has been achieved without decoupling the interaction term.



Slave boson approaches to strongly interacting fermions: Implementation

For the U → ∞ single impurity Anderson model the partition function may be written as:
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where 1I2 is the 2×2 identity matrix and [Ln] are (2×2) blocks given, in the simplest limit, by:

[Ln] =

„

−Lc δV e†n
δV en−1 −Lf

«

where Lc = e−δ(ǫc−µ), Lf = e−δ(ǫf−µ+iλ). It makes sense to diagonalize [Ln] in a saddle-
point approximation.
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Path integral representation of slave bosons in radial gauge

One can make use of a†σ → ef†
σ to retain the sole amplitude of the slave boson field x. One

may then write the partition sum for a lattice problem on a discretized time mesh as:
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N→∞
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Used: a†n,σ = xnf
†
n,σ ; an,σ = xn+1fn,σ .

Here the measure is trivial, and the interaction terms included in Sb are bilinear. The “W-
term” allows the amplitudes for running from −∞ to +∞.

RF and T. Kopp, Nucl. Phys. B 94, 769 (2001)



Exact evaluation of path integral representations involving slave bosons in radial gauge

After some algebra: Z = lim
N→∞
W→∞

P1 . . .PN

 

Tr
N
Y

n=1

[Kn] ⊗ [Kn]

!

With Pn =

Z ∞

−∞

δdλn

2π

Z ∞

−∞

dxne
−δ(iλn(xn−1)+Wxn(xn−1))

And [Kn] =

0

B

B

@

1
Lc δV xn

δV xn Ln

LcLn

1

C

C

A

, Lc = e−δ(ǫc−µ) , Ln = e−δ(ǫf−µ+iλn)

The time steps are decoupled!

→ block diagonal Hamiltonian matrix including entangled states.

Z〈xm〉 = P1 . . .PN

 

xmTr
N
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One finds 〈xm〉 to be generically finite and not related to a Bose condensate.
A saddle-point approximation yields an approximate value to 〈xm〉.

RF, H. Ouerdane, and T. Kopp, Nucl. Phys. B 785, 286 (2007)



Extension to the Kotliar and Ruckenstein representation

Principle: Introduce the auxiliary particles fσ , e, pσ , and d to represent the physical states:

|0〉 = e†|vac〉

|σ〉 = p†σf
†
σ|vac〉

|2〉 = d†f†
↑f

†
↓ |vac〉

There are now three constraints:
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The phase of 3 slave boson fields may be gauged away.
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the Gutzwiller approximation is recovered as a saddle-point.
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Asymmetry G. Kotliar, A. Ruckenstein, PRL 57 1362 (1986)



Extension to the Spin Rotation Invariant Kotliar and Ruckenstein representation

Introduce the auxiliary canonical particles fσ , e, p0, ~p, and d to represent the physical states:

|0〉 = e†|vac〉
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Extension to the Spin Rotation Invariant Kotliar and Ruckenstein representation

Operators : n̂ =
X

µ

p†µpµ + 2d†d ~S =
X

σσ′σ1

~τσσ′p†σσ1
pσ1σ′ D̂= d†d

All these degrees of freedom have been mapped onto bosons.

Kinetic energy : T̂ =
X
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i,σ1
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Fermion–boson interaction term.
At saddle-point in the paramagnetic phase the action for the Hubbard model reads:
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The quasiparticle dispersion reads:

E~kσ = z2
0t~k + β0 − µ

The Gutzwiller approximation is recovered as a saddle-point.
Large N theory.

G. Kotliar, A. Ruckenstein, PRL 57 1362 (1986)

RF, P. Wölfle, Int. J. Mod. Phys. B 6 685 (1992)



SRI Kotliar and Ruckenstein representation: saddle-point approximation

At the paramagnetic saddle-point (~p = ~β = 0). Saddle-point equations arise as:

p2
0 + e2 + d2 − 1 = 0,

p2
0 + 2d2 = n,
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the saddle-point equation may be written as:

y3 + (u− 1)y2 = uδ2 , where u = U/U0, and U0 = −
8

1 − δ2
ε̄.

At half filling one finds y = 1 − u, and a metal-to-insulator transition occurs at

Uc = lim
δ→0

U0 = −8ε̄.
G. Kotliar, A. Ruckenstein, PRL 57 1362 (1986)



SRI representation of an extended Hubbard Model
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It includes local Coulomb U , intersite Coulomb Vij and exchange Jij interactions.
Imperfect screening.
The Spin Rotation Invariant representation of this Hamiltonian may be written as:
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Mott transition

All saddlepoint equations equations may be merged into a single one:
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Mott gap as in the
plane Hubbard Model

Cubic lattice

G. Lhoutellier, RF, and A. M. Oleś, PRB 91 224410 (2015)



Mott transition at finite temperature
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RF and K. Doll, 1995 (arXiv:cond-mat/9603125)



Susceptibilities

Having mapped all degrees of freedom onto bosons allows to write the spin and density
fluctuations as:

δSz ≡
X

σ

σδnσ = δ(p†0pz + p†zp0)

δN ≡
X

σ

δnσ = δ(d†d− e†e)

The spin and charge autocorrelation functions can be written in terms of the slave boson
correlation functions as:

χs(k) =
X

σ,σ
′

σσ
′

〈δnσ(−k)δnσ
′ (k)〉 = 〈δSz(−k)δSz(k)〉,

χc(k) =
X

σσ
′

〈δnσ(−k)δnσ
′ (k)〉 = 〈δN(−k)δN(k)〉.

With k ≡ (~k, ω).

• Derive the inverse propagator matrix to compute the one-loop result.
• The spin and charge degrees of freedom are decoupled.

Jülich, September 2015



Landau parameters: F a
0 and F s

0

Spin susceptibility:

χs(q, ω) =
χ0(q, ω)

1 +A~qχ0(q, ω) +Bχ1(q, ω) +C[χ2
1(q, ω) −χ0(q, ω)χ2(q, ω)]

with

χn(q, iνn) = −
1

T

X

p,iωn,σ

(tq + tq+p)nG0,σ(p, iωn)G0,σ(q + p, iωn + iνn)

+ It takes a form similar to RPA, with an effective interaction.

Landau parameters: Half-filling:

χs(0) = χ0(0)
1+F a

0

F a
0 = −1 +

1

(1 + U
Uc

)2

χc(0) = χ0(0)
1+F s

0
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0 = −1 +

1

(1 − U
Uc

)2

F a
0 (F s

0 ) = −1 signals an instability.
They show a lesser sensitivity to the density of states.

D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984)
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Landau parameter of the extended Hubbard Model: F a
0 at half-filling on the cubic lattice

F a
0 = −2N

(0)
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with u ≡
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Appearance of a singular
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G. Lhoutellier, RF, and A. M. Oleś, PRB 91 224410 (2015)



Landau parameter F a
0 on the cubic lattice: Doping dependence
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Landau parameter F a
0 of the extended Hubbard Model: Instabilities of the cubic lattice
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Increasing −J
softens the re-
sponse

Instabilities for
U < Uc

Instabilities at
low densities

Instability lines

G. Lhoutellier, RF, and A. M. Oleś, PRB 91 224410 (2015)
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F s
0 of the extended Hubbard Model: Instabilities at half-filling on the cubic lattice
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F s
0 of the extended Hubbard Model: Doping dependence on the cubic lattice
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Charge dynamics

The gaussian fluctuation separate into a charge channel and a spin channel. Here:

Sc =
X

q

X

µ,ν

δψµ(−q)Sµ,ν(q)δψν(q)

with δψ1(q) = δe(q), δψ2(q) = δd′(q), δψ3(q) = δd′′(q), δψ4(q) = δp0(q), δψ5(q) = δβ0(q),
δψ6(q) = δα(q). The “main” contribution to Sµ,ν(q) reads:

S(1)(q) =

0

B
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B
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B

B

@

α 0 0 0 0 e
0 α− 2β0 + U νn 0 0 d
0 −νn α− 2β0 + U 0 −2d 0
0 0 0 α− β0 −p0 p0

0 −2d 0 −p0 − 1
2
χ0(q) 0

e d 0 p0 0 0

1

C

C

C

C

C
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A

,

which may be used to obtain the charge susceptibility as:

χc(q) = 2e2S−1
11 (q) − 4edS−1

12 (q) + 2d2S−1
22 (q).

A pole arises in the charge dynamics at ω ≃ α− 2β0 + U ≃ U . Upper Hubbard band?



Charge dynamics on the square lattice

δ = 0.3δ = 0.05

U/t = 0

δ = 0.7

U/t = 0: Particle-hole continuum. Logarithmic singularities along Γ−X at β = 8.

Performing the full one-loop calculation of the charge autocorrelation function yields
χc(q, ω) = χ0(q, ω) in the non-interacting limit. This is a fully interacting problem in
slave boson representations.

V. H. Dao, RF (2016)



Charge dynamics on the square lattice

U/t = 1

U/t = 1: The edge peak is complemented by:
• An additional feature in the continuum: Damped collective mode
• A dispersionless mode

Jülich, September 2015



Charge dynamics on the square lattice

U/t = 4

U/t = 4:
• The particle-hole continuum shrinks due to mass renormalization
• The collective mode separates from the continuum
• The upper mode acquires weight and dispersion. δ dependence



Charge dynamics on the square lattice

U/t = 12

U/t = 12:
• The particle-hole continuum further shrinks due to mass renormalization
• The collective mode is fully separated from the continuum
• The upper mode acquires further weight and dispersion. Upper Hubbard band
• ∆ ∼ U



δ = 0.3δ = 0.05

U/t = 0

U/t = 1

U/t = 4

U/t = 12

δ = 0.7

U/t = 0: Particle-hole contin-
uum ending with an edge peak

U/t = 1: A collective mode and
an upper Hubbard band start to
develop

U/t = 4: The collective mode
separates from the continuum.
The upper Hubbard band is
clearly developed

U/t = 12: The upper Hubbard
band is fully developed. ∆ ≃ U

V. H. Dao, RF (2016)



Summary and outlook

+ The most prominent slave boson representations have been reviewed, from the SIAM
to the Hubbard Model extended by Si · Sj and ninj interactions.

+ A path integral representation of a radial slave boson field on a discretized time mesh
has been presented.

+ This representation has been made use of to exactly evaluate the path integral for a
toy model in the strong interaction limit.

+ The low frequency-small momentum spin and charge response functions take an
RPA form, with channel dependent effective interactions.

+ At half-filling, F a
0 shows no singularity for J = 0 only.

+ Ferromagnetic instabilities in a large part of the phase diagram for J < −U/20.

+ Charge instabilities for V < −0.234U at half-filling, and in a large part of the phase
diagram for V < −0.15U .

+ The Kotliar and Ruckenstein representation allows to describe the splitting of the
charge excitation spectrum of the intermediate U Hubbard model.

Perspectives

+ Finite ~k instabilities?

+ Excitations of symmetry broken phases?
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+ Gabi Kotliar, Rutgers.
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